temperature CONTROLLER PROGRAMMER 1/16 DIN - 48×48
KM3 model
Quick Guide•ISTR-FKM3PENG02

viale Indipendenza 56, 27029 - Vigevano (PV) - ITALY Tel.: +39 038169871 , Fax: +390381698730 internet site: www.ascontecnologic.com E-mail: sales@ascontecnologic.com

1. DIMENSIONS AND CUT-OUT (mm)

Controller with non removable terminals

Panel cut-out

Mounting requirements

This instrument is intended for permanent installation, for indoor use only, in an electrical panel which encloses the rear housing, exposed terminals and wiring on the back.
Select a mounting location having the following characteristics:

1. It should be easily accessible
2. There is minimum vibrations and no impact
3. There are no corrosive gases;
4. There are no water or other fluids (i.e. condensation);
5. The ambient temperature is in accordance with the operative temperature $\left(0 . . .50^{\circ} \mathrm{C}\right.$);
6. The relative humidity is in accordance with the instrument specifications ($20 . . .85 \%$);
The instrument can be mounted on panel with a maximum thickness of 15 mm .
When the maximum front protection (IP65) is desired, the optional gasket must be mounted.
7. ELECTRICAL CONNECTIONS

ELECTRICAL CONNECTIONS

Power supply voltage:

100... $240 \mathrm{Vac} / 20$... $30 \mathrm{Vdc} / 18 . . .28 \mathrm{Vac}$ Out1 relay: 4 (4) A/250 VAC, SPST; Out2, 3 relay: 2 (1) A/250 VAC, SPST NA (*); Out1, 2, 3 SSR: $10 \mathrm{VDC} / 15 \mathrm{~mA}$;
Linear Out1: $0 / 4 \ldots 20 \mathrm{~mA}, 0 / 2 \ldots 10 \mathrm{~V}$;
Outh SSR: $12 \mathrm{VDC/20} \mathrm{~mA}$.

* For KM3 servodrive models both Out2 and Out3 are to be selected as " M " in Configuration code; Out2: open, Out3: close.

General notes about wiring

1. Safety regulations require a line switch marked as instrument disconnecting device. This switch must be easily reachable by the operator;
2. Do not run input wires together with power cables;
3. External components (like zener barriers, etc.) connected between sensor and input terminals may cause errors in measurement due to excessive and/or not balanced line resistance or possible leakage currents;
4. When a shielded cable is used, it should be connected at one point only;
5. Pay attention to the line resistance, a high line resistance may cause measurement errors.
6. To avoid electrical shocks, connect power line at last;
7. Before connecting the instrument to the power line, make sure that line voltage is equal to the voltage shown on the identification label;
8. The power supply input is NOT fuse protected. Please, provide an external fuse T type 1A, 250 V .
9. CONFIGURATION PROCEDURES

Setting the parameters

Press the $\boldsymbol{\sigma}$ key
for 3 seconds

Insert
Password 3
(default: 30)

Key	Editing Mode
$\boldsymbol{\omega}$	Confirm and go to Next parameter
$\boldsymbol{\Delta}$	Increase the displayed value or select the next element
$\boldsymbol{\nabla}$	Decrease the displayed value or select the previous element
$\boldsymbol{-}$	Exit from Operator commands/Parameter setting/Configuration

How to exit the "Configuration mode" To exit from the Configuration mode, press the key for 3 seconds.
4. LIST OF THE PARAMETERS (PR55: 30)

7'inP Group - Main and auxiliary input configuration

no.	Par.	Description	Dec.	Values	Default	Notes
1	SEnS	Model C				
		Model E				
	dp	Decimal Point Position (linear inputs)	0	0... 3	0	
2		Decimal Point Position (non linear inputs)		0/1		
3	SSC	Initial scale read-out for linear inputs	dp	-1999... 9999	0	
4	FSC	Full Scale Readout for linear inputs	dp	-1999... 9999	1000	
5	unit	Engineer unit		${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	
6	Fil	Digital filter on the measured value	1	0 (= 0FF)... 20.0 s	1.0	
7	inE	Sensor error used to enable the safety output value		$\begin{array}{ll} \text { or }= & \text { Over range; } \\ \text { ur }= & \text { Under range; } \\ \text { our }= & \text { Over and under range. } \end{array}$	our	
8	OPE	Safety output value (\% of the output)		-100... 100	0	
9	104.F	1/0 4 function		on = \quad Output used as PWS for TX; out4 $=$ Output 4 (digital output 4); dG2c = Digital input 2 driven by contact; dG2U = Digital input 2 driven by voltage	out4	
10	diF1	Digital Input 1 function		```ofF = Not used; \(1=\) Alarm reset; = Alarm acknowledge (ACK); \(3=\) Hold of the measured value; \(4=\) Stand by mode; 5 = Manual mode; \(6=\) HEAt with SP1 and Cool with SP2; \(7=\) Timer RUN/Hold/Reset; \(8=\) Timer Run; \(9=\) Timer Reset; \(10=\) Timer Run/Hold;```	off	
11	diF2	Digital Input 2 function		$12=$ Timer Run/Reset with lock; $13=$ Program Start; $14=$ Program Reset; $15=$ Program Hold; $16=$ Program Run/Hold; $17=$ Program Run/Reset; $18=$ Sequential SP selection; $19=$ SP1 - SP2 selection; $20=$ SP1... SP4 binary selection; $21=$ Digital inputs in parallel to Δ / ∇ keys.	ofF	
12	di.A	Digital Inputs Action (D12 only if configured)		$\begin{aligned} & 0=D 11 \text { direct action, D12 direct action; } \\ & 1=D D 11 \text { reverse action, DD2 direct action; } \\ & 2=D 11 \text { direct action, } D 12 \text { reverse action; } \\ & 3=D D 1 \text { reverse action, D12 reverse action. } \end{aligned}$	0	

