
1.1.1.1.1.1.1.1.1

Yaskawa America, Inc. – Drives & Motion Division 2014 February 23, 2014 Page 1 of 31

Application Note

Creating PLCopen Compliant Function Blocks in IEC 61131

1.1.1.1.1.1.1.1.2

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Doc#: AN.MWIEC.01 February 23, 2014 Page 2 of 31

Introduction .. 3

Benefits .. 3

Getting Started ... 3

Function Block Models ... 4

Input Behavior .. 6

Output Behavior ... 6

Execute Function Block Model ... 7

Trigger Statements .. 8

RETURN statement ... 9

Setting the iActive Flag .. 10

Initialization .. 11

Main Code Body .. 13

Motion Blocks... 14

Error Processing .. 16

CommandAborted Output .. 18

Busy Output ... 19

Done Output .. 20

Enable Function Block Model ... 22

Trigger Statements .. 23

RETURN statement ... 23

iActive Flag .. 23

Initialization .. 24

Main Code Body .. 24

Motion Function Blocks .. 24

Error Processing .. 24

Valid Output ... 25

Execute / Enable Model Variants ... 26

Variant #1: ... 26

Variant #2: ... 26

Recommended Interlocks ... 28

Summary .. 29

Appendix A: Logic Analyzer traces ... 30

1.1.1.1.1.1.1.1.2

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Doc#: AN.MWIEC.01 February 23, 2014 Page 3 of 31

Introduction

PLCopen is an organization that creates programming specifications for motion control in the

automation industry. Manufacturers, OEMs, and End Users who are members of the PLCopen

organization pave the way for standardized programming of motion control applications. Some users

may not be familiar with the standards, and assume that manufacturers of automation products alone

provide products which conform, but there’s more an application programmer can do to maximize the

benefits offered in the PLCopen specification. This document provides details on extending the

PLCopen concept to other functions required by an application. This application note focuses on how

to build upon the standards by describing code templates which have proven successful, and often

refers to function blocks in Yaskawa’s Toolboxes at www.yaskawa.com/iectb.

Visit http://www.plcopen.org/pages/tc2_motion_control/ for the complete PLCopen specification.

Benefits

One of the best outcomes of the PLCopen specification is the definition provided for function block input

and outputs. This provides a clear and concise shell as a starting point when considering the type of

application level function to be created. Two main function block categories are specified: the Execute

model and the Enable model.

By strictly following a few key features of the PLCopen specification, application level function blocks

can provide a high degree of robustness, usability and predictability. The behavior described makes it

very easy to incorporate and debug user specific functions in an application. Errors and ErrorIDs can

be elevated to the calling functions. Interlocks are easier to create. Linking activities becomes easier.

This is the focus of this Application Note.

Getting Started

1) Decide upon the function block inputs and outputs before writing any code. Draw the function

on a piece of paper first. This step will help you determine the necessary data required from

an implementation perspective. It helps to imagine how the finished function block would be

used by the application code.

2) Depending on the type of functionality to be created, consider the ideal situation in which the

function block would operate. Will it require placement in a high speed cyclic task to capture

data in real time? Will it also contain some intensive data processing? If so, there may be an

advantage to split these two activities into separate function blocks, so that one can be

executed in a high priority task, and the other executed in a lower priority task.

1.1.1.1.1.1.1.1.2

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Doc#: AN.MWIEC.01 February 23, 2014 Page 4 of 31

Function Block Models

There are only two basic function block models as described below. These functions are shown with

the minimum inputs and outputs. Notice that Execute pairs with Done, and Enable pairs with Valid.

This aids the visual organization of the code structure in FBD format when contacts and coils are

connected to the function block.

Variants on these two models will be described in detail in the following sections. All implementations

will include additional inputs and outputs for an actual application as shown in blue below.

Figure 1: Execute and Enable function blocks in their most simple form.

Figure 2: Execute and Enable function blocks with additional I/O.

1.1.1.1.1.1.1.1.2

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Doc#: AN.MWIEC.01 February 23, 2014 Page 5 of 31

The main differences between the Execute and Enable models are show in the following table.

