# YASKAWA

Σ-X-Series AC Servo Drive

# $\Sigma$ -XS SERVOPACK with EtherCAT Communications References

# **Product Manual**

Model: SGDXS-DDDA0D

Basic Information on SERVOPACKs

Selecting a SERVOPACK

SERVOPACK Installation

Wiring and Connecting SERVOPACKs

Basic Functions That Require Setting before Operation

**Application Functions** 

Trial Operation and Actual Operation

Monitoring

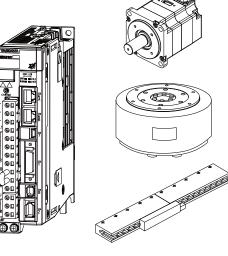
Fully-Closed Loop Control

 $\Sigma$ -LINK II Function

Safety Functions

**EtherCAT Communications** 

CiA402 Drive Profile


Object Dictionary

Maintenance

Parameter and Object Lists

Appendices





# **Table of Contents**

| i. | Preface and General Precautions |                                                                          |            |  |  |
|----|---------------------------------|--------------------------------------------------------------------------|------------|--|--|
|    | i.1                             | About this Manual                                                        | 22         |  |  |
|    | i.2                             | Target Readers                                                           | 23         |  |  |
|    | i.3                             | Outline of Manual                                                        | <u>'</u> 4 |  |  |
|    | i.4                             | Related Documents                                                        | 25         |  |  |
|    |                                 | i.4.1 Related Documents                                                  | 26         |  |  |
|    | i.5                             | Using This Manual                                                        | 30         |  |  |
|    |                                 | i.5.1 Technical Terms Used in This Manual                                | 30         |  |  |
|    |                                 | i.5.2 Differences in Terms for Rotary Servomotors and Linear Servomotors | 30         |  |  |
|    |                                 | i.5.3 Notation Used in this Manual                                       | 31         |  |  |
|    |                                 | i.5.4 Engineering Tools Used in This Manual                              | 32         |  |  |
|    |                                 | i.5.5 Trademarks                                                         | 32         |  |  |
|    |                                 | i.5.6 Visual Aids                                                        | 32         |  |  |
|    | i.6                             | Safety Precautions                                                       | 34         |  |  |
|    |                                 | i.6.1 Safety Information                                                 | 34         |  |  |
|    |                                 | i.6.2 Safety Precautions That Must Always Be Observed                    | 34         |  |  |
|    | i.7                             | Warranty4                                                                | 4          |  |  |
|    |                                 | i.7.1 Details of Warranty                                                | 44         |  |  |
|    |                                 | i.7.2 Limitations of Liability                                           | 44         |  |  |
|    |                                 | i.7.3 Suitability for Use                                                | 45         |  |  |
|    |                                 | i.7.4 Specifications Change                                              | 45         |  |  |
|    | i.8                             | Compliance with UL Standards, EU Directives, and Other Safety Standards  | 16         |  |  |
|    |                                 | i.8.1 North American Safety Standards (UL)                               |            |  |  |
|    |                                 | i.8.2 EU Directives.                                                     |            |  |  |
|    |                                 | i.8.3 Safety Standards                                                   | 47         |  |  |
| 1. | Basic                           | c Information on SERVOPACKs 4                                            | .9         |  |  |
|    | 1 1                             | The T V Cories                                                           | - ^        |  |  |
|    | 1.1                             | The $\Sigma$ -X Series                                                   | U          |  |  |

|    | 1.2   | Interpreting the Nameplate                                                                                          | 1 |
|----|-------|---------------------------------------------------------------------------------------------------------------------|---|
|    | 1.3   | Part Names                                                                                                          | 2 |
|    | 1.4   | Interpreting Model Numbers5-1.4.1 Interpreting SERVOPACK Model Numbers51.4.2 Interpreting Servomotor Model Numbers5 | 4 |
|    | 1.5   | Combinations of SERVOPACKs and Servomotors                                                                          | 7 |
|    |       | 1.5.1 Combinations of Rotary Servomotors and SERVOPACKs                                                             | 7 |
|    |       | 1.5.2 Combinations of Direct Drive Servomotors and SERVOPACKs                                                       | 9 |
|    |       | 1.5.3 Combinations of Linear Servomotors and SERVOPACKs                                                             | 1 |
|    | 1.6   | Functions                                                                                                           | 3 |
| 2. | Selec | eting a SERVOPACK                                                                                                   | 7 |
|    | 2.1   | Ratings and Specifications                                                                                          | 8 |
|    |       | 2.1.1 Ratings                                                                                                       | 8 |
|    |       | 2.1.2 SERVOPACK Overload Protection Characteristics                                                                 | 1 |
|    |       | 2.1.3 Specification                                                                                                 | 2 |
|    | 2.2   | Block Diagrams                                                                                                      | 6 |
|    |       | 2.2.1 SGDXS-R70A, -R90A, -1R6A                                                                                      |   |
|    |       | 2.2.2 SGDXS-2R8A                                                                                                    |   |
|    |       | 2.2.3 SGDXS-3R8A                                                                                                    | 7 |
|    |       | 2.2.4 SGDXS-5R5A, -7R6A                                                                                             | 7 |
|    |       | 2.2.5 SGDXS-120A                                                                                                    | 8 |
|    |       | 2.2.6 SGDXS-180A, -200A                                                                                             | 9 |
|    |       | 2.2.7 SGDXS-330A                                                                                                    | 0 |
|    |       | 2.2.8 SGDXS-470A, -550A                                                                                             | 1 |
|    |       | 2.2.9 SGDXS-590A, -780A                                                                                             | 2 |
|    | 2.3   | External Dimensions                                                                                                 | 3 |
|    |       | 2.3.1 Front Cover Dimensions and Connector Specifications                                                           | 3 |
|    |       | 2.3.2 SERVOPACK External Dimensions                                                                                 | 4 |
|    | 2.4   | Examples of Standard Connections between SERVOPACKs and Peripheral Devices                                          | 2 |
|    |       | 2.4.1 Rotary Servomotor                                                                                             | 2 |
|    |       | 2.4.2 Linear Servomotor                                                                                             |   |
| 3. | SER\  | VOPACK Installation                                                                                                 | 5 |
|    | 3.1   | Installation Precautions                                                                                            | 6 |
|    |       |                                                                                                                     |   |
|    | 3.2   | Mounting Types and Orientation9                                                                                     | 1 |

|    | 3.3   | Mour<br>3.3.1          | nting Hole Dimensions                                                                                       |       |
|----|-------|------------------------|-------------------------------------------------------------------------------------------------------------|-------|
|    | 3.4   | Mour<br>3.4.1<br>3.4.2 | Installing More Than One SERVOPACK in a Control Panel Installing More Than One SERVOPACK in a Control Panel | 99    |
|    | 3.5   | Moni                   | toring the Installation Environment                                                                         | 100   |
|    | 3.6   | Dera                   | ting Specifications                                                                                         | 101   |
|    |       | 3.6.1<br>3.6.2         | SGDXS-R70A, -R90A, -1R6A, -2R8A                                                                             |       |
|    | 3.7   | EMC                    | Installation Conditions                                                                                     | 102   |
|    |       | 3.7.1                  | Three-Phase, 200 VAC                                                                                        | 102   |
|    |       | 3.7.2<br>3.7.3         | Single-Phase, 200 VAC. 270 VDC.                                                                             |       |
| 4. | Wirin | g and                  | Connecting SERVOPACKs                                                                                       | . 105 |
|    | 4.1   | Wirin                  | g and Connecting SERVOPACKs                                                                                 | 107   |
|    |       | 4.1.1                  | General Precautions                                                                                         | 107   |
|    |       | 4.1.2                  | Countermeasures against Noise                                                                               | 109   |
|    |       | 4.1.3                  | Grounding                                                                                                   | 111   |
|    | 4.2   | Basic                  | Wiring Diagrams                                                                                             | 113   |
|    | 4.3   | Wirin                  | g the Power Supply to the SERVOPACK                                                                         | 115   |
|    |       | 4.3.1                  | Terminal Symbols and Terminal Names                                                                         | 115   |
|    |       | 4.3.2                  | Wiring Procedure for Main Circuit Connector                                                                 | 117   |
|    |       | 4.3.3                  | Power ON Sequence.                                                                                          | 119   |
|    |       | 4.3.4                  | Power Supply Wiring Diagrams                                                                                | 120   |
|    |       | 4.3.5                  | Wiring Regenerative Resistors                                                                               | 123   |
|    |       | 4.3.6                  | Wiring Reactors for Harmonic Suppression                                                                    | 125   |
|    | 4.4   | Wirin                  | g Servomotors                                                                                               | 127   |
|    |       | 4.4.1                  | Terminal Symbols and Terminal Names                                                                         | 127   |
|    |       | 4.4.2                  | Pin Layout of Connector for Encoder Cables (CN2)                                                            | 127   |
|    |       | 4.4.3                  | Wiring the SERVOPACK to the Encoder                                                                         | 128   |
|    |       | 4.4.4                  | Wiring the SERVOPACK to the Holding Brake                                                                   | 136   |
|    | 4.5   | I/O S                  | ignal Connections                                                                                           | 137   |
|    |       | 4.5.1                  | I/O Signal Connector (CN1) Names and Functions                                                              | 137   |
|    |       | 4.5.2                  | I/O Signal Connector (CN1) Pin Layout                                                                       | 139   |
|    |       | 4.5.3                  | I/O Signal Wiring Examples                                                                                  | 140   |
|    |       | 4.5.4                  | I/O Circuits                                                                                                | 141   |
|    | 4.6   | Conn                   | ecting Safety Function Signals                                                                              | 144   |

|    |       | 4.6.1<br>4.6.2                                     | Pin Layout of Safety Function Signals (CN8)                                                                                                                                                                                                                     |                          |
|----|-------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|    | 4.7   | Conn                                               | ecting EtherCAT Communications Cables                                                                                                                                                                                                                           | . 146                    |
|    | 4.8   |                                                    | ecting the SigmaWin+                                                                                                                                                                                                                                            |                          |
|    | 4.9   |                                                    | ecting a Digital Operator                                                                                                                                                                                                                                       |                          |
|    | 4.10  |                                                    | the Analog Monitors                                                                                                                                                                                                                                             |                          |
| 5. | Basic | Fund                                               | ctions That Require Setting before Operation                                                                                                                                                                                                                    | . 151                    |
|    | 5.1   | Manip<br>5.1.1<br>5.1.2<br>5.1.3<br>5.1.4<br>5.1.5 | Classifications of SERVOPACK Parameters (Pn□□□).  Classifications of SERVOPACK Parameters.  Notation for Parameters.  Setting Methods for SERVOPACK Parameters.  Write Prohibition Setting for SERVOPACK Parameters.  Initializing SERVOPACK Parameter Settings | 154<br>154<br>156<br>157 |
|    | 5.2   | Powe 5.2.1 5.2.2                                   | Pr Supply Type Settings for the Main Circuit and Control Circuit                                                                                                                                                                                                | 162                      |
|    | 5.3   | Autor                                              | natic Detection of Connected Motor                                                                                                                                                                                                                              | . 164                    |
|    | 5.4   | Motor<br>5.4.1<br>5.4.2                            | Poirection Setting                                                                                                                                                                                                                                              | 165                      |
|    | 5.5   | Settin                                             | ng the Linear Encoder Pitch                                                                                                                                                                                                                                     | . 167                    |
|    | 5.6   | Writin<br>5.6.1<br>5.6.2<br>5.6.3<br>5.6.4         | Precautions Applicable Tools Operating Procedure Confirming If the Motor Constants Have Been Written                                                                                                                                                            | 168<br>168<br>168        |
|    | 5.7   | Select<br>5.7.1<br>5.7.2                           | Related ParametersOperating Procedure.                                                                                                                                                                                                                          | 172                      |
|    | 5.8   | Polar                                              | ity Sensor Setting                                                                                                                                                                                                                                              | . 174                    |
|    | 5.9   | Polar<br>5.9.1<br>5.9.2<br>5.9.3                   | ity Detection                                                                                                                                                                                                                                                   | 175<br>176               |
|    | 5.10  |                                                    | ravel and Related Settings                                                                                                                                                                                                                                      |                          |
|    |       | 5.10.1                                             | Overtravel Signals                                                                                                                                                                                                                                              | 178                      |

|    |                                         | 5.10.2   | Setting to Enable/Disable Overtravel                                        | 179   |
|----|-----------------------------------------|----------|-----------------------------------------------------------------------------|-------|
|    |                                         | 5.10.3   | Motor Stopping Method for Overtravel                                        | 179   |
|    |                                         | 5.10.4   | Overtravel Alarms                                                           | 180   |
|    |                                         | 5.10.5   | Overtravel Warnings                                                         | 181   |
|    |                                         | 5.10.6   | Behavior Selection after Overtravel Release                                 | 182   |
|    |                                         | 5.10.7   | Overtravel Status                                                           | 183   |
|    |                                         | 5.10.8   | Overtravel Operation by Mode                                                | 183   |
|    | 5.11                                    | Holdii   | ng Brake                                                                    | . 184 |
|    |                                         | 5.11.1   | Brake Operating Sequence                                                    | 184   |
|    |                                         | 5.11.2   | /BK (Brake Output) Signal.                                                  | 185   |
|    |                                         | 5.11.3   | Output Timing of /BK (Brake Output) Signal When the Servomotor Is Stopped   | 186   |
|    |                                         | 5.11.4   | Output Timing of /BK (Brake Output) Signal When the Servomotor Is Operating | 186   |
|    | 5.12                                    | Motor    | Stopping Methods for Servo OFF and Alarms                                   | . 188 |
|    |                                         | 5.12.1   | Stopping Method for Servo OFF                                               | 188   |
|    |                                         | 5.12.2   | Servomotor Stopping Method for Alarms                                       | 189   |
|    | 5.13                                    | Motor    | Overload Detection Level                                                    | . 191 |
|    |                                         |          |                                                                             |       |
|    |                                         |          | Detection Timing for Overload Alarms (A.720)                                |       |
|    | 5.14                                    | Settin   | ng Unit Systems                                                             | 193   |
|    | • • • • • • • • • • • • • • • • • • • • | 5.14.1   |                                                                             |       |
|    |                                         | 5.14.2   | Electronic Gear Ratio Setting Examples                                      |       |
|    |                                         | 5.14.3   | Setting the Speed Reference Unit                                            |       |
|    |                                         | 5.14.4   | Setting the Acceleration Reference Unit                                     |       |
|    |                                         | 5.14.5   | Setting the Torque Reference Unit                                           |       |
|    | 5.15                                    | Rese     | tting the Absolute Encoder                                                  | . 201 |
|    |                                         | 5.15.1   | Precautions on Resetting                                                    |       |
|    |                                         | 5.15.2   | Preparations                                                                |       |
|    |                                         | 5.15.3   | Applicable Tools                                                            |       |
|    |                                         | 5.15.4   | Operating Procedure                                                         |       |
|    | 5.16                                    | Settin   | ng the Origin of the Absolute Encoder                                       | . 204 |
|    |                                         |          | Absolute Encoder Origin Offset                                              |       |
|    |                                         |          | Setting the Origin of the Absolute Linear Encoder                           |       |
|    | 5.17                                    | Settin   | ng the Regenerative Resistor Capacity                                       | . 207 |
|    | 5.18                                    |          |                                                                             |       |
|    | 5.10                                    |          | -7 Compatible Function and Settings                                         |       |
|    |                                         | J. 10. I | Detaing the Encoder Nesolution Compatibility Selection                      | 209   |
| 6. | Appli                                   | cation   | Functions                                                                   | . 211 |
|    | 6.1                                     |          | ging Allocations of I/O Signals                                             |       |
|    | 0.1                                     | 6.1.1    | Changing Allocations of I/O Signals                                         |       |
|    |                                         | 0.1.1    | Changing Anocations of I/O Signals                                          | ∠ 14  |

|     | 6.1.2  | I/O Signal Allocations                                              | 216   |
|-----|--------|---------------------------------------------------------------------|-------|
|     | 6.1.3  | Input Signal Allocations                                            | 216   |
|     | 6.1.4  | Output Signal Allocations                                           | 218   |
|     | 6.1.5  | ALM (Servo Alarm Output) Signal                                     | 220   |
|     | 6.1.6  | /WARN (Warning Output) Signal                                       | 221   |
|     | 6.1.7  | /TGON (Rotation Detection Output) Signal                            |       |
|     | 6.1.8  | /S-RDY (Servo Ready Output) Signal                                  | 222   |
|     | 6.1.9  | /V-CMP (Speed Coincidence Detection Output) Signal                  | 223   |
|     | 6.1.10 | /COIN (Positioning Completion Output) Signal                        |       |
|     | 6.1.11 | /NEAR (Near Output) Signal                                          |       |
|     | 6.1.12 | Speed Limit during Torque Control                                   | 226   |
| 6.2 | Opera  | ation for Momentary Power Interruptions                             | . 229 |
| 6.3 | SEMI   | F47 Function                                                        | . 230 |
|     | 6.3.1  | Execution Sequence                                                  | 230   |
|     | 6.3.2  | Related Parameters                                                  | 231   |
| 6.4 | Settir | ng the Maximum Motor Speed                                          | . 232 |
| 6.5 | Enco   | der Divided Pulse Output                                            | . 233 |
|     | 6.5.1  | Encoder Divided Pulse Output Signals                                | 233   |
|     | 6.5.2  | Setting for the Encoder Divided Pulse Output                        | 237   |
| 6.6 | Softw  | vare Limits                                                         | . 240 |
| 6.7 | Selec  | eting Torque Limits                                                 | . 241 |
|     | 6.7.1  | Internal Torque Limits                                              | 241   |
|     | 6.7.2  | External Torque Limits                                              | 242   |
|     | 6.7.3  | /CLT (Torque Limit Detection Output) Signal                         | 245   |
| 6.8 | Abso   | lute Encoders                                                       | . 246 |
|     | 6.8.1  | Connecting an Absolute Encoder                                      | 247   |
|     | 6.8.2  | Structure of the Position Data of the Absolute Encoder              | 247   |
|     | 6.8.3  | Output Ports for the Position Data from the Absolute Encoder        | 247   |
|     | 6.8.4  | Reading the Position Data from the Absolute Encoder                 | 248   |
|     | 6.8.5  | Transmission Specifications                                         | 249   |
|     | 6.8.6  | Calculating the Current Position in Machine Coordinates             | 249   |
|     | 6.8.7  | Multiturn Limit Setting                                             | 250   |
|     | 6.8.8  | A.CC0 (Multiturn Limit Disagreement Alarm )                         | 251   |
| 6.9 | Abso   | lute Linear Encoders                                                | . 255 |
|     | 6.9.1  | Connecting an Absolute Linear Encoder                               | 255   |
|     | 6.9.2  | Structure of the Position Data of the Absolute Linear Encoder       | 255   |
|     | 6.9.3  | Output Ports for the Position Data from the Absolute Linear Encoder |       |
|     | 6.9.4  | Reading the Position Data from the Absolute Linear Encoder          | 256   |
|     | 6.9.5  | Transmission Specifications                                         | 257   |
|     | 6.9.6  | Calculating the Current Position in Machine Coordinates             | 258   |

|    | 6.10                                    | Softw            | are Reset                                                                     | 59  |
|----|-----------------------------------------|------------------|-------------------------------------------------------------------------------|-----|
|    |                                         | 6.10.1           | Preparations                                                                  | 259 |
|    |                                         |                  | Applicable Tools                                                              |     |
|    |                                         | 6.10.3           | Operating Procedure                                                           | 259 |
|    | 6.11                                    | Vibrat           | tion Detection Level Initialization                                           | 61  |
|    |                                         | 6.11.1           | Preparations                                                                  | 261 |
|    |                                         | 6.11.2           | Applicable Tools                                                              | 261 |
|    |                                         | 6.11.3           | Operating Procedure                                                           | 262 |
|    |                                         | 6.11.4           | Related Parameters                                                            | 263 |
|    | 6.12                                    | Adjus            | ting the Motor Current Detection Signal Offset                                | 64  |
|    |                                         | 6.12.1           | Automatic Adjustment                                                          | 264 |
|    |                                         | 6.12.2           | Manual Adjustment                                                             | 266 |
|    | 6.13                                    | Forcir           | ng the Motor to Stop                                                          | 68  |
|    |                                         | 6.13.1           | FSTP (Forced Stop Input) Signal                                               | 268 |
|    |                                         | 6.13.2           | Stopping Method Selection for Forced Stops                                    | 268 |
|    |                                         | 6.13.3           | Resetting Method for Forced Stops                                             | 269 |
|    | 6.14                                    | Overh            | neat Protection2                                                              | 71  |
|    | • • • • • • • • • • • • • • • • • • • • |                  | Connecting the Overheat Protection Input (TH) Signal                          |     |
|    |                                         |                  | Overheat Protection Selections                                                |     |
|    | 6.15                                    | Trigge           | ers at Preset Positions                                                       | 71  |
|    | 0.13                                    | 6.15.1           | Outline                                                                       |     |
|    |                                         | 6.15.2           | I/O Signal Connector (CN1) Pin Layout                                         |     |
|    |                                         |                  | Procedure to Use Triggers at Preset Positions                                 |     |
|    | 6.16                                    |                  |                                                                               |     |
|    | 0.10                                    |                  | ional Coordinate System                                                       |     |
|    |                                         | 6.16.1<br>6.16.2 | Outline                                                                       |     |
|    |                                         | 6.16.3           | Supported Modes of Operation When the Rotational Coordinate System Is Enabled |     |
|    |                                         |                  | Setup Procedure                                                               |     |
|    | C 17                                    |                  | ·                                                                             |     |
|    | 6.17                                    | 5011 5           | Start Settings                                                                | 87  |
|    | 6.18                                    | Refer            | ence Filters                                                                  | 88  |
|    |                                         | 6.18.1           | Speed Reference Filter                                                        | 288 |
|    |                                         | 6.18.2           | Average Position Reference Movement Filter                                    | 288 |
|    |                                         |                  |                                                                               |     |
| 7. | Trial (                                 | Opera            | ation and Actual Operation                                                    | 39  |
|    | 7.1                                     | Flow             | of Trial Operation                                                            | 90  |
|    |                                         | 7.1.1            | Flow of Trial Operation for Rotary Servomotors                                | 290 |
|    |                                         | 7.1.2            | Flow of Trial Operation for Linear Servomotors                                | 291 |
|    | 7.2                                     | Inspe            | ctions and Confirmations before Trial Operation                               | 94  |

|    | 7.3   | Trial | Operation for the Servomotor without a Load                     | 295 |
|----|-------|-------|-----------------------------------------------------------------|-----|
|    |       | 7.3.1 | Preparations                                                    | 295 |
|    |       | 7.3.2 | Applicable Tools                                                | 296 |
|    |       | 7.3.3 | Operating Procedure                                             | 296 |
|    | 7.4   | Trial | Operation with EtherCAT Communications                          | 298 |
|    | 7.5   | Trial | Operation with the Servomotor Connected to the Machine          | 299 |
|    |       | 7.5.1 | Precautions                                                     | 299 |
|    |       | 7.5.2 | Preparations                                                    | 299 |
|    |       | 7.5.3 | Operating Procedure                                             | 300 |
|    | 7.6   | Conv  | venient Function to Use during Trial Operation                  | 301 |
|    |       | 7.6.1 | Program Jogging                                                 | 301 |
|    |       | 7.6.2 | Origin Search                                                   | 306 |
|    |       | 7.6.3 | Test without a Motor                                            | 308 |
| 8. | Tunir | na    |                                                                 | 313 |
| Ο. |       |       |                                                                 |     |
|    | 8.1   |       | view and Flow of Tuning                                         |     |
|    |       | 8.1.1 | Tuning Functions                                                |     |
|    |       | 8.1.2 | Diagnostic Tool                                                 | 318 |
|    | 8.2   | Moni  | toring Methods                                                  | 319 |
|    | 8.3   | Preca | autions to Ensure Safe Tuning                                   | 320 |
|    |       | 8.3.1 | Overtravel Settings                                             | 320 |
|    |       | 8.3.2 | Torque Limit Settings                                           |     |
|    |       | 8.3.3 | Setting the Position Deviation Overflow Alarm Level             |     |
|    |       | 8.3.4 | Vibration Detection Level Setting                               |     |
|    |       | 8.3.5 | Setting the Position Deviation Overflow Alarm Level at Servo ON | 322 |
|    | 8.4   | Tunir | ng-less Function                                                | 324 |
|    |       | 8.4.1 | Application Restrictions                                        | 324 |
|    |       | 8.4.2 | Operating Procedure                                             | 325 |
|    |       | 8.4.3 | Troubleshooting Alarms                                          |     |
|    |       | 8.4.4 | Parameters Disabled by Tuning-less Function                     | 327 |
|    |       | 8.4.5 | Automatically Adjusted Function Setting                         |     |
|    |       | 8.4.6 | Related Parameters                                              | 327 |
|    | 8.5   | Mom   | ent of Inertia Estimation without a Host Reference              |     |
|    |       | 8.5.1 | Outline                                                         |     |
|    |       | 8.5.2 | Restrictions                                                    |     |
|    |       | 8.5.3 | Applicable Tools                                                |     |
|    |       | 8.5.4 | Operating Procedure                                             |     |
|    | 8.6   | Mom   | ent of Inertia Estimation with a Host Reference                 |     |
|    |       | 8.6.1 | Outline                                                         | 346 |

|      | 8.6.2         | Restrictions                                                            | 346 |  |  |  |
|------|---------------|-------------------------------------------------------------------------|-----|--|--|--|
|      | 8.6.3         | Applicable Tools                                                        | 347 |  |  |  |
|      | 8.6.4         | Operating Procedure                                                     | 347 |  |  |  |
| 8.7  | Autot         | uning without a Host Reference                                          | 349 |  |  |  |
|      | 8.7.1         | Outline                                                                 | 349 |  |  |  |
|      | 8.7.2         | Restrictions                                                            | 350 |  |  |  |
|      | 8.7.3         | Applicable Tools                                                        | 351 |  |  |  |
|      | 8.7.4         | Operating Procedure                                                     | 351 |  |  |  |
|      | 8.7.5         | Troubleshooting Problems in Autotuning without a Host Reference         | 356 |  |  |  |
|      | 8.7.6         | Automatically Adjusted Function Setting                                 | 358 |  |  |  |
|      | 8.7.7         | Related Parameters                                                      | 360 |  |  |  |
| 8.8  | Autot         | uning with a Host Reference                                             | 362 |  |  |  |
|      | 8.8.1         | Outline                                                                 | 362 |  |  |  |
|      | 8.8.2         | Restrictions                                                            | 362 |  |  |  |
|      | 8.8.3         | Applicable Tools                                                        | 363 |  |  |  |
|      | 8.8.4         | Operating Procedure                                                     | 363 |  |  |  |
|      | 8.8.5         | Troubleshooting Problems in Autotuning with a Host Reference            | 367 |  |  |  |
|      | 8.8.6         | Automatically Adjusted Function Setting                                 | 368 |  |  |  |
|      | 8.8.7         | Related Parameters                                                      | 368 |  |  |  |
| 8.9  | Custom Tuning |                                                                         |     |  |  |  |
|      | 8.9.1         | Outline                                                                 | 370 |  |  |  |
|      | 8.9.2         | Preparations                                                            | 370 |  |  |  |
|      | 8.9.3         | Applicable Tools                                                        | 371 |  |  |  |
|      | 8.9.4         | Operating Procedure                                                     | 371 |  |  |  |
|      | 8.9.5         | Automatically Adjusted Function Setting                                 | 376 |  |  |  |
|      | 8.9.6         | Tuning Example for Tuning Mode 2 or 3                                   | 376 |  |  |  |
|      | 8.9.7         | Related Parameters                                                      | 377 |  |  |  |
| 8.10 | Anti-F        | Resonance Control Adjustment                                            | 379 |  |  |  |
|      | 8.10.1        | Outline                                                                 | 379 |  |  |  |
|      | 8.10.2        | Preparations                                                            | 379 |  |  |  |
|      | 8.10.3        | Applicable Tools                                                        | 379 |  |  |  |
|      | 8.10.4        | Operating Procedure                                                     | 380 |  |  |  |
|      | 8.10.5        | Related Parameters                                                      | 384 |  |  |  |
|      | 8.10.6        | Suppressing Different Vibration Frequencies with Anti-resonance Control | 384 |  |  |  |
| 8.11 | Vibra         | tion Suppression                                                        | 386 |  |  |  |
|      | 8.11.1        | Outline                                                                 | 386 |  |  |  |
|      | 8.11.2        | Preparations                                                            | 387 |  |  |  |
|      | 8.11.3        | Applicable Tools                                                        | 387 |  |  |  |
|      | 8.11.4        | Operating Procedure                                                     | 387 |  |  |  |
|      | 8.11.5        | Setting Combined Functions.                                             | 389 |  |  |  |
|      | 8.11.6        | Related Parameters                                                      | 389 |  |  |  |

|    | 8.12  | Spee   | d Ripple Compensation                                                         | 390 |
|----|-------|--------|-------------------------------------------------------------------------------|-----|
|    |       | 8.12.1 | Outline                                                                       | 390 |
|    |       | 8.12.2 | Speed Ripple Compensation when a Rotary Servomotor Is Connected               | 390 |
|    |       | 8.12.3 | Speed Ripple Compensation when a Linear Servomotor Is Connected               | 396 |
|    |       | 8.12.4 | Speed Ripple Compensation during Torque Control Mode and during Torque Limits | 408 |
|    |       | 8.12.5 | Parameter Settings                                                            | 409 |
|    | 8.13  | Load   | Fluctuation Compensation Control                                              | 412 |
|    |       | 8.13.1 | Outline                                                                       | 412 |
|    |       | 8.13.2 | Application Restrictions                                                      | 412 |
|    |       | 8.13.3 | Preparations                                                                  | 412 |
|    |       | 8.13.4 | Required Parameter Settings                                                   | 412 |
|    |       | 8.13.5 | Operating Procedure                                                           | 413 |
|    |       | 8.13.6 | Parameters Disabled by a Load Fluctuation Compensation Control                | 413 |
|    | 8.14  | Additi | ional Adjustment Functions                                                    | 415 |
|    |       | 8.14.1 | Gain Switching                                                                | 415 |
|    |       | 8.14.2 | Friction Compensation                                                         | 418 |
|    |       | 8.14.3 | Gravity Compensation                                                          | 420 |
|    |       | 8.14.4 | Output Torque Compensation                                                    | 421 |
|    |       | 8.14.5 | Current Control Mode Selection                                                | 422 |
|    |       | 8.14.6 | Current Gain Level Setting                                                    | 422 |
|    |       | 8.14.7 | •                                                                             |     |
|    |       | 8.14.8 | Speed Feedback Filter                                                         | 423 |
|    |       | 8.14.9 | Backlash Compensation                                                         | 423 |
|    | 8.15  | Manu   | ıal Tuning                                                                    | 429 |
|    |       | 8.15.1 | Tuning the Servo Gains                                                        | 429 |
|    |       | 8.15.2 | Compatible Adjustment Functions                                               | 439 |
|    | 8.16  | Diagn  | nostic Tool                                                                   | 444 |
|    |       | 8.16.1 | Mechanical Analysis                                                           | 444 |
|    |       | 8.16.2 | Easy FFT                                                                      | 445 |
|    |       |        |                                                                               |     |
| 9. | Monit | toring |                                                                               | 451 |
|    | 9.1   | Monit  | toring Product Information                                                    | 452 |
|    |       | 9.1.1  | Items That You Can Monitor                                                    | 452 |
|    |       | 9.1.2  | Operating Procedure                                                           | 452 |
|    | 9.2   | Monit  | toring SERVOPACK Status                                                       | 454 |
|    |       | 9.2.1  | Servo Drive Information                                                       | 454 |
|    |       | 9.2.2  | Operation Monitor, Status Monitor, and I/O Monitor                            | 454 |
|    |       | 9.2.3  | I/O Signals Status Monitor                                                    | 459 |
|    | 9.3   | Monit  | toring Machine Operation Status and Signal Waveforms                          | 462 |
|    |       |        | - · · · · · · · · · · · · · · · · · · ·                                       |     |