${ }^{\text {I }}$ Out group - Output parameters

no.	Par.	Description	Dec.	Values	Default	Notes
13	014	Output 1 type (when Out 1 is a linear output)		$\begin{aligned} & 0-20=0 \ldots 20 \mathrm{~mA} ; \\ & 4-20=4 . \ldots 20 \mathrm{~mA} ; \\ & 0-10=0 \ldots 10 \mathrm{~V} ; \\ & 2-10=2 \ldots 10 \mathrm{~V} . \end{aligned}$	0-20	
		Out 1 function (when Out 1 is a linear output)	0	NonE = Output not used; H.rEG = Heating output; C.rEG = Cooling output; r.inP = Measure retransmission; r.Err = Error (SP - PV) retransmission; r.SP = Set point retransmission; r.SEr = Serial value retransmission.		
14	$01 F$	Out 1 function (when Out1 is a digital output)	0	```NonE = Output not used; H.rEG = Heating output; c.rEG = Cooling output; AL = Alarm output; t.out \(=\) Timer output; t.HoF = Timer out -OFF in hold; P.End = Program end indicator; P.HLd = Program hold indicator; P.uit = Program wait indicator; P.run = Program run indicator; P.Et1 = Program Event 1; P.Et2 \(=\) Program Event 2; or.bo = Out of range or burn out indicator; P.FAL = Power failure indicator; bo.PF = Out of range/burn out/Power failure indicator; St.bY = Stand by status indicator; diF. \(1=\) The output repeats the digital input 1 status; diF. \(2=\) The output repeats the digital input 2 status; on = Out 1 always 0 N ; riSP \(=\) Inspection request.```	H.reG	
15	A01L	Initial scale for the analog retransmission	dP	-1999 ... A01H	-1999	
16	A01H	Full scale for the analog retransmission	dP	A01L ... 9999	9999	
17	01AL	Alarms linked up with the out 1	0	0... $63:$ $+1=$ Alarm 1; $+2=$ Alarm 2i; $+4=$ Alarm 3_{i} $+4=$ Loop break alarm; $+8=$ Sensor Break $;$ $+32=$ Overload on output 4.	1	
18	01Ac	Out 1 action	0	dir $=$ Direct action; rEU $=$ Reverse action; dir.r $=$ Direct with reversed LED; ReU. $\mathrm{r}=$ Reverse with reversed LED.	dir	
19	02 F	Out 2 function	0	See 01F - Out 1 function (digital output)	AL	
20	02AL	Alarms linked up with the out 2	0	See 01AL - Alarms linked up with the out 1	1	
21	02Ac	Out 2 action	0	See 01Ac - Out 1 action	dir	
22	03F	Out 3 function	0	See 01F - Out 1 function (digital output)	AL	
23	03AL	Alarms linked up with the out 3	0	See 01AL - Alarms linked up with the out 1	2	
24	03AC	Out 3 action	0	See 01Ac - Out 1 action	dir	
25	04F	Out 4 function	0	See 01F - Out 1 function (digital output)	AL	
26	04AL	Alarms linked up with the out 4	0	See 01AL - Alarms linked up with the out 1	$\mathrm{AL1}+\mathrm{AL} 2$	
27	04AC	Out 4 action	0	See 01Ac - Out 1 action	dir	