Table 1: Execute and Enable Model behavior comparison

Function Block Type Required Behavior Example

Execute

The action is temporary; it has

a finite beginning and ending.

A sequence of activities.

Homing to a limit switch, C channel, and then

making an offset move.

The action takes only one scan. Setting a parameter.

Enable

The function can complete its

job in one scan, and repeats

this action each scan.

Reading a parameter.

The action must run indefinitely. Monitoring for new product registration latches

to store them into a circular buffer.

1.1.1.1.1.1.1.1.2

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Doc#: AN.MWIEC.01 February 23, 2014 Page 6 of 31

Input Behavior

Execute Model Inputs other than Execute are only to be read upon the rising edge of Execute. The

concept here is that the function uses input values present when execution was

initiated. This requires copying VAR_INPUTs to a VAR in the Initialize section.

Enable Model A function block using the Enable model is expected to read the VAR_INPUTs every

scan and if necessary, act upon changed values.

VAR_IN_OUT data is passed to the function block by reference, meaning that only a pointer to the

original data location is copied into the function block, eliminating longer data copy times for larger data

types. Because a VAR_IN_OUT references the original data, not a copy, changes made to the

variable inside the function block can be seen immediately by the application code as vise versa.

Program accordingly, and use the Done or Valid output to indicate when data referenced as

VAR_IN_OUT is valid.

Output Behavior

A brief review of the PLCopen specification follows.

1) Only one PLCopen status output (Done, Busy, CommandAborted, Error) can be

TRUE at one time.

2) Execute Function Blocks have a finite execute life which will end in one of the three

ways:

a. Done – Function block has completed its task successfully.

b. CommandAborted – Another action took control away from the function block, so

this function did not complete its task successfully.

c. Error – There was a problem with the VAR_INPUTs or with other internal

processing that prevented the function block from completing its task.

Once one of these three PLCopen status outputs are set, the function block can never

change the outputs until the Execute or Enable input goes low and the function block

restarts again.

3) When the Execute input goes low and the function is no longer Busy, VAR_OUTPUTs

must be set to zero. This also applies to non Boolean outputs that are part of a

specific implementation. If the Execute input goes low while the function block is still

Busy, one of the three outputs (Done, CommandAborted, or Error) will pulse for one

scan when the function completes.

4) When the Enable input goes low, VAR_OUTPUTs must be set to zero.

1.1.1.1.1.1.1.1.2

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Doc#: AN.MWIEC.01 February 23, 2014 Page 7 of 31

Execute Function Block Model

Figure 3: Execute Template in simplified form

1.1.1.1.1.1.1.1.2

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Doc#: AN.MWIEC.01 February 23, 2014 Page 8 of 31

Figure 3 is a representation of each part of the function block code. The order of operations is the

same in Ladder Diagram (LD) or Structured Text (ST) programming. Code order is very important for

ensuring consistent output behavior, which is essential for proper sequencing and error trapping,

especially when function blocks are triggered using an R_TRIG one shot.

What follows is a detailed explanation of the code sections depicted in Figure 3 on page 7.

Trigger Statements

This is where most if not all R_TRIG and F_TRIG function blocks should be placed, especially

in ST function blocks. Typically one of the trigger statements detects the rising edge of the

Execute or Enable input to be used to run the initialization code on the first scan. By inserting

trigger statements at the top of the POU, they are sure to run every scan (no IF / END_IF

conditions to inadvertently prevent execution.)

LD Format

It’s less important to put Trigger statements at the top of function block written in LD, and most

examples are actually initialization code. This is because a LD POU does not have the

potential for conditional execution, such as the IF statement in ST. Triggers can be used

throughout a LD function block without concern.

Figure 4: Execute Model – LD trigger statement example

1.1.1.1.1.1.1.1.2

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Doc#: AN.MWIEC.01 February 23, 2014 Page 9 of 31

ST Format

RETURN statement

This line is purely for efficiency, but if not used carefully it can lead to problems that are hard to

debug. A RETURN causes the function block to exit without running any of the instructions

below the RETURN statement. Imagine a project with over one hundred function blocks.