|     |          | <ul> <li>9.3.1 Items That You Can Monitor</li> <li>9.3.2 Using the SigmaWin+</li> <li>9.3.3 Using the Analog Monitors</li> </ul> | 462   |
|-----|----------|----------------------------------------------------------------------------------------------------------------------------------|-------|
|     | 0.4      |                                                                                                                                  |       |
|     | 9.4      | Monitoring Product Life                                                                                                          |       |
|     |          | 9.4.1 Items That You Can Monitor                                                                                                 |       |
|     |          | 9.4.2 Operating Procedure                                                                                                        |       |
|     | 0.5      |                                                                                                                                  |       |
|     | 9.5      | Alarm Tracing                                                                                                                    |       |
|     |          | 9.5.1 Data for Which Alarm Tracing Is Performed                                                                                  |       |
|     |          | 9.5.2 Applicable Tools                                                                                                           | 472   |
|     | 9.6      | Error Detection Setting                                                                                                          | 473   |
|     |          | 9.6.1 Outline                                                                                                                    | 473   |
|     |          | 9.6.2 Preparing Trace Data to Create Sample Data                                                                                 | 473   |
|     |          | 9.6.3 Creating Sample Data and Setting the Error Judgment Baseline                                                               | 474   |
|     |          | 9.6.4 Executing Error Detection                                                                                                  | 478   |
|     |          |                                                                                                                                  |       |
| 10  | . Fully- | -Closed Loop Control                                                                                                             | . 481 |
|     | 10.1     | Fully-Closed System                                                                                                              | 482   |
|     | 10.2     | SERVOPACK Commissioning Procedure                                                                                                |       |
|     |          | _                                                                                                                                |       |
|     | 10.3     | Parameter Settings for Fully-Closed Loop Control                                                                                 |       |
|     |          | 10.3.1 Parameters to Set and Reference Information                                                                               |       |
|     |          | 10.3.2 Control Block Diagram for Fully-Closed Loop Control.                                                                      |       |
|     |          | 10.3.3 Setting the Motor Rotation Direction and the Machine Movement Direction                                                   |       |
|     |          | 10.3.4 Setting the Number of External Encoder Scale Pitches                                                                      |       |
|     |          | 10.3.5 Setting the PAO, PBO, and PCO (Encoder Divided Pulse Output) Signals                                                      |       |
|     |          | 10.3.6 External Absolute Encoder Data Reception Sequence                                                                         |       |
|     |          | 10.3.7 Setting Unit Systems                                                                                                      |       |
|     |          | 10.3.8 Alarm Detection Settings.                                                                                                 |       |
|     |          | 10.3.9 Analog Monitor Signal Settings.                                                                                           |       |
|     |          | 10.3.10 Setting to Use an External Encoder for Speed Feedback                                                                    | 491   |
|     | 10.4     | Monitoring an External Encoder                                                                                                   | 492   |
|     |          | 10.4.1 Option Module Required for Monitoring                                                                                     | 492   |
|     |          | 10.4.2 Related Parameters                                                                                                        | 492   |
|     |          | 10.4.3 Monitoring the Current Value of the External Encoder from the Host Controller                                             | 492   |
|     |          | 10.4.4 Block Diagrams                                                                                                            | 492   |
| 4.4 | E 1 14 1 |                                                                                                                                  | 405   |
| 11. | . Σ-LIN  | IK II Function                                                                                                                   | . 495 |
|     | 11.1     | Outline                                                                                                                          | 496   |

|    | 11.2    | Devices That Support Σ-LINK II                                                                                                                                                                                                                                                                                                                                                                                                         | 497                                                                           |
|----|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|    | 11.3    | Procedure to Use $\Sigma$ -LINK II                                                                                                                                                                                                                                                                                                                                                                                                     | 498                                                                           |
|    | 11.4    | Connecting Devices to the SERVOPACK                                                                                                                                                                                                                                                                                                                                                                                                    | . 500                                                                         |
|    | 11.5    | Performing Self-Configuration  11.5.1 Preparations.  11.5.2 Applicable Tools.  11.5.3 Operating Procedure.  11.5.4 Troubleshooting If an Error Code Is Displayed                                                                                                                                                                                                                                                                       | . 501<br>. 501<br>. 501                                                       |
|    | 11.6    | Specifying the Servomotor (Semi-Closed Encoder) to Drive                                                                                                                                                                                                                                                                                                                                                                               |                                                                               |
|    | 11.7    | <ul> <li>Configuring the Σ-LINK II Data Settings</li> <li>11.7.1 Monitoring the Input Signals of Connected Devices with the SigmaWin+</li> <li>11.7.2 Monitoring the Input Signals of Connected Devices from the Host Controller</li> <li>11.7.3 Allocating Input Signals of Connected Devices to SERVOPACK Functions and Using those Signals</li> <li>11.7.4 Configuring Settings to Output Signals from Connected Devices</li> </ul> | . 508<br>. 511<br>. 511                                                       |
|    | 11.8    | Changing Detection Conditions of Alarms Related to Σ-LINK II         11.8.1 Connected Node Change Detection Condition         11.8.2 Σ-LINK II I/O Device Error Detection Selection                                                                                                                                                                                                                                                    | . 521                                                                         |
| 12 | . Safet | y Functions                                                                                                                                                                                                                                                                                                                                                                                                                            | 523                                                                           |
|    | 12.1    | Introduction to the Safety Functions                                                                                                                                                                                                                                                                                                                                                                                                   | . 524                                                                         |
|    | 12.2    | Hard Wire Base Block (HWBB).  12.2.1 Risk Assessment.  12.2.2 Hard Wire Base Block (HWBB) State.  12.2.3 Resetting the HWBB State  12.2.4 Recovery Method.  12.2.5 Detecting Errors in HWBB Signal.  12.2.6 HWBB Input Signal Specifications  12.2.7 Operation without a Host Controller  12.2.8 /S-RDY (Servo Ready Output) Signal  12.2.9 /BK (Brake Output) Signal.  12.2.10 Stopping Methods                                       | . 525<br>. 526<br>. 526<br>. 527<br>. 528<br>. 528<br>. 528<br>. 529<br>. 530 |
|    | 12.3    | 12.2.11 ALM (Servo Alarm) Signal  EDM1 (External Device Monitor)                                                                                                                                                                                                                                                                                                                                                                       |                                                                               |
|    |         | ,                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                               |

|     |         | 12.3.1 | EDM1 Output Signal Specifications                     | 531   |
|-----|---------|--------|-------------------------------------------------------|-------|
|     | 12.4    | Applic | cations Examples for Safety Functions                 | 532   |
|     |         | 12.4.1 | Connection Example                                    | 532   |
|     |         | 12.4.2 | Failure Detection Method                              | 532   |
|     |         | 12.4.3 | Procedure                                             | 533   |
|     | 12.5    | Valida | iting Safety Functions                                | 534   |
|     | 12.6    | Conne  | ecting a Safety Function Device                       | 535   |
| 13. | . Ether | CAT (  | Communications                                        | . 537 |
|     | 13.1    | Introd | uction to EtherCAT                                    | 538   |
|     |         | 13.1.1 | Introduction to CANopen                               | 538   |
|     |         | 13.1.2 | CANopen over EtherCAT OSI Model                       | 538   |
|     |         | 13.1.3 | Sending and Receiving Data in EtherCAT Communications | 539   |
|     |         | 13.1.4 | EtherCAT Terminology                                  | 539   |
|     |         | 13.1.5 | Data Type                                             | 540   |
|     |         |        | Data Units.                                           |       |
|     |         |        | Subindex Number Notation                              |       |
|     | 13.2    | Ether( | CAT Slave Information                                 | 541   |
|     | 13.3    | Ether  | CAT State Machine                                     | 542   |
|     | 13.4    | Ether( | CAT Communications Settings                           | 544   |
|     |         | 13.4.1 | Explicit Device Identification                        | 544   |
|     |         | 13.4.2 | Normal Device Recognition Process at Startup.         | 544   |
|     | 13.5    | PDO I  | Mappings                                              | 545   |
|     |         | 13.5.1 | Setting Procedure for PDO Mappings                    | 545   |
|     |         | 13.5.2 | Default PDO Mappings                                  | 546   |
|     | 13.6    | Synch  | nronization with Distributed Clocks                   | 547   |
|     |         | 13.6.1 | Example of PDO Data Exchange Timing in DC Mode        | 548   |
|     | 13.7    | Emerg  | gency Messages                                        | 550   |
| 14. | . CiA40 | 02 Dri | ve Profile                                            | . 551 |
|     | 14.1    | Device | e Control                                             | 552   |
|     |         |        | State Machine Control Commands                        |       |
|     |         |        | Bits in Statusword (6041h)                            |       |
|     |         |        | Related Objects                                       |       |
|     | 14.2    | Modes  | s of Operation                                        | 555   |
|     |         | 14.2.1 | Related Objects                                       | 555   |
|     |         | 14.2.2 | Dynamic Mode Changes                                  | 555   |

|    | 14.3                     | Position Control Modes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 556                                                                                            |
|----|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|    |                          | 14.3.1 Profile Position Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 556                                                                                          |
|    |                          | 14.3.2 Interpolated Position Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 559                                                                                          |
|    |                          | 14.3.3 Cyclic Synchronous Position Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 563                                                                                          |
|    | 14.4                     | Homing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 565                                                                                            |
|    |                          | 14.4.1 Related Objects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 565                                                                                          |
|    |                          | 14.4.2 Homing Method (6098h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 565                                                                                          |
|    | 14.5                     | Velocity Control Modes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 568                                                                                            |
|    |                          | 14.5.1 Profile Velocity Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 568                                                                                          |
|    |                          | 14.5.2 Cyclic Synchronous Velocity Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 569                                                                                          |
|    | 14.6                     | Torque Control Modes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 570                                                                                            |
|    |                          | . 14.6.1 Profile Torque Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 570                                                                                          |
|    |                          | 14.6.2 Cyclic Sync Torque Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 571                                                                                          |
|    | 14.7                     | Torque Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 572                                                                                            |
|    |                          | 14.7.1 Related Objects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                |
|    | 14.8                     | Digital I/O Signals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 573                                                                                            |
|    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                |
|    | 14.9                     | Touch Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                |
|    |                          | 14.9.1 Related Objects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                |
|    |                          | 14.9.2 Example of Execution Procedure for a Touch Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 575                                                                                          |
|    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                |
|    | 14.10                    | Fully-Closed Loop Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 576                                                                                            |
|    | 14.10                    | Fully-Closed Loop Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 576                                                                                            |
| 15 |                          | Fully-Closed Loop Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                |
| 15 | . Objed                  | ct Dictionary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 577                                                                                            |
| 15 | . Objed<br>15.1          | ct Dictionary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 577<br>581                                                                                     |
| 15 | . Objed                  | ct Dictionary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 577<br>581<br>586                                                                              |
| 15 | . Objed<br>15.1          | Object Dictionary List.  General Objects  15.2.1 Device Type (1000h)                                                                                                                                                                                                                                                                                                                                                                                                                                                | 577<br>581<br>586                                                                              |
| 15 | . Objed<br>15.1          | Ct Dictionary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 577<br>581<br>586<br>. 586                                                                     |
| 15 | . Objed<br>15.1          | Ct Dictionary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 577<br>581<br>586<br>. 586<br>. 586                                                            |
| 15 | . Objed<br>15.1          | Ct Dictionary  Object Dictionary List.  General Objects.  15.2.1 Device Type (1000h).  15.2.2 Error Register (1001h).  15.2.3 Manufacturer Device Name (1008h)  15.2.4 Manufacturer Software Version (100Ah)                                                                                                                                                                                                                                                                                                        | 577<br>581<br>586<br>. 586<br>. 586<br>. 586                                                   |
| 15 | . Objed<br>15.1          | Ct Dictionary  Object Dictionary List.  General Objects.  15.2.1 Device Type (1000h).  15.2.2 Error Register (1001h).  15.2.3 Manufacturer Device Name (1008h)  15.2.4 Manufacturer Software Version (100Ah).  15.2.5 Store Parameters (1010h).                                                                                                                                                                                                                                                                     | 577<br>581<br>586<br>. 586<br>. 586<br>. 586<br>. 586                                          |
| 15 | . Objed<br>15.1          | Ct Dictionary  Object Dictionary List.  General Objects.  15.2.1 Device Type (1000h).  15.2.2 Error Register (1001h).  15.2.3 Manufacturer Device Name (1008h)  15.2.4 Manufacturer Software Version (100Ah)  15.2.5 Store Parameters (1010h).                                                                                                                                                                                                                                                                      | 577<br>581<br>586<br>. 586<br>. 586<br>. 586<br>. 587<br>. 587                                 |
| 15 | . Objec<br>15.1<br>15.2  | Object Dictionary List.  General Objects.  15.2.1 Device Type (1000h).  15.2.2 Error Register (1001h).  15.2.3 Manufacturer Device Name (1008h).  15.2.4 Manufacturer Software Version (100Ah).  15.2.5 Store Parameters (1010h).  15.2.6 Restore Default Parameters (1011h).  15.2.7 Identity Object (1018h).                                                                                                                                                                                                      | 577<br>581<br>586<br>. 586<br>. 586<br>. 586<br>. 587<br>. 587                                 |
| 15 | . Objed<br>15.1          | Object Dictionary List.  General Objects.  15.2.1 Device Type (1000h).  15.2.2 Error Register (1001h).  15.2.3 Manufacturer Device Name (1008h).  15.2.4 Manufacturer Software Version (100Ah).  15.2.5 Store Parameters (1010h).  15.2.6 Restore Default Parameters (1011h).  15.2.7 Identity Object (1018h).  PDO Mapping Objects.                                                                                                                                                                                | 577<br>581<br>586<br>. 586<br>. 586<br>. 587<br>. 587<br>. 588<br>589                          |
| 15 | . Objec<br>15.1<br>15.2  | Object Dictionary List.  General Objects.  15.2.1 Device Type (1000h).  15.2.2 Error Register (1001h).  15.2.3 Manufacturer Device Name (1008h).  15.2.4 Manufacturer Software Version (100Ah).  15.2.5 Store Parameters (1010h).  15.2.6 Restore Default Parameters (1011h).  15.2.7 Identity Object (1018h).                                                                                                                                                                                                      | 577<br>581<br>586<br>. 586<br>. 586<br>. 587<br>. 587<br>. 588<br>589<br>. 590                 |
| 15 | . Object<br>15.1<br>15.2 | Object Dictionary List.  General Objects.  15.2.1 Device Type (1000h).  15.2.2 Error Register (1001h).  15.2.3 Manufacturer Device Name (1008h).  15.2.4 Manufacturer Software Version (100Ah).  15.2.5 Store Parameters (1010h).  15.2.6 Restore Default Parameters (1011h).  15.2.7 Identity Object (1018h).  PDO Mapping Objects.  15.3.1 Receive PDO Mapping (1600h to 1603h).  15.3.2 Transmit PDO Mapping (1A00h to 1A03h)                                                                                    | 577 581 586 . 586 . 586 . 587 . 587 . 588 589 . 590                                            |
| 15 | . Objec<br>15.1<br>15.2  | Object Dictionary List.  General Objects.  15.2.1 Device Type (1000h).  15.2.2 Error Register (1001h).  15.2.3 Manufacturer Device Name (1008h)  15.2.4 Manufacturer Software Version (100Ah).  15.2.5 Store Parameters (1010h).  15.2.6 Restore Default Parameters (1011h)  15.2.7 Identity Object (1018h).  PDO Mapping Objects.  15.3.1 Receive PDO Mapping (1600h to 1603h)  15.3.2 Transmit PDO Mapping (1A00h to 1A03h)  Sync Manager Communication Objects.                                                  | 577<br>581<br>586<br>. 586<br>. 586<br>. 587<br>. 587<br>. 588<br>589<br>. 590<br>. 594        |
| 15 | . Object<br>15.1<br>15.2 | Object Dictionary List.  General Objects.  15.2.1 Device Type (1000h).  15.2.2 Error Register (1001h).  15.2.3 Manufacturer Device Name (1008h)  15.2.4 Manufacturer Software Version (100Ah).  15.2.5 Store Parameters (1010h).  15.2.6 Restore Default Parameters (1011h)  15.2.7 Identity Object (1018h).  PDO Mapping Objects.  15.3.1 Receive PDO Mapping (1600h to 1603h)  15.3.2 Transmit PDO Mapping (1A00h to 1A03h)  Sync Manager Communication Objects.  15.4.1 Sync Manager Communication Type (1C00h). | 577<br>581<br>586<br>. 586<br>. 586<br>. 587<br>. 587<br>. 588<br>589<br>. 590<br>. 594<br>598 |
| 15 | . Object<br>15.1<br>15.2 | Object Dictionary List.  General Objects.  15.2.1 Device Type (1000h).  15.2.2 Error Register (1001h).  15.2.3 Manufacturer Device Name (1008h)  15.2.4 Manufacturer Software Version (100Ah).  15.2.5 Store Parameters (1010h).  15.2.6 Restore Default Parameters (1011h)  15.2.7 Identity Object (1018h).  PDO Mapping Objects.  15.3.1 Receive PDO Mapping (1600h to 1603h)  15.3.2 Transmit PDO Mapping (1A00h to 1A03h)  Sync Manager Communication Objects.                                                  | 577 581 586 . 586 . 586 . 587 . 588 589 . 590 . 594 598 . 598                                  |

|      | 15.4.4 Sync Error Settings (10F1h)                  | 601 |
|------|-----------------------------------------------------|-----|
| 15.5 | Manufacturer Specific Objects                       | 602 |
|      | 15.5.1 SERVOPACK Parameters (2000h to 26FFh)        | 602 |
|      | 15.5.2 User Parameter Configuration (2700h)         | 602 |
|      | 15.5.3 Position User Unit (2701h)                   | 602 |
|      | 15.5.4 Velocity User Unit (2702h)                   | 603 |
|      | 15.5.5 Acceleration User Unit (2703h)               | 603 |
|      | 15.5.6 Torque User Unit (2704h)                     | 603 |
|      | 15.5.7 SERVOPACK Adjusting Command (2710h)          | 604 |
|      | 15.5.8 Sensing Data Monitor (2770h, 2771h, 2772h)   | 607 |
|      | 15.5.9 Σ-LINK II Data Monitor (2773h, 2774h)        | 608 |
|      | 15.5.10 Output Position Setting (2778h)             | 609 |
|      | 15.5.11 Output Function Setting (2779h)             | 609 |
|      | 15.5.12 Output Time Setting (277Ah)                 | 610 |
|      | 15.5.13 Output Distance Setting (277Bh)             | 610 |
|      | 15.5.14 Output Position Correction Setting (277Ch). | 610 |
| 15.6 | Device Control                                      | 611 |
|      | 15.6.1 Error Code (603Fh)                           | 611 |
|      | 15.6.2 Controlword (6040h)                          | 611 |
|      | 15.6.3 Controlword_VenderS (2776h)                  | 613 |
|      | 15.6.4 Statusword (6041h)                           | 613 |
|      | 15.6.5 Quick Stop Option Code (605Ah)               | 616 |
|      | 15.6.6 Shutdown Option Code (605Bh)                 | 616 |
|      | 15.6.7 Disable Operation Option Code (605Ch)        | 617 |
|      | 15.6.8 Halt Option Code (605Dh)                     | 617 |
|      | 15.6.9 Fault Reaction Option Code (605Eh)           | 618 |
|      | 15.6.10 Modes of Operation (6060h)                  | 618 |
|      | 15.6.11 Modes of Operation Display (6061h)          | 619 |
|      | 15.6.12 Supported Drive Modes (6502h)               | 619 |
| 15.7 | Profile Position Mode                               | 620 |
|      | 15.7.1 Target Position (607Ah)                      |     |
|      | 15.7.2 Software Position Limit (607Dh)              |     |
|      | 15.7.3 Max Profile Velocity (607Fh)                 |     |
|      | 15.7.4 Profile Velocity (6081h)                     |     |
|      | 15.7.5 Profile Acceleration (6083h)                 |     |
|      | 15.7.6 Profile Deceleration (6084h)                 |     |
|      | 15.7.7 Quick Stop Deceleration (6085h)              |     |
| 45.0 |                                                     |     |
| 15.8 | Homing Mode                                         |     |
|      | 15.8.1 Home Offset (607Ch)                          |     |
|      | 15.8.2 Homing Method (6098h)                        |     |
|      | 15.8.3 Homing Speeds (6099h)                        |     |
|      | 15.8.4 Homing Acceleration (609Ah)                  | 623 |

| 15.9  | Position Control Function                                                                                 | 624 |
|-------|-----------------------------------------------------------------------------------------------------------|-----|
|       | 15.9.1 Position Demand Value (6062h)                                                                      | 624 |
|       | 15.9.2 Position Actual Internal Value (6063h)                                                             | 624 |
|       | 15.9.3 Position Actual Value (6064h)                                                                      | 624 |
|       | 15.9.4 Position Demand Internal Value (60FCh).                                                            | 624 |
|       | 15.9.5 Following Error Window (6065h)                                                                     | 624 |
|       | 15.9.6 Following Error Time Out (6066h)                                                                   | 625 |
|       | 15.9.7 Following Error Actual Value (60F4h)                                                               | 625 |
|       | 15.9.8 Position Window (6067h)                                                                            | 625 |
|       | 15.9.9 Position Window Time (6068h)                                                                       | 625 |
|       | 15.9.10 Position Offset (60B0h)                                                                           | 625 |
|       | 15.9.11 Additional Position Actual Value (60E4h)                                                          | 626 |
|       | 15.9.12 Position Range Limit (607Bh)                                                                      | 626 |
|       | 15.9.13 Position Option Code (60F2h)                                                                      | 626 |
| 15 10 | Interpolated Position Mode                                                                                | 627 |
| 10.10 | 15.10.1 Interpolation Submode Select (60C0h) (Object Shared by Mode 1 and Mode 2)                         |     |
|       | 15.10.2 Interpolation Data Record (60C1h) (Object Shared by Mode 1 and Mode 2)                            |     |
|       | 15.10.3 Interpolation Time Period (60C2h) (Object Shared by Mode 1 and Mode 2)                            |     |
|       | 15.10.4 Manufacturer Interpolation Data Configuration for 1st Profile (2730h) (Mode 2 Object)             |     |
|       | 15.10.5 Manufacturer Interpolation Data Configuration for 2 <sup>nd</sup> Profile (2731h) (Mode 2 Object) |     |
|       | 15.10.6 Interpolation Profile Select (2732h) (Mode 2 Object)                                              |     |
|       | 15.10.7 Interpolation Data Record for 1st Profile (27C0h) (Mode 2 Object)                                 |     |
|       | 15.10.8 Interpolation Data Record for 2 <sup>nd</sup> Profile (27C1h) (Mode 2 Object)                     |     |
|       | 15.10.9 Interpolation Data Read/Write Pointer Position Monitor (2741h) (Mode 2 Object)                    |     |
| 45 44 |                                                                                                           |     |
| 15.11 |                                                                                                           |     |
|       | 15.11.1 Velocity Offset (60B1h)                                                                           |     |
|       | 15.11.2 Torque Offset (60B2h)                                                                             | 633 |
| 15.12 | Profile Velocity/Cyclic Synchronous Velocity Mode                                                         | 634 |
|       | 15.12.1 Velocity Demand Value (606Bh)                                                                     | 634 |
|       | 15.12.2 Velocity Actual Value (606Ch)                                                                     | 634 |
|       | 15.12.3 Velocity Window (606Dh)                                                                           | 634 |
|       | 15.12.4 Velocity Window Time (606Eh)                                                                      | 634 |
|       | 15.12.5 End Velocity (6082h)                                                                              | 634 |
|       | 15.12.6 Target Velocity (60FFh)                                                                           | 635 |
| 15 13 | Profile Torque/Cyclic Synchronous Torque Mode                                                             | 636 |
| 10.10 | 15.13.1 Target Torque (6071h)                                                                             |     |
|       | 15.13.2 Torque Demand Value (6074h)                                                                       |     |
|       | 15.13.3 Torque Slope (6087h)                                                                              |     |
|       | 15.13.4 Motor Rated Torque (6076h)                                                                        |     |
|       | 15.13.5 Torque Actual Value (6077h)                                                                       |     |
|       |                                                                                                           |     |
|       | 15.13.6 Current Actual Value (6078h)                                                                      | 63/ |

| 15.14 | Torque Limit Function                                                   | 638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 15.14.1 Max. Torque (6072h)                                             | . 638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | 15.14.2 Positive Torque Limit Value (60E0h).                            | . 638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | 15.14.3 Negative Torque Limit Value (60E1h)                             | . 638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 15.15 | Touch Probe Function                                                    | 639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | 15.15.1 Touch Probe Function (60B8h)                                    | . 639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | 15.15.2 Touch Probe Status (60B9h)                                      | . 640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | 15.15.3 Touch Probe 1 Positive Edge (60BAh)                             | . 640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | 15.15.4 Touch Probe 1 Negative Edge (60BBh)                             | . 640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | 15.15.5 Touch Probe 2 Positive Edge (60BCh).                            | . 641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | 15.15.6 Touch Probe 2 Negative Edge (60BDh)                             | . 641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 15.16 | Digital Inputs/Outputs                                                  | 642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | 15.16.1 Digital Inputs (60FDh)                                          | . 642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | 15.16.2 Digital Outputs (60FEh).                                        | . 642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 15.17 | Motor Catalogue Number (6403h)                                          | 644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 13.10 | Manufacturer Serial Number (F9F0II)                                     | 043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Maint | tenance                                                                 | 647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 16.1  | Inspections and Part Replacement                                        | 649                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | 16.1.1 Inspections                                                      | . 649                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | 16.1.2 Guidelines for Part Replacement                                  | . 649                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | 16.1.3 Replacing the Battery                                            | . 649                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 16.2  | Alarm Displays                                                          | 652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | 16.2.1 List of Alarms                                                   | . 652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | 16.2.2 Troubleshooting Alarms                                           | . 657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | 16.2.3 Alarm Reset                                                      | . 683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | 16.2.4 Displaying the Alarm History                                     | . 684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | 16.2.5 Clearing the Alarm History                                       | . 686                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | 16.2.6 Resetting Option Module Configuration Error                      | . 687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | 16.2.7 Resetting Motor Type Alarms                                      | . 688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 16.3  | Warning Displays                                                        | 690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | 16.3.1 Warnings Table                                                   | . 690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | 16.3.2 Troubleshooting Warnings                                         | . 691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 16.4  | Troubleshooting Based on the Operation and Conditions of the Servomotor | 697                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | 16.4.1 Servomotor Does Not Start                                        | . 697                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | 16.4.2 Servomotor Moves Instantaneously, and Then Stops                 | . 698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | 16.4.3 Servomotor Speed Is Unstable                                     | . 698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | 16.4.4 Servomotor Moves without a Reference Input                       | . 699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | 16.4.5 Dynamic Brake Does Not Operate                                   | . 699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | 15.15<br>15.16<br>15.17<br>15.18<br>. Maint<br>16.1                     | 15.14.2 Positive Torque Limit Value (60E0h). 15.14.3 Negative Torque Limit Value (60E1h).  15.15.1 Touch Probe Function 15.15.1 Touch Probe Function (60B8h). 15.15.2 Touch Probe Function (60B8h). 15.15.3 Touch Probe I Positive Edge (60BAh). 15.15.3 Touch Probe 1 Positive Edge (60BAh). 15.15.4 Touch Probe 1 Positive Edge (60BBh). 15.15.5 Touch Probe 2 Positive Edge (60BCh). 15.15.6 Touch Probe 2 Positive Edge (60BCh). 15.15.6 Touch Probe 2 Positive Edge (60BCh). 15.15.6 Touch Probe 2 Positive Edge (60BCh). 15.16.1 Digital Inputs/Outputs 15.16.1 Digital Inputs (60FDh). 15.16.2 Digital Outputs (60FEh).  15.17 Motor Catalogue Number (6403h). 15.18 Manufacturer Serial Number (F9F0h).  Maintenance. 16.1 Inspections and Part Replacement. 16.1.1 Inspections. 16.1.2 Guidelines for Part Replacement. 16.1.3 Replacing the Battery. 16.2.4 Alarm Displays. 16.2.1 List of Alarms. 16.2.2 Troubleshooting Alarms. 16.2.3 Alarm Reset. 16.2.4 Displaying the Alarm History. 16.2.5 Clearing the Alarm History. 16.2.6 Resetting Option Module Configuration Error. 16.2.7 Resetting Motor Type Alarms. 16.3 Warning Displays. 16.3.1 Warnings Table 16.3.2 Troubleshooting Based on the Operation and Conditions of the Servomotor 16.4.1 Servomotor Moves instantaneously, and Then Stops. 16.4.2 Servomotor Moves instantaneously, and Then Stops. 16.4.3 Servomotor Moves without a Reference Input. |

|          | 16.4.6 Abnormal Noise from Servomotor                                                                                                                                                 | 699       |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|          | 16.4.7 Servomotor Vibrates at Frequency of Approx. 200 to 400 Hz                                                                                                                      | 701       |
|          | 16.4.8 Large Motor Speed on Starting and Stopping                                                                                                                                     | 701       |
|          | 16.4.9 Absolute Encoder Position Deviation Error (The position that was saved in the host conwhen the power was turned OFF is different from the position when the power was new ON.) | kt turned |
|          | 16.4.10 Overtravel Occurred                                                                                                                                                           |           |
|          | 16.4.11 Improper Stop Position for Overtravel (OT) Signal                                                                                                                             |           |
|          | 16.4.12 Position Deviation (without Alarm)                                                                                                                                            |           |
|          | 16.4.13 Servomotor Overheated                                                                                                                                                         |           |
| 17. Para | meter and Object Lists                                                                                                                                                                | 707       |
| 17.1     | Parameter Lists                                                                                                                                                                       | 708       |
|          | 17.1.1 Interpreting the Parameter Lists                                                                                                                                               |           |
|          | 17.1.2 List of Parameters                                                                                                                                                             |           |
| 17.2     | Object List                                                                                                                                                                           | 773       |
| 17.3     | SDO Abort Code List                                                                                                                                                                   | 791       |
| 17.4     | Parameter Recording Table                                                                                                                                                             | 792       |
| 18. Арре | endices                                                                                                                                                                               | 803       |
| 18.1     | Interpreting LED Displays                                                                                                                                                             | 804       |
|          | 18.1.1 RUN                                                                                                                                                                            | 804       |
|          | 18.1.2 ERR                                                                                                                                                                            | 804       |
|          | 18.1.3 L/A A, L/A B                                                                                                                                                                   | 805       |
| 18.2     | Interpreting Panel Displays                                                                                                                                                           | 806       |
|          | 18.2.1 Interpreting Status Displays                                                                                                                                                   | 806       |
|          | 18.2.2 Alarm and Warning Displays                                                                                                                                                     | 806       |
|          | 18.2.3 Hard Wire Base Block Active Display                                                                                                                                            | 806       |
|          | 18.2.4 Overtravel Display                                                                                                                                                             | 806       |
|          | 18.2.5 Forced Stop Display                                                                                                                                                            | 807       |
| 18.3     | Corresponding SERVOPACK and SigmaWin+ Function Names                                                                                                                                  | 808       |
|          | 18.3.1 Corresponding SERVOPACK Utility Function Names                                                                                                                                 | 808       |
|          | 18.3.2 Corresponding SERVOPACK Monitor Display Function Names                                                                                                                         | 809       |
| Index    |                                                                                                                                                                                       | 814       |
|          |                                                                                                                                                                                       |           |
| Revision | n History                                                                                                                                                                             | 818       |

# **Preface and General Precautions**

| i.1 | About this Manual2                                                      |                                                                    |    |
|-----|-------------------------------------------------------------------------|--------------------------------------------------------------------|----|
| i.2 | Target Readers                                                          |                                                                    |    |
| i.3 | Outli                                                                   | ne of Manual                                                       | 24 |
| i.4 | Rela                                                                    | ted Documents                                                      | 25 |
|     | i.4.1                                                                   | Related Documents                                                  | 26 |
| i.5 | Usin                                                                    | g This Manual                                                      | 30 |
|     | i.5.1                                                                   | Technical Terms Used in This Manual                                | 30 |
|     | i.5.2                                                                   | Differences in Terms for Rotary Servomotors and Linear Servomotors | 30 |
|     | i.5.3                                                                   | Notation Used in this Manual                                       |    |
|     | i.5.4                                                                   | Engineering Tools Used in This Manual                              | 32 |
|     | i.5.5                                                                   | Trademarks                                                         |    |
|     | i.5.6                                                                   | Visual Aids                                                        | 32 |
| i.6 | Safe                                                                    | ty Precautions                                                     | 34 |
|     | i.6.1                                                                   | Safety Information                                                 | 34 |
|     | i.6.2                                                                   | Safety Precautions That Must Always Be Observed                    | 34 |
| i.7 | Warr                                                                    | anty                                                               | 44 |
|     | i.7.1                                                                   | Details of Warranty                                                | 44 |
|     | i.7.2                                                                   | Limitations of Liability                                           | 44 |
|     | i.7.3                                                                   | Suitability for Use                                                | 45 |
|     | i.7.4                                                                   | Specifications Change                                              | 45 |
| i.8 | Compliance with UL Standards, EU Directives, and Other Safety Standards |                                                                    |    |
|     | i.8.1                                                                   | North American Safety Standards (UL)                               | 46 |
|     | i.8.2                                                                   | EU Directives                                                      | 46 |
|     | i.8.3                                                                   | Safety Standards                                                   | 47 |

# i.1 About this Manual

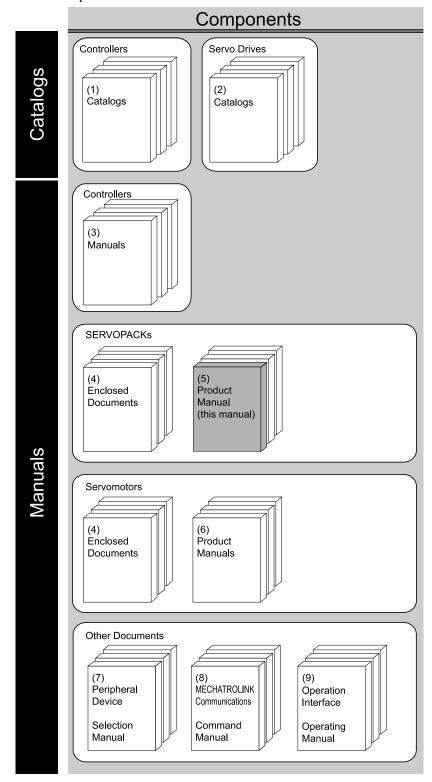
This manual provides information required to select  $\Sigma$ -XS SERVOPACKs with EtherCAT communications references for  $\Sigma$ -X-series AC servo drives, and to design, perform trial operation of, tune, operate, and maintain the servo drives.