Alarm types

${ }^{7}$ AL1 Group - Alarm 1 parameters

no.	Par.	Description	Dec.	Values	Default	Notes
28	Alt	Alarm 1 type	0	nonE = Alarm not used; $\mathrm{LOAD}=$ Absolute low alarm; $\mathrm{HiAb}=$ LHAO = Windows alarm in alarm outside the windows; LHAI = Windows alarm in alarm inside the windows; SE.br $=$ Sensor Break; LOAE = Deviation low alarm (relative); HidE $=$ Deviation high alarm (relative); LHdo $=$ Relative band LHdi $=$ Relative band alarm in alarm out of the band	Hiab	
29	Ab1	Alarm 1 function	0	$\begin{array}{ll} \text { 0... 15: } & \text { Not active at power up; } \\ +1= & \text { Ne } \\ +2= & \text { Latched alarm (manual reset); } \\ +4= & \text { Acknowledgeable alarm; } \\ +8= & \text { Relative alarm not active at set point change. } \\ \hline \end{array}$	0	
30	All	For Highllow alarm, Al1 threshold low limit; For band alarm, AL1 low alarm threshold	dp	From -1999 to AlıH (E.U.)	-1999	
31	ALLH	For High/low alarm, Al1 threshold high limit; For band alarm, Al1 high alarm threshold	dp	From All to 9999 (E.U.)	9999	
32	Al1	Alt threshold	dp	From Alıt to AlıH (E.U.)	0	
33	Hall	Alı hysteresis	dp	1... 9999 (E.U.)	1	
34	Ald	Al1 delay	0	From 0 (off) to 9999 (s)	OFF	
35	Al10	Alarm 1 enabling during Stand-by mode and out of range conditions	0	$0=$ Alarm 1 disabled during Stand by and out of range; $1=$ Alarm 1 enabled in stand by mode; $2=$ Alarm 1 enabled in out of range condition; $3=$ Alarm 1 enabled in stand by and overrange.	0	

${ }^{\text {I }}$ AL2 Group - Alarm 2 parameters

| no. | Par. | Description | Dec. | Values | Default | Notes |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 36 | AL2t | Alarm 2 type | 0 | See AL1t | Loab | |
| 37 | Ab2 | Alarm 2 function | 0 | See Ab1 | 0 | |
| 38 | AL2L | For High/low alarm, AL2 threshold low limit;
 For band alarm, AL2 low alarm threshold | dp | See AL1L | -1999 | |
| 39 | AL2H | For High/low alarm, AL2 threshold high limit;
 For band alarm, AL2 high alarm threshold | dp | See AL1H | 9999 | |
| 40 | AL2 | AL2 threshold | dp | See AL1 | 0 | |
| 41 | HAL2 | AL2 hysteresis | dp | See HAL1 | 1 | |
| 42 | AL2d | AL2 delay | 0 | See AL1d | ofF | |
| 43 | AL20 | Alarm 2 enabling during Stand-by mode
 and out of range conditions | 0 | See AL10 | 0 | |

${ }^{\text {I }}$ AL3 Group - Alarm 3 parameters

no.	Par.	Description	Dec.	Values	Default	Notes	
44	AL3t	Alarm 3 type	0	See AL1t	nonE		
45	Ab3	Alarm 3 function	0	See Ab1	0		
46	AL3L	For High/low alarm, AL3 threshold low limit; For band alarm, AL3 low alarm threshold	dp	See AL1L	-1999		
47	AL3H	For High/low alarm, AL3 threshold high limit; For band alarm, AL3 high alarm threshold	dp	See AL1H	dp	See AL1	9999
48	AL3	AL3 threshold	dp	See HAL1	0		
49	HAL3	AL3 hysteresis	0	See AL1d	1		
50	AL3d	AL3 delay	afl				
51	AL30	Alarm 3 enabling during Stand-by mode and out of range conditions	0	See AL10	0		

-'LBA Group - Loop break alarm

no.	Par.	Description	Dec.	Values	Default	Notes
52	LbAt	LBA time	0	From 0 (oFF) to 9999 (s)	ofF	
53	LbSt	Delta measure used by LBA during Soft start	dP	From 0 (oFF) to 9999 (E.U.)	10	
54	LbAS	Delta measure used by LBA	dP	$1 . . .9999$ (E.U.)	20	
55	LbcA	Condition for LBA enabling	0	uP $=$ Active when Pout $=100 \% ;$ dn $=$ Active when Pout $=-100 \% ;$ both $=$ Active in both cases.	both	