Most likely, only a few blocks may be active at any one time while all others RETURN. This

saves processing time because the controller will not have to evaluate the many IF conditions

which may follow, presumably skipping most of the code because the function is not to be

executed.

Note that when the RETURN takes place, the debug information shown for the remainder of the

POU contains old values from the last time it ran.

LD Format

In this example “Adjusting” is a variable connected to the Busy output of a PLCopen motion

function block.

ST Format

Figure 5: Execute Model - ST trigger statements example.

Figure 6: Execute Model – LD example RETURN statement.

Figure 7: Execute Model - ST example RETURN statement.

1.1.1.1.1.1.1.1.2

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Doc#: AN.MWIEC.01 February 23, 2014 Page 10 of 31

Setting the iActive Flag

‘Internal Active’ is a Boolean flag to keep the function block code running even if the Execute

input goes false before the function block is Done. The Execute input can be pulsed, and the

code will continue to execute, and the outputs remain valid until one scan after the final

outcome of the function occurs. The iActive flag serves as a good way to control the execution

of sub functions and other logic within your function block. It is named ‘internal Active’ to

differentiate from the other PLCopen output Active which is found on PLCopen function blocks

that control motion.

There is an underlying theme at work here, and it pertains to the execution behavior of a real

time system such as a PLC. Basically speaking, don’t let code become dormant if it’s in the

middle of executing. If this situation occurs, it will likely cause unexpected behavior. Pulsed

or event actions such as R_TRIG or functions with an Execute input work by comparing a value

on a previous scan to the current scan. Execution must not be interrupted by the RETURN

statement or other logic change which would prevent a function from working normally the next

time it’s required to execute.

LD Format

In this example from the CamBlend function block, three separate inputs act as the Execute

input based on the mode required. Normally just the standard Execute would be included

instead of three.

ST Format

Figure 8: Execute Model - LD example for setting the iActive flag.

Figure 9: Execute Model - ST example for setting the iActive flag.

1.1.1.1.1.1.1.1.2

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Doc#: AN.MWIEC.01 February 23, 2014 Page 11 of 31

Initialization

The PLCopen specification states that VAR_INPUTs are only read upon the rising edge of the

Execute input. This section is very important because it’s the location where the

VAR_INPUTs passed into the function block are validated and transferred to a working copy.

Create a naming convention so that copied VAR_INPUT values are obvious. If the

VAR_INPUT name is Acceleration, use iAcceleration in the Main Code Body for example.

Tip: During code development, make a habit of adding new variables (VAR) into the

Initialization section immediately, and provide an initial value. It will save debug time by

reducing the likelihood that your function block will not execute properly more than once due to

variables being left in an unexpected state from a previous run. This is one of the most

important things you can do to boost the reliability and consistency of function block execution.

LD Format

It’s more difficult to show a good example of initialization code in LD format. Initialization is

associated with algorithms and similar processes which are typically written in ST. LD code

tends to be self initializing by nature. The contact and coil approach will both set and clear a

bit scan every scan. Yaskawa recommends avoiding Set and Reset coils if possible. These

Figure 10: LD example for initializing variables.

1.1.1.1.1.1.1.1.2

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Doc#: AN.MWIEC.01 February 23, 2014 Page 12 of 31

coil types tend to cause more bugs, but if they are used, performing a reset coil for each set coil

would be another great example of initialization code in LD format.

ST Format

Notice the use of R_TRIG_Execute.Q, which is the output of the R_TRIG function used in the

initialization section.

Figure 11: Execute Model - Example ST code for initializing variables.

1.1.1.1.1.1.1.1.2

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Doc#: AN.MWIEC.01 February 23, 2014 Page 13 of 31

Main Code Body

This is where the core activity of the function block resides. The Main Code Body logic always

includes reference to the iActive flag. This section may contain a series of other function

blocks which execute in sequence, or a wide variety of other actions based on the purpose of

the function you are designing. The best way to determine the appropriate code structure to

implement is to refer to the many examples in Yaskawa’s Toolboxes, available at

www.yaskawa.com/iectb. Recommended LD references include the Home_LS_Pulse

function in the PLCopen Toolbox.