Read and understand this manual to ensure correct usage of the  $\Sigma$ -X-series AC servo drives. Keep this manual in a safe place so that it can be referred to whenever necessary.

# i.2 Target Readers

This manual is intended for the following readers who are assumed to possess knowledge about the fundamentals of servo drives and electric/electronic circuits.

- · Readers who wish to deepen their knowledge of SERVOPACK products
- Personnel in charge of selecting products for equipment
- Designers of applications for SERVOPACKs and servomotors in various types of equipment
- Personnel who maintain equipment
- Designers of FA systems


# i.3 Outline of Manual

The contents of the chapters of this manual are described in the following table. Refer to these chapters as required.

| Cha-<br>pter | Chapter Title                                         | Contents                                                                                                                                   |  |
|--------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1            | Basic Information on SERVOPACKs                       | Provides information required to select SERVOPACKs, such as SERVOPACK models and combinations with servomotors.                            |  |
| 2            | Selecting a SERVOPACK                                 | Provides information required to select SERVOPACKs, such as specifications, block diagrams, dimensional drawings, and connection examples. |  |
| 3            | SERVOPACK Installation                                | Provides information on installing SERVOPACKs in the required locations.                                                                   |  |
| 4            | Wiring and Connecting SERVOPACKs                      | Provides information on wiring and connecting SERVOPACKs to power supplies and peripheral devices.                                         |  |
| 5            | Basic Functions That Require Setting before Operation | Describes the basic functions that must be set before you start servo system operation. It also describes the setting methods.             |  |
| 6            | Application Functions                                 | Describes the application functions that you can set before you start servo system operation. It also describes the setting methods.       |  |
| 7            | Trial Operation and Actual Operation                  | Provides information on the flow and procedures for trial operation and convenient functions to use during trial operation.                |  |
| 8            | Tuning                                                | Provides information on the flow of tuning, details on tuning functions, and related operating procedures.                                 |  |
| 9            | Monitoring                                            | Provides information on monitoring SERVOPACK product information and SERVO-PACK status.                                                    |  |
| 10           | Fully-Closed Loop Control                             | Provides detailed information on performing fully-closed loop control with the SERVOPACK.                                                  |  |
| 11           | Σ-LINK II Function                                    | Provides detailed information on the $\Sigma$ -LINK II functions of the SERVOPACK.                                                         |  |
| 12           | Safety Functions                                      | Provides detailed information on the safety functions of the SERVOPACK.                                                                    |  |
| 13           | EtherCAT Communications                               | Provides basic information on EtherCAT communications.                                                                                     |  |
| 14           | CiA402 Drive Profile                                  | Provides detailed information on the CiA402 drive profile.                                                                                 |  |
| 15           | Object Dictionary                                     | Provides an overview and details on the object dictionary.                                                                                 |  |
| 16           | Maintenance                                           | Provides information on the meaning of, causes of, and corrections for alarms and warnings.                                                |  |
| 17           | Parameter and Object Lists                            | Provides information on parameters and objects.                                                                                            |  |
| 18           | Appendices                                            | Provides information on interpreting LED indicators and panel displays and tables of corresponding SERVOPACK and SigmaWin+ function names. |  |

# i.4 Related Documents

The relationships between the documents that are related to the Servo Drives are shown in the following figure. The numbers in the figure correspond to the numbers in the table on the following pages. Refer to these documents as required.



#### i.4.1 Related Documents

### (1) Machine Controllers Catalogs

You can check for products related to YASKAWA machine controllers. Refer to these documents as required.

#### (2) Servo Drives Catalogs

| Document Name                  | Document No.       | Description                                                                                         |
|--------------------------------|--------------------|-----------------------------------------------------------------------------------------------------|
| AC Servo Drives Sigma-X Series | LK A EP C710812 03 | Provides detailed information on Σ-X-series AC servo drives, including features and specifications. |

#### (3) Machine Controllers Manuals

The machine controller to use depends on the SERVOPACK that is used. Refer to the manual for the machine controller as required.

#### (4) Enclosed Documents

| Document Name                                                                                                         | Document No.    | Description                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Σ-X-Series AC Servo Drive<br>Σ-XS/Σ-XW SERVOPACK<br>Safety Precautions                                                | TOMP C710812 00 | Provides detailed information for the safe usage of $\Sigma$ -X-                                                                                             |
| Σ-X-Series AC Servo Drive Σ-XT SERVOPACK Safety Precautions                                                           | TOMP C710812 16 | series SERVOPACKs.                                                                                                                                           |
| Σ-X-Series AC Servo Drive<br>Σ-LINK II Sensor Hub<br>Instructions                                                     | TOMP C710812 06 | Provides detailed information for the safe usage of the $\Sigma$ -LINK II sensor hub, as well as specifications, installation, and connection information.   |
| Σ-X-Series AC Servo Drive<br>Σ-LINK II Booster Unit<br>Instructions                                                   | TOMP C710812 08 | Provides detailed information for the safe usage of the $\Sigma$ -LINK II booster unit, as well as specifications, installation, and connection information. |
| Σ-V-Series/Σ-V-Series for Large-Capacity<br>Models/Σ-7-Series/Σ-X-Series<br>Installation Guide<br>Fully-closed Module | TOBP C720829 03 | Provides detailed procedures for installing the fully-<br>closed module in a SERVOPACK.                                                                      |
| AC Servo Drive<br>Rotary Servomotor<br>Safety Precautions                                                             | TOBP C230260 00 | Provides detailed information for the safe usage of rotary servomotors and direct drive servomotors.                                                         |

# (5) SERVOPACK Product Manuals

| Document Name                                                                                                   | Document No.    | Description                                                                                                                                                                                                                                                             |  |
|-----------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Σ-X-Series AC Servo Drive Σ-XS SERVOPACK with MECHATROLINK-4/III Communications References Product Manual       | SIEP C710812 01 |                                                                                                                                                                                                                                                                         |  |
| Σ-X-Series AC Servo Drive Σ-XS SERVOPACK with EtherCAT Communications References Product Manual                 | SIEP C710812 02 |                                                                                                                                                                                                                                                                         |  |
| Σ-X-Series AC Servo Drive Σ-XS SERVOPACK with Analog Voltage/Pulse Train References Product Manual              | SIEP C710812 03 | Provide detailed information on selecting $\Sigma$ -X-series $\Sigma$ -XS or $\Sigma$ -XW SERVOPACKs; installing, connecting, setting, testing in trial operation, tuning, monitoring, and maintaining servo drives; and other information.                             |  |
| Σ-X-Series AC Servo Drive Σ-XW SERVOPACK with MECHATROLINK-4/III Communications References Product Manual       | SIEP C710812 04 |                                                                                                                                                                                                                                                                         |  |
| Σ-X-Series AC Servo Drive Σ-XW SERVOPACK with EtherCAT Communications References Product Manual                 | SIEP C710812 05 |                                                                                                                                                                                                                                                                         |  |
| Σ-X-Series AC Servo Drive Σ-XT SERVOPACK with MECHATROLINK-4/III Communications References Product Manual       | SIEP C710812 16 | Provide detailed information on selecting $\Sigma$ -X-series $\Sigma$ -XT SERVOPACKs; installing, connecting, setting, test-                                                                                                                                            |  |
| $\Sigma$ -X-Series AC Servo Drive $\Sigma$ -XT SERVOPACK with EtherCAT Communications References Product Manual | SIEP C710812 17 | ing in trial operation, tuning, monitoring, and maintain-<br>ing servo drives; and other information.                                                                                                                                                                   |  |
| Σ-X-Series AC Servo Drive Σ-XW/Σ-XT SERVOPACK Hardware Option Specifications HWBB Function Product Manual       | SIEP C710812 13 | Provides information on servo drives equipped with the HWBB safety function (SGDXW-□□□□40□1000, SGDXW-□□□□A0□1000, SGDXT-□□□□40□1000, and SGDXT-□□□□A0□1000)). The differences in specifications from SERVOPACKs not equipped with the HWBB are given in this manual.   |  |
| Σ-X-Series AC Servo Drive Σ-XS/Σ-XW/Σ-XT SERVOPACK Hardware Option Specifications Dynamic Brake Product Manual  | SIEP C710812 14 | Provides information on $\Sigma$ -X-series AC servo drives (SGDX $\square$ - $\square$ $\square$ $\square$ $\square$ 0020) with the dynamic brake option. The differences in specifications from SERVO-PACKs without the dynamic brake option are given in this manual. |  |

Continued on next page.

Continued from previous page.

| Document Name                                                                                                                                                           | Document No.    | Description                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Σ-X-Series AC Servo Drive Σ-XS/Σ-XW SERVOPACK with MECHATROLINK-4/III Communications References FT Specification for Gantry Applications Product Manual                 | SIEP C710812 19 | Provide information on the gantry application function and torque/force assistance in the Σ-X-series Σ-XS/Σ-                                 |
| Σ-X-Series AC Servo Drive Σ-XS/Σ-XW SERVOPACK with EtherCAT Communications References FT Specification for Gantry Applications Product Manual                           | SIEP C710812 20 | XW SERVOPACK.                                                                                                                                |
| Σ-X-Series AC Servo Drive Σ-XS SERVOPACK with MECHATROLINK-4/III Communications References FT Specification for Press and Injection Molding Applications Product Manual | SIEP C710812 22 | Provide information on the press and injection molding                                                                                       |
| Σ-X-Series AC Servo Drive Σ-XS SERVOPACK with EtherCAT Communications References FT Specification for Press and Injection Molding Applications Product Manual           | SIEP C710812 23 | function in the Σ-X-series Σ-XS SERVOPACK.                                                                                                   |
| Σ-X-Series AC Servo Drive Σ-XS SERVOPACK with FT Specification Customized Sensing Data Function Option Product Manual                                                   | SIEP C710812 18 | Provides information on the customized sensing data function in the $\Sigma$ -X-series $\Sigma$ -XS SERVOPACK.                               |
| Σ-X-Series AC Servo Drive Σ-XS SERVOPACK with FT Specification Customized Sensing Data Function Option (with Custom Motion Function) Product Manual                     | SIEP C710812 21 | Provides information on the customized sensing data function (with custom motion function) in the $\Sigma$ -X-series $\Sigma$ -XS SERVOPACK. |

# (6) Servomotor Product Manuals

| Document Name                    | Document No.    | Description                                                                                                |  |
|----------------------------------|-----------------|------------------------------------------------------------------------------------------------------------|--|
| Σ-X-Series AC Servo Drive        | SIEP C230210 00 | Provides detailed information on selecting, installing, and connecting the $\Sigma$ -X-series servomotors. |  |
| Rotary Servomotor Product Manual | SIEP C230210 00 |                                                                                                            |  |

# (7) Peripheral Device Selection Manual

| Document Name                                                | Document No.    | Description                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Σ-X-Series AC Servo Drive Peripheral Device Selection Manual | SIEP C710812 12 | <ul> <li>Provides the following information in detail for Σ-X-series servo systems.</li> <li>Cables: Models, dimensions, wiring materials, connector models, and connection specifications</li> <li>Peripheral devices: Models, specifications, diagrams, and selection (calculation) methods</li> </ul> |

# (8) MECHATROLINK Communications Command Manuals

| Document Name                                                                                       | Document No.    | Description                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Σ-7/Σ-X-Series AC Servo Drive MECHATROLINK-III Communications Standard Servo Profile Command Manual | SIEP S800001 31 | Provides detailed information on the MECHATRO-LINK-III communications standard servo profile commands that are used for a $\Sigma$ -7/ $\Sigma$ -X-series servo system. |
| Σ-7/Σ-X-Series AC Servo Drive MECHATROLINK-4 Communications Standard Servo Profile Command Manual   | SIEP S800002 32 | Provides detailed information on the MECHATRO-LINK-4 communications standard servo profile commands that are used for a $\Sigma$ -7/ $\Sigma$ -X-series servo system.   |

# (9) Operation Interface Operating Manuals

| Document Name                                                       | Document No.    | Description                                                                                                                    |
|---------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------|
| System Integrated Engineering Tool MPE720<br>Ver.7<br>User's Manual | SIEP C880761 03 | Describes in detail how to operate MPE720 version 7.                                                                           |
| Σ-7/Σ-X-Series AC Servo Drive Digital Operator Operating Manual     | SIEP S800001 33 | Describes the operating procedures for a digital operator for a $\Sigma$ -7/ $\Sigma$ -X-series servo system.                  |
| AC Servo Drive Engineering Tool SigmaWin+ Operation Manual          | SIET S800001 34 | Provides detailed operating procedures for the SigmaWin + engineering tool for a $\Sigma$ -7/ $\Sigma$ -X series servo system. |

# i.5 Using This Manual

#### i.5.1 Technical Terms Used in This Manual

The following terms are used in this manual.

| Term                                             | Meaning                                                                                                                                                                                                                                                                   |  |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| servomotor                                       | A generic term for a rotary servomotor or linear servomotor that can be driven by this SERVOPACK.                                                                                                                                                                         |  |
| rotary servomotor                                | A generic term used for a $\Sigma$ -X-series or $\Sigma$ -7-series rotary servomotor (SGMXJ, SGMXA, SGMXP, SGMXG, SGM7M) or a $\Sigma$ -7-series direct drive servomotor (SGM7D, SGM7E, SGM7F). The descriptions will specify when direct drive servomotors are excluded. |  |
| linear servomotor                                | A generic term used for a Σ-7-series linear servomotor (SGLG, SGLF, SGLT).                                                                                                                                                                                                |  |
| SERVOPACK                                        | A $\Sigma$ -X-series $\Sigma$ -XS servo amplifier with EtherCAT communications references.                                                                                                                                                                                |  |
| servo drive                                      | The combination of a servomotor and SERVOPACK.                                                                                                                                                                                                                            |  |
| servo system                                     | A servo control system that includes the combination of a servo drive with a host controller and peripheral devices.                                                                                                                                                      |  |
| servo ON                                         | Supplying power to the motor.                                                                                                                                                                                                                                             |  |
| servo OFF                                        | Not supplying power to the motor.                                                                                                                                                                                                                                         |  |
| Servo ON command (Enable Operation command)      | A command that is used to turn ON the servo (i.e., supply power to the motor) when bit 3 of Controlword (6040h) is changed to 1 (ON) while the control power and main circuit power are ON.                                                                               |  |
| Servo OFF command<br>(Disable Operation command) | A command that is used to turn OFF the servo (i.e., power not supplied to the motor) when bit 3 of Controlword (6040h) is changed to 0 (OFF) while the control power and main circuit power are ON.                                                                       |  |
| base block (BB)                                  | Shutting OFF the power supply to the motor by shutting OFF the base current to the power transistor in the SERVOPACK.                                                                                                                                                     |  |
| servo lock                                       | A state in which the motor is stopped and is in a position loop with a position reference of 0.                                                                                                                                                                           |  |
| main circuit cable                               | One of the cables that connect to the main circuit terminals, including the main circuit power supply cable, control power supply cable, and servomotor main circuit cable.                                                                                               |  |
| SigmaWin+                                        | The engineering tool for setting up and tuning servo drives or a computer in which the engineering tool is installed.                                                                                                                                                     |  |

# i.5.2 Differences in Terms for Rotary Servomotors and Linear Servomotors

There are differences in the terms that are used for rotary servomotors and linear servomotors. This manual primarily describes rotary servomotors. If you are using a linear servomotor, you need to interpret the terms as given in the following table.

| Rotary Servomotor                     | Linear Servomotor                     |  |
|---------------------------------------|---------------------------------------|--|
| torque                                | force                                 |  |
| moment of inertia                     | mass                                  |  |
| rotation                              | movement                              |  |
| forward rotation and reverse rotation | forward movement and reverse movement |  |
| CW + CCW pulse trains                 | forward and reverse pulse trains      |  |
| rotary encoder                        | linear encoder                        |  |
| absolute rotary encoder               | absolute linear encoder               |  |
| incremental rotary encoder            | incremental linear encoder            |  |

Continued on next page.

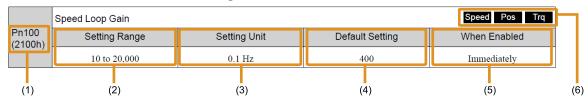
Continued from previous page.

| Rotary Servomotor | Linear Servomotor |  |  |
|-------------------|-------------------|--|--|
| unit: min-1       | unit: mm/s        |  |  |
| unit: N·m         | unit: N           |  |  |

#### i.5.3 Notation Used in this Manual

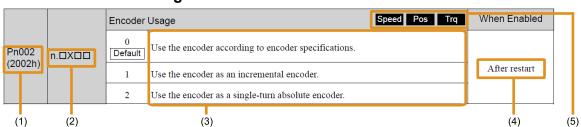
#### (1) Notation for Reverse Signals

The names of reverse signals (i.e., ones that are valid when low) are written with a forward slash (/) before the signal abbreviation.


Notation Example

BK is written as /BK.

#### (2) Notation for Parameters


The notation depends on whether the parameter requires a numeric setting (parameter for numeric setting) or requires the selection of a function (parameter for selecting functions).

#### (a) Parameters for Numeric Settings



| No. | Description                                                                                                                      |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------|--|--|
| (1) | Parameter number and object index number  The object index number is used when accessing an object over EtherCAT communications. |  |  |
| (2) | This is the setting range for the parameter.                                                                                     |  |  |
| (3) | This is the setting unit (setting increment) that you can set for the parameter.                                                 |  |  |
| (4) | This is the parameter setting before shipment.                                                                                   |  |  |
| (5) | This is when any change made to the parameter will become effective.                                                             |  |  |
|     | The control methods for which the parameters apply are given.                                                                    |  |  |
|     | Speed: A parameter that can be used in speed control.                                                                            |  |  |
| (6) | Pos : A parameter that can be used in position control.                                                                          |  |  |
|     | Trq : A parameter that can be used in torque control. "Torque" is used even for linear servomotor parameters.                    |  |  |
|     | Grayed-out icons (Speed, Pos, Trq ) indicate parameters that cannot be used in the corresponding control method.                 |  |  |

#### (b) Parameters for Selecting Functions



| No. | Description                                                                                                                                                                                  |                   |                                                     |                        |                                                                      |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------|------------------------|----------------------------------------------------------------------|--|
| (1) | Parameter number and object index number The object index number is used when accessing an object over EtherCAT communications.                                                              |                   |                                                     |                        |                                                                      |  |
|     | The notation "n.□□□□" indicates a parameter for selecting functions. The digit shown as "X" is the content being explained in this parameter.  Notation Example  Notation Examples for Pn002 |                   |                                                     |                        |                                                                      |  |
|     |                                                                                                                                                                                              |                   | Digit Notation                                      | Numeric Value Notation |                                                                      |  |
|     | n. 0 0 0 0                                                                                                                                                                                   | Notation          | Meaning                                             | Notation               | Meaning                                                              |  |
| (2) |                                                                                                                                                                                              | Pn002 = n.□□□X    | Indicates the first digit from the right in Pn002.  | Pn002 =<br>n.□□□1      | Indicates that the first digit from the right in Pn002 is set to 1.  |  |
|     |                                                                                                                                                                                              | Pn002 =<br>n.□□X□ | Indicates the second digit from the right in Pn002. | Pn002 =<br>n.□□1□      | Indicates that the second digit from the right in Pn002 is set to 1. |  |
|     |                                                                                                                                                                                              | Pn002 =<br>n.□X□□ | Indicates the third digit from the right in Pn002.  | Pn002 =<br>n.□1□□      | Indicates that the third digit from the right in Pn002 is set to 1.  |  |
|     | -                                                                                                                                                                                            | Pn002 =<br>n.X□□□ | Indicates the fourth digit from the right in Pn002. | Pn002 =<br>n.1□□□      | Indicates that the fourth digit from the right in Pn002 is set to 1. |  |
| (3) | This column explains the selections for the function.  In the above example, the first line gives an explanation of when $Pn002 = n.\Box 0 \Box \Box$ is set.                                |                   |                                                     |                        |                                                                      |  |
| (4) | This is when any change made to the parameter will become effective.                                                                                                                         |                   |                                                     |                        |                                                                      |  |
|     | The control methods for which the parameters apply are given.                                                                                                                                |                   |                                                     |                        |                                                                      |  |
|     | Speed: A parameter that can be used in speed control.                                                                                                                                        |                   |                                                     |                        |                                                                      |  |
| (5) | Pos : A parameter that can be used in position control.                                                                                                                                      |                   |                                                     |                        |                                                                      |  |
|     | Trq : A parameter that can be used in torque control. "Torque" is used even for linear servomotor parameters.                                                                                |                   |                                                     |                        |                                                                      |  |
|     | Grayed-out icons (Speed, Pos, Trq ) indicate parameters that cannot be used in the corresponding control method.                                                                             |                   |                                                     |                        |                                                                      |  |

#### i.5.4 Engineering Tools Used in This Manual

This manual uses the interfaces of the SigmaWin+ for descriptions.

The interfaces and procedures contained in this manual are currently in development and may differ from the actual specifications.

#### i.5.5 Trademarks

- EtherCAT is a registered trademark of and patented technology licensed by Beckhoff Automation GmbH, Germany.
- QR code is a trademark of Denso Wave Inc.
- Σ-LINK is a trademark of the MECHATROLINK Members Association.
- Other product names and company names are the trademarks or registered trademarks of their respective companies. "TM" and the ® mark do not appear with product or company names in this manual.

#### i.5.6 Visual Aids

The following aids are used to indicate certain types of information for easier reference.



Indicates precautions or restrictions that must be observed.

Also indicates alarm displays and other precautions that will not result in machine damage.



Indicates definitions of difficult terms or terms that have not been previously explained in this manual.

Information Indicates supplemental information to deepen understanding or useful information.

# i.6 Safety Precautions

#### i.6.1 Safety Information

To prevent personal injury and equipment damage in advance, the following signal words are used to indicate safety precautions in this document. The signal words are used to classify the hazards and the degree of damage or injury that may occur if a product is used incorrectly. Information marked as shown below is important for safety. Always read this information and heed the precautions that are provided.

# **A** DANGER

Indicates precautions that, if not heeded, are likely to result in loss of life, serious injury, or fire.

# **⚠ WARNING**

Indicates precautions that, if not heeded, could result in loss of life, serious injury, or fire.

# **⚠** CAUTION

Indicates precautions that, if not heeded, could result in relatively serious or minor injury, or in fire.

# NOTICE

Indicates precautions that, if not heeded, could result in property damage.

### i.6.2 Safety Precautions That Must Always Be Observed

### (1) General Precautions

### **A** DANGER

Read and understand this manual to ensure the safe usage of the product.

Keep this manual in a safe, convenient place so that it can be referred to whenever necessary. Make sure that it is delivered to the final user of the product.

Do not remove covers, cables, connectors, or optional devices while power is being supplied to the SERVOPACK.

There is a risk of electric shock, operational failure of the product, or burning.

# **MARNING**

Use a power supply with specifications (number of phases, voltage, frequency, and AC/DC type) that are appropriate for the product.

There is a risk of burning, electric shock, or fire.

Connect the ground terminals on the SERVOPACK and servomotor to ground poles according to local electrical codes (100  $\Omega$  max).

There is a risk of electric shock or fire.

Do not attempt to disassemble, repair, or modify the product.

There is a risk of fire or failure. The warranty is void for the product if you disassemble, repair, or modify it.

# **CAUTION**

The SERVOPACK heat sinks, regenerative resistors, external dynamic brake resistors, servomotors, and other components can be very hot while power is ON or soon after the power is turned OFF. Implement safety measures, such as installing covers, so that hands and parts such as cables do not come into contact with hot components.

There is a risk of burning.

For a 24-VDC power supply, use a power supply device with double insulation or reinforced insulation.

There is a risk of electric shock.

Do not damage, pull on, apply excessive force to, place heavy objects on, or pinch cables.

There is a risk of failure, damage, or electric shock.

The person who designs the system that uses the safety function must have a complete knowledge of the related safety standards and a complete understanding of the instructions in this document.

There is a risk of injury, product damage, or machine damage.

Do not place the product in locations where it is subject to water, corrosive gases, flammable gases, potentially explosive atmospheres, or near flammable materials.

There is a risk of electric shock or fire.

### **NOTICE**

Do not attempt to use a SERVOPACK or servomotor that is damaged or that has missing parts.

Install external emergency stop circuits that shut OFF the power and stops operation immediately when an error occurs.

In locations with poor power supply conditions, install the necessary protective devices (such as AC reactors) to ensure that the input power is supplied within the specified voltage range.

There is a risk of damage to the SERVOPACK.

Use a noise filter to minimize the effects of electromagnetic interference.

Electronic devices used near the SERVOPACK may be affected by electromagnetic interference.

Always use a servomotor and SERVOPACK in one of the specified combinations.

Do not touch a SERVOPACK or servomotor with wet hands.

There is a risk of product failure.

#### (2) Storage Precautions

# **CAUTION**

Do not place an excessive load on the product. (Follow all instructions on the packages.)

There is a risk of injury or damage.

### **NOTICE**

Do not install or store the product in any of the following locations.

- · Locations that are subject to direct sunlight
- Locations that are subject to surrounding temperatures that exceed product specifications
- · Locations that are subject to relative humidities that exceed product specifications
- Locations that are subject to condensation as the result of extreme changes in temperature
- Locations that are subject to corrosive or flammable gases
- · Locations that are near flammable materials
- · Locations that are subject to dust, salts, or iron powder
- Locations that are subject to water, oil, or chemicals
- Locations that are subject to vibration or shock that exceeds product specifications
- Locations that are subject to radiation

If you store or install the product in any of the above locations, the product may fail or be damaged.

#### (3) Transportation Precautions

### **CAUTION**

Transport the product in a way that is suitable to the mass of the product.

Do not use the eyebolts on a SERVOPACK or servomotor to move the machine.

There is a risk of damage or injury.

When you handle a SERVOPACK or servomotor, be careful of sharp parts, such as the corners.

There is a risk of injury.

Do not place an excessive load on the product. (Follow all instructions on the packages.)

There is a risk of injury or damage.

# **NOTICE**

Do not hold onto the front cover or connectors when you move a SERVOPACK.

There is a risk of the SERVOPACK falling.

SERVOPACK or servomotor is a precision device. Do not drop it or subject it to strong shock.

There is a risk of failure or damage.

Do not subject connectors to shock.

There is a risk of faulty connections or damage.

## NOTICE

If disinfectants or insecticides must be used to treat packing materials such as wooden frames, plywood, or pallets, use a method other than fumigation. For example, use heat sterilization (core temperature of 56°C or higher for 30 minutes or longer). Treat the packing materials before the product is packaged instead of using a method that treats the entire packaged product.

If the electronic products, which include stand-alone products and products installed in machines, are packed with fumigated wooden materials, the electrical components may be greatly damaged by the gases or fumes resulting from the fumigation process. In particular, disinfectants containing halogen, which includes chlorine, fluorine, bromine, or iodine can contribute to the erosion of the capacitors.

Do not overtighten the eyebolts on a SERVOPACK or servomotor.

If you use a tool to overtighten the eyebolts, the tapped holes may be damaged.

### (4) Installation Precautions

## **CAUTION**

Install the servomotor or SERVOPACK in a way that will support the mass given in technical documents.

Install SERVOPACKs, servomotors, regenerative resistors, and external dynamic brake resistors on nonflammable materials.

Installation directly onto or near flammable materials may result in fire.

Provide the specified clearances between the SERVOPACK and the control panel as well as with other devices.

There is a risk of fire or failure.

Install the SERVOPACK in the specified orientation.

There is a risk of fire or failure.

Do not step on or place a heavy object on the product.

There is a risk of failure, damage, or injury.

Do not allow any foreign matter to enter the SERVOPACK or servomotor.

There is a risk of failure or fire.

## **NOTICE**

Do not install or store the product in any of the following locations.

- · Locations that are subject to direct sunlight
- Locations that are subject to surrounding temperatures that exceed product specifications
- Locations that are subject to relative humidities that exceed product specifications
- Locations that are subject to condensation as the result of extreme changes in temperature
- · Locations that are subject to corrosive or flammable gases
- · Locations that are near flammable materials
- · Locations that are subject to dust, salts, or iron powder
- · Locations that are subject to water, oil, or chemicals
- Locations that are subject to vibration or shock that exceeds product specifications
- Locations that are subject to radiation

If you store or install the product in any of the above locations, the product may fail or be damaged.

Use the product in an environment that is appropriate for the product specifications.

If you use the product in an environment that exceeds product specifications, the product may fail or be damaged.

## NOTICE

SERVOPACK or servomotor is a precision device. Do not drop it or subject it to strong shock.

There is a risk of failure or damage.

Always install a SERVOPACK in a control panel.

Do not allow any foreign matter to enter a SERVOPACK or a servomotor with a cooling fan and do not cover the outlet from the servomotor's cooling fan.

There is a risk of failure.

### (5) Wiring Precautions

## **▲** DANGER

Do not change any wiring while power is being supplied.

There is a risk of electric shock or injury.

## **⚠ WARNING**

Wiring and inspections must be performed only by qualified engineers.

There is a risk of electric shock or product failure.

### Check all wiring and power supplies carefully.

Incorrect wiring or incorrect voltage application to the output circuits may cause short-circuit failures. If a short-circuit failure occurs as a result of any of these causes, the holding brake will not work. This could damage the machine or cause an accident that may result in death or injury. There is also a risk that some parts damaged by the short-circuit failure may fall from the SERVOPACK.

Connect the AC or DC power supplies to the specified SERVOPACK terminals.

- Connect an AC power supply to the L1, L2, and L3 terminals and the L1C and L2C terminals on the SERVOPACK.
- Connect a DC power supply to the B1/⊕ and ⊖ 2 terminals and the L1C and L2C terminals on the SERVOPACK.

There is a risk of failure or fire.

If you use a SERVOPACK with the dynamic brake hardware option, connect an external dynamic brake resistor that is suitable for the machine and equipment specifications to the specified terminals.