${ }^{-1}$ rEG Group - Control parameters

no.	Par.	Description	Dec.	Values	Default	Notes
56	cont	Control type	0	```Pid = PID (heat and/or); On.FA \(=0 \mathrm{~N} / \mathrm{OFF}\) asymmetric hysteresis; On.FS = 0N/OFF symmetric hysteresis; \(n \mathrm{n}=\) Heat/Cool ON/OFF control with neutral zone; \(3 \mathrm{Pt}=\) Servomotor control.```	Pid	
57	Auto	Autotuning selection	0	$-4=$ Oscillating auto-tune with auto-restart at power ON and after all point change; $-3=0$ scillating auto-tune with manual start; $-2=$ Oscillating tune with auto-start at first power ON only; $-1=$ Oscillating auto-tune with auto-restart at all power ON; $0=$ Not used; 1 = Fast auto tuning with auto-restart at all power $\mathrm{ON}_{\text {; }}$ $2=$ Fast auto-tune with auto-start the first power ON only; $3=$ FAST auto-tune with manual start; $4=$ FAST auto-tune with automatic restart at power ON and after a set point change; $5=$ Evo-tune with auto-restart at all power 0 N ; $6=$ Evo-tune with auto-start at first power 0N only; $7=$ Evo-tune with manual start; $8=$ Evo-tune with auto-restart at power 0 N and after a set point change.	7	
58	Aut.r	Manual start of the Autotuning	0	$\begin{array}{ll} \begin{array}{ll} \text { off }= & \text { Not active } ; \\ \text { on }= & \text { Active. } \end{array} \end{array}$	oFF	
59	SELF	Self tuning enabling	0	no = The instrument does not perform the self-tuning; YES = The instrument performs the self-tuning.	no	
60	HSEt	Hysteresis of the ON/OFF control	dP	0... 9999 (E.U.)	1	
61	CPdt	Time for compressor protection	0	From 0 (0FF) to 9999 (s)	off	
62	Pb	Proportional band	dP	1... 9999 (E.U.)	50	
63	ti	Integral time	0	From 0 (ofF) to 9999 (s)	200	
64	td	Derivative time	0	From 0 (0FF) to 999(s)	50	
65	Fuoc	Fuzzy overshoot control	2	0.00... 2.00	0.50	
66	tch	Heating output cycle time	1	0.1... 130.0 (s)	20.0	
67	rcG	Power ratio between heating and cooling action	2	0.01... 99.99	1.00	
68	tcc	Cooling output cycle time	1	0.1... 130.0 (s)	20.0	
69	rs	Manual reset (Integral pre-load)	1	-100.0... +100.0 (\%)	0.0	
70	Str.t	Servomotor stroke time	0	5...1000 seconds	60	
71	db.S	Servomotor dead band	0	0...100\%	50	
72	od	Delay at power up	2	From 0.00 (ofF) to 99.59 (hh.mm)	OFF	
73	St.P	Maximum power output used during soft start	0	-100... 100 (\%)	0	
74	SSt	Soft start time	2	$\begin{aligned} & 0.00 \text { (ofF); } \\ & \text { o.01...7.59 (hh.mm); } \\ & \text { inf (always } 0 \mathrm{~N}) \text {. } \end{aligned}$	ofF	
75	SS.tH	Threshold for soft start disabling	dP	-1999... +9999 (E.U.)	9999	

${ }^{-1}$ 'SP Group - Set point parameters

no.	Par.	Description	Dec.	Values	Default	Notes
76	nSP	Number of used set points	0	1... 4	1	
77	SPLL	Minimum set point value	dP	From -1999 to SPHL	-1999	
78	SPHL	Maximum set point value	dP	From SPLL to 9999	999	
79	SP	Set point 1	dP	From SPLL to SPLH	0	
80	SP 2	Set point 2	dP	From SPLL to SPLH	0	
81	SP_{3}	Set point 3	dP	From SPLL to SPLH	0	
82	SP 4	Set point 4	dP	From SPLL to SPLH	0	
83	A.SP	Selection of the active set point	0	From 1 (SP 1) to nSP	1	
84	SP.tt	Remote set point type	0		trin	
85	SPLr	Local/remote set point selection	0	$\begin{array}{ll} \mathrm{LOC}= & \text { Local; } \\ \mathrm{rEn}= & \text { Remote. } . \end{array}$	Loc	
86	SP.u	Rate of rise for POSITIVE set point change (ramp UP)	2	0.01... 99.99 (inF) engineering units per minute	inF	
87	SP.d	Rate of rise for NEGATIVE set point change (ramp DOWN)	2	0.01... 99.99 (inF) engineering units per minute	inF	

${ }^{-1}$ TIN Group - Timer function parameter

no.	Par.	Description	Dec.	Values	Default	Notes
88	tr.F	Independent timer function	0	NonE = Timer not used; i.d.A = Delayed start timer; i.uP.d = Delayed start at power up; i.d.d = Feed-through timer; i.P.L = Asymmetrical oscillator with start 0FF; i.L.P = Asymmetrical oscillator with start ON.	nonE	
89	tr.u	Timer unit	0	hh.nn = Hours and minutes; nn.SS = Minutes and seconds; sss.d = Second and tenth of seconds.	nn.SS	
90	tr.t1	Time 1	2	When tr.u < 20: 0.01... 99.59	1.00	
			1	When tr.u = 200: 0.1... 995.9		
91	tr.t2	Time 2	2	When tr.u < 2: From 00.00 (0FF) to 99.59 (inF)	1.00	
			1	When tr.u = 2: From 000.0 (0FF) to 995.9 (inF)		
92	tr.St	Timer status	0	$\begin{aligned} & \text { reS }=\text { Timer reset; } ; \\ & \text { run }=\text { Timer run ; } \\ & \text { Hold }=\text { Timer hold. } \end{aligned}$	reS	