LD Format

Figure 12: Execute Model – A partial example of LD code of the Main Code Body, which is controlled by the iActive flag

1.1.1.1.1.1.1.1.2

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Doc#: AN.MWIEC.01 February 23, 2014 Page 14 of 31

ST Format

Motion Blocks

This section is only necessary if the function block being designed provides motion, especially if

written in ST. The strategy here is to provide the ability to execute (scan) the motion function

blocks with their Execute input set to FALSE before the RETURN statement is executed. This

will ensure that motion functions used within your function block can execute correctly the next

time they are required.

Figure 13: Execute Model - ST code example show the Main Code Body.

1.1.1.1.1.1.1.1.2

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Doc#: AN.MWIEC.01 February 23, 2014 Page 15 of 31

Frozen code

One of main challenges is to avoid leaving a function block frozen (its code no longer being

executed when it or any of its sub function blocks are still Busy.) In LD, this is easy to avoid

because typically all ladder rungs are executed each scan. In ST, this quickly becomes a

bigger challenge because inserting functions under IF statements can cause major problems if

the logic in the IF statement changes before nested function blocks are Done.

ST Solutions

Solve the logic required to determine if executing a particular sub function is necessary within

nested IF statements, but leave the sub functions outside of all IF statements so they are

evaluated every scan. This will result in the same logic but avoid the possibility of leaving sub

function blocks in a frozen state. A portion of a function block implementing this strategy is

shown below. The variables XAxisConfigured, YAxisConfigured and SetPosDone are solved

inside IF conditions in the Main Code Body.

Figure 14: Example

Figure 15: Execute Model - ST example of Motion Function Blocks on the main level (Not under an IF statement)

1.1.1.1.1.1.1.1.2

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Doc#: AN.MWIEC.01 February 23, 2014 Page 16 of 31

Error Processing

Latching Function Block Errors

A very important debugging feature provided by the PLCopen specification is the ability of each

function block to latch (or freeze at the current state) when an Error occurs so that the code

can be debugged to determine the cause of the Error. Without this simple feature, debugging

transient errors would be exceeding difficult.

To integrate error trapping effectively, a referenced function block that generates an error must

have its Execute input held high to insure that it continues to report its ErrorID. In the LD

example shown below, notice that the contacts ‘iActive’ and ‘SetPositionError’ work together to

hold the Execute high and lock on once an Error has occurred. When the Error has been

acknowledged, the calling function drops the Execute input, which will start a chain reaction

which will drop iActive, which will drop MC_SetPosition’s Error output, which will drop this

function block’s Error and ErrorID output.

TIP: There may be more than one Error present in the function. Because the IEC code

executes from top to bottom, the last instruction to write to a variable will provide the resulting

value. In the case of reporting ErrorIDs, you may want to prioritize the errors so that the most

important or relevant ErrorID is output in the event of multiple errors. This means arranging

them in increasing order. See Figure 17 and Figure 18 starting on page 17.

LD Format

The first graphic shows an error being set by a sub function used within the function block.

Notice the variable SetPositionError. The example shown in Figure 16 might exist in the Main

Code Body. The example shown in Figure 17 demonstrates the Error processing code which

comes below the Main Code Body. Recall the Execute Template overview on page 7 for

reference.

Figure 16: Execute Model – LD example showing a function block’s Error output used to hold its Execute high.

1.1.1.1.1.1.1.1.2

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Doc#: AN.MWIEC.01 February 23, 2014 Page 17 of 31

Figure 17 shows the Error handing code. If simultaneous errors may occur, consider

prioritizing them so the last MOVE instruction copies the ID of the most important error to the

ErrorID.

Figure 17: Execute Model - Example in LD showing the Error processing code.

1.1.1.1.1.1.1.1.2

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Doc#: AN.MWIEC.01 February 23, 2014 Page 18 of 31

ST Format

This example shows a total of 12 possible errors being monitored. If any one of them occurs,

it will lock on the Error output, and set the appropriate ErrorID. Even if the original Error goes

away, the Error bit locks on in line 433, and because of the logic in lines 436 through 447, the

ErrorID will still be set to the value that caused the initial Error. The more ErrorIDs the better

to provide an adequate description of the problem that occurred to the user or machine operator.