There is a risk of unexpected operation, machine damage, burning, or injury when an emergency stop is performed.

## **CAUTION**

Wait for at least 20 minutes (or 100 minutes when using DC power supply input) after turning OFF the power and then make sure that the CHARGE indicator is not lit before starting wiring or inspection work. Do not touch the main circuit terminals while the CHARGE indicator is lit because high voltage may still remain in the SERVOPACK even after turning OFF the power.

There is a risk of electric shock.

Observe the precautions and instructions for wiring and trial operation precisely as described in this document.

Failures caused by incorrect wiring or incorrect voltage application in the brake circuit may cause the SER-VOPACK to fail, damage the equipment, or cause an accident resulting in death or injury.

## **CAUTION**

Check the wiring to be sure it has been performed correctly. Connectors and pin layouts are sometimes different for different models. Always confirm the pin layouts in technical documents for your model before operation.

There is a risk of failure or malfunction.

Connect wires to main circuit terminals and motor connection terminals securely with the specified methods and tightening torque.

Insufficient tightening may cause wires and terminal blocks to generate heat due to faulty contact, possibly resulting in fire.

Use shielded twisted-pair cables or screened unshielded multi-twisted-pair cables for I/O signal cables and encoder cables.

The maximum wiring length is 3 m for I/O signal cables and 50 m for servomotor main circuit cables and encoder cables.

Observe the following precautions when wiring the SERVOPACK's main circuit terminals.

- Turn ON the power to the SERVOPACK only after all wiring, including the main circuit terminals, has been completed.
- If a connector is used for the main circuit terminals, remove the main circuit connector from the SERVOPACK before you wire it.
- Insert only one wire per insertion hole in the main circuit terminals.
- When you insert a wire, make sure that the conductor wire (e.g., whiskers) does not come into contact with adjacent wires and cause a short-circuit.

Install molded-case circuit breakers and other safety measures to provide protection against short circuits in external wiring.

There is a risk of fire or failure.

## **NOTICE**

Whenever possible, use the cables specified by Yaskawa. If you use any other cables, confirm the rated current and application environment of your model and use the wiring materials specified by Yaskawa or equivalent materials.

Securely tighten connector screws and lock mechanisms.

Insufficient tightening may result in connectors falling off during operation.

Do not bundle power lines (e.g., the main circuit cable) and low-current lines (e.g., the I/O signal cables or encoder cables) together or run them through the same duct. If you do not place power lines and low-current lines in separate ducts, separate them by at least 30 cm.

If the cables are too close to each other, malfunctions may occur due to noise affecting the low-current lines.

Install a battery at either the host controller or on the encoder cable.

If you install batteries both at the host controller and on the encoder cable at the same time, you will create a loop circuit between the batteries, resulting in a risk of damage or burning.

When connecting a battery, connect the polarity correctly.

There is a risk of battery rupture or encoder failure.

### (6) Operation Precautions

## **⚠ WARNING**

Before starting operation with a machine connected, change the settings of the switches and parameters to match the machine.

Unexpected machine operation, failure, or personal injury may occur if operation is started before appropriate settings are made.

Do not radically change the settings of the parameters.

There is a risk of unstable operation, machine damage, or injury.

Install limit switches or stoppers at the ends of the moving parts of the machine to prevent unexpected accidents.

There is a risk of machine damage or injury.

For trial operation, securely mount the servomotor and disconnect it from the machine.

There is a risk of injury.

Forcing the motor to stop for overtravel is disabled when the Jog, Origin Search, or Easy FFT utility function is executed. Take necessary precautions.

There is a risk of machine damage or injury.

When an alarm occurs, the servomotor will coast to a stop or stop with the dynamic brake according to the SERVOPACK option and settings. The coasting distance will change with the moment of inertia of the load and the external dynamic brake resistance. Check the coasting distance during trial operation and implement suitable safety measures on the machine.

Do not enter the machine's range of motion during operation.

There is a risk of injury.

Do not touch the moving parts of the servomotor or machine during operation.

There is a risk of injury.

Perform the correct operation with the servomotor connected to the machine.

There is a risk of machine damage or personal injury.

## **M** CAUTION

Design the system to ensure safety even when problems, such as broken signal lines, occur. For example, the P-OT and N-OT signals are set in the default settings to operate on the safe side if a signal line breaks. Do not change the polarity of this type of signal.

When overtravel occurs, the power to the motor is turned OFF and the brake is released. If you use the servomotor to drive a vertical load, set the servomotor to enter a zero-clamped state after the servomotor stops. Also, install safety devices (such as an external brake or counterweight) to prevent the moving parts of the machine from falling.

## **M** CAUTION

Always turn OFF the servo before you turn OFF the power. If you turn OFF the main circuit power or control power during operation before you turn OFF the servo, the servomotor will stop as follows:

- If you turn OFF the main circuit power during operation without turning OFF the servo, the servomotor will stop abruptly with the dynamic brake.
- If you turn OFF the control power without turning OFF the servo, the stopping method that is used by the servomotor depends on the model of the SERVOPACK. For details, refer to the manual for the SERVOPACK.
- If you use a SERVOPACK with the dynamic brake hardware option, the servomotor stopping methods will be different from the stopping methods used without the option or with other hardware options.

Do not use the dynamic brake for any application other than an emergency stop.

There is a risk of failure due to rapid deterioration of elements in the SERVOPACK and the risk of unexpected operation, machine damage, burning, or injury.

## NOTICE

When you adjust the gain during system commissioning, use a measuring instrument to monitor the torque waveform and speed waveform and confirm that there is no vibration.

If a high gain causes vibration, the servomotor will be damaged quickly.

Do not frequently turn the power ON and OFF. After you have started actual operation, allow at least one hour between turning the power ON and OFF (as a guideline). Do not use the product in applications that require the power to be turned ON and OFF frequently.

The elements in the SERVOPACK will deteriorate quickly.

An alarm or warning may occur if communications are performed with the host controller while the SigmaWin+ or digital operator is operating.

If an alarm or warning occurs, it may interrupt the current process and stop the system.

After you complete trial operation of the machine and facilities, use the SigmaWin+ to back up the settings of the SERVOPACK parameters. You can use them to reset the parameters after SERVOPACK replacement.

If you do not copy backed up parameter settings, normal operation may not be possible after a faulty SER-VOPACK is replaced, possibly resulting in machine or equipment damage.

## (7) Maintenance and Inspection Precautions

## **A** DANGER

Do not change any wiring while power is being supplied.

There is a risk of electric shock or injury.

## **MARNING**

Wiring and inspections must be performed only by qualified engineers.

There is a risk of electric shock or product failure.

## **A** CAUTION

Wait for at least 20 minutes (or 100 minutes when using DC power supply input) after turning OFF the power and then make sure that the CHARGE indicator is not lit before starting wiring or inspection work. Do not touch the main circuit terminals while the CHARGE indicator is lit because high voltage may still remain in the SERVOPACK even after turning OFF the power.

There is a risk of electric shock.

Before you replace a SERVOPACK, back up the settings of the SERVOPACK parameters. Copy the backed up parameter settings to the new SERVOPACK and confirm that they were copied correctly.

If you do not copy backed up parameter settings or if the copy operation is not completed correctly, normal operation may not be possible, possibly resulting in machine or equipment damage.

## **NOTICE**

Discharge all static electricity from your body before you operate any of the buttons or switches inside the front cover of the SERVOPACK.

There is a risk of equipment damage.

### (8) Troubleshooting Precautions

## **A** DANGER

If the safety device (molded-case circuit breaker or fuse) installed in the power supply line operates, remove the cause before you supply power to the SERVOPACK again. If necessary, repair or replace the SERVOPACK, check the wiring, and remove the factor that caused the safety device to operate.

There is a risk of fire, electric shock, or injury.

## **WARNING**

The product may suddenly start to operate when the power supply is recovered after a momentary power interruption. Design the machine to ensure human safety when operation restarts.

There is a risk of injury.

## **CAUTION**

When an alarm occurs, remove the cause of the alarm and ensure safety. Then reset the alarm or turn the power OFF and ON again to restart operation.

There is a risk of injury or machine damage.

If the Servo ON signal is input to the SERVOPACK and an alarm is reset, the servomotor may suddenly restart operation. Confirm that the servo is OFF and ensure safety before you reset an alarm.

There is a risk of injury or machine damage.

Always insert a magnetic contactor in the line between the main circuit power supply and the main circuit terminals on the SERVOPACK so that the power can be shut OFF at the main circuit power supply.

If a magnetic contactor is not connected when the SERVOPACK fails, a large current may flow continuously, possibly resulting in fire.

## **A** CAUTION

### If an alarm occurs, shut OFF the main circuit power supply.

There is a risk of fire due to a regenerative resistor overheating as the result of regenerative transistor failure.

Install a ground fault detector against overloads and short-circuiting or install a molded-case circuit breaker combined with a ground fault detector.

There is a risk of SERVOPACK failure or fire if a ground fault occurs.

The holding brake on a servomotor will not ensure safety if there is the possibility that an external force (including gravity) may move the current position and create a hazardous situation when power is interrupted or an error occurs. If an external force may cause movement, install an external braking mechanism that ensures safety.

### (9) Disposal Precautions

 Correctly discard the product as stipulated by regional, local, and municipal laws and regulations. Be sure to include these contents in all labelling and warning notifications on the final product as necessary.



### (10) General Precautions

- Figures provided in this manual are typical examples or conceptual representations. There may be differences between them and actual
  wiring, circuits, and products.
- The products shown in illustrations in this manual are sometimes shown with their covers or protective guards removed to illustrate
  detail. Always replace all covers and protective guards before you use the product.
- If you need a new copy of this manual because it has been lost or damaged, contact your nearest Yaskawa representative or one of the
  offices listed on the back of this manual.
- This manual is subject to change without notice for product improvements, specifications changes, and improvements to the manual itself. We will update the manual number of the manual and issue revisions when changes are made.
- Any and all quality guarantees provided by Yaskawa are null and void if the customer modifies the product in any way. Yaskawa disavows any responsibility for damages or losses that are caused by modified products.

## i.7 Warranty

## i.7.1 Details of Warranty

### (1) Warranty Period

The warranty period for a product that was purchased (hereinafter called the "delivered product") is one year from the time of delivery to the location specified by the customer or 18 months from the time of shipment from the Yaskawa factory, whichever is sooner.

### (2) Warranty Scope

Yaskawa shall replace or repair a defective product free of charge if a defect attributable to Yaskawa occurs during the above warranty period. This warranty does not cover defects caused by the delivered product reaching the end of its service life and replacement of parts that require replacement or that have a limited service life.

This warranty does not cover failures that result from any of the following causes.

- Improper handling, abuse, or use in unsuitable conditions or in environments not described in product catalogs or manuals, or in any separately agreed-upon specifications
- · Causes not attributable to the delivered product itself
- Modifications or repairs not performed by Yaskawa
- Use of the delivered product in a manner in which it was not originally intended
- Causes that were not foreseeable with the scientific and technological understanding at the time of shipment from Yaskawa
- Events for which Yaskawa is not responsible, such as natural or human-made disasters

## i.7.2 Limitations of Liability

- Yaskawa shall in no event be responsible for any damage or loss of opportunity to the customer that arises due to failure of the delivered product.
- Yaskawa shall not be responsible for any programs (including parameter settings) or the results of program execution of the programs provided by the user or by a third party for use with programmable Yaskawa products.
- The information described in product catalogs or manuals is provided for the purpose of the customer purchasing the appropriate product for the intended application. The use thereof does not guarantee that there are no infringements of intellectual property rights or other proprietary rights of Yaskawa or third parties, nor does it construe a license
- Yaskawa shall not be responsible for any damage arising from infringements of intellectual property rights or
  other proprietary rights of third parties as a result of using the information described in catalogs or manuals.

### i.7.3 Suitability for Use

- It is the customer's responsibility to confirm conformity with any standards, codes, or regulations that apply if the Yaskawa product is used in combination with any other products.
- The customer must confirm that the Yaskawa product is suitable for the systems, machines, and equipment used by the customer.
- Consult with Yaskawa to determine whether use in the following applications is acceptable. If use in the application is acceptable, use the product with extra allowance in ratings and specifications, and provide safety measures to minimize hazards in the event of failure.
  - Outdoor use, use involving potential chemical contamination or electrical interference, or use in conditions or environments not described in product catalogs or manuals
  - Nuclear energy control systems, combustion systems, railroad systems, aviation systems, vehicle systems, medical equipment, amusement machines, and installations subject to separate industry or government regulations
  - Systems, machines, and equipment that may present a risk to life or property
  - Systems that require a high degree of reliability, such as systems that supply gas, water, or electricity, or systems that operate continuously 24 hours a day
  - Other systems that require a similar high degree of safety
- Never use the product for an application involving serious risk to life or property without first ensuring that the system is designed to secure the required level of safety with risk warnings and redundancy, and that the Yaskawa product is properly rated and installed.
- The circuit examples and other application examples described in product catalogs and manuals are for reference. Check the functionality and safety of the actual devices and equipment to be used before using the product.
- Read and understand all use prohibitions and precautions, and operate the Yaskawa product correctly to prevent accidental harm to third parties.

## i.7.4 Specifications Change

The names, specifications, appearance, and accessories of products in product catalogs and manuals may be changed at any time based on improvements and other reasons. The next editions of the revised catalogs or manuals will be published with updated code numbers. Consult with your Yaskawa representative to confirm the actual specifications before purchasing a product.

# i.8 Compliance with UL Standards, EU Directives, and Other Safety Standards

Certification marks for the standards for which the product has been certified by certification bodies are shown on nameplate. Products that do not have the marks are not certified for the standards.

Refer to the servomotor manual for compliant standards of servomotors.

## i.8.1 North American Safety Standards (UL)



| Product   | Model | North American Safety Standards (UL File No.) |
|-----------|-------|-----------------------------------------------|
| SERVOPACK | SGDXS | UL 61800-5-1 (E147823),<br>CSA C22.2 No.274   |

### i.8.2 EU Directives



| Product   | Model | EU Directives                             | Harmonized Standards     |                                                                                                           |
|-----------|-------|-------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------|
|           | SGDXS | Machinery Directive 2006/42/EC            | EN 62061<br>EN 61800-5-2 |                                                                                                           |
| SERVOPACK |       | EMC Directive 2014/30/EU                  |                          | EN 55011 group 1, class A<br>EN 61000-6-2<br>EN 61000-6-4<br>EN 61800-3 (Category C2, Second environment) |
|           |       | Low Voltage Directive 2014/35/EU          | EN 61800-5-1             |                                                                                                           |
|           |       | RoHS Directive<br>2011/65/EU (EU)2015/863 | EN IEC 63000             |                                                                                                           |
|           |       | WEEE Directive<br>2012/19/EU              | _                        |                                                                                                           |

### Noto:

- We declared the CE Marking based on the harmonized standards in the above table. These products complied with the corresponding IEC standards. Refer to the declaration of conformity for details.
- These products are for industrial use. In home environments, these products may cause electromagnetic interference and additional noise reduction measures may be necessary.

## i.8.3 Safety Standards

| Product   | Model | Standards          |
|-----------|-------|--------------------|
|           |       | EN ISO13849-1:2015 |
|           | SGDXS | EN 62061           |
|           |       | EN 61800-5-2       |
| SERVOPACK |       | EN 61000-6-7       |
|           |       | EN 61326-3-1       |
|           |       | EN 61508 series    |

### Note:

These products complied with the corresponding IEC standards. Refer to the declaration of conformity for details.

### • Safety Parameters

| Item                                              | Standards              | Performance Level                       |  |
|---------------------------------------------------|------------------------|-----------------------------------------|--|
|                                                   | IEC 61508              | SIL3                                    |  |
| Safety Integrity Level                            | IEC 62061              | SILCL3                                  |  |
| Mission Time                                      | EN ISO 13849-1         | 20 years                                |  |
| Probability of Dangerous Failure per Hour         | IEC 61508<br>IEC 62061 | PFH = 8.57 × 10-9 [1/h] (8.57% of SIL3) |  |
| Performance Level                                 | EN ISO 13849-1         | PL e (Category 3)                       |  |
| Mean Time to Dangerous Failure of Each<br>Channel | EN ISO 13849-1         | MTTFd: High                             |  |
| Average Diagnostic Coverage                       | EN ISO 13849-1         | DCavg: Medium                           |  |
| Stop Category                                     | IEC 60204-1            | Stop category 0                         |  |
| Safety Function                                   | IEC 61800-5-2          | STO                                     |  |
| Hardware Fault Tolerance                          | IEC 61508              | HFT = 1                                 |  |
| Subsystem                                         | IEC 61508              | В                                       |  |

### Note:

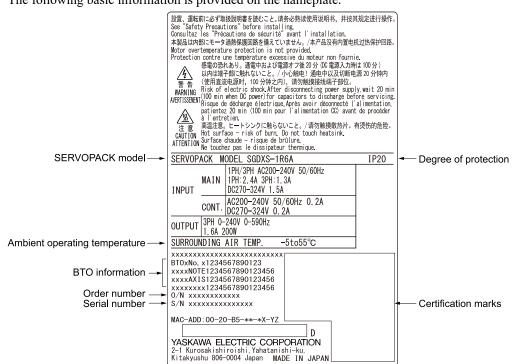
Mission time is a parameter used in the statistic calculation required by functional safety standards. Mission time is not related to the warranty period.

## **Basic Information on SERVOPACKs**

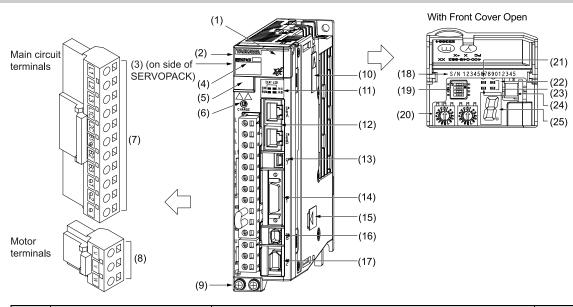
This chapter provides information required to select SERVOPACKs, such as SERVOPACK model numbers and combinations with servomotors.

| 1.1 | The $\Sigma$ -X Series                                        | 50 |
|-----|---------------------------------------------------------------|----|
| 1.2 | Interpreting the Nameplate                                    | 51 |
| 1.3 | Part Names                                                    | 52 |
| 1.4 | Interpreting Model Numbers                                    | 54 |
|     | 1.4.1 Interpreting SERVOPACK Model Numbers                    | 54 |
|     | 1.4.2 Interpreting Servomotor Model Numbers                   | 55 |
| 1.5 | Combinations of SERVOPACKs and Servomotors                    | 57 |
|     | 1.5.1 Combinations of Rotary Servomotors and SERVOPACKs       | 57 |
|     | 1.5.2 Combinations of Direct Drive Servomotors and SERVOPACKs | 59 |
|     | 1.5.3 Combinations of Linear Servomotors and SERVOPACKs       | 61 |
| 1.6 | Functions                                                     | 63 |

## 1.1 The $\Sigma$ -X Series


The  $\Sigma$ -X-series SERVOPACKs are designed for applications that require frequent high-speed and high-precision positioning. The SERVOPACK will make the most of machine performance in the shortest time possible, thus contributing to improving productivity.

 $\Sigma$ -X-series SERVOPACKs are available in the three models shown below.


| Model Name | Description            |
|------------|------------------------|
| Σ-ΧS       | Single-axis SERVOPACKs |
| Σ-XW       | Two-axis SERVOPACKs    |
| Σ-ΧΤ       | Three-axis SERVOPACKs  |

## 1.2 Interpreting the Nameplate

The following basic information is provided on the nameplate.



## 1.3 Part Names



| No.  | Name                                                           | Description                                                                                                                                                                                                                                                                                                     | Reference |
|------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| (1)  | Front Cover                                                    | _                                                                                                                                                                                                                                                                                                               | _         |
| (2)  | Input Voltage                                                  | _                                                                                                                                                                                                                                                                                                               | _         |
| (3)  | Nameplate                                                      | Indicates the SERVOPACK model and ratings.                                                                                                                                                                                                                                                                      | 51        |
| (4)  | Model                                                          | The model of the SERVOPACK.                                                                                                                                                                                                                                                                                     | 54        |
| (5)  | QR Code                                                        | The QR code that is used by the MechatroCloud service.                                                                                                                                                                                                                                                          | _         |
| (6)  | CHARGE                                                         | Lits while the main circuit power is being supplied.  Note:  Even if you turn OFF the main circuit power supply, this indicator will be lit as long as the internal capacitor remains charged. Do not touch the main circuit or motor terminals while this indicator is lit. There is a risk of electric shock. | -         |
| (7)  | Main Circuit Terminals                                         | The terminals depend on the main circuit power supply input specifications of the SERVOPACK.                                                                                                                                                                                                                    | 115       |
| (8)  | Servomotor Terminals (U, V, and W)                             | The connection terminals for the servomotor main circuit cable (power line).                                                                                                                                                                                                                                    | 127       |
| (9)  | Ground Terminal ( )                                            | The ground terminals to prevent electric shock. Always connect this terminal.                                                                                                                                                                                                                                   | _         |
| (10) | Safety Option Module Connector (CN11)                          | Connects to a safety option module (currently in development).                                                                                                                                                                                                                                                  | _         |
| (11) | Communications LED Indicator<br>Array                          | Displays the LED indicator array for EtherCAT communications inside the front cover.                                                                                                                                                                                                                            | _         |
| (12) | EtherCAT Communications Connectors (Input: CN6A, Output: CN6B) | Connects to EtherCAT devices.                                                                                                                                                                                                                                                                                   | 146       |
| (13) | Personal Computer Connector (CN7)                              | A USB connector to connect a personal computer.  The digital operator can also be connected.                                                                                                                                                                                                                    | 147, 148  |
| (14) | I/O Signal Connector (CN1)                                     | Connects to sequence I/O signals.                                                                                                                                                                                                                                                                               | 137       |
| (15) | Feedback Option Module Connector (CN12)                        | Connects to a feedback option module.                                                                                                                                                                                                                                                                           | _         |
| (16) | Safety Connector (CN8)                                         | Connects to a safety function device.                                                                                                                                                                                                                                                                           | 144       |

Continued on next page.

### Continued from previous page.

| No.  | Name                           |       | Description                                                                                                                                                                                                                                                                                                        | Reference |
|------|--------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| (17) | Encoder Cable Connector (CN2)  |       | <ul> <li>This connector is used for the following purposes.</li> <li>Rotary servomotor: Connects to the encoder in the servomotor.</li> <li>Linear servomotor: Connects to the serial converter unit or linear encoder.</li> <li>Connects to Σ-LINK II-compatible sensors and the Σ-LINK II sensor hub.</li> </ul> | 127       |
| (18) | Serial Number                  |       | _                                                                                                                                                                                                                                                                                                                  | _         |
| (19) | DIP Switch (S3)                |       | Not used.                                                                                                                                                                                                                                                                                                          | _         |
| (20) | ID Selector (S1, S2)           |       | This switch is used for identification of the EtherCAT slave device.                                                                                                                                                                                                                                               | 544       |
| (21) |                                | ERR   | The ERR indicator shows the error status of EtherCAT communications.                                                                                                                                                                                                                                               |           |
| (22) | Communications                 | L/A A | The L/A A and L/A B indicators show whether communications cable is connected to the CN6A connector and whether communications are active.                                                                                                                                                                         |           |
| (22) | Status LEDs                    | L/A B | The L/A A and L/A B indicators show whether communications cable is connected to the CN6B connector and whether communications are active.                                                                                                                                                                         | 804       |
| (23) |                                | RUN   | The RUN indicator shows the status of EtherCAT communications.                                                                                                                                                                                                                                                     |           |
| (24) | Analog Monitor Connector (CN5) |       | You can use a special cable (peripheral device) to monitor the motor speed, torque reference, or other values.                                                                                                                                                                                                     | 149       |
| (25) | Panel Display                  |       | Displays the servo status with a seven-segment LED.                                                                                                                                                                                                                                                                | 806       |

### **Interpreting Model Numbers** 1.4

#### **Interpreting SERVOPACK Model Numbers** 1.4.1

SGDXS -**R70** 

**A0** Α 0001

00

 $\Sigma$ -X-Series  $\Sigma$ -XS model

200

330

470

550

590

780









Specification



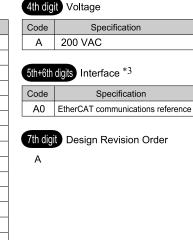




Hardware Options

| 1st+2nd+3rd digits Maximum Applicable Motor Capacity |       |               |
|------------------------------------------------------|-------|---------------|
| Voltage                                              | Code  | Specification |
|                                                      | R70*1 | 0.05 kW       |
|                                                      | R90*1 | 0.1 kW        |
|                                                      | 1R6*1 | 0.2 kW        |
|                                                      | 2R8*1 | 0.4 kW        |
|                                                      | 3R8   | 0.5 kW        |
|                                                      | 5R5*1 | 0.75 kW       |
| Three-                                               | 7R6   | 1.0 kW        |
| Phase,                                               | 120*2 | 1.5 kW        |
| 200 VAC                                              | 180   | 2.0 kW        |

3.0 kW


5.0 kW

6.0 kW

7.5 kW

11 kW

15 kW



| 8th+9th+10th+11th digits Specification |                                             |                         |  |
|----------------------------------------|---------------------------------------------|-------------------------|--|
| Code                                   | Specification                               | Applicable Models       |  |
| None<br>0000                           | Without options                             | All models              |  |
| 0004                                   | Rack-mounted                                | SGDXS-<br>R70A to -330A |  |
| 0001 Duct-ventilated                   |                                             | SGDXS-<br>470A to -780A |  |
| 0002                                   | Varnished                                   | All models              |  |
| 0008                                   | Single-phase,<br>200-VAC power supply input | SGDXS-120A              |  |
| 0020*4                                 | No dynamic brake                            | SGDXS-<br>R70A to -2R8A |  |
|                                        | External dynamic brake resistor             | SGDXS-<br>3R8A to -780A |  |

| 12t | h+1: | 3th digits | FT | Specif | icati | ion |
|-----|------|------------|----|--------|-------|-----|
|     |      |            |    |        |       |     |

| Code | Specification |
|------|---------------|
| None | None          |
| 00   | Notice        |

|            | BTO Specification   |
|------------|---------------------|
| 14th algit | (under development) |

| Code | Specification     |
|------|-------------------|
| None | None              |
| В    | BTO specification |

- You can use these models with either a single-phase or three-phase input.
- \*2 A model with a single-phase, 200-VAC power supply input is available as a hardware option specification. (model: SGDXS-
- \*3 The same SERVOPACKs are used for both rotary servomotors and linear servomotors.
- Refer to the following manual for details.

#### 1.4.2 **Interpreting Servomotor Model Numbers**

This section outlines the model numbers of servomotors that can be combined with a  $\Sigma$ -X-series SERVOPACK. Refer to the relevant manual in the following list for details.

- Σ-X-series Rotary Servomotor Product Manual (Manual No.: SIEP C230210 00)
- Σ-7-series Rotary Servomotor Product Manual (Manual No.: SIEP S800001 36)
- Σ-7-series Linear Servomotor Product Manual (Manual No.: SIEP S800001 37)
- Σ-7-Series Direct Drive Servomotor Product Manual (Manual No.: SIEP S800001 38)

### (1) Rotary Servomotors



















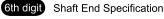
### Series

### $\Sigma$ -X Series Servomotors

| Code  | Specification              |  |  |
|-------|----------------------------|--|--|
| SGMXJ | Medium inertia, high speed |  |  |
| SGMXA | Low inertia, high speed    |  |  |
| SGMXP | Medium inertia, flat       |  |  |
| COMVO | Medium inertia, low speed, |  |  |
| SGMXG | high torque                |  |  |

### Σ-7 Series Servomotors

| 2 / Conce Convenione |                      |  |  |
|----------------------|----------------------|--|--|
| Code                 | Specification        |  |  |
| SGM7M                | Low inertia,         |  |  |
| 3GIVI7 IVI           | ultra-small capacity |  |  |


### 1st+2nd digits Rated Output

- 3rd digit Power Supply Voltage
- 200 VAC
- 24 VDC/48 VDC

4th digit Serial Encoder Specification

- 20-bit absolute encoder
- · 26-bit batteryless absolute encoder
- 26-bit absolute encoder





- Straight without key
- · Straight with tap
- · Straight with key and tap
- · Straight with flat seat
- · With two flat seats

### 7th digit Option Specification

- With 24-V holding brake
- · With oil seal



9th digit **Ancillary Specification** 

| Code | Specification  |  |
|------|----------------|--|
| 1    | Standard       |  |
| 2    | Σ-7 compatible |  |

## (2) Direct Drive Servomotors



Series













Series  $\Sigma$ -7 Series Servomotors

| Code  | Specification                                                                 |  |  |
|-------|-------------------------------------------------------------------------------|--|--|
| SGM7D | With core outer rotor                                                         |  |  |
| SGM7E | Small capacity, coreless inner rotor                                          |  |  |
| SGM7F | Small capacity, with core inner rotor  Medium capacity, with core inner rotor |  |  |

1st+2nd digits Rated Torque

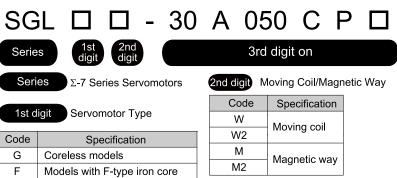
Servomotor Outer Diameter

Serial Encoder Specification

Design Revision Order

6th digit Flange Specification

- · Cable drawn to load side
- · Cable drawn to non-load side


7th digit Option Specification

· High mechanical precision

Т

## (3) Linear Servomotors

Models with T-type iron core



3rd digit on

The specifications for the 3rd digit on depend on the servomotor type.

## 1.5 Combinations of SERVOPACKs and Servomotors

## 1.5.1 Combinations of Rotary Servomotors and SERVOPACKs

| Rotary Servomotor Model             |           |          | SERVOPACK Model |
|-------------------------------------|-----------|----------|-----------------|
|                                     |           | Capacity | SGDXS-          |
|                                     | SGMXJ-A5A | 50 W     | R70A            |
|                                     | SGMXJ-01A | 100 W    | R90A            |
| SGMXJ                               | SGMXJ-C2A | 150 W    | 100             |
| (Medium Inertia, Small<br>Capacity) | SGMXJ-02A | 200 W    | 1R6A            |
| 3000 min <sup>-1</sup>              | SGMXJ-04A | 400 W    | 2R8A            |
|                                     | SGMXJ-06A | 600 W    | SD 5 A          |
|                                     | SGMXJ-08A | 750 W    | 5R5A            |
|                                     | SGMXA-A5A | 50 W     | R70A            |
|                                     | SGMXA-01A | 100 W    | R90A            |
|                                     | SGMXA-C2A | 150 W    | ID()            |
|                                     | SGMXA-02A | 200 W    | 1R6A            |
|                                     | SGMXA-04A | 400 W    | 2R8A            |
|                                     | SGMXA-06A | 600 W    | SDSA            |
| SGMXA                               | SGMXA-08A | 750 W    | 5R5A            |
| (Low Inertia, Small Capacity)       | SGMXA-10A | 1.0 kW   | 1204            |
| 3000 min <sup>-1</sup>              | SGMXA-15A | 1.5 kW   | 120A            |
|                                     | SGMXA-20A | 2.0 kW   | 180A            |
|                                     | SGMXA-25A | 2.5 kW   | 2004            |
|                                     | SGMXA-30A | 3.0 kW   | 200A            |
|                                     | SGMXA-40A | 4.0 kW   | 2204            |
|                                     | SGMXA-50A | 5.0 kW   | 330A            |
|                                     | SGMXA-70A | 7.0 kW   | 550A            |
|                                     | SGMXP-01A | 100 W    | R90A            |
| SGMXP                               | SGMXP-02A | 200 W    | 2004            |
| (Medium Inertia, Flat)              | SGMXP-04A | 400 W    | 2R8A            |
| 3000 min <sup>-1</sup>              | SGMXP-08A | 750 W    | 5R5A            |
|                                     | SGMXP-15A | 1.5 kW   | 120A            |

Continued on next page.