Timer Types (selected by $t-r . F)$ (option)

1.ロー・ Delayed ON at Power ON

${ }^{\text {IIP}}$ PRG Group - Programmer function parameters

no.	Par.	Description	Dec.	Values	Default	Notes
93	Pr.F	Program action at power up	0	nonE $=$ Programmer not used; S.uP.d $=$ Startat power up with a first step in stand-by; S.uP.s $=$ Start at power up; u.diG $=$ Statr at Run command detection only; u.dG.d $=$ Start at Run command with a first step in stand-by.	nonE	
94	Pr.u	Engineering unit of the soaks	2	$\begin{array}{ll} \hline \text { hh.nn }= & \text { Hours and minutes; } \\ \text { nn.SS }= & \text { Minutes and seconds. } \\ \hline \end{array}$	hh.nn	
95	Pr.E	Instrument behaviour at the end of the program execution	0	snt $=$ Continue; Spat $=$ Go tot the set point selected by spat; st.by $=$ Go to stand-by mode.	SPat	
96	Pr.Et	Time of the end program indication	2	From 0.00 (0fF) to 99.59 (inf) minutes and seconds	off	
97	Pr.ST	Set point of the first 5oak	dP	From SPLL to SPHL	0	
98	Pr.G1	Gradient of the first ramp	1	0.1... 999.9 (inf= Step transfer) Engineering Unit/minute	inf	
99	Pr.tı	Time of the ${ }^{14}$ s ooak	2	0.00... 99.59	0.10	
100	Pr.bl	Wait band of the ${ }^{\text {t }}$ soak	dP	From 0 (ofF) to 9999 (E.U.)	off	
101	Pr.E1	Events of the 1^{14} group	2	00.00...11.11	00.00	
102	Pr.S2	Set point of the $2^{\text {nd }}$ soak	dP	OFF or from SPLL to SPHL	0	
103	Pr.G2	Gradient of the $2^{\text {n4 }}$ ramp	1	0.1... 999.9 (inf= Step transfer) Engineering Unit/minute	inF	
104	Pr.t2	Time of the $2^{\text {nd }}$ soak	2	0.00... 99.59	0.10	
105	Pr.b2	Wait band of the $2^{\text {n }}$ soak	dP	From 0 (ofF) to 9999 (E.U.)	off	
106	Pr.E2	Events of the $2^{\text {nd }}$ group	2	00.00...11.11	00.00	
107	Pr.S3	Set point of the $3^{\text {rd }}$ soak	dP	OFF or from SPLL to SPHL	0	
108	Pr.G3	Gradient of the $3^{\text {d }}$ ramp	1	0.1... 999.9 (inf= Step transfer) Engineering Unit/minute	inf	
109	Pr.t3	Time of the $3^{\text {rd }}$ soak	2	0.00... 99.59	0.10	
110	Pr.b3	Wait band of the $3^{\text {ta }}$ Soak	dP	From 0 (ofF) to 9999 (E.U.)	OFF	
11	Pr.E3	Events of the $3^{\text {rd }}$ group	0	00.00...11.11	00.00	
112	Pr.S4	Set point of the $4^{\text {t }}$ soak	dP	OFF or from SPLL to SPHL	0	
113	Pr.G4	Gradient of the $4^{4 \mathrm{tr}}$ ramp	1	0.1... 999.9 (inf= Step transfer) Engineering Unit/minute	inf	
114	Pr.t4	Time of the $4^{\text {4 }}$ soak	2	0.00... 99.59	0.10	
115	Pr.b4	Wait band of the $4^{\text {th }}$ soak	dP	From 0 (ofF) to 9999 (E.U.)	off	
116	Pr.E4	Events of the $4^{\text {th }}$ group	0	00.00...11.11	00.00	
117	Pr.St	Program status	0	res $=$ Program reset; run $=$ Program statit Hold $=$ Program hold.	res	