This example shows the incorporation of custom ErrorIDs allocated for specific errors and the

propagation of errors from embedded PLCopen function blocks.

CommandAborted Output

This VAR_OUTPUT is only required if encapsulating PLCopen motion function blocks that

provide a CommandAborted output. Connect the CommandAborted output of all sub

function blocks together in an OR format as shown below. PLCopen specification states that

Done, Busy, CommandAborted, and Error must be mutually exclusive, so in case your

function block is already outputting an error for some other reason, suppress the

CommandAborted output by adding the Error contact to the logic as shown.

LD Format

Figure 18: Execute Model - Example Error processing in ST.

Figure 19: Execute Model - CommandAborted example in LD.

1.1.1.1.1.1.1.1.2

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Doc#: AN.MWIEC.01 February 23, 2014 Page 19 of 31

ST Format

Sometimes CommandAborted is simply the same value as output from a referenced PLCopen

motion function block. The following line is from the MoveRelative_ByTime function block in

the PLCopen Toolbox.

Figure 20: Execute Model - ST example of setting the CommandAborted output.

Notice that the concept is the same whether writing in LD or ST. OR all CommandAborted

outputs together with AND NOT(Error). As shown in the Execute Model graphic on page 7,

the code order of Error, CommandAborted, Busy, and Done is important for the PLCopen

output exclusivity concept to work correctly.

Busy Output

Assume that your function block will take some time (multiple scans) to complete, such as

homing an axis. The Busy output is set while your function is executing or any sub function

block within your function block is Busy, thus the Busy outputs are ORed together. Once

again, the order of operations for setting outputs is important for maintaining the PLCopen

specification that only one output (Done, Busy, CommandAborted, or Error) can be on at one

time. For robustness, ensure that the Error output has not been set just above in the error

handling section. When multiple sub functions are referenced from a single function block,

conditions may exist where some activities are Busy and others have an Error. Some

creativity and interpretation is required to make the new function block’s behavior ideal.

Special Case

If your function block is simple and guaranteed to finish in one scan, a Busy output is

technically not necessary, although Yaskawa recommends including the output for consistency.

1.1.1.1.1.1.1.1.2

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Doc#: AN.MWIEC.01 February 23, 2014 Page 20 of 31

LD Format

This is an example from the Home_LS_Pulse function block in the PLCopen Toolbox. The

Busy flags here are from the five PLCopen motion function blocks contained within.

ST Format

The following example is from a function block containing four customized PLCopen function

blocks.

Done Output

The Done output indicates that the function block has finished successfully and that no errors

were generated. It only requires one line of code to program the Done output. The following

graphics show code which complies with the PLCopen specification; the Done output will

remain high as long as the Execute input is high. If the Execute input has been set low

before this function completes, the Done output will pulse for one scan.

Special case

In the LD and ST examples below, notice one includes NOT(Error) and the other does not.

Based on the collection of sub functions used to build your function and the task they are to

perform, it may be necessary to deliberately alter or suppress an output to conform to the

PLCopen rule that only one output among Busy, Done, CommandAborted, Error can be on at

one time. Generally, the output behavior will be more robust if they are thought of as having a

hierarchy in order of importance:

Figure 21: Execute Model - LD example to set the Busy output.

Figure 22: Execute Model - ST example to set the Busy output.

1.1.1.1.1.1.1.1.2

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Doc#: AN.MWIEC.01 February 23, 2014 Page 21 of 31

1) Error

2) CommandAborted

3) Busy

4) Done

This is the same order as they are shown in the Execute function block model section starting

on page 7. In summary, if any of the preceding outputs are on, the current output cannot be

set on.

LD Format

ST Format

When the function block being designed will contain multiple sub actions, use another internal

Boolean flag ‘Complete’ to indicate that all function block activities are Complete. Complete

should be set in the Main Code Body as a result of the last action successfully completing.

Most ST function blocks in the Yaskawa Toolboxes include this flag.

Figure 23: Execute Model - Example to set the Done output.

Figure 24: Execute Model - ST example including the Complete flag.