Continued from previous page.

| D-40                                                           | on a few Market |           | SERVOPACK Model        |
|----------------------------------------------------------------|-----------------|-----------|------------------------|
| Rotary Servomotor Model                                        |                 | Capacity  | SGDXS-                 |
|                                                                | SGMXG-03A       | 300 W     | 2004                   |
|                                                                | SGMXG-05A       | 450 W     | 3R8A                   |
|                                                                | SGMXG-09A       | 850 W     | 7R6A (120A) * <i>I</i> |
|                                                                | SGMXG-13A       | 1.3 kW    | 120A (180A) */         |
| SGMXG                                                          | SGMXG-20A       | 1.8 kW    | 180A (200A) * <i>I</i> |
| (Medium Inertia, Medium<br>Capacity)<br>1500 min <sup>-1</sup> | SGMXG-30A       | 2.9 kW *2 | 330A (470A) * <i>I</i> |
|                                                                | SGMXG-44A       | 4.4 kW    | 330A (550A) * <i>I</i> |
|                                                                | SGMXG-55A       | 5.5 kW    | 470A (780A) * <i>I</i> |
|                                                                | SGMXG-75A       | 7.5 kW    | 550A                   |
|                                                                | SGMXG-1AA       | 11 kW     | 590A                   |
|                                                                | SGMXG-1EA       | 15 kW     | 780A                   |
| SGM7M<br>(Low Inertia, Ultra-small<br>Capacity)                | SGM7M-A1A       | 11 W      | DOO.4                  |
|                                                                | SGM7M-A2A       | 22 W      | R90A                   |
| 3000 min-1                                                     | SGM7M-A3A       | 33 W      | 1R6A                   |

To increase the instantaneous maximum torque, use the SERVOPACK with the model number given inside the parentheses. Refer to the following manual for the instantaneous maximum torque of each SERVOPACK.

 $<sup>\</sup>hfill \Sigma\text{-X-Series}$  Rotary Servomotor Product Manual (Manual No.: SIEP C230210 00)

<sup>\*2 2.4</sup> kW when using the servomotor with a SGDXS-200A SERVOPACK.

## 1.5.2 Combinations of Direct Drive Servomotors and SERVOPACKs

|                                   |           | Rated Torque | Instantaneous Maxi- | SERVOPACK Model |
|-----------------------------------|-----------|--------------|---------------------|-----------------|
| Direct Drive Servomotor Model     |           | N·m          | mum Torque<br>N·m   | SGDXS-          |
|                                   | SGM7D-30F | 30.0         | 50.0                |                 |
|                                   | SGM7D-58F | 58.0         | 100                 | 120.            |
|                                   | SGM7D-90F | 90.0         | 150                 | 120A            |
|                                   | SGM7D-1AF | 110          | 200                 |                 |
|                                   | SGM7D-01G | 1.30         | 4.00                | 2004            |
| SGM7D                             | SGM7D-05G | 5.00         | 6.00                | 2R8A            |
| (With Core, Outer Rotor)          | SGM7D-08G | 8.00         | 15.0                |                 |
|                                   | SGM7D-18G | 18.0         | 30.0                |                 |
|                                   | SGM7D-24G | 24.0         | 45.0                | 120A            |
|                                   | SGM7D-34G | 34.0         | 60.0                |                 |
|                                   | SGM7D-45G | 45.0         | 75.0                |                 |
|                                   | SGM7D-03H | 3.00         | 4.00                | 2R8A            |
|                                   | SGM7D-28I | 28.0         | 50.0                |                 |
|                                   | SGM7D-70I | 70.0         | 100                 |                 |
|                                   | SGM7D-1ZI | 100          | 150                 |                 |
|                                   | SGM7D-1CI | 130          | 200                 |                 |
|                                   | SGM7D-2BI | 220          | 300                 |                 |
|                                   | SGM7D-2DI | 240          | 400                 | 120A            |
|                                   | SGM7D-06J | 6.00         | 8.00                |                 |
|                                   | SGM7D-09J | 9.00         | 15.0                |                 |
| SGM7D<br>(With Core, Outer Rotor) | SGM7D-18J | 18.0         | 30.0                |                 |
| (With Core, Outer Rotor)          | SGM7D-20J | 20.0         | 45.0                |                 |
|                                   | SGM7D-38J | 38.0         | 60.0                |                 |
|                                   | SGM7D-02K | 2.06         | 5.00                |                 |
|                                   | SGM7D-06K | 6.00         | 10.0                |                 |
|                                   | SGM7D-08K | 8.00         | 15.0                | 2R8A            |
|                                   | SGM7D-06L | 6.00         | 10.0                |                 |
|                                   | SGM7D-12L | 12.0         | 20.0                |                 |
|                                   | SGM7D-30L | 30.0         | 40.0                | 120A            |

Continued on next page.

Continued from previous page.

| Direct Drive Servomotor Model                |           | Rated Torque<br>N·m | Instantaneous Maxi-<br>mum Torque<br>N·m | SERVOPACK Model        |
|----------------------------------------------|-----------|---------------------|------------------------------------------|------------------------|
|                                              |           |                     |                                          | SGDXS-                 |
|                                              | SGM7E-02B | 2                   | 6                                        |                        |
|                                              | SGM7E-05B | 5                   | 15                                       |                        |
|                                              | SGM7E-07B | 7                   | 21                                       |                        |
|                                              | SGM7E-04C | 4                   | 12                                       |                        |
| SGM7E                                        | SGM7E-10C | 10                  | 30                                       | 2R8A                   |
| (Small Capacity, Coreless,                   | SGM7E-14C | 14                  | 42                                       |                        |
| Inner Rotor)                                 | SGM7E-08D | 8                   | 24                                       |                        |
|                                              | SGM7E-17D | 17                  | 51                                       |                        |
|                                              | SGM7E-25D | 25                  | 75                                       |                        |
|                                              | SGM7E-16E | 16                  | 48                                       | 5R5A                   |
|                                              | SGM7E-35E | 35                  | 105                                      | SKSA                   |
|                                              | SGM7F-02A | 2                   | 6                                        | 2R8A                   |
|                                              | SGM7F-05A | 5                   | 15                                       |                        |
|                                              | SGM7F-07A | 7                   | 21                                       |                        |
|                                              | SGM7F-04B | 4                   | 12                                       |                        |
| SGM7F                                        | SGM7F-10B | 10                  | 30                                       |                        |
| (Small Capacity, With                        | SGM7F-14B | 14                  | 42                                       | 5R5A                   |
| Core, Inner Rotor)                           | SGM7F-08C | 8                   | 24                                       | 2R8A                   |
|                                              | SGM7F-17C | 17                  | 51                                       | 5R5A                   |
|                                              | SGM7F-25C | 25                  | 75                                       | 7R6A                   |
|                                              | SGM7F-16D | 16                  | 48                                       | 5R5A                   |
|                                              | SGM7F-35D | 35                  | 105                                      | 7R6A * <i>I</i> , 120A |
|                                              | SGM7F-45M | 45                  | 135                                      | 7R6A                   |
| SGM7F                                        | SGM7F-80M | 80                  | 240                                      | 120 :                  |
|                                              | SGM7F-80N | 80                  | 240                                      | 120A                   |
| (Medium Capacity, With<br>Core, Inner Rotor) | SGM7F-1AM | 110                 | 330                                      | 180A                   |
|                                              | SGM7F-1EN | 150                 | 450                                      | 200 :                  |
|                                              | SGM7F-2ZN | 200                 | 600                                      | 200A                   |

<sup>\*1</sup> For this combination, use the following derated values for the rated output and rated rotation speed.

• Rated output: 1000 W

• Rated rotation speed: 270 min<sup>-1</sup>

## 1.5.3 Combinations of Linear Servomotors and SERVOPACKs

| Linear Servomotor Model                  |                       | Rated Force<br>N | Instantaneous Maxi-<br>mum Force<br>N | SERVOPACK Model |
|------------------------------------------|-----------------------|------------------|---------------------------------------|-----------------|
|                                          |                       |                  |                                       | SGDXS-          |
|                                          | SGLGW-30A050C         | 12.5             | 40                                    | R70A            |
|                                          | SGLGW-30A080C         | 25               | 80                                    | <b>D</b> 00.    |
|                                          | SGLGW-40A140C         | 47               | 140                                   | R90A            |
|                                          | SGLGW-40A253C         | 93               | 280                                   | 1R6A            |
| SGLG                                     | SGLGW-40A365C         | 140              | 420                                   | 2R8A            |
| (Coreless)                               | SGLGW-60A140C         | 70               | 220                                   | 1R6A            |
| Used with Standard-Force<br>Magnetic Way | SGLGW-60A253C         | 140              | 440                                   | 2R8A            |
|                                          | SGLGW-60A365C         | 210              | 660                                   | 5R5A            |
|                                          | SGLGW-90A200C         | 325              | 1300                                  | 120A            |
|                                          | SGLGW-90A370C         | 550              | 2200                                  | 180A            |
|                                          | SGLGW-90A535C         | 750              | 3000                                  | 200A            |
|                                          | SGLGW-40A140C         | 57               | 230                                   | 1R6A            |
| 901.0                                    | SGLGW-40A253C         | 114              | 460                                   | 2R8A            |
| SGLG<br>(Coreless)                       | SGLGW-40A365C         | 171              | 690                                   | 3R8A            |
| Used with High-Force                     | SGLGW-60A140C         | 85               | 360                                   | 1R6A            |
| Magnetic Way                             | SGLGW-60A253C         | 170              | 720                                   | 3R8A            |
|                                          | SGLGW-60A365C         | 255              | 1080                                  | 7R6A            |
|                                          | SGLFW2-30A070A        | 45               | 135                                   | 10.64           |
|                                          | SGLFW2-30A120A        | 90               | 270                                   | 1R6A            |
|                                          | GCI FW2 20 4 220 4 */ | 180              | 540                                   | 3R8A            |
|                                          | SGLFW2-30A230A */     | 170              | 500                                   | 2R8A            |
|                                          | SGLFW2-45A200A        | 280              | 840                                   | 5R5A            |
|                                          | CCI EW2 45 4 200 4 */ | 5(0)             | 1680                                  | 180A            |
| SGLF<br>(With F-type Iron Cores)         | SGLFW2-45A380A */     | 560              | 1500                                  |                 |
|                                          | SGLFW2-90A200A□1      | 560              | 1680                                  | 120A            |
|                                          | SGLFW2-90A200A□L      | 896              | 1680                                  |                 |
|                                          | SGLFW2-90A380A        | 1120             | 3360                                  | 200A            |
|                                          | SGLFW2-90A560A        | 1680             | 5040                                  | 330A            |
|                                          | SGLFW2-1DA380A        | 1680             | 5040                                  | 200A            |
|                                          | SGLFW2-1DA560A        | 2520             | 7560                                  | 330A            |

Continued on next page.

Continued from previous page.

|                                  |               |             | Instantaneous Maxi- | SERVOPACK Model |
|----------------------------------|---------------|-------------|---------------------|-----------------|
| Linear Servomotor Model          |               | Rated Force | mum Force           |                 |
|                                  |               | N           | N                   | SGDXS-          |
|                                  | SGLTW-20A170A | 130         | 380                 | 3R8A            |
|                                  | SGLTW-20A320A | 250         | 760                 | 7R6A            |
|                                  | SGLTW-20A460A | 380         | 1140                | 120A            |
|                                  | SGLTW-35A170A | 220         | 660                 | 50.54           |
|                                  | SGLTW-35A170H | 300         | 600                 | 5R5A            |
| SGLT<br>(With T-type Iron Cores) | SGLTW-35A320A | 440         | 1320                | 100.1           |
|                                  | SGLTW-35A320H | 600         | 1200                | 120A            |
|                                  | SGLTW-35A460A | 670         | 2000                | 1004            |
|                                  | SGLTW-40A400B | 670         | 2600                | 180A            |
|                                  | SGLTW-40A600B | 1000        | 4000                | 330A            |
|                                  | SGLTW-50A170H | 450         | 900                 | 5R5A            |
|                                  | SGLTW-50A320H | 900         | 1800                | 120A            |
|                                  | SGLTW-80A400B | 1300        | 5000                | 330A            |
|                                  | SGLTW-80A600B | 2000        | 7500                | 550A            |

<sup>\*1</sup> The force depends on the SERVOPACK that is used with the servomotor.

## 1.6 Functions

This section lists the functions provided by SERVOPACKs. Refer to the reference pages for details on the functions.

• Functions Related to the Machine

| Function                                                               | Reference |
|------------------------------------------------------------------------|-----------|
| Setting the Power Supply Type for the Main Circuit and Control Circuit | 162       |
| Automatic Detection of Connected Motor                                 | 164       |
| Setting the Motor Direction                                            | 165       |
| Setting the Linear Encoder Pitch                                       | 167       |
| Writing the Linear Servomotor Parameters                               | 168       |
| Selecting the Phase Sequence for a Linear Servomotor                   | 172       |
| Setting the Polarity Sensor                                            | 174       |
| Polarity Detection                                                     | 175       |
| Overtravel Function and Settings                                       | 178       |
| Holding Brake                                                          | 184       |
| Motor Stopping Methods for Servo OFF and Alarms                        | 188       |
| Resetting the Absolute Encoder                                         | 201       |
| Setting the Origin of the Absolute Encoder                             | 204       |
| Setting the Regenerative Resistor Capacity                             | 207       |
| Operation for Momentary Power Interruptions                            | 229       |
| SEMI F47 Function                                                      | 230       |
| Setting the Maximum Motor Speed                                        | 232       |
| Software Limits                                                        | 240       |
| Setting the Multiturn Limit                                            | 250       |
| Adjusting the Motor Current Detection Signal Offset                    | 264       |
| Forcing the Motor to Stop                                              | 268       |
| Overheat Protection                                                    | 271       |
| Triggers at Preset Positions                                           | 274       |
| Rotational Coordinate System                                           | 282       |
| Speed Ripple Compensation                                              | 390       |
| Selecting the Current Control Mode                                     | 422       |
| Setting the Current Gain Level                                         | 422       |
| Selecting the Speed Detection Method                                   | 422       |
| Fully-Closed Loop Control                                              | 481       |
| Σ-LINK II Function                                                     | 495       |
| Safety Function                                                        | 523       |
| Touch Probe                                                            | 574       |
| Sync Error Count Limit Setting                                         | 601       |

### • Functions Related to the Host Controller

| Function                                            | Reference |
|-----------------------------------------------------|-----------|
| Setting the Electronic Gear                         | 193       |
| Allocating the I/O Signal                           | 214       |
| ALM (Servo Alarm Output) Signal                     | 220       |
| /WARN (Warning Output) Signal                       | 221       |
| /TGON (Rotation Detection Output) Signal            | 221       |
| /S-RDY (Servo Ready Output) Signal                  | 222       |
| /V-CMP (Speed Coincidence Detection Output) Signal  | 223       |
| /COIN (Positioning Completion Output) Signal        | 224       |
| /NEAR (Near Output) Signal                          | 226       |
| Speed Limit during Torque Control                   | 226       |
| /VLT (Speed Limit Detection Output) Signal          | 227       |
| Encoder Divided Pulse Output                        | 233       |
| Selecting Torque Limits                             | 241       |
| Initializing the Vibration Detection Level          | 261       |
| Alarm Reset                                         | 683       |
| Replacing the Battery                               | 649       |
| Setting the Position Deviation Overflow Alarm Level | 320       |

### • Functions to Achieve Optimum Motions

| Function                              | Reference |
|---------------------------------------|-----------|
| Tuning-less Function                  | 324       |
| Autotuning without a Host Reference   | 349       |
| Autotuning with a Host Reference      | 362       |
| Custom Tuning                         | 370       |
| Anti-Resonance Control Adjustment     | 379       |
| Vibration Suppression                 | 386       |
| Load Fluctuation Compensation Control | 412       |
| Gain Switching                        | 415       |
| Friction Compensation                 | 418       |
| Gravity Compensation                  | 420       |
| Output Torque Compensation            | 421       |
| Backlash Compensation                 | 423       |
| Model Following Control               | 436       |
| Compatible Adjustment Functions       | 439       |
| Mechanical Analysis                   | 444       |
| Easy FFT                              | 445       |

## • Functions for Trial Operation during Setup

| Function                                                 | Reference |
|----------------------------------------------------------|-----------|
| Software Reset                                           | 259       |
| Trial Operation for the Servomotor without a Load        | 295       |
| Program JOG Operation                                    | 301       |
| Origin Search                                            | 306       |
| Test without a Motor                                     | 308       |
| Monitoring Machine Operation Status and Signal Waveforms | 462       |

## • Functions for Inspection and Maintenance

| Function                                 | Reference |
|------------------------------------------|-----------|
| Write Prohibition Setting for Parameters | 157       |
| Initializing Parameter Settings          | 160       |
| Automatic Detection of Connected Motor   | 164       |
| Monitoring Product Information           | 452       |
| Monitoring Product Life                  | 469       |
| Error Detection Setting                  | 473       |
| Displaying the Alarm History             | 684       |
| Alarm Tracing                            | 472       |

## **Selecting a SERVOPACK**

Provides information required to select SERVOPACKs, such as specifications, block diagrams, dimensional drawings, and connection examples.

| 2.1 | Ratin | gs and Specifications                               | 68 |
|-----|-------|-----------------------------------------------------|----|
|     | 2.1.1 | Ratings                                             | 68 |
|     | 2.1.2 | SERVOPACK Overload Protection Characteristics       | 71 |
|     | 2.1.3 | Specification                                       | 72 |
| 2.2 | Bloc  | k Diagrams                                          | 76 |
|     | 2.2.1 | SGDXS-R70A, -R90A, -1R6A                            | 76 |
|     | 2.2.2 | SGDXS-2R8A                                          | 76 |
|     | 2.2.3 | SGDXS-3R8A                                          | 77 |
|     | 2.2.4 | SGDXS-5R5A, -7R6A                                   | 77 |
|     | 2.2.5 | SGDXS-120A                                          | 78 |
|     | 2.2.6 | SGDXS-180A, -200A                                   | 79 |
|     | 2.2.7 | SGDXS-330A                                          | 80 |
|     | 2.2.8 | SGDXS-470A, -550A                                   | 81 |
|     | 2.2.9 | SGDXS-590A, -780A                                   | 82 |
| 2.3 | Exte  | nal Dimensions                                      | 83 |
|     | 2.3.1 | Front Cover Dimensions and Connector Specifications | 83 |
|     | 2.3.2 | SERVOPACK External Dimensions                       | 84 |
| 2.4 |       | ples of Standard Connections between SERVOPACKs and |    |
|     | -     | heral Devices                                       |    |
|     | 2.4.1 | •                                                   |    |
|     | 2.4.2 | Linear Servomotor                                   | 93 |

## 2.1 Ratings and Specifications

This section gives the ratings and specifications of SERVOPACKs.

## 2.1.1 Ratings

## (1) Three-Phase, 200 VAC

| Continuous Output Current   Camain      | Mod        | del SGDX             | S-                                    | R70A | R90A | 1R6A | 2R8A     | 3R8A     | 5R5A       | 7R6A     | 120A      | 180A  | 200A  | 330A  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------|---------------------------------------|------|------|------|----------|----------|------------|----------|-----------|-------|-------|-------|
| Carms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                      |                                       | 0.05 | 0.1  | 0.2  | 0.4      | 0.5      | 0.75       | 1.0      | 1.5       | 2.0   | 3.0   | 5.0   |
| Dut Current [Arms]   2.1   3.2   5.9   9.3   11   16.9   17   28   42   56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | S Output C           | urrent                                | 0.66 | 0.91 | 1.6  | 2.8      | 3.8      | 5.5        | 7.6      | 11.6      | 18.5  | 19.6  | 32.9  |
| Main Circuit   Input Current [Arms] */                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                      | um Out-                               | 2.1  | 3.2  | 5.9  | 9.3      | 11       | 16.9       | 17       | 28        | 42    | 56    | 84    |
| Circuit   Input Current   I    | Main       | Power S              | upply                                 |      |      | 2    | 00 VAC t | o 240 VA | C, -15% to | +10%, 50 | ) Hz/60 H | [z    |       |       |
| Control   Input Current   [Arms] */                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                      |                                       | 0.4  | 0.8  | 1.3  | 2.5      | 3.0      | 4.1        | 5.7      | 7.3       | 10    | 15    | 25    |
| Power Supply Capacity [kVA]   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.25   0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | Power S              | upply                                 |      |      | 2    | 00 VAC t | o 240 VA | C, -15% to | +10%, 50 | ) Hz/60 H | [z    |       |       |
| Name      | Control    | Input Cu<br>[Arms] * | rrent                                 | 0.2  | 0.2  | 0.2  | 0.2      | 0.2      | 0.2        | 0.2      | 0.2       | 0.25  | 0.25  | 0.3   |
| Power Loss [W]         5.0         7.0         11.9         22.5         28.5         38.9         49.2         72.6         104.2         114.2         2           Control Circuit Power Loss [W]         12         12         12         12         14         14         14         15         16         16           Total Power Loss [W]         17.0         19.0         23.9         34.5         42.5         52.9         63.2         87.6         120.2         130.2         2           Resistance [Ω]           Capacit- y [W]         -         -         -         -         -         60         60         60         60         60         60           Regenerative Resistor           Resistor         Allowable Power Consumption         -         -         -         -         -         -         15         15         30         30         30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | ply Capaci           | ty [kVA]                              | 0.2  | 0.3  | 0.5  | 1.0      | 1.3      | 1.6        | 2.3      | 3.2       | 4.0   | 5.9   | 7.5   |
| Loss *1   Power Loss [W]   12   12   12   14   14   15   16   16     Total Power Loss [W]   17.0   19.0   23.9   34.5   42.5   52.9   63.2   87.6   120.2   130.2   2     Resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                      |                                       | 5.0  | 7.0  | 11.9 | 22.5     | 28.5     | 38.9       | 49.2     | 72.6      | 104.2 | 114.2 | 226.6 |
| Resistance   -   -   -   -   -   -   -   -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                      |                                       | 12   | 12   | 12   | 12       | 14       | 14         | 14       | 15        | 16    | 16    | 19    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                      |                                       | 17.0 | 19.0 | 23.9 | 34.5     | 42.5     | 52.9       | 63.2     | 87.6      | 120.2 | 130.2 | 245.6 |
| Regenerative   Resistor   Resistor   Resistor   Resistor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                      | ance                                  | _    | _    | _    | _        | 35       | 35         | 35       | 20        | 12    | 10    | 6     |
| Regenerative Resistor |            |                      |                                       | -    | -    | -    | -        | 60       | 60         | 60       | 60        | 60    | 60    | 180   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tive       | erative              | ble<br>Power<br>Con-<br>sump-<br>tion | -    | -    | -    | -        | 15       | 15         | 15       | 30        | 30    | 30    | 36    |
| Minimum Allowable External Resistance $[\Omega]$ 40 40 40 35 35 35 20 12 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | able External        |                                       | 40   | 40   | 40   | 40       | 35       | 35         | 35       | 20        | 12    | 10    | 6     |
| Overvoltage Category III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Overvoltag | e Category           | /                                     |      |      |      |          |          | III        |          |           |       |       |       |

<sup>\*1</sup> This is the net value at the rated load.

| Model                                    | SGDXS-                                           | 470A   | 550A                    | 590A                   | 780A    |  |  |  |
|------------------------------------------|--------------------------------------------------|--------|-------------------------|------------------------|---------|--|--|--|
| Maximum Applicabl                        | e Motor Capacity [kW]                            | 6.0    | 7.5                     |                        |         |  |  |  |
| Continuous Output C                      | Current [Arms]                                   | 46.9   | 54.7                    | 58.6                   | 78.0    |  |  |  |
| Instantaneous Maxim [Arms]               | num Output Current                               | 110    | 130                     | 140                    | 170     |  |  |  |
|                                          | Power Supply                                     | :      | 200 VAC to 240 VAC, -15 | 5% to +10%, 50 Hz/60 I | Hz      |  |  |  |
| Main Circuit                             | Input Current [Arms]                             | 29     | 37                      | 54                     | 73      |  |  |  |
| Control                                  | Power Supply                                     |        | 200 VAC to 240 VAC, -15 | 5% to +10%, 50 Hz/60 I | Hz      |  |  |  |
|                                          | Input Current [Arms]                             | 0.3    | 0.3                     | 0.4                    | 0.4     |  |  |  |
| Power Supply Capac                       | ity [kVA] */                                     | 10.7   | 14.6                    | 21.7                   | 29.6    |  |  |  |
| Instantaneous Maxim [Arms]  Main Circuit | Main Circuit Power<br>Loss [W]                   | 271.7  | 326.9                   | 365.3                  | 501.4   |  |  |  |
|                                          | Control Circuit<br>Power Loss [W]                | 21     | 21                      | 28                     | 28      |  |  |  |
|                                          | Total Power Loss<br>[W]                          | 292.7  | 347.9                   | 393.3                  | 529.4   |  |  |  |
|                                          | Resistance [Ω]                                   | 5 *2   | 3.13 */                 | 3.13 *3                | 3.13 *3 |  |  |  |
|                                          | Capacity [W]                                     | 880 *2 | 1760 *3                 | 1760 *3                | 1760 *3 |  |  |  |
|                                          | Allowable Power<br>Consumption [W]               | 180 *2 | 350 *3                  | 350 *3                 | 350 *3  |  |  |  |
|                                          | Minimum Allowable External Resistance $[\Omega]$ | 5      | 2.9                     | 2.9                    | 2.9     |  |  |  |
| Overvoltage Categor                      | y                                                |        | I                       | II                     |         |  |  |  |

This is the net value at the rated load.

## Single-Phase, 200 VAC

| ı               | Model SGDXS-                                                                                         | R70A                                          | R90A      | 1R6A           | 2R8A           | 5R5A     | 120A  |  |  |
|-----------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------|----------------|----------------|----------|-------|--|--|
| Maximum Appli   | Maximum Applicable Motor Capacity [kW]         0.05         0.1         0.2         0.4         0.75 |                                               |           |                |                |          | 1.5   |  |  |
| Continuous Outp | out Current [Arms]                                                                                   | 0.66                                          | 0.91      | 1.6            | 2.8            | 5.5      | 11.6  |  |  |
| Instantaneous M | nneous Maximum Output Current [Arms] 2.1 3.2 5.9 9.3 16.9                                            |                                               |           |                |                | 28       |       |  |  |
| Main Circuit    | Power Supply                                                                                         |                                               | 200 VAC 1 | o 240 VAC, -15 | 5% to +10%, 50 | Hz/60 Hz |       |  |  |
|                 | Input Current [Arms] *1                                                                              | 0.8                                           | 1.6       | 2.4            | 5.0            | 8.7      | 16 *2 |  |  |
|                 | Power Supply                                                                                         | 200 VAC to 240 VAC, -15% to +10%, 50 Hz/60 Hz |           |                |                |          |       |  |  |
| Control         | Input Current [Arms] *1                                                                              | 0.2                                           | 0.2       | 0.2            | 0.2            | 0.2      | 0.2   |  |  |
| Power Supply Ca | apacity [kVA] */                                                                                     | 0.2                                           | 0.3       | 0.6            | 1.2            | 1.9      | 4.0   |  |  |
|                 | Main Circuit Power Loss [W]                                                                          | 5.0                                           | 7.1       | 12.1           | 23.7           | 39.2     | 72.6  |  |  |
| Power Loss *1   | Control Circuit Power Loss [W]                                                                       | 12                                            | 12        | 12             | 12             | 14       | 15    |  |  |
|                 | Total Power Loss [W]                                                                                 | 17.0                                          | 19.1      | 24.1           | 35.7           | 53.2     | 87.6  |  |  |

Continued on next page.

This value is for the optional JUSP-RA29-E regenerative resistor unit. This value is for the optional JUSP-RA05-E regenerative resistor unit.

Continued from previous page.

| Model SGDXS-             |                          |                                            | R70A | R90A | 1R6A | 2R8A | 5R5A | 120A |
|--------------------------|--------------------------|--------------------------------------------|------|------|------|------|------|------|
| Regenerative<br>Resistor |                          | Resistance $[\Omega]$                      | -    | _    | _    | _    | 35   | 20   |
|                          | Built-In                 | Capacity [W]                               | -    | -    | _    | _    | 60   | 60   |
|                          | Regenerative<br>Resistor | Allowable<br>Power Con-<br>sumption<br>[W] | -    | -    | -    | -    | 15   | 30   |
|                          |                          | Minimum Allowable External Resistance [Ω]  |      | 40   | 40   | 40   | 35   | 20   |
| Overvoltage Category     |                          | III                                        |      |      |      |      |      |      |

<sup>\*1</sup> This is the net value at the rated load.

## (3) 270 VDC

| Мо                         | R70A                              | R90A                             | 1R6A | 2R8A   | 3R8A        | 5R5A        | 7R6A | 120A |      |  |  |
|----------------------------|-----------------------------------|----------------------------------|------|--------|-------------|-------------|------|------|------|--|--|
| Maximum App<br>[kW]        | 0.05                              | 0.1                              | 0.2  | 0.4    | 0.5         | 0.75        | 1.0  | 1.5  |      |  |  |
| Continuous Ou              | tput Current [Arms]               | 0.66                             | 0.91 | 1.6    | 2.8         | 3.8         | 5.5  | 7.6  | 11.6 |  |  |
| Instantaneous Mrent [Arms] | Maximum Output Cur-               | 2.1                              | 3.2  | 5.9    | 9.3         | 11.0        | 16.9 | 17.0 | 28.0 |  |  |
| Main Circuit               | Power Supply                      |                                  |      | 270 VI | DC to 324 V | DC, -15% to | +10% |      |      |  |  |
|                            | Input Current [Arms]              | 0.5                              | 1.0  | 1.5    | 3.0         | 3.8         | 4.9  | 6.9  | 11   |  |  |
|                            | Power Supply                      | 270 VDC to 324 VDC, -15% to +10% |      |        |             |             |      |      |      |  |  |
| Control                    | Input Current [Arms]              | 0.2                              | 0.2  | 0.2    | 0.2         | 0.2         | 0.2  | 0.2  | 0.2  |  |  |
| Power Supply               | Capacity [kVA] */                 | 0.2                              | 0.3  | 0.6    | 1           | 1.4         | 1.6  | 2.3  | 3.2  |  |  |
|                            | Main Circuit Power<br>Loss [W]    | 4.4                              | 5.9  | 9.8    | 17.5        | 23.0        | 30.7 | 38.7 | 55.8 |  |  |
| Power Loss *1              | Control Circuit Power<br>Loss [W] | 12                               | 12   | 12     | 12          | 14          | 14   | 14   | 15   |  |  |
|                            | Total Power Loss [W]              | 16.4                             | 17.9 | 21.8   | 29.5        | 37.0        | 44.7 | 52.7 | 70.8 |  |  |
| Overvoltage Ca             | ntegory                           |                                  | Ш    |        |             |             |      |      |      |  |  |

<sup>\*1</sup> This is the net value at the rated load.

| N                      | lodel SGDXS-                | 180A                             | 200A | 330A | 470A | 550A | 590A | 780A |  |  |
|------------------------|-----------------------------|----------------------------------|------|------|------|------|------|------|--|--|
| Maximum App            | licable Motor Capacity [kW] | 2.0                              | 3.0  | 5.0  | 6.0  | 7.5  | 11.0 | 15.0 |  |  |
| Continuous Ou          | tput Current [Arms]         | 18.5                             | 19.6 | 32.9 | 46.9 | 54.7 | 58.6 | 78.0 |  |  |
| Instantaneous N [Arms] | Maximum Output Current      | 42.0                             | 56.0 | 84.0 | 110  | 130  | 140  | 170  |  |  |
|                        | Power Supply                | 270 VDC to 324 VDC, -15% to +10% |      |      |      |      |      |      |  |  |
| Main Circuit           | Input Current [Arms] *1     | 14                               | 20   | 34   | 36   | 48   | 68   | 92   |  |  |
| a 1                    | Power Supply                | 270 VDC to 324 VDC, -15% to +10% |      |      |      |      |      |      |  |  |
| Control                | Input Current [Arms] *1     | 0.25                             | 0.25 | 0.3  | 0.3  | 0.3  | 0.4  | 0.4  |  |  |
| Power Supply (         | Capacity [kVA] *1           | 4.0                              | 5.9  | 7.5  | 10.7 | 14.6 | 21.7 | 29.6 |  |  |

Continued on next page.

<sup>\*2</sup> Derate to 12 Arms for UL certification.