-'PAn Group - Operator HMI

no.	Par.	Description	Dec.	Values	Default	Notes
118	PAS2	$\begin{array}{\|l\|} \hline \text { Level } 2 \text { password } \\ \text { (limited access level) } \\ \hline \end{array}$	0	ofF (Level 2 not protected by password); 1... 200.	20	
119	PAS3	Level 3 password (complete configuration)	0	3... 200	30	
120	PAS4	Level 4 password (CODE configuration level)	0	201... 400	300	
121	usrb	$\boldsymbol{\sim}$ button function during RUN TIME		nonE $=$ No function; tunE $=$ Auto-tune/self-tune enabling. A single press (longer than 1 second) starts the auto-tune; oPLo $=$ Manual mode. The first pressure puts the instrument in manual mode (oPLo) while a second one puts the instrument in Auto mode; AAC = Alarm reset; ASi $=$ Alarm acknowledge; chSP $=$ Sequential set point selection; St.by $=$ Stand by mode. The first press puts the instrument in stand by mode while a second one puts the instrument in Auto mode; Str.t $=$ Timer run/hold/reset; P.run $=$ Program run; P.rES = Program reset; P.r.H.r = Program run/hold/reset.	tunE	
122	disp	Display management		nonE = Standard display; $\mathrm{Pou}=$ Power output; $;$ $\mathrm{SPF}=$ Final set point; $\begin{array}{ll}\text { SPF } & =\text { Finar set point } ; \\ \text { Spo } & =\text { Operative set point; }\end{array}$ AL1 $=$ Alarm 1 threshold; $\mathrm{AL}_{2}=$ Alarm 2 threshold; AL3 $=$ Alarm 3 threshold: Pr.tu $=-$ During a soak, the instrument shows the soak elapsed time ${ }_{i}$ Uuring a ramp the display shows the operative set point. At program end, the instrument alternately displays P End and the measured value; - When no program is running, the instrument shows the standard display; Pr.td = - During a soak, the instrument shows the soak remaining time (count down); - During a ramp the display shows the operative set point. At program end, the instrument alternately displays P.End and the measured value; - When no program is running, the instrument shows the standard display; P.t.tu $=$ When the programmer is running, the display shows the total elapsed time. At program end, the instrument alternately displays P:End and the measured value; P.t.td = When the programmer is running, the display shows the tota remaining time (count down). At program end, the instru- ti.uP $=$ When the timer is running, the display shows the timer counting up. At count end, the instrument alternately displays E.End and the measured value; ti.du $=$ When the timer is running, the display shows the timer counting down. At count end, the instrument alternately displays c End and the measured value; PErc $=$ Percent of the power output used during soft start (when the soft start time is equal to infinite, the limit is always active and it can also be used when ON/OFF control is selected): POS = Valve position (servomotor control).	0	
123	di.cl	Display colour		$0=$ The e display colour shows the actual deviation (PV - SP); $1=$ Display red f(f) $2=$ Display $3=$ Display green fixi); $=$	0	
124	AdE	Deviation for display colour management		1... 999 (E.U.)	5	

no.	Par.	Description	Dec.	Values	Default	Notes
125	di.St	Display Timeout	2	$\begin{aligned} & \hline \text { off (display always ON); } \\ & 0.1 \ldots 9.59(\mathrm{~mm} .5 \mathrm{ss}) \text {. } \end{aligned}$	ofF	
126	fild	Filter on the displayed value	1	off (filter disabled); From 0.0 (OFF) to 20.0 (E.U.).	oFF	
128	dSPu	Instrument status at power ON		$\begin{aligned} & \text { AS.Pr }=\text { Starts in the same way it was prior to the power down; } \\ & \text { Auto }=\text { Starts in Auto mode; } \\ & \text { oP. }=\text { Starts in manual mode with power output }=0 ; \\ & \text { St.bY }=\text { Starts in stand-by mode. } \end{aligned}$	AS.Pr	
129	oPr.E	Operative modes enabling		ALL = All modes will be selectable by the next parameter; Au.OP = Auto and manual (oPLo) mode only will be selectable by the next parameter; Au.Sb = Auto and Stand-by modes only will be selectable by the next parameter	ALL	
130	OPEr	Operative mode selection			Auto	

${ }^{\text {F }}$ Ser Group - Serial link parameter

no.	Par.	Description	Dec.	Values	Default	Notes
131	Add	Instrument address		oFF; $1 \ldots 254 .$	1	
132	bAud	baud rate		$1200=1200$ baud; $2400=2400$ baud $9600=9600$ baud; $19.2=19200$ baud; $38.4=38400$ baud	9600	
133	trsP	Selection of the value to be retransmitted (Master)		nonE = Retransmission not used (the instrument is a slave); rSP = The instrument becomes a Master and retransmits the operative set point; PErc = The instrument become a Master and it retransmits the power output.	nonE	