1.1.1.1.1.1.1.1.2

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Doc#: AN.MWIEC.01 February 23, 2014 Page 22 of 31

Enable Function Block Model

Figure 25: Enable Template in simple form.

1.1.1.1.1.1.1.1.2

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Doc#: AN.MWIEC.01 February 23, 2014 Page 23 of 31

Many aspects of the Enable function block model are identical to Execute model, and therefore some

topics are only described in the Execute Model section.

Trigger Statements

Using R_TRIG and F_TRIG is the same whether the function block being created is of the

Execute or Enable type. See the Trigger statements on page 8 in the Execute Model section

for more details.

RETURN statement

This line is mainly included for efficiency. It is also quite similar whether creating an Execute

or Enable function block. See page 9 for more details. If a function block is not Active

(dormant, and not processing anything) it makes sense to RETURN back to the calling POU

instead of executing any of the code in the function block. It must be used with caution

however. Using a RETURN statement improperly will cause many bugs. Only allow the

RETURN to take place when all of following conditions are TRUE:

1) Execute or Enable = FALSE

2) iActive = FALSE

3) Busy = FALSE

4) Error = FALSE

By checking these conditions, it ensures that all outputs are off, and any sub function blocks are

also in a dormant state.

Tip: Only use one RETURN per Function Block if possible. It can be confusing to debug a

POU when trying to determine if code is actually being executed or if a RETURN has taken

place.

iActive Flag

The concept of ‘Active’ was adopted during the development of our templates as an internal

way to indicate when the function block was actively processing code. This concept is

necessary because no single PLCopen input or output exactly captures this condition. The

Execute input isn’t a reliable indicator because it may be pulsed by the calling code.

1.1.1.1.1.1.1.1.2

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Doc#: AN.MWIEC.01 February 23, 2014 Page 24 of 31

Initialization

This section is the same whether creating an Execute or Enable type function block. See the

Initialization section in the Execute Model section for more details. (Page 11)

Main Code Body

The Main Code Body runs only when the Enable input is high and there are no Errors. In ST

function blocks, this is typically the first IF condition of the section. In LD format, the main

section does not stand out unless comments are provided.

Motion Function Blocks

This is an optional section which is only required if the function block calls other function blocks.

If the function block will be designed using ST, it’s best not to include them under any IF

conditions for simplicity when debugging and to avoid the trouble of coding to ensure that they

are not left in a Busy state.

Error Processing

This section is very similar whether creating an Execute or Enable type function block.

LD Format

Figure 26: Enable Model - LD Error Processing example.

1.1.1.1.1.1.1.1.2

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Doc#: AN.MWIEC.01 February 23, 2014 Page 25 of 31

ST Format

Valid Output

Setting the Valid output is quite simple. Only one line of code is required to operate the Valid

Output. The outputs of the function are Valid when the Enable input is high and there are no

Errors. According to PLCopen specification, if an error occurs, the Enable input must go low

and high once again to re execute the function block.

LD Format

ST Format

Figure 27: Enable Model - ST Error Processing example.

Figure 28: Enable Model - LD example for setting the Valid output.

Figure 29: Enable Model - ST example for setting the Valid output.

1.1.1.1.1.1.1.1.2

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Doc#: AN.MWIEC.01 February 23, 2014 Page 26 of 31

Execute / Enable Model Variants

Both function block models are suitable for a wide range of applications, however in practice there are

many conditions where the programmer may find that neither model perfectly applies for the required

behavior.

Variant #1:

The function block behaves like the Enable model, but contains PLCopen function blocks with

an Execute input (MC_MoveVelocity and MC_Stop). This Jog function block is an example

which includes BOOL inputs for Forward and Reverse. The function block will stop jogging the

axis when Forward or Reverse go low. On its own, MC_MoveVelocity will continue to move

the axis when its Execute input goes low.

Variant #2:

Some activities may require the characteristics of both function block models to perform their

function well. The Feed_To_Length example below is designed to move an axis a default

distance, but update the actual distance once an expected sensor input reports the position of

the product being processed. That part of the activity can be handled nicely with an Execute

model function block; all of the functions used within are Execute format. The

Feed_To_Length function block shown here has added functionality; VAR_INPUTS are

provided so that the function block can keep track of expected registration marks, and provide

Error outputs if a consecutive number missed marks, or MissedLatchLimit is reached. If

programmed according to PLCopen, an Execute model function cannot remember how many

Figure 30: Function block variant of the Enable Model.