Continued from previous page.

| Model SGDXS-         |                                   | 180A | 200A | 330A  | 470A  | 550A  | 590A  | 780A  |
|----------------------|-----------------------------------|------|------|-------|-------|-------|-------|-------|
| Power Loss *1        | Main Circuit Power Loss [W]       | 82.7 | 83.5 | 146.2 | 211.6 | 255.3 | 243.6 | 343.4 |
|                      | Control Circuit Power<br>Loss [W] | 16   | 16   | 19    | 21    | 21    | 28    | 28    |
|                      | Total Power Loss [W]              | 98.7 | 99.5 | 165.2 | 232.6 | 276.3 | 271.6 | 371.4 |
| Overvoltage Category |                                   | III  |      |       |       |       |       |       |

<sup>\*1</sup> This is the net value at the rated load.

### 2.1.2 SERVOPACK Overload Protection Characteristics

The overload detection level is set for hot start conditions with a SERVOPACK surrounding air temperature of 55°C.

A.710 or A.720 (an overload alarm) will occur if overload operation that exceeds the overload protection characteristics shown in the following diagram (i.e., operation on the right side of the applicable line) is performed.

The actual overload detection level will be the detection level of the connected SERVOPACK or servomotor that has the lower overload protection characteristics.

In most cases, that will be the overload protection characteristics of the servomotor.

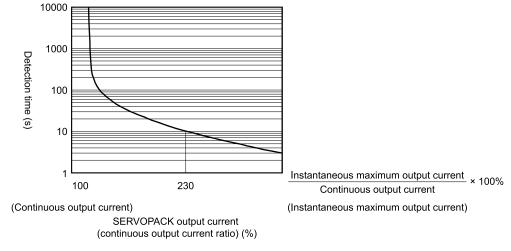



Figure 2.1 SGDXS-R70A, -R90A, -1R6A, -2R8A

### Note:

- The above overload protection characteristics do not mean that you can perform continuous duty operation with an output of 100% or higher.
- For a Yaskawa-specified combination of SERVOPACK and servomotor, maintain the effective torque within the continuous duty zone of the torque-motor speed characteristic of the servomotor.
- This overload protection function is not a protection function related to speed. This product does not have a built-in thermal memory hold function.

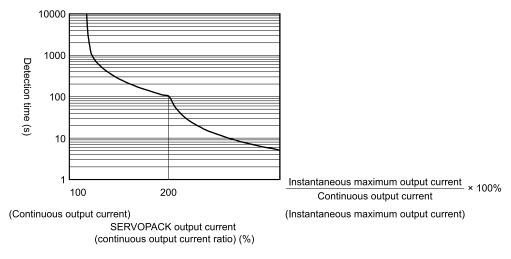



Figure 2.2 SGDXS-3R8A, -5R5A, -7R6A, -120A, -180A, -200A, -330A, -470A, -550A, -590A, -780A

#### Note:

- The above overload protection characteristics do not mean that you can perform continuous duty operation with an output of 100% or higher.
- For a Yaskawa-specified combination of SERVOPACK and servomotor, maintain the effective torque within the continuous duty zone of the torque-motor speed characteristic of the servomotor.
- This overload protection function is not a protection function related to speed. This product does not have a built-in thermal memory hold function.

## 2.1.3 Specification

## (1) Environmental Conditions

| Item                           | Specification                                                                                                                                                                   |  |  |  |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Surrounding Air<br>Temperature | -5°C to 55°C (With derating, usage is possible between 55°C and 60°C.)  Refer to the following section for derating specifications.  3.6 Derating Specifications on page 101    |  |  |  |
| Storage Temperature */         | -20°C to 85°C                                                                                                                                                                   |  |  |  |
| Surrounding Air<br>Humidity    | 95% relative humidity max. (with no freezing or condensation)                                                                                                                   |  |  |  |
| Storage Humidity               | 95% relative humidity max. (with no freezing or condensation)                                                                                                                   |  |  |  |
| Vibration Resistance           | When there is continuous vibration: 10 Hz to 55 Hz, acceleration amplitude 5.9 m/s² (0.6G)                                                                                      |  |  |  |
| Impact Resistance              | 19.6 m/s <sup>2</sup>                                                                                                                                                           |  |  |  |
| Degree of Protection           | IP20: Models SGDXS-R70A, -R90A, -1R6A, -2R8A, -3R8A, -5R5A, -7R6A, -120A<br>IP10: Models SGDXS-180A, -200A, -330A, -470A, -550A, -590A, -780A                                   |  |  |  |
| Pollution Degree               | <ul> <li>Must be no corrosive or flammable gases.</li> <li>Must be no exposure to water, oil, or chemicals.</li> <li>Must be no dust, salts, or iron dust.</li> </ul>           |  |  |  |
| Altitude */                    | 1000 m max. (With derating, usage is possible between 1000 m and 2000 m.)  Refer to the following section for derating specifications.  3.6 Derating Specifications on page 101 |  |  |  |
| Others                         | Do not use the SERVOPACK in the following locations: Locations subject to static electricity noise, strong electromagnetic/magnetic fields, or radioactivity                    |  |  |  |

<sup>\*1</sup> If you combine a Σ-X-series SERVOPACK with a Σ-V-series option module, the following Σ-V-series SERVOPACKs specifications must be used: a surrounding air temperature of 0°C to 55°C and an altitude of 1000 m max. Also, the applicable surrounding range cannot be increased by derating.

# (2) I/O Signals

| Item                                                      |                                        | Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|-----------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Encoder Divided Pulse Outp                                | ut                                     | Phase A, phase B, phase C: Line-driver output Number of divided output pulses: Any setting is allowed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Overheat Protection Input                                 |                                        | Number of input points: 1<br>Input voltage range: 0 V to +5 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Outputs for Triggers at Preset Positions                  |                                        | Number of output points: 3 (output method: a line driver output) Output signals: High-Speed Output Signal for Triggers at Preset Positions 1 to 3 (HSO1 to 3) Note: Normal Output Signal for Triggers at Preset Positions 1 to 3 (/NSO1 to 3) are used by allocating the signals to sequence output signals.                                                                                                                                                                                                                                                                                                |  |  |
|                                                           |                                        | Allowable voltage range: 24 VDC ±20%<br>Number of input points: 7 (input method: sink inputs or source inputs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Sequence Input Signals                                    | Input Signals That Can Be<br>Allocated | <ul> <li>Input signals:</li> <li>P-OT (Forward Drive Prohibit Input) and N-OT (Reverse Drive Prohibit Input) signals</li> <li>/Probe1 (Probe 1 Latch Input) signal</li> <li>/Probe2 (Probe 2 Latch Input) signal</li> <li>/Home (Home Switch Input) signal</li> <li>/P-CL (Forward External Torque Limit Input) and /N-CL (Reverse External Torque Limit Input) signals</li> <li>FSTP (Forced Stop Input) signal</li> <li>A signal can be allocated and the positive and negative logic can be changed.</li> </ul>                                                                                          |  |  |
|                                                           | Fixed Output                           | Allowable voltage range: 5 VDC to 30 VDC  Number of output points: 1 (output method: a photocoupler output (isolated))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                                           |                                        | Output signal: ALM (Servo Alarm Output) signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                                                           |                                        | Allowable voltage range: 5 VDC to 30 VDC<br>Number of output points: 3 (output method: a photocoupler output<br>(isolated))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Sequence Output Signals  Output Signals That of Allocated |                                        | Output signals:  • /COIN (Positioning Completion Output) signal  • /V-CMP (Speed Coincidence Detection Output) signal  • /TGON (Rotation Detection Output) signal  • /S-RDY (Servo Ready Output) Signal  • /CLT (Torque Limit Detection Output) signal  • /VLT (Speed Limit Detection Output) signal  • /WLT (Speed Limit Detection Output) signal  • /BK (Brake Output) signal  • /WARN (Warning Output) signal  • /NEAR (Near Output) signal  • /NSO1 to 3 (Normal Output for Triggers at Preset Positions 1 to 3) signals  A signal can be allocated and the positive and negative logic can be changed. |  |  |

## (3) Function

| Item                |                                                             |  | Specification                                                       |
|---------------------|-------------------------------------------------------------|--|---------------------------------------------------------------------|
|                     | usb Communications (CN7) Interfactions (CN7) Communications |  | Personal computer (with SigmaWin+), digital operator (JUSP-OP07A-E) |
| Communications      |                                                             |  | Conforms to USB2.0 standard (12 Mbps).                              |
| Displays/Indicators |                                                             |  | CHARGE, RUN, ERR, L/A A, L/A B, and one-digit seven-segment LED     |

Continued on next page.

Continued from previous page.

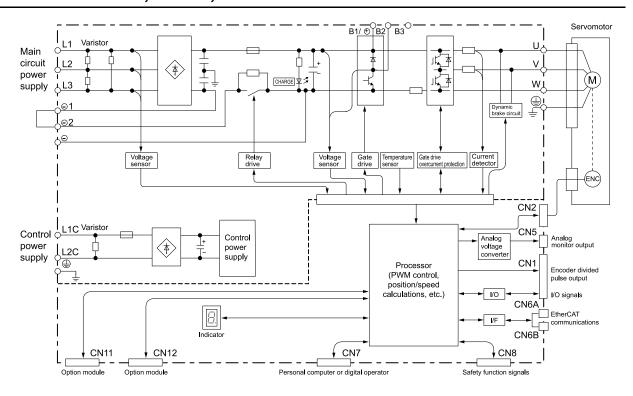
|                            | Item                                   | Specification                                                                                                                                                                                                                                                                                                                                           |
|----------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EtherCAT Communic          | eations Setting Switches               | ID Selector (S1 and S2) positions: 16                                                                                                                                                                                                                                                                                                                   |
| Date of the community      | Applicable Communications<br>Standards | IEC 61158 Type 12, IEC 61800-7 CiA402 drive profile                                                                                                                                                                                                                                                                                                     |
|                            | Physical Layer                         | 100BASE-TX (IEEE802.3)                                                                                                                                                                                                                                                                                                                                  |
|                            | Communications Connectors              | CN6A (RJ45): EtherCAT signal input connector<br>CN6B (RJ45): EtherCAT signal output connector                                                                                                                                                                                                                                                           |
|                            | Cable                                  | Category 5, 4 shielded twisted pairs The cable is automatically detected with AUTO MDIX.                                                                                                                                                                                                                                                                |
|                            | SyncManager                            | SM0: Mailbox output, SM1: Mailbox input, SM2: Process data output, and SM3: Process data input                                                                                                                                                                                                                                                          |
| EtherCAT<br>Communications | FMMU                                   | FMMU 0: Mapped in process data output (RxPDO) area. FMMU 1: Mapped in process data input (TxPDO) area. FMMU 2: Mapped to mailbox status.                                                                                                                                                                                                                |
|                            | EtherCAT Commands (Data Link Layer)    | APRD, APWR, APRW, FPRD, FPWR, FPRW, BRD, BWR, BRW, LRD, LWR, LRW, ARMW, FRMW                                                                                                                                                                                                                                                                            |
|                            | Process Data                           | Assignments can be changed with PDO mapping.                                                                                                                                                                                                                                                                                                            |
|                            | Mailbox                                | Emergency messages, SDO requests, SDO responses                                                                                                                                                                                                                                                                                                         |
|                            | Distributed Clocks                     | Free-run mode and DC mode (can be switched.) Applicable DC cycles: 62.5 µs to 4 ms in 62.5-µs increments                                                                                                                                                                                                                                                |
|                            | Slave Information IF                   | 4 KB                                                                                                                                                                                                                                                                                                                                                    |
|                            | LED Indicator                          | During EtherCAT communications: L/A x 2 EtherCAT communications status: RUN x 1 EtherCAT error status: ERR x 1                                                                                                                                                                                                                                          |
| CiA402 Drive Profile       |                                        | <ul> <li>Homing Mode</li> <li>Profile Position Mode</li> <li>Interpolated Position Mode</li> <li>Profile Velocity Mode</li> <li>Profile Torque Mode</li> <li>Cyclic Synchronous Position Mode</li> <li>Cyclic Synchronous Velocity Mode</li> <li>Cyclic Synchronous Torque Mode</li> <li>Touch Probe Function</li> <li>Torque Limit Function</li> </ul> |
| Analog Monitor (CN5)       |                                        | Number of points: 2 Output voltage range: ±10 VDC (effective linearity range: ±8 V) Resolution: 16 bits Accuracy: ±20 mV (Typ) Maximum output current: ±10 mA                                                                                                                                                                                           |
| Dynamic Brake (DB)         |                                        | Activated when a servo alarm or overtravel (OT) occurs, or when the power to the main circuit or servo is OFF.                                                                                                                                                                                                                                          |
| Regenerative Processing    |                                        | Built-in (An external resistor must be connected to the SGDXS-470A to -780A.)                                                                                                                                                                                                                                                                           |
| Overtravel (OT) Prevention |                                        | Stopping with dynamic brake, deceleration to a stop, or coasting to a stop for the P-OT (Forward Drive Prohibit Input) or N-OT (Reverse Drive Prohibit Input) signal                                                                                                                                                                                    |
| Protective Functions       |                                        | Overcurrent, overvoltage, undervoltage, overload, regeneration error, etc.                                                                                                                                                                                                                                                                              |
| Utility Functions          |                                        | Gain tuning, alarm history, jogging operation, origin search, etc.                                                                                                                                                                                                                                                                                      |
|                            |                                        | Continued on next page.                                                                                                                                                                                                                                                                                                                                 |

Continued on next page.

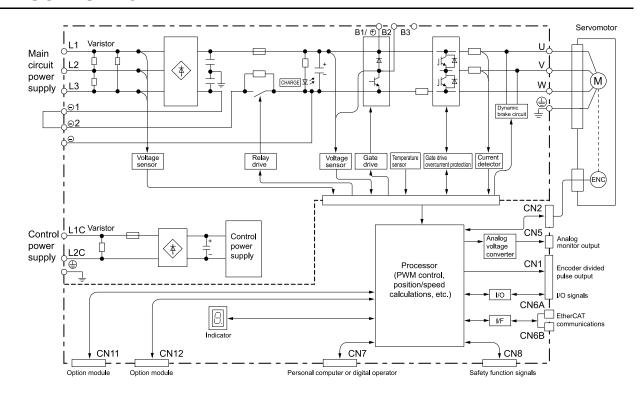
Continued from previous page.

| Item             |                         | Specification                                                           |
|------------------|-------------------------|-------------------------------------------------------------------------|
|                  | Inputs                  | /HWBB1 and /HWBB2: Base block signals for power modules                 |
| Safety Functions | Output                  | EDM1: Monitors the status of built-in safety circuit (fixed output). *1 |
|                  | Applicable Standards *2 | ISO13849-1 PLe (Category 3) and IEC61508 SIL3                           |

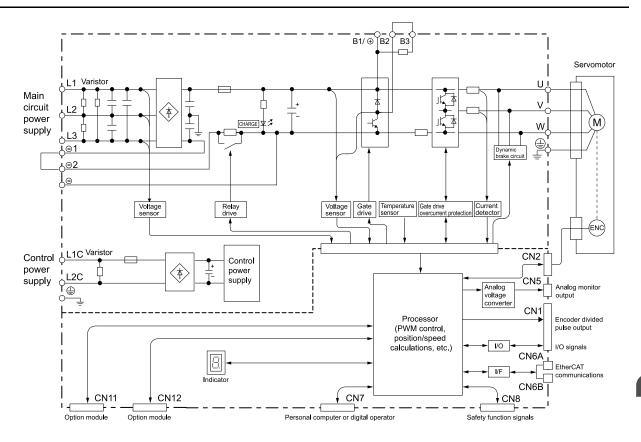
Whether or not you use the EDM1 signal does not affect the performance level of safety parameters.


## Option

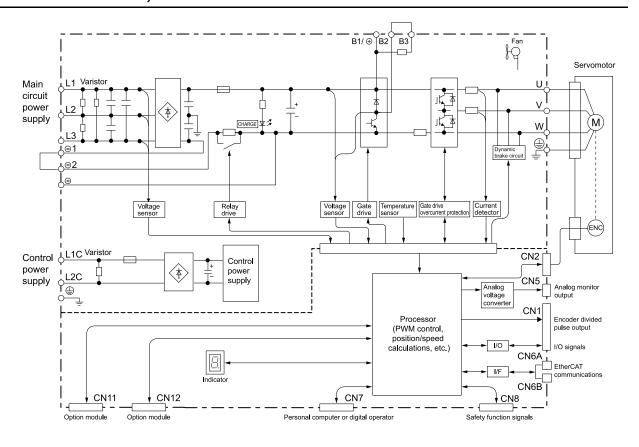
| ltem                      | Specification       |
|---------------------------|---------------------|
| Applicable Option Modules | Fully-closed module |


Always perform risk assessment for the system and confirm that the safety requirements are met.

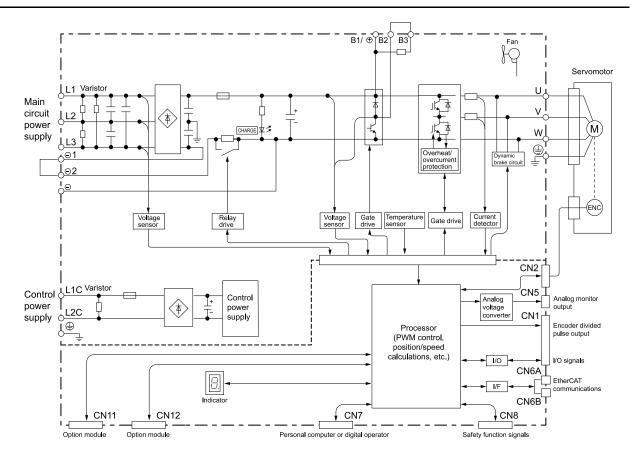
# 2.2 Block Diagrams


## 2.2.1 SGDXS-R70A, -R90A, -1R6A

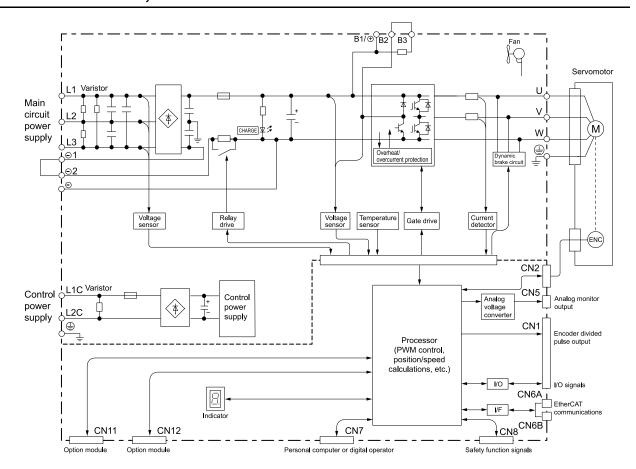



#### 2.2.2 SGDXS-2R8A

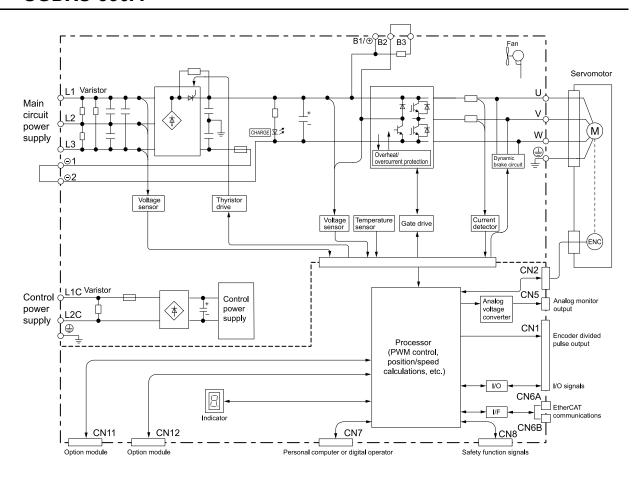



#### 2.2.3 SGDXS-3R8A

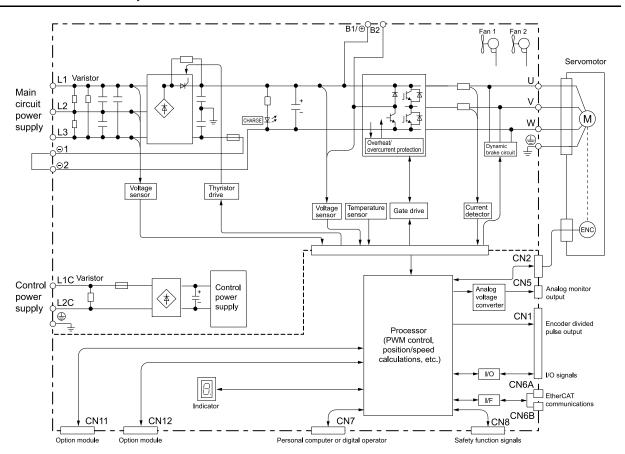



#### 2.2.4 SGDXS-5R5A, -7R6A

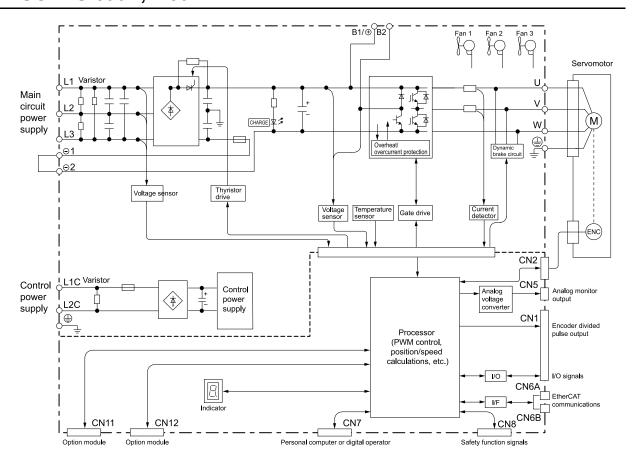



### 2.2.5 SGDXS-120A




## 2.2.6 SGDXS-180A, -200A



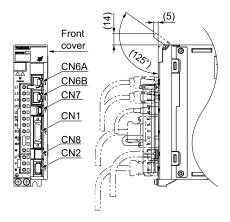

### 2.2.7 SGDXS-330A



#### 2.2.8 SGDXS-470A, -550A



## 2.2.9 SGDXS-590A, -780A




## 2.3 External Dimensions

## 2.3.1 Front Cover Dimensions and Connector Specifications

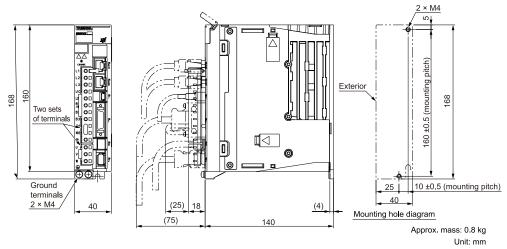
The front cover dimensions and panel connector section are the same for all capacities. Refer to the following figures and table.

#### (1) Front Cover Dimensions

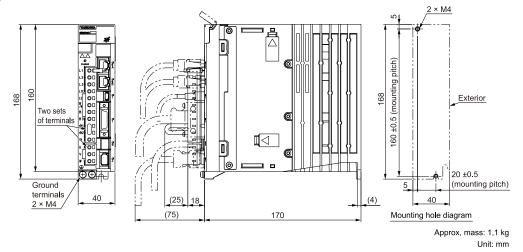


### (2) Connector Specifications

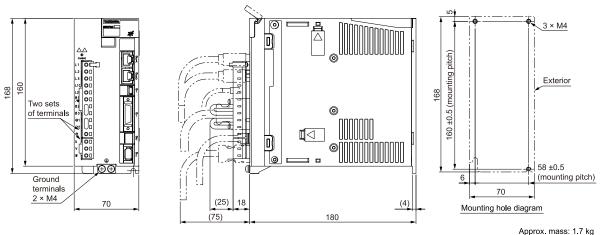
| Connector No. | Model        | Number of Pins | Manufacturer                |
|---------------|--------------|----------------|-----------------------------|
| CN1           | 10226-59A3MB | 26             | 3M Japan Limited            |
| CN2           | 53984-0681   | 6              | Molex Japan Co., Ltd.       |
| CN6A/B        | 3-1734579-4  | 8              | Tyco Electronics Japan G.K. |
| CN7           | 2342993-1    | 5              | Tyco Electronics Japan G.K. |
| CN8           | 2294415-1    | 8              | Tyco Electronics Japan G.K. |


Note:

The above connectors or their equivalents are used for the SERVOPACKs.

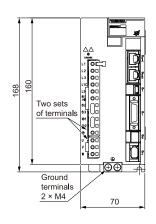

#### 2.3.2 SERVOPACK External Dimensions

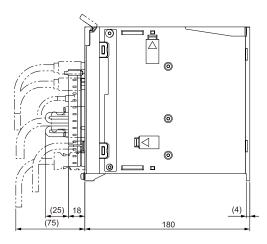
### (1) Base-mounted SERVOPACKs

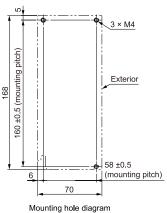

#### (a) SGDXS-R70A, -R90A, -1R6A



#### (b) SGDXS-2R8A

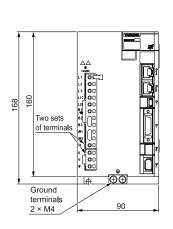


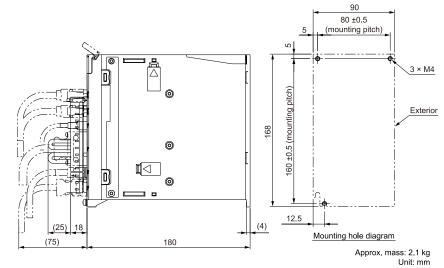


#### (c) SGDXS-3R8A



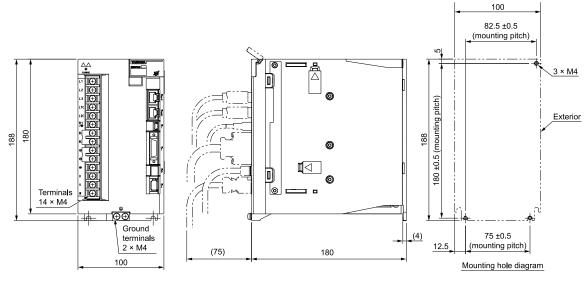

Unit: mm

#### (d) SGDXS-5R5A, -7R6A





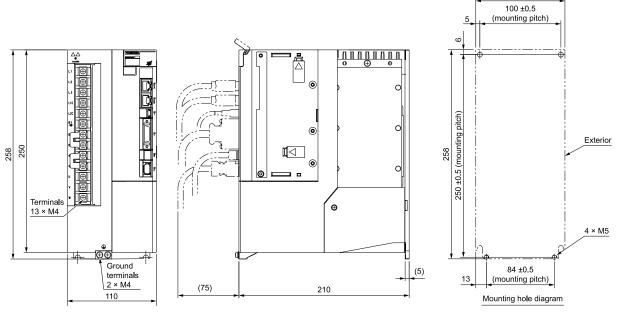


Approx. mass: 1.6 kg Unit: mm

#### (e) SGDXS-120A





#### (f) SGDXS-180A, -200A



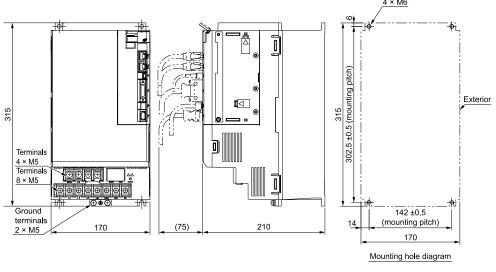

Approx. mass: 2.8 kg Unit: mm

Note:

These drawings show the SERVOPACK with the terminal cover removed.

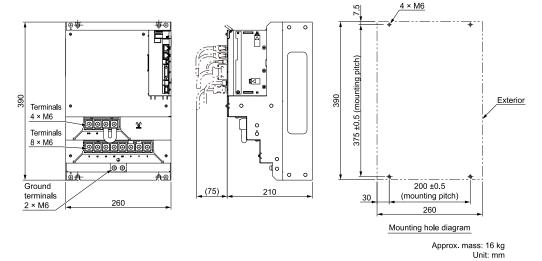
#### (g) SGDXS-330A




Approx. mass: 4.4 kg Unit: mm

110

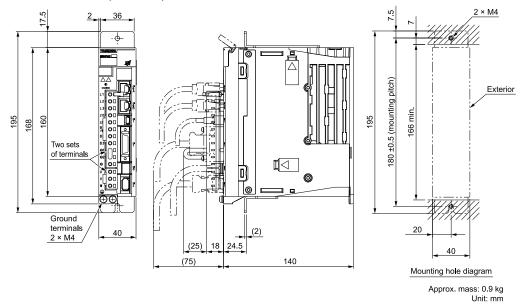
#### Note:


These drawings show the SERVOPACK with the terminal cover removed.

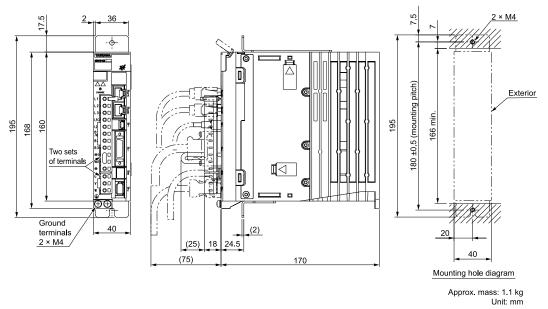
#### (h) SGDXS-470A, -550A



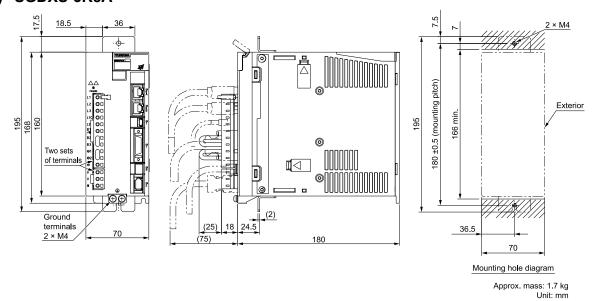
Approx. mass: 9.0 kg Unit: mm


#### (i) SGDXS-590A, -780A

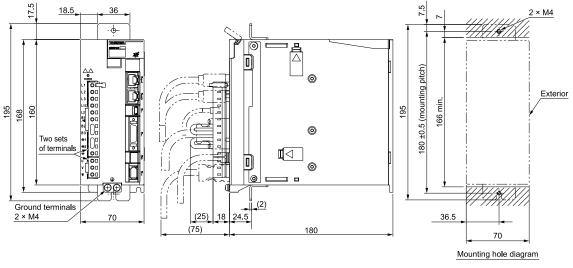



#### (2) **Rack-mounted SERVOPACKs**

Hardware Option Code: 0001

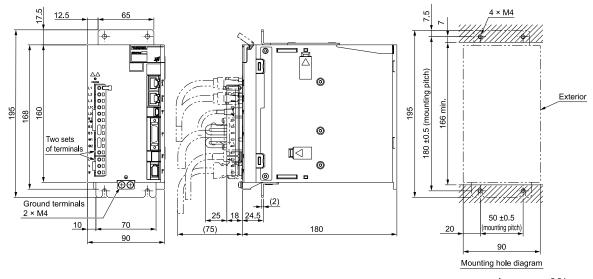

#### (a) SGDXS-R70A, -R90A, -1R6A




### (b) SGDXS-2R8A

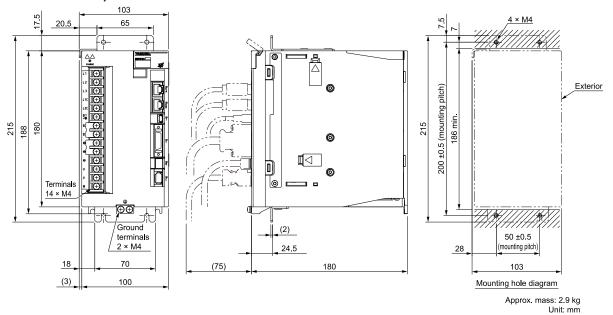


(c) SGDXS-3R8A




### (d) SGDXS-5R5A, -7R6A

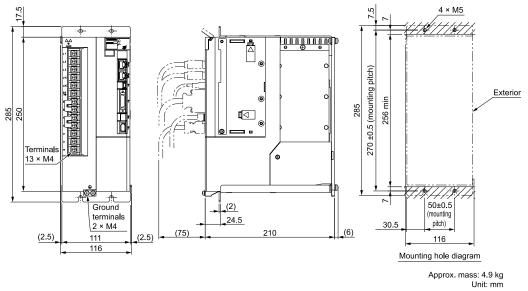



Approx. mass: 1.7 kg Unit: mm

#### (e) SGDXS-120A



Approx. mass: 2.2 kg Unit: mm


### (f) SGDXS-180A, -200A

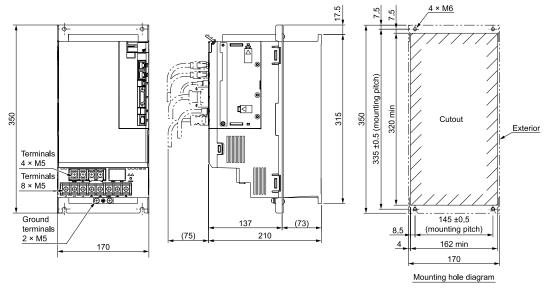


#### Note:

These drawings show the SERVOPACK with the terminal cover removed.