ت'COn Group - Consumption parameters

no.	Par.	Description	Dec.	Values	Default	Notes
134	Co.tY	Count type		off = Not used; $1=$ Instantaneous power (kW); $2=$ Power consumption (kW/h); $3=$ Energy used during program execution. This measure starts from zero when a program runs end stops at the end of the program. A new program execution will reset the value; $4=$ Total worked days: number of hours the instrument is turned ON divided by 24; $5=$ Total worked hours: number of hours that the instrument is turned ON ; $6=$ Total worked days with threshold: number of hours the instrument is turned ON divided by 24 , the controller is forced in standby when Co.ty value reaches the threshold set in [137] h.Job; $7=$ Total worked hours with threshold: number of hours that the instrument is turned ON , the controller is forced in stand-by when Co.ty value reaches the threshold set in [137] h.Job; $8=$ Totalizer of control relay worked days: number of hours the control relay has been in 0 N condition, divided by 24; $9=$ Totalizer of control relay worked hours: number of hours the control relay has been in ON condition; $10=$ Totalizer of control relay worked days with threshold: number of hours the control relay has been in ON condition divided by 24 , the controller is forced in stand-by when Co.ty value reaches the threshold set in [137] h.Job; $11=$ Totalizer of control relay worked hours with threshold: number of hours the control relay has been in ON condition, the controller is forced in stand-by when Co.ty value reaches the threshold set in [137] h.Job.	oFF	
135	Uolt	Nominal Voltage of the load		1... 9999 (V)	230	
136	cur	Nominal current of the load		1... 999 (A)	10	
137	h.Job	Threshold of the working period		off = Threshold not used; 0... 9999 days (when [134] cotY = 4); $0 \ldots 9999$ hours (when [134] cotY = 5).	0	
138	t.Job	Worked time (not resettable)		0... 9999 days		

${ }^{7}$ CAL Group - User calibration group

no.	Par.	Description	Dec.	Values	Default	Notes
139	AL.P	Adjust Low Point		From -1999 to (AH.P -10) in engineering units	0	
140	AL.0	Adjust Low Offset		$-300 \ldots+300$ (E.U.)	0	
141	AH.P	Adjust High Point		From (AL.P + 10) to 9999 engineering units	9999	
142	AH.0	Adjust High Offset		$-300 \ldots+300$	0	

Note: To access all the instrument features, please see the "Complete configuration procedure" in the "Engineering Manual".
Complete Configuration and Parameter setting can be easily uploaded from the controller and downloaded to other controllers
using the: Configuration Key and Communication Adapter model: A-01.

Factory reset - Default parameters loading procedure

Sometime, e.g. when you re-configure an instrument previously used for other works or from other people or when you have made too many errors during configuration and you decided to re-configure the instrument, it is possible to restore the factory configuration.
This action allows to put the instrument in a defined condition (the same it was at the first power ON).
The default data are those typical values loaded in the instrument prior to ship it from factory.
To load the factory default parameter set, proceed as follows:

1. Press the button for more than 5 seconds. The upper display will show $\operatorname{PR5} 5$ while the lower display shows \square
2. Using $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ buttons set the value -481 ;
3. Push button;
4. The instrument will turn OFF all LEDs for a few seconds, then the upper display will show ${ }^{\prime} F L t$ (default) and then all LEDs are turned 0 N for 2 seconds. At this point the instrument restarts as for a new power ON .
The procedure is complete.

5．OPERATVE MODES

Keyboard function when the instrument is in Auto mode

Key	Operator Mode
$\boldsymbol{\square}$	Access to： －Operator Commands（Timer，Setpoint selection ．．．） －Parameters －Configuration
$\boldsymbol{\square}$	Access to Operator additional information（Output value，running time ．．．）

Operator Commands

Additional information

Set Point Change

Running the Tuning functions

6．ERROR MESSAGES

Out of range signals

The instrument points out，on the upper display，the OVER－RANGE and UNDER－RANGE conditions using the fol－ lowing indications：

Uver－range Under－range
 ロロロロ
 L．レ．レ．レ．

The sensor break will be signalled as an out of range：

Note：When an over－range or an under－range is detected，the alarms operate as in presence of the maximum or the minimum measurable value respectively．

To check the out of span Error condition，proceed as follows：
1．Check the input signal source and the connecting line．
2．Make sure that the input signal is in accordance with the instrument configuration
Otherwise，modify the input configuration（see section 4）．
3．If no error is detected，send the instrument to your supplier to be checked．

List of possible errors

ErAT Fast Auto－tune cannot start．The measure value is too close to the set point． Push the button in order to delete the error message
ould Overload on output 4.
The message shows that a short circuit is present on Out 4 when it is used as output or transmitter power supply．When the short circuit disappears the output restarts to operate
NoAt Auto－tune not finished within 12 hours．
ErEP Possible problem in the instrument memory．
The message should automatically disappear，if the error persists，send the instrument to your supplier．
RonE Possible problem of the firmware memory． If this error is detected，send the instrument to your supplier．
Errt Possible problem of the calibration memory． If this error is detected，send the instrument to your supplier．