1.1.1.1.1.1.1.1.2

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Doc#: AN.MWIEC.01 February 23, 2014 Page 27 of 31

consecutive registration marks may have been missed, because you would have to initialize

that counter when the rising edge of Execute goes high. Execute model function blocks are

designed to have no memory of what they were doing or how the previous execution resulted.

The function block below can perform all of its features better when designed as a hybrid

function block with both Enable and Execute inputs. When the block is Enabled, the code

that monitors axis motion and looks for expected registration marks at specific intervals is

always running. Motion takes place when Execute goes high. Notice the block provides both

Valid AND Done outputs.

Figure 31: Function Block variant incorporating both Enable and Execute models.

1.1.1.1.1.1.1.1.2

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Doc#: AN.MWIEC.01 February 23, 2014 Page 28 of 31

Recommended Interlocks

Make use of the status outputs of PLCopen function blocks by including them in the interlock logic

which executes the function. This will ensure that the expected logic flow is occurring, and that in the

event of an error, debugging is made easier because the function block which caused an error will be

reporting the ErrorID. Avoid pulsing the Execute input for one scan using an R_TRIG function. If an

error occurs, the error will only be reported for one scan. Unless specific error trapping techniques are

used, visual observation of the program will prove difficult to determine the source of the problem.

This logic is useful when calling sub functions within the function block you are creating, and is also a

good method to apply when referencing the completed function block from other code.

Figure 32: Recommended interlocks to improve debugging capabilities.

1.1.1.1.1.1.1.1.2

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Doc#: AN.MWIEC.01 February 23, 2014 Page 29 of 31

Summary

The techniques described here are just one way to create function blocks that conform to the PLCopen

specification. There are many ways to achieve the same results. Stick with a working code pattern to

simplify debugging. When code is arranged in a similar structure from function block to function block,

the time required to become familiar with the logic is reduced along with troubleshooting effort. Don’t

underestimate the value provided by the PLCopen specification; use it for increased efficiency in

automation.

1.1.1.1.1.1.1.1.2

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Doc#: AN.MWIEC.01 February 23, 2014 Page 30 of 31

Appendix A: Logic Analyzer traces

Use a recording feature provided by the IEC 61131 software to confirm proper behavior. Visually

testing in debug mode is not enough to confirm that every output is behaving correctly scan by scan.

1.1.1.1.1.1.1.1.2

Subject: Application Note Product: MPiec Series Controllers Doc#: AN.MWIEC.01

Title: Creating PLCopen Compliant Function Blocks in IEC 61131

Doc#: AN.MWIEC.01 February 23, 2014 Page 31 of 31

Note: iActive stays high for an additional scan to clear all status data for the next time the function block

is executed.

	Introduction
	Benefits
	Getting Started
	Function Block Models
	Input Behavior
	Output Behavior
	Execute Function Block Model
	Trigger Statements
	LD Format
	ST Format

	RETURN statement
	LD Format
	ST Format

	Setting the iActive Flag
	LD Format
	ST Format

	Initialization
	LD Format
	ST Format

	Main Code Body
	LD Format
	ST Format

	Motion Blocks
	Frozen code
	ST Solutions

	Error Processing
	Latching Function Block Errors
	LD Format
	ST Format

	CommandAborted Output
	LD Format
	ST Format

	Busy Output
	Special Case
	LD Format
	ST Format

	Done Output
	Special case
	LD Format
	ST Format

	Enable Function Block Model
	Trigger Statements
	RETURN statement
	iActive Flag
	Initialization
	Main Code Body
	Motion Function Blocks
	Error Processing
	LD Format
	ST Format

	Valid Output
	LD Format
	ST Format

	Execute / Enable Model Variants
	Variant #1:
	Variant #2:

	Recommended Interlocks
	Summary
	Appendix A: Logic Analyzer traces