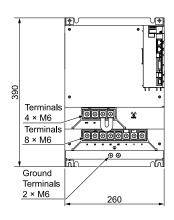
#### (g) SGDXS-330A

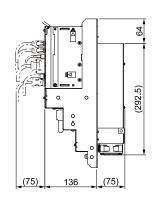


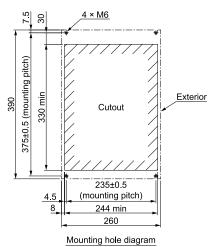

#### Note:

These drawings show the SERVOPACK with the terminal cover removed.

## (3) Duct-ventilated SERVOPACKs


Hardware Option Code: 0001

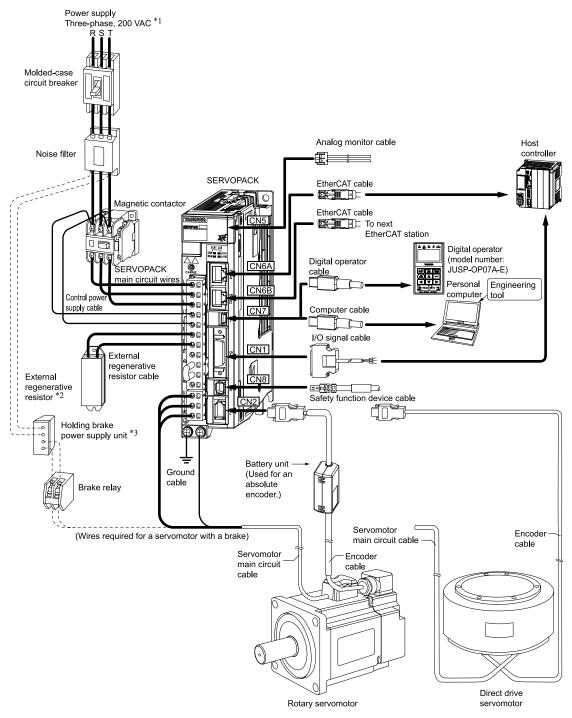

#### (a) SGDXS-470A, -550A




Approx. mass: 9.0 kg Unit: mm

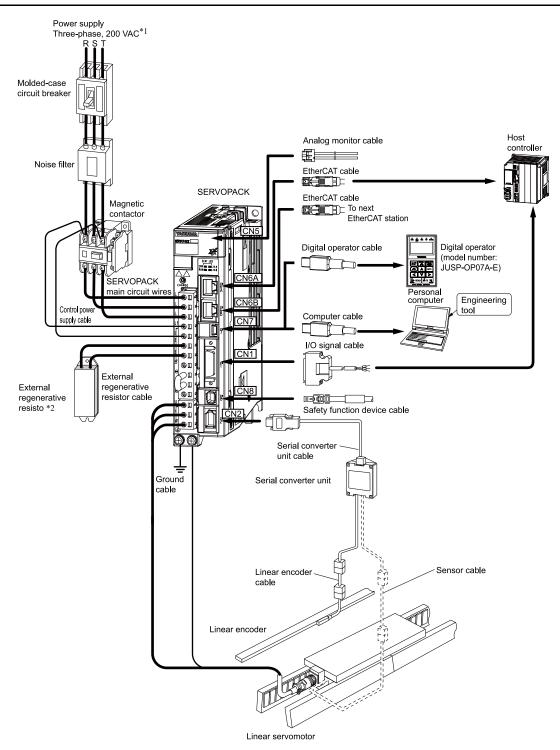
#### (b) SGDXS-590A, -780A








Approx. mass: 15 kg Unit: mm


# 2.4 Examples of Standard Connections between SERVO-PACKs and Peripheral Devices

#### 2.4.1 Rotary Servomotor



- \*1 This example is for a SERVOPACK with a three-phase, 200-VAC power supply input. The pin layout of the main circuit connector depends on the voltage.
- \*2 External regenerative resistors are not provided by Yaskawa.
- \*3 The power supply for the holding brake is not provided by Yaskawa. Select a power supply based on the holding brake specifications. If you use a 24-V brake, install a separate power supply for the 24-VDC power supply from other power supplies, such as the one for the I/O signals of the CN1 connector. If the power supply is shared, the I/O signals may malfunction.

#### 2.4.2 Linear Servomotor



- \*1 This example is for a SERVOPACK with a three-phase, 200-VAC power supply input. The pin layout of the main circuit connector depends on the voltage.
- \*2 External regenerative resistors are not provided by Yaskawa.

# **SERVOPACK Installation**

This chapter provides information on installing SERVOPACKs in the required locations.

| 3.1 | Insta | llation Precautions                                                              | 96  |
|-----|-------|----------------------------------------------------------------------------------|-----|
| 3.2 | Mour  | nting Types and Orientation                                                      | 97  |
| 3.3 | Mour  | nting Hole Dimensions                                                            | 98  |
|     | 3.3.1 | $\Sigma$ -X-series Mounting Hole Dimensions                                      | 98  |
| 3.4 | Mour  | nting Interval                                                                   | 99  |
|     | 3.4.1 | Installing One SERVOPACK in a Control Panel                                      | 99  |
|     | 3.4.2 | Installing More Than One SERVOPACK in a Control Panel                            | 99  |
| 3.5 | Moni  | toring the Installation Environment                                              | 100 |
| 3.6 | Derat | ting Specifications                                                              | 101 |
|     | 3.6.1 | SGDXS-R70A, -R90A, -1R6A, -2R8A                                                  | 101 |
|     | 3.6.2 | SGDXS-3R8A, -5R5A, -7R6A, -120A, -180A, -200A, -330A, -470A, -550A, -590A, -780A | 101 |
| 3.7 | EMC   | Installation Conditions                                                          | 102 |
|     | 3.7.1 | Three-Phase, 200 VAC                                                             | 102 |
|     | 3.7.2 | Single-Phase, 200 VAC                                                            | 103 |
|     | 3.7.3 | 270 VDC                                                                          | 104 |

## 3.1 Installation Precautions

Refer to the following section for the surrounding installation conditions.

**☞** 2.1.3 Specification on page 72

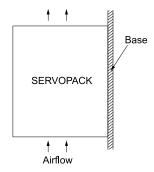
- Installation Near Sources of Heat
   Implement measures to prevent temperature increases caused by radiant or convection heat from heat sources so that the surrounding temperature of the SERVOPACK meets the surrounding conditions.
- Installation Near Sources of Vibration
  Install a vibration absorber on the installation surface of the SERVOPACK so that the SERVOPACK will not be subjected to vibration.
- Others
   Do not install the SERVOPACK in a location subject to high temperatures, high humidity, water drops, cutting oil, excessive dust, excessive dirt, excessive iron powder, corrosive gasses, or radioactivity.

# 3.2 Mounting Types and Orientation

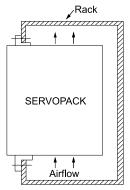
The SERVOPACKs come in the following mounting types: base-mounted, rack-mounted, and duct-ventilated types.

Applicable SERVOPACK models for each mounting type are listed below.

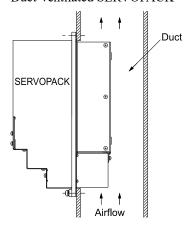
| Mounting Type             | SERVOPACK Model: SGDXS-                                          |
|---------------------------|------------------------------------------------------------------|
| Base-mounted SERVOPACK    | All models                                                       |
| Rack-mounted SERVOPACK    | R70A, R90A, 1R6A, 2R8A, 3R8A, 5R5A, 7R6A, 120A, 180A, 200A, 330A |
| Duct-ventilated SERVOPACK | 470A, 550A, 590A, 780A                                           |


Regardless of the mounting type, mount the SERVOPACK vertically, as shown in the following figures.

Also, mount the SERVOPACK so that the front panel is facing toward the operator.


#### Note:

Prepare two to four mounting holes for the SERVOPACK and mount it securely in the mounting holes. (The number of mounting holes depends on the capacity of the SERVOPACK.)

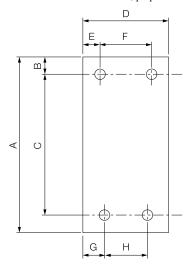

· Base-mounted SERVOPACK



Rack-mounted SERVOPACK



• Duct-ventilated SERVOPACK



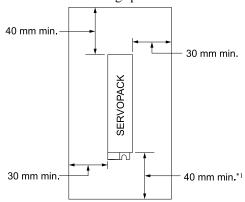

# 3.3 Mounting Hole Dimensions

Use mounting holes to securely mount the SERVOPACK to the mounting surface.

Note:

To mount the SERVOPACK, prepare a screwdriver that is longer than the depth of the SERVOPACK.

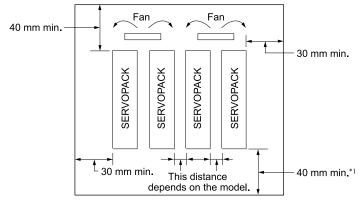



## 3.3.1 $\Sigma$ -X-series Mounting Hole Dimensions

| SERVOPACK              | Dimensions (mm) |     |           |     |    |         | Screw | Number  |      |              |
|------------------------|-----------------|-----|-----------|-----|----|---------|-------|---------|------|--------------|
| Model<br>SGDXS-        | Α               | В   | С         | D   | Е  | F       | G     | Н       | Size | of<br>Screws |
| R70A, R90A, 1R6A       | 168             | 5   | 160±0.5   | 40  | 35 | 1       | 25    | -       | M4   | 2            |
| 2R8A                   | 168             | 5   | 160±0.5   | 40  | 5  | ı       | 25    | _       | M4   | 2            |
| 3R8A, 5R5A, or<br>7R6A | 168             | 5   | 160±0.5   | 70  | 6  | 58±0.5  | 64    | _       | M4   | 3            |
| 120A,<br>120A□□□0008   | 168             | 5   | 160±0.5   | 90  | 5  | 80±0.5  | 12.5  | _       | M4   | 3            |
| 180A, 200A             | 188             | 5   | 180±0.5   | 100 | 95 | ı       | 12.5  | 75±0.5  | M4   | 3            |
| 330A                   | 258             | 6   | 250±0.5   | 110 | 5  | 100±0.5 | 13    | 84±0.5  | M5   | 4            |
| 470A, 550A             | 315             | 6   | 302.5±0.5 | 170 | 14 | 142±0.5 | 14    | 142±0.5 | M6   | 4            |
| 590A, 780A             | 390             | 7.5 | 375±0.5   | 260 | 30 | 200±0.5 | 30    | 200±0.5 | M6   | 4            |

## 3.4 Mounting Interval

#### 3.4.1 Installing One SERVOPACK in a Control Panel


Provide the following spaces around the SERVOPACK.



\*1 For this dimension, ignore items protruding from the main body of the SERVOPACK.

## 3.4.2 Installing More Than One SERVOPACK in a Control Panel

When multiple SERVOPACKs are installed close together in a enclosed space, the surrounding temperature of the SERVOPACKs may locally exceed the surrounding air temperature range, and air circulation due to natural convection may be insufficient. In this case, you must take measures to disperse the localized hot spots, such as using fans. When using fans, install them as shown below.



\*1 For this dimension, ignore items protruding from the main body of the SERVOPACK.

The space required on the right side of a SERVOPACK (when looking at the SERVOPACK from the front) depends on the SERVOPACK models. Refer to the following table.

| SERVOPACK Model |                                                   | Conson on Birely Side | Cooling Fan Installation<br>Conditions |  |  |
|-----------------|---------------------------------------------------|-----------------------|----------------------------------------|--|--|
| SERVOPA         | ACK Model                                         | Space on Right Side   | 10 mm above SERVOPACK's Top Surface    |  |  |
| SCDVS           | R70A, R90A, 1R6A, 2R8A,<br>3R8A, 5R5A, 7R6A       | 1 mm min.             | Air speed: 1.0 m/s min.                |  |  |
| SGDXS-          | 120A, 180A, 200A, 330A,<br>470A, 550A, 590A, 780A | 10 mm min.            | Air speed: 1.0 m/s min.                |  |  |

#### Note:

When option modules are mounted on SERVOPACKs, the SERVOPACK installation conditions will depend on the option modules that are mounted. For details, refer to the manual for option module.

# 3.5 Monitoring the Installation Environment

You can use the SERVOPACK Installation Environment Monitor to check the operating conditions of the SER-VOPACK in the installation environment.

You can check the SERVOPACK installation environment monitor with either of the following methods.

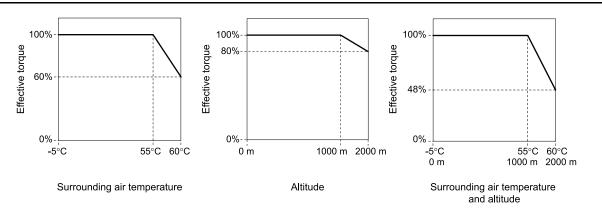
- Using the SigmaWin+: [Life Monitor] [Installation Environment Monitor] [SERVOPACK]
- Using a digital operator: Un025 (Installation Environment Monitor [%])

Implement one or more of the following actions if the monitor value exceeds 100%.

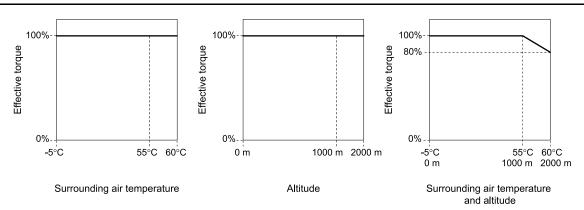
- Lower the surrounding temperature.
- · Decrease the load.
- Increase the spacing between SERVOPACKs.
- Make the air around the SERVOPACK circulate by convection.

Information

The value of the SERVOPACK Installation Environment Monitor will increase by about 10% for each 10°C increase in the surrounding temperature.




Always observe the surrounding air temperature given in the SERVOPACK environment conditions. Even if the monitor value is 100% or lower, you cannot use a SERVOPACK in a location that exceeds the specified surrounding air temperature.


# 3.6 Derating Specifications

If you use the SERVOPACK at a surrounding air temperature of 55°C to 60°C or at an altitude of 1000 m to 2000 m, you must apply the derating rates given in the following graphs.

## 3.6.1 SGDXS-R70A, -R90A, -1R6A, -2R8A



# 3.6.2 SGDXS-3R8A, -5R5A, -7R6A, -120A, -180A, -200A, -330A, -470A, -550A, -590A, -780A

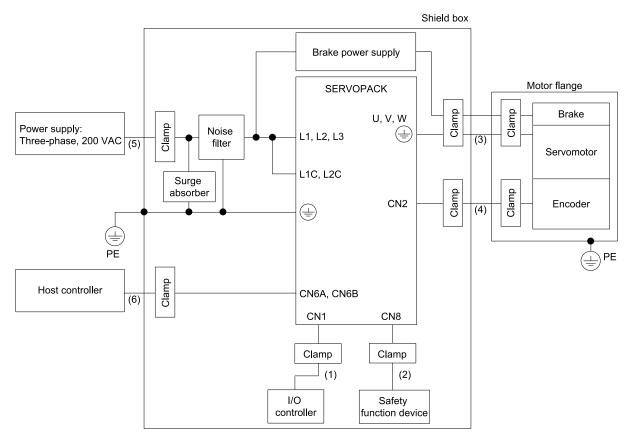


## 3.7 EMC Installation Conditions

This section gives the installation conditions that were used for EMC certification testing.

The EMC installation conditions that are given here are the conditions that were used to pass testing criteria at Yaskawa. The EMC level may change under other conditions, such as the actual installation structure and wiring conditions. These Yaskawa products are designed to be built into equipment. Therefore, you must implement EMC measures and confirm compliance for the final equipment.

The applicable standards are EN 55011 group 1 class A, EN 61000-6-2, EN 61000-6-4, and EN 61800-3 (category C2, second environment).


## **MARNING**

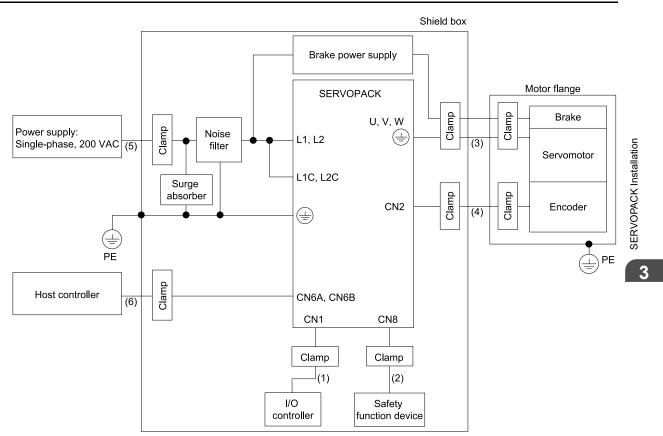
In a domestic environment, this product may cause radio interference in which case supplementary mitigation measures may be required.

## **⚠** CAUTION

This equipment is not intended for use in residential environments and may not provide adequate protection to radio reception in such environments.

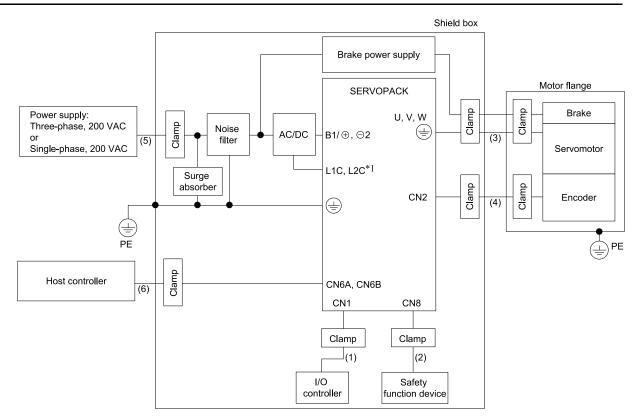
#### 3.7.1 Three-Phase, 200 VAC




| No. | Cable Name                    | Specification |
|-----|-------------------------------|---------------|
| (1) | I/O signal cable              | Shield wire   |
| (2) | Safety function device cable  | Shield wire   |
| (3) | Servomotor main circuit cable | Shield wire   |

Continued on next page.

#### Continued from previous page.


| No. | Cable Name                    | Specification |
|-----|-------------------------------|---------------|
| (4) | Encoder cable                 | Shield wire   |
| (5) | Main circuit power cable      | Shield wire   |
| (6) | EtherCAT communications cable | Shield wire   |

#### 3.7.2 Single-Phase, 200 VAC



| No. | Cable Name                    | Specification |
|-----|-------------------------------|---------------|
| (1) | I/O signal cable              | Shield wire   |
| (2) | Safety function device cable  | Shield wire   |
| (3) | Servomotor main circuit cable | Shield wire   |
| (4) | Encoder cable                 | Shield wire   |
| (5) | Main circuit power cable      | Shield wire   |
| (6) | EtherCAT communications cable | Shield wire   |

#### 3.7.3 270 VDC



\*1 You can also use a single-phase 200-VAC power supply instead of a 270-VDC power supply for input to the L1C and L2C control power supply terminals.

| Code | Cable Name                    | Specification |
|------|-------------------------------|---------------|
| (1)  | I/O signal cable              | Shield wire   |
| (2)  | Safety function device cable  | Shield wire   |
| (3)  | Servomotor main circuit cable | Shield wire   |
| (4)  | Encoder cable                 | Shield wire   |
| (5)  | Main circuit power cable      | Shield wire   |
| (6)  | EtherCAT communications cable | Shield wire   |

# Wiring and Connecting SERVOPACKs

Provides information on wiring and connecting SERVOPACKs to power supplies and peripheral devices.

| 4.1 | Wiring and Connecting SERVOPACKs                       | 107 |
|-----|--------------------------------------------------------|-----|
|     | 4.1.1 General Precautions                              | 107 |
|     | 4.1.2 Countermeasures against Noise                    | 109 |
|     | 4.1.3 Grounding                                        |     |
| 4.2 | Basic Wiring Diagrams                                  | 113 |
| 4.3 | Wiring the Power Supply to the SERVOPACK               | 115 |
|     | 4.3.1 Terminal Symbols and Terminal Names              | 115 |
|     | 4.3.2 Wiring Procedure for Main Circuit Connector      | 117 |
|     | 4.3.3 Power ON Sequence                                | 119 |
|     | 4.3.4 Power Supply Wiring Diagrams                     | 120 |
|     | 4.3.5 Wiring Regenerative Resistors                    | 123 |
|     | 4.3.6 Wiring Reactors for Harmonic Suppression         | 125 |
| 4.4 | Wiring Servomotors                                     | 127 |
|     | 4.4.1 Terminal Symbols and Terminal Names              | 127 |
|     | 4.4.2 Pin Layout of Connector for Encoder Cables (CN2) | 127 |
|     | 4.4.3 Wiring the SERVOPACK to the Encoder              | 128 |
|     | 4.4.4 Wiring the SERVOPACK to the Holding Brake        | 136 |
| 4.5 | I/O Signal Connections                                 | 137 |
|     | 4.5.1 I/O Signal Connector (CN1) Names and Functions   | 137 |
|     | 4.5.2 I/O Signal Connector (CN1) Pin Layout            | 139 |
|     | 4.5.3 I/O Signal Wiring Examples                       | 140 |
|     | 4.5.4 I/O Circuits                                     | 141 |
| 4.6 | Connecting Safety Function Signals                     | 144 |
|     | 4.6.1 Pin Layout of Safety Function Signals (CN8)      | 144 |
|     | 4.6.2 I/O Circuits                                     | 144 |
| 4.7 | Connecting EtherCAT Communications Cables              | 146 |
| 4.8 | Connecting the SigmaWin+                               | 147 |

| 4.9  | Connecting a Digital Operator | 148 |
|------|-------------------------------|-----|
| 4.10 | Using the Analog Monitors     | 149 |

## 4.1 Wiring and Connecting SERVOPACKs

#### 4.1.1 General Precautions

## **A** DANGER

Do not change any wiring while power is being supplied.

There is a risk of electric shock or injury.

## **WARNING**

Wiring and inspections must be performed only by qualified engineers.

There is a risk of electric shock or product failure.

Check all wiring and power supplies carefully.

Incorrect wiring or incorrect voltage application to the output circuits may cause short-circuit failures. If a short-circuit failure occurs as a result of any of these causes, the holding brake will not work. This could damage the machine or cause an accident that may result in death or injury. There is also a risk that some parts damaged by the short-circuit failure may fall from the SERVOPACK.

Connect the AC or DC power supplies to the specified SERVOPACK terminals.

- Connect an AC power supply to the L1, L2, and L3 terminals and the L1C and L2C terminals on the SERVOPACK.
- Connect a DC power supply to the B1/⊕ and ⊕ 2 terminals and the L1C and L2C terminals on the SERVOPACK.

There is a risk of failure or fire.

If you use a SERVOPACK with the dynamic brake hardware option, connect an external dynamic brake resistor that is suitable for the machine and equipment specifications to the specified terminals.

There is a risk of unexpected operation, machine damage, burning, or injury when an emergency stop is performed.

## **A** CAUTION

Wait for at least 20 minutes (or 100 minutes when using DC power supply input) after turning OFF the power and then make sure that the CHARGE indicator is not lit before starting wiring or inspection work. Do not touch the main circuit terminals while the CHARGE indicator is lit because high voltage may still remain in the SERVOPACK even after turning OFF the power.

There is a risk of electric shock.

Observe the precautions and instructions for wiring and trial operation precisely as described in this document.

Failures caused by incorrect wiring or incorrect voltage application in the brake circuit may cause the SER-VOPACK to fail, damage the equipment, or cause an accident resulting in death or injury.

Check the wiring to be sure it has been performed correctly. Connectors and pin layouts are sometimes different for different models. Always confirm the pin layouts in technical documents for your model before operation.

There is a risk of failure or malfunction.

Connect wires to main circuit terminals and motor connection terminals securely with the specified methods and tightening torque.

Insufficient tightening may cause wires and terminal blocks to generate heat due to faulty contact, possibly resulting in fire.

## **CAUTION**

Use shielded twisted-pair cables or screened unshielded multi-twisted-pair cables for I/O signal cables and encoder cables.

The maximum wiring length is 3 m for I/O signal cables and 50 m for servomotor main circuit cables and encoder cables.

Observe the following precautions when wiring the SERVOPACK's main circuit terminals.

- Turn ON the power to the SERVOPACK only after all wiring, including the main circuit terminals, has been completed.
- If a connector is used for the main circuit terminals, remove the main circuit connector from the SERVOPACK before you wire it.
- Insert only one wire per insertion hole in the main circuit terminals.
- When you insert a wire, make sure that the conductor wire (e.g., whiskers) does not come into contact with adjacent wires and cause a short-circuit.

Install molded-case circuit breakers and other safety measures to provide protection against short circuits in external wiring.

There is a risk of fire or failure.

## **NOTICE**

Whenever possible, use the cables specified by Yaskawa. If you use any other cables, confirm the rated current and application environment of your model and use the wiring materials specified by Yaskawa or equivalent materials.

Securely tighten connector screws and lock mechanisms.

Insufficient tightening may result in connectors falling off during operation.

Do not bundle power lines (e.g., the main circuit cable) and low-current lines (e.g., the I/O signal cables or encoder cables) together or run them through the same duct. If you do not place power lines and low-current lines in separate ducts, separate them by at least 30 cm.

If the cables are too close to each other, malfunctions may occur due to noise affecting the low-current lines.

Install a battery at either the host controller or on the encoder cable.

If you install batteries both at the host controller and on the encoder cable at the same time, you will create a loop circuit between the batteries, resulting in a risk of damage or burning.

When connecting a battery, connect the polarity correctly.

There is a risk of battery rupture or encoder failure.



- Use a molded-case circuit breaker or fuse to protect the main circuit.
- The SERVOPACK connects directly to a commercial power supply; it is not isolated through a transformer or other device. Always use a molded-case circuit breaker or fuse to protect the servo system from accidents involving different power system voltages or other accidents.
- Install an earth leakage breaker.
- The SERVOPACK does not have a built-in ground fault protective circuit. To configure a safer system, install a ground fault detector against overloads and short-circuiting, or install a ground fault detector combined with a molded-case circuit breaker.
- Do not turn the power ON and OFF more than necessary.
- Do not use the SERVOPACK for applications that require the power to be turned ON and OFF frequently. Such applications will cause elements in the SERVOPACK to deteriorate.
- After you have started actual operation, allow at least one hour between turning the power ON and OFF (as a guideline).

To ensure safe, stable application of the servo system, observe the following precautions when wiring.

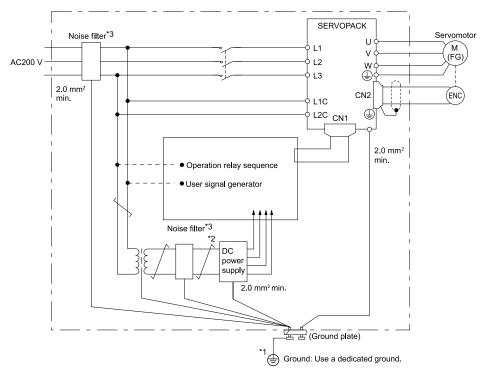
- Use the cables specified by Yaskawa. Design and arrange the system so that each cable is as short as possible. Refer to the following manual or catalog for information on the specified cables.
  - Σ-X-Series Catalog (Catalog No.: KAEP C710812 03)
  - Σ-X-Series Peripheral Device Selection Manual (Manual No.: SIEP C710812 12)
- The signal cable conductors are as thin as 0.2 mm<sup>2</sup> or 0.3 mm<sup>2</sup>. Do not subject them to excessive bending stress or tension.

### 4.1.2 Countermeasures against Noise



The SERVOPACK is designed as an industrial device.

It therefore provides no measures to prevent radio interference. The SERVOPACK uses high-speed switching elements in the main circuit. Therefore peripheral devices may be affected by switching noise. If the equipment is to be used near private houses or if radio interference is a problem, take countermeasures against noise.


The SERVOPACK uses microprocessors. Therefore, it may be affected by switching noise from peripheral devices

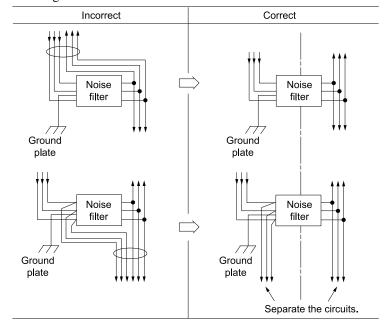
To prevent the noise from the SERVOPACK or the peripheral devices from causing malfunctions of any devices, take the following countermeasures against noise as required.

- Install the input reference device and noise filter as close to the SERVOPACK as possible.
- Always install a surge absorber for relays, solenoids, and magnetic contactor coils.
- Do not place the following cables in the same duct or bundle them together. Also, separate the cables from each other by at least 30 cm.
  - Main circuit cables and I/O signal cables
  - Main circuit cables and host controller cables
  - Main circuit cables and encoder cables
- Do not share the power supply with an electric welder or electrical discharge machine. If the SERVOPACK is placed near a high-frequency generator, install noise filters on the input side on the main circuit power supply cable and control power supply cable even if the same power supply is not shared with the high-frequency generator. Refer to the following section for information on connecting noise filters.
  - **☞** (1) Noise Filters on page 109
- Implement suitable grounding measures. Refer to the following section for information on grounding measures.
  - 4.1.3 Grounding on page 111

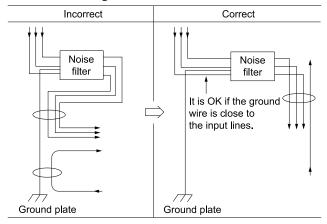
### (1) Noise Filters

You must attach noise filters in appropriate places to protect the SERVOPACK from the adverse effects of noise. The following is an example of wiring for countermeasures against noise.

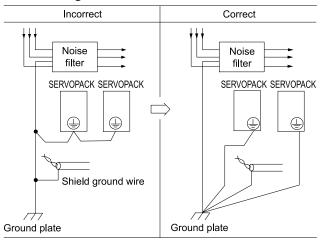



- \*1 For the ground wire, use a wire with a thickness of at least 2.0 mm <sup>2</sup> (preferably, flat braided copper wire).
- \*2 Whenever possible, use twisted-pair wires to wire all connections marked with this symbol.
- \*3 Refer to the following section for precautions when using noise filters.

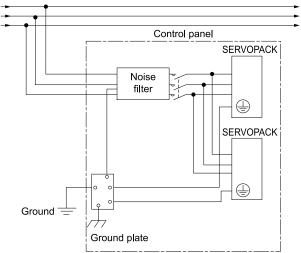
  (2) Noise Filter Wiring and Connection Precautions on page 110


### (2) Noise Filter Wiring and Connection Precautions

Always observe the following precautions when wiring or connecting noise filters.


• Separate input lines from output lines. Do not place input lines and output lines in the same duct or bundle them together.




• Separate the noise filter ground wire from the output lines. Do not place the noise filter ground wire, output lines, and other signal lines in the same duct or bundle them together.



• Connect the noise filter ground wire directly to the grounding plate. Do not connect the noise filter ground wire to other ground wires.