7．GENERAL NOTES

Proper use

Every possible use not described in this manual must be consider as a improper use．
This instrument is in compliance with EN 61010－1＂Safety requirements for electrical equipment for measure－ ment，control and laboratory use＂；for this reason it could not be used as a safety equipment．
Whenever a failure or a malfunction of the control device may cause dangerous situations for persons，thing or animals，please remember that the plant has to be equipped with additional safety devices．
Ascon Tecnologic S．r．I．and its legal representatives do not assume any responsibility for any damage to peo－ ple，things or animals deriving from violation，wrong or improper use or in any case not in compliance with the instrument＇s features．

Declaration of conformity and Manual retrieval

KM3 is a panel mounting，Class II instrument．It has been designed with compliance to the European Directives All information about the controller use can be found in the Engineering Manual：
ISTR－MKM＿－ENGOx（＂x＂is the revision）．
The Declaration of Conformity and the manual of the controller can be downloaded（free of charge）from the web－site：
www．ascontecnologic．com
Once connected to the web－site，search：
KM3
then click on км3．
In the lower part of the product page（in any language）is present the download area with links to the docu－ ments available for the controller（in the available languages）．

Maintenance

This instrument does not requires periodical recalibration and it have no consumable parts so that no particular maintenance is required．
Sometimes it is advisable to clean the instrument
1．SWITCH THE EQUIPMENT OFF（power supply，relay output，etc．）．
2．Using a vacuum cleaner or a compressed air jet（max． $3 \mathrm{~kg} / \mathrm{cm}^{2}$ ）remove all deposits of dust and dirt which may be present on the case and on the internal circuits being careful not to damage the electronic components．
3．To clean external plastic or rubber parts use only a cloth moistened with：
－Ethyl Alcohol（pure or denatured）$\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]$ or
－Isopropyl Alcohol（pure or denatured）$\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}\right]$ or
－Water（ $\mathrm{H}_{2} \mathrm{O}$ ）．
4．Make sure that there are no loose terminals
5．Before turning $0 N$ the instrument make sure it is perfectly dry
6．Apply the power supply to the instrument．

Warranty

This product is under warranty against manufacturing defects or faulty materials that are found within 18 months from delivery date．The warranty is limited to repairs or to the replacement of the instrument．
The tampering of the instrument or an improper use of the product will bring about the immediate withdrawal of the warranty effects．
In the event of a faulty instrument，either within the period of warranty，or further to its expiry，please contact our sales department to obtain authorisation for sending the instrument to our company．
The faulty product must be shipped to Ascon Tecnologic with a detailed description of the faults found，without any fees or charge for Ascon Tecnologic，except in the event of alternative agreements．

8．ORDER CODE

Model：$\quad \mathrm{KM}|3 \mathrm{~B}| \mathbf{B}|\mathrm{C}| \mathrm{D}|\mathrm{E}| \mathrm{F}|\mathrm{G}| \mathrm{H} \mid \mathbf{|}$

Line	KM
	$\mathbf{3}$
Optional functions	A
Controller	-
Controller＋timer	T
Controller＋timer＋programmer	P

Power Supply	B
$100 \ldots 240 \operatorname{Vac}(-15 \ldots+10 \%)$	H
$24 \operatorname{Vac}(-25 \ldots+12 \%)$ or $24 \operatorname{Vdc}(-15 \ldots+25 \%)$	L

Input	C
TC，PT100，PT1000，mA，mV，V＋Digital Input 1	C
$T C$, NTC，PTC，mA，mV，V＋Digital Input 1	E

Output OP1	D
Analogue Output（0／4．．． $20 \mathrm{~mA}, 0 / 2 \ldots 10 \mathrm{~V}$ ）	1
Relay（1 SPST N0， 4 A／250 Vac）	R
VDC for SSR（ $12 \mathrm{Vdc} / 20 \mathrm{~mA}$ ）	0
Output OP2	E
None	－
Relay（1 SPST N0， 2 A／250 Vac）	R
VDC for SSR VDC（12 Vdc／20 mA）	0
Servomotor drive Relay（1 SPST N0， 2 A／250 Vac）	M
Output OP3	F
None	－
Relay（1 SPST N0， 2 A／250 Vac）	R
VDC for SSR VDC（12 Vdc／20 mA）	0
Servomotor drive Relay（1 SPST N0， 2 A／250 Vac）	M

Output OP4	G
Serial Communications	D
Digital IIO（see the Electrical Connections paragaph for details）	H
TL	-
RS485 Modbus	S
Terminal Type	I
Standard（screw type non removable terminal blocks）	-
With plug－in screw type terminal blocks	E
With plug－in clamp type terminal blocks	M
With plug－in terminal blocks ffixed part only）	N

Note：For servomotor drive，both Output 2 and Output 3 codes must be selected as＂M＂．