• If a noise filter is located inside a control panel, first connect the noise filter ground wire and the ground wires from other devices inside the control panel to the grounding plate for the control panel, then ground the plate.



# 4.1.3 Grounding

Implement grounding measures as described in this section. Implementing suitable grounding measures will also help prevent malfunctions, which can be caused by noise.

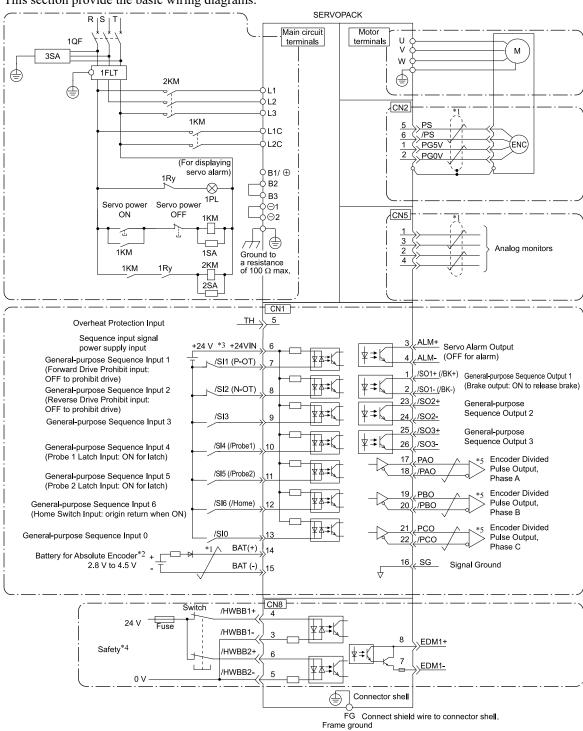
Observe the following precautions when wiring the ground cable.

- Ground the SERVOPACK to a resistance of 100  $\Omega$  or less.
- Be sure to ground at one point only.
- Ground the servomotor directly if the servomotor is insulated from the machine.

### (1) Motor Frame Ground or Motor Ground

If you ground the servomotor through the machine, switching noise current can flow from the main circuit of the SERVOPACK through the stray capacitance of the servomotor. To prevent this, always connect the FG terminal of the servomotor main circuit cable connected to the servomotor to the ground terminal on the SERVO-

PACK. Also be sure to ground the ground terminal . Always connect the shield wire of the encoder cable connected to the servomotor to the connector case (shell).


Ground both the moving coil and magnetic way of a linear servomotor.

### (2) Noise on I/O Signal Cables

If noise enters the I/O signal cable, connect the shield of the I/O signal cable to the connector shell to ground it. If the servomotor main circuit cable is placed in a metal conduit, ground the conduit and its junction box. For all grounding, ground at one point only.

# 4.2 Basic Wiring Diagrams

This section provide the basic wiring diagrams.



\*1 represents twisted-pair wires.

If you do not use the Safety Function, insert the safety jumper connector (provided as an accessory) into CN8 when you use the SERVOPACK.

\*5 Always use line receivers to receive the output signals.

<sup>\*2</sup> Connect these when using an absolute encoder. If the encoder cable with a battery unit is connected, do not connect a backup battery.

<sup>\*3</sup> The 24-VDC power supply is not provided by Yaskawa. Use a 24-VDC power supply with double insulation or reinforced insulation.

<sup>\*4</sup> Refer to the following chapter if you use a Safety Function device.

\*3 4.6 Connecting Safety Function Signals on page 144

#### Note:

- You can use parameters to change the functions allocated to the /SI0, /SI3, P-OT, N-OT, /Probe1, /Probe2, and /Home input signals and the /SO1, /SO2, and /SO3 output signals. Refer to the following section for details.
   6.1 Changing Allocations of I/O Signals on page 214
- 2. If you use a 24-V brake, install a separate power supply for the 24-VDC power supply from other power supplies, such as the one for the I/O signals of the CN1 connector. If the power supply is shared, the I/O signals may malfunction.
- 3. Default settings are given in parentheses.

Refer to the reference sections given in the diagrams for details.

| Item                   | Reference                                                |
|------------------------|----------------------------------------------------------|
| Main circuit terminals | 4.3 Wiring the Power Supply to the SERVOPACK on page 115 |
| Motor terminals        | 4.4 Wiring Servomotors on page 127                       |
| CNI                    | 4.5 I/O Signal Connections on page 137                   |
| CN2                    | 4.4 Wiring Servomotors on page 127                       |
| CN5                    | 4.10 Using the Analog Monitors on page 149               |
| CN8                    | 4.6 Connecting Safety Function Signals on page 144       |

#### Wiring the Power Supply to the SERVOPACK 4.3

Refer to the following manual or catalog for information on cables and peripheral devices.

Σ-X-Series Catalog (Catalog No.: KAEP C710812 03)

Σ-X-Series Peripheral Device Selection Manual (Manual No.: SIEP C710812 12)

#### 4.3.1 Terminal Symbols and Terminal Names

Use the main circuit connector on the SERVOPACK to wire the main circuit power supply and control circuit power supply to the SERVOPACK.

# **CAUTION**

Wire all connections correctly according to the following table and the reference information.

There is a risk of SERVOPACK failure or fire if incorrect wiring is performed.

The SERVOPACKs have the following three types of main circuit power supply input specifications.

- Three-phase, 200-VAC power supply input
- Single-phase, 200-VAC power supply input
- DC power supply input

Information A single-phase AC power supply or a DC power supply can be connected to the control power supply terminals.

### Three-Phase, 200-VAC Power Supply Input

| Terminal Symbols | Terminal Name                                         |                                                                                                                                                                                       | Specifications and Reference                                                                                                                                                                                              |
|------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L1, L2, L3       | Main circuit power input terminals for AC power input | Three-phase                                                                                                                                                                           | e, 200 VAC to 240 VAC, -15% to +10%, 50 Hz/60 Hz                                                                                                                                                                          |
| L1C, L2C         | Control power supply terminals                        | AC power supply                                                                                                                                                                       | Single-phase, 200 VAC to 240 VAC, -15% to +10%, 50 Hz/60 Hz                                                                                                                                                               |
|                  |                                                       | DC power supply                                                                                                                                                                       | L1C: 270 VDC to 324 VDC, -15% to +10%, L2C: 0 VDC                                                                                                                                                                         |
|                  |                                                       |                                                                                                                                                                                       | or<br>L2C: 270 VDC to 324 VDC, -15% to +10%, L1C: 0<br>VDC                                                                                                                                                                |
| B1/⊕, B2, B3     | Regenerative resistor terminals                       | ₩ 4.3.5 V                                                                                                                                                                             | Viring Regenerative Resistors on page 123                                                                                                                                                                                 |
|                  |                                                       | For SGDXS                                                                                                                                                                             | -R70A, -R90A, -1R6A, -2R8A                                                                                                                                                                                                |
|                  |                                                       | If the regenerative capacity is insufficient, connect an external regenerative resistor between B1/⊕and B2. The external regenerative resistor is not included. Obtain it separately. |                                                                                                                                                                                                                           |
|                  |                                                       | For SGDXS                                                                                                                                                                             | -3R8A,- 5R5A, -7R6A, -120A, -180A, -200A, -330A                                                                                                                                                                           |
|                  |                                                       | (lead or shor                                                                                                                                                                         | al regenerative resistor is insufficient, remove the jumper rt bar) between B2 and B3 and connect an external regentor between B1/\(\overline{\to}\) and B2. The external regenerative of included. Obtain it separately. |
|                  |                                                       | For SGDXS                                                                                                                                                                             | -470A, -550A, -590A, -780A                                                                                                                                                                                                |
|                  |                                                       |                                                                                                                                                                                       | egenerative resistor unit between B1/ $\oplus$ and B2. Obtain a resistor unit separately. These models do not have a B3                                                                                                   |
| ⊝1,⊝2            | DC reactor terminals                                  | ₩ 4.3.6 W                                                                                                                                                                             | Viring Reactors for Harmonic Suppression on page 125                                                                                                                                                                      |
|                  |                                                       | These termin                                                                                                                                                                          | nals are used to connect a DC reactor for harmonic                                                                                                                                                                        |

Continued on next page.

Continued from previous page.

| Terminal Symbols | Terminal Name | Specifications and Reference                      |
|------------------|---------------|---------------------------------------------------|
| $\Theta$         | _             | None. (Do not connect anything to this terminal.) |
|                  |               | Note:                                             |
|                  |               | SGDXS-330A to -780A do not have a ⊖ terminal.     |

#### Single-Phase, 200-VAC Power Supply Input **(2)**

| Terminal Symbols | Terminal Name                                         |                                                   | Specifications and Reference                                                                                                                                                                  |
|------------------|-------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L1, L2           | Main circuit power input terminals for AC power input | Single-phase                                      | , 200 VAC to 240 VAC, -15% to +10%, 50 Hz/60 Hz                                                                                                                                               |
| L1C, L2C         | Control power supply terminals                        | AC power supply                                   | Single-phase, 200 VAC to 240 VAC, -15% to +10%, 50 Hz/60 Hz                                                                                                                                   |
|                  |                                                       | DC power supply                                   | L1C: 270 VDC to 324 VDC, -15% to +10%, L2C: 0 VDC                                                                                                                                             |
|                  |                                                       |                                                   | or                                                                                                                                                                                            |
|                  |                                                       |                                                   | L2C: 270 VDC to 324 VDC, -15% to +10%, L1C: 0 VDC                                                                                                                                             |
| B1/⊕, B2, B3     | Regenerative resistor terminals                       | @ 4.3.5 W                                         | iring Regenerative Resistors on page 123                                                                                                                                                      |
|                  |                                                       | For SGDXS-                                        | R70A, -R90A, -1R6A, -2R8A                                                                                                                                                                     |
|                  |                                                       | If the regener                                    | rative capacity is insufficient, connect an external regen-<br>or between B1/⊕and B2. The external regenerative<br>t included. Obtain it separately.                                          |
|                  |                                                       | For SGDXS-                                        | 5R5A, -120A == = = = = = = = = = = = = = = = = =                                                                                                                                              |
|                  |                                                       | If the interna<br>(lead) between<br>tor between I | l regenerative resistor is insufficient, remove the jumper en B2 and B3 and connect an external regenerative resis-B1/⊕ and B2. The external regenerative resistor is not tain it separately. |
| ⊖1,⊖2            | DC reactor terminals                                  | € 4.3.6 W                                         | firing Reactors for Harmonic Suppression on page 125                                                                                                                                          |
|                  |                                                       | These termin monic suppre                         | als are to connect a DC reactor for power supply har-<br>ession.                                                                                                                              |
| L3,⊖             | _                                                     | None. (Do no                                      | ot connect anything to this terminal.)                                                                                                                                                        |

You can use a single-phase, 200-VAC power supply input with the following models.

• SGDXS-R70A, -R90A, -1R6A, -2R8A, -5R5A

If you use a single-phase, 200-VAC power supply input for the SERVOPACK's main circuit power supply, set parameter Pn00B to n.□1□□ (use a three-phase power supply input as a single-phase power supply input). Refer to the following section for details.

5.2.2 Single-phase AC Power Supply Input/Three-phase AC Power Supply Input Setting on page 163

Information You do not need to change the setting of Pn00B to n. □ 1 □ □ (use a three-phase power supply input as a single-phase power supply input) for a SERVOPACK with a single-phase 200-VAC power supply input (model numbers: SGDXS-120A = = 0008).

## (3) DC Power Supply Input

| Terminal Symbols | Terminal Name                             | Specifications and Reference     |                                                                                                        |
|------------------|-------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------|
| L1C, L2C         | Control power supply terminals            | AC power supply                  | Single-phase, 200 VAC to 240 VAC, -15% to +10%, 50 Hz/60 Hz                                            |
|                  |                                           | DC power supply                  | L1C: 270 VDC to 324 VDC, -15% to +10%, L2C: 0 VDC or L2C: 270 VDC to 324 VDC, -15% to +10%, L1C: 0 VDC |
| B1/⊕             |                                           | 270 VDC to 324 VDC, -15% to +10% |                                                                                                        |
| ⊖2               | input terminals for DC power supply input | 0 VDC                            |                                                                                                        |

Continued on next page.

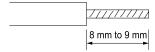
Continued from previous page.

| Terminal Symbols        | Terminal Name | Specifications and Reference                      |
|-------------------------|---------------|---------------------------------------------------|
| L1, L2, L3, B2, B3,⊖1,⊖ | _             | None. (Do not connect anything to this terminal.) |
|                         |               | Note:                                             |
|                         |               | • SGDXS-470A to -780A do not have a B3 terminal.  |
|                         |               | • SGDXS-330A to -780A do not have a ⊖ terminal.   |

If you use a DC power supply input to the SERVOPACK, make sure to set parameter Pn001 to  $n.\Box 1\Box\Box$  (DC power supply input supported) before inputting the power. Refer to the following section for details.

\$\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\over

## 4.3.2 Wiring Procedure for Main Circuit Connector


#### · Required Items

| Required Items                         | Remarks                                                                                                   |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------|
|                                        | Spring opener     SERVOPACK accessory (You can also use model 1981045-1 from Tyco Electronics Japan G.K.) |
| Spring Opener or Flatblade Screwdriver | Flat-blade screwdriver     Commercially available screwdriver with tip width of 3.0 mm to     3.5 mm      |

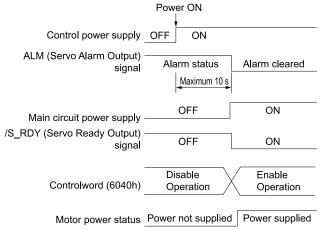
#### 1. Remove the main circuit connector and motor connector from the SERVOPACK.



#### 2. Remove the sheath from the wire to connect.



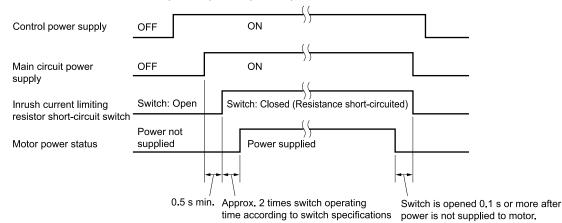
3. Open the wire insertion hole on the terminal connector with the tool. here are the following two ways to open the insertion hole. Use either method.


| Using a Spring Opener                                                  | Using a Flat- blade Screwdriver                                                                             |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Open the insertion hole with the spring opener as shown in the figure. | Firmly insert a flat-blade screwdriver into the screwdriver insertion hole to open the wire insertion hole. |
| Spring opener Wire                                                     |                                                                                                             |

- 4. Insert the conductor into the wire insertion hole. Then, remove the spring opener or flatblade screwdriver.
- 5. Make all other connections in the same way.
- 6. When you have completed wiring, attach the connectors to the SERVOPACK.

### 4.3.3 Power ON Sequence

Consider the following points when you design the power ON sequence.


• The ALM (Servo Alarm Output) signal is output for up to ten seconds when the control power is turned ON. Take this into consideration when you design the power ON sequence, and turn ON the main circuit power to the SERVOPACK when the ALM signal is OFF (alarm cleared).



Information If the servo ON state cannot be achieved by inputting the Servo ON command (Enable Operation command), the /S\_RDY signal is not ON. Check the status of the /S\_RDY signal. Refer to the following section for details.

6.1.8 /S-RDY (Servo Ready Output) Signal on page 222

• If you use a DC power supply input with any of the following SERVOPACKs, use the power ON sequence shown below: SGDXS-330A, -470A, -550A, -590A, -780A.



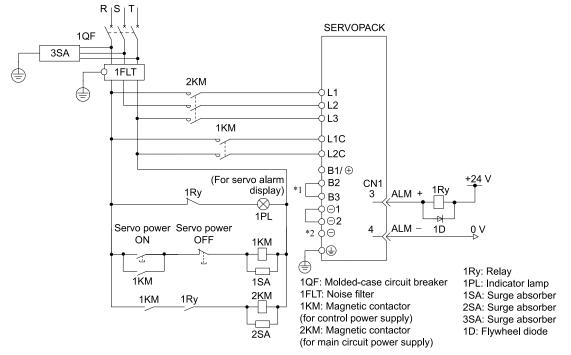
- Design the power ON sequence so that main circuit power is turned OFF when an ALM (Servo Alarm Output) signal is output.
- Make sure that the power supply specifications of all parts are suitable for the input power supply.
- Allow at least 1 s after the power is turned OFF before you turn it ON again.



Turn ON the control power before the main circuit power or turn ON the control power and the main circuit power at the same time.

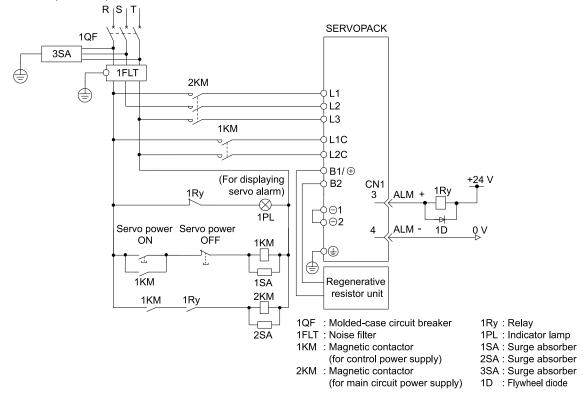
tant Turn OFF the main circuit power first, and then turn OFF the control power.

# **A** CAUTION

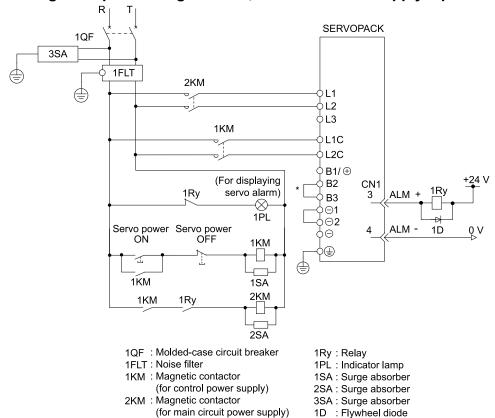

Wait for at least 20 minutes (or 100 minutes when using DC power supply input) after turning OFF the power and then make sure that the CHARGE indicator is not lit before starting wiring or inspection work. Do not touch the main circuit terminals while the CHARGE indicator is lit because high voltage may still remain in the SERVOPACK even after turning OFF the power.

There is a risk of electric shock.

### 4.3.4 Power Supply Wiring Diagrams

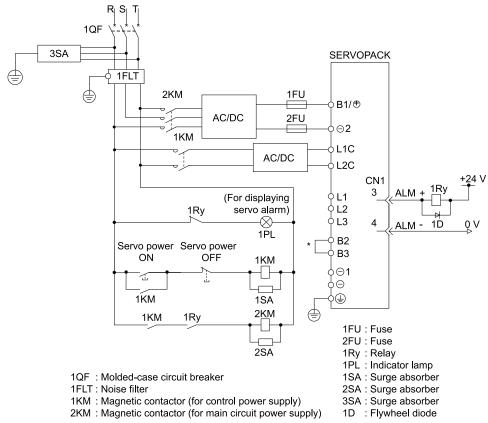

### (1) Using Only One SERVOPACK

(a) Wiring Example for Three-Phase, 200 VAC Power Supply Input: SGDXS-R70A, -1R6A, -2R8A, -3R8A, -5R5A, -7R6A, -120A, -180A, -200A, -330A



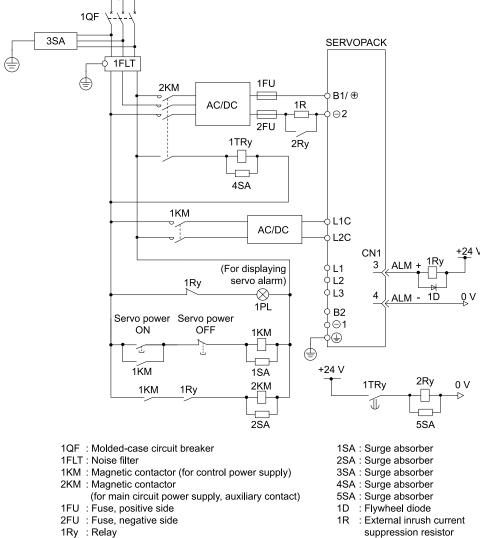

- \*1 You do not have to connect B2 and B3 for the following models: SGDXS-R70A, -R90A, -1R6A, -2R8A. Do not connect them.
- \*2 A SGDXS-330A SERVOPACK does not have a  $\ominus$ terminal.

# (b) Wiring Example for Three-Phase, 200 VAC Power Supply Input: SGDXS-470A, -550A, -590A, -780A




#### (c) Wiring Example for Single-Phase, 200-VAC Power Supply Input




\*1 You do not have to connect B2 and B3 for the following models: SGDXS-R70A, -R90A, -1R6A, -2R8A. Do not connect them.

# (d) Wiring Example for DC Power Supply Input: SGDXS-R70A, -R90A, -1R6A, -2R8A, -3R8A, -5R5A, -7R6A, -120A, -180A, -200A



<sup>\*1</sup> You do not have to connect B2 and B3 for the following models: SGDXS-R70A , -R90A , -1R6A , and -2R8A. Do not connect them.

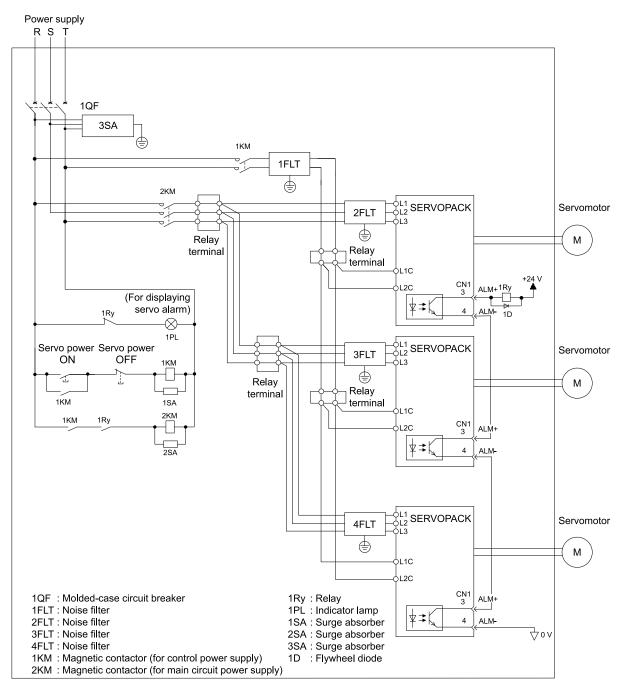
#### (e) Wiring Example for DC Power Supply Input: SGDXS-330A, -470A, -550A, -590A, -780A



1Ry: Relay

2Ry : Relay (for inrush current suppression resistor short)

1TRy: Timer relay 1PL: Indicator lamp


## **Using More Than One SERVOPACK**

Connect the ALM (Servo Alarm Output) signal for these SERVOPACKs in series to operate the alarm detection relay (1RY).

When a SERVOPACK alarm is activated, the ALM output signal transistor turns OFF.

The following diagram shows the wiring to stop all of the servomotors when there is an alarm for any one SERVOPACK.

More than one SERVOPACK can share a single noise filter. However, always select a noise filter that has a large enough capacity to handle the total power supply capacity of all the SERVOPACKs. Be sure to consider the load conditions.



To comply with UL/cUL standards, you must install a branch circuit protective device at the power supply input section to each SERVOPACK. Refer to the following manual for details.

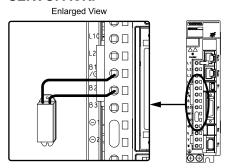
Σ-X-Series Σ-XS/Σ-XW SERVOPACK Safety Precautions (Manual No.: TOMP C710812 00)

# 4.3.5 Wiring Regenerative Resistors

This section describes how to connect external regenerative resistors.

Refer to the following manual to select external regenerative resistors.

Σ-X-Series Peripheral Device Selection Manual (Manual No.: SIEP C710812 12)


# **MARNING**

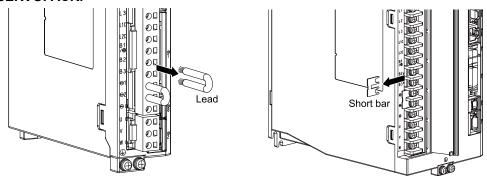
Be sure to wire regenerative resistors correctly. Do not connect B1/ ⊕and B2.

Doing so may result in fire or damage to the regenerative resistor or SERVOPACK.

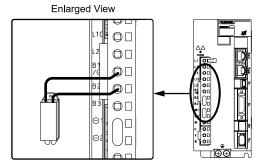
### (1) Connecting Regenerative Resistors

- (a) SERVOPACK Models SGDXS-R70A, -R90A, -1R6A, and -2R8A,
  - 1. Connect the external regenerative resistor between the B1/⊕ and B2 terminals on the SERVOPACK.




2. Set Pn600 (Regenerative Resistor Capacity) and the Pn603 (Regenerative Resistance).

Refer to the following section for details on the settings.


■ 5.17 Setting the Regenerative Resistor Capacity on page 207

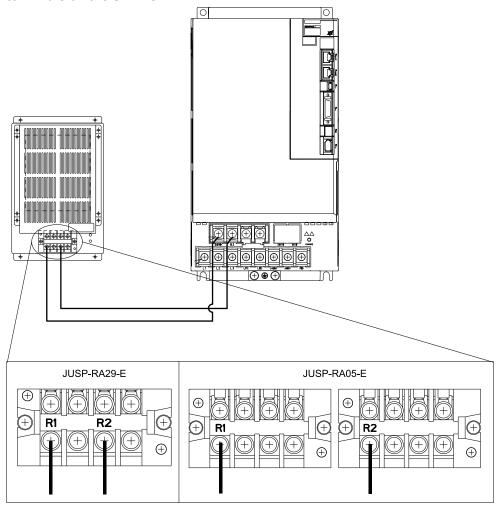
#### (b) SERVOPACK Models SGDXS-3R8A, -5R5A, -7R6A, -120A, -180A, -200A, -330A

1. Remove the jumper (lead or short bar) from between the B2 and B3 terminals on the SERVOPACK.



2. Connect the external regenerative resistor between the B1/ $\oplus$  and B2 terminals.




Set Pn600 (Regenerative Resistor Capacity) and Pn603 (Regenerative Resistance).

Refer to the following section for details on the settings.

■ 5.17 Setting the Regenerative Resistor Capacity on page 207

#### (c) SERVOPACK Models SGDXS-470A, -550A, -590A, and -780A

1. Connect the R1 and R2 terminals on the regenerative resistor unit to the B1/⊕ and B2 terminals on the SERVOPACK.

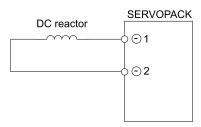


# 2. Set Pn600 (Regenerative Resistor Capacity) and Pn603 (Regenerative Resistance) as required.

- When using the Yaskawa-recommended regenerative resistor unit, use the default settings for Pn600 and Pn603.
- If you use any other external regenerative resistor, set Pn600 and Pn603 according to the specifications of the regenerative resistor.

Refer to the following section for details on the settings.

■ 5.17 Setting the Regenerative Resistor Capacity on page 207


# 4.3.6 Wiring Reactors for Harmonic Suppression

You can connect a reactor for harmonic suppression to the SERVOPACK when harmonic suppression is required. Refer to the following manual for details on reactors for harmonic reactors.

Σ-X-Series Peripheral Device Selection Manual (Manual No.: SIEP C710812 12)

Refer to the following figures to connect reactors.

< SERVOPACK with Three-Phase, 200-VAC Power Supply Input >



#### Note:

- Connection terminals ⊕1 and ⊕2 for a DC reactor are connected when the SERVOPACK is shipped. Remove the lead wire and connect a DC reactor.
- 2. Reactors are optional products. (Purchase them separately.)

# 4.4 Wiring Servomotors

## 4.4.1 Terminal Symbols and Terminal Names

The SERVOPACK terminals or connectors that are required to connect the SERVOPACK to a servomotor are given below.

| Terminal/Connector<br>Symbols | Terminal/Connector Name | Remarks                                                                                                               |
|-------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------|
| U, V, W                       | Servomotor terminals    | Refer to the following section for the wiring procedure.  3.2 Wiring Procedure for Main Circuit Connector on page 117 |
|                               | Ground terminal         | -                                                                                                                     |
| CN2                           | Encoder connector       | -                                                                                                                     |

# 4.4.2 Pin Layout of Connector for Encoder Cables (CN2)

## (1) When Using a Rotary Servomotor

| Pin No. | Signal             | Function                         |
|---------|--------------------|----------------------------------|
| 1       | PG5V               | Encoder power +5 V               |
| 2       | PG0V               | Encoder power 0 V                |
| 3       | BAT (+) * <i>I</i> | Battery for absolute encoder (+) |
| 4       | BAT (-) */         | Battery for absolute encoder (-) |
| 5       | PS                 | Serial data (+)                  |
| 6       | /PS                | Serial data (–)                  |
| Shell   | Shield             | _                                |

<sup>\*1</sup> No wiring is required for an incremental encoder or a batteryless absolute encoder.

# (2) When Using a Direct Drive Servomotor

| Pin No. | Signal | Function           |
|---------|--------|--------------------|
| 1       | PG5V   | Encoder power +5 V |
| 2       | PG0V   | Encoder power 0 V  |
| 3       | _      | - (Do not use.)    |
| 4       | _      | - (Do not use.)    |
| 5       | PS     | Serial data (+)    |
| 6       | /PS    | Serial data (–)    |
| Shell   | Shield | -                  |

### (3) When Using a Linear Servomotor

| Pin No. | Signal | Function                         |
|---------|--------|----------------------------------|
| 1       | PG5V   | Linear encoder power supply +5 V |
| 2       | PG0V   | Linear encoder power supply 0 V  |
| 3       | _      | - (Do not use.)                  |
| 4       | _      | - (Do not use.)                  |
| 5       | PS     | Serial data (+)                  |
| 6       | /PS    | Serial data (–)                  |
| Shell   | Shield | -                                |

## 4.4.3 Wiring the SERVOPACK to the Encoder

### (1) When Using an Absolute Encoder

If you use an absolute encoder but not a booster unit, use one of the following methods to wire the devices.

- Use the encoder cable included with the JUSP-BA01-E battery unit.
- Install a battery on the host controller.

If you use a booster unit and an absolute encoder, use the encoder cable included with the JUSP-BA01-E battery unit.

Refer to the following section for the battery replacement procedure.

#### ■ 16.1.3 Replacing the Battery on page 649

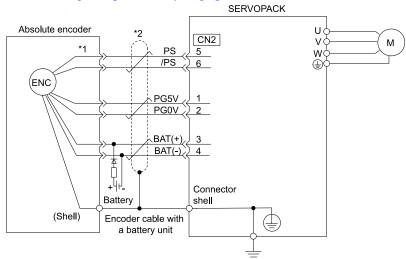



Figure 4.1 Wiring Example When Using an Encoder Cable with a Battery Unit

\*1 The absolute encoder pin numbers for wiring the connector depend on the servomotor that you use.

\*2 'r' indicates shielded twisted-pair cable.

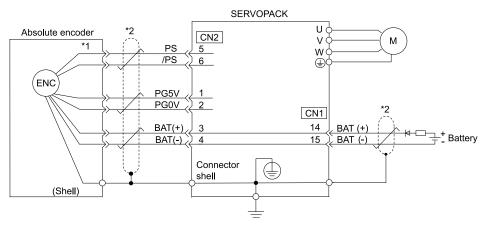



Figure 4.2 Wiring Example When Installing a Battery on the Host Controller

\*1 The absolute encoder pin numbers for wiring the connector depend on the servomotor that you use.

\*2 indicates shielded twisted-pair cable.

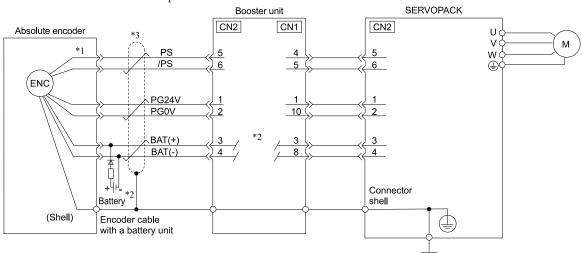



Figure 4.3 Wiring Example When Using a Booster Unit and Absolute Encoder

- \*1 The absolute encoder pin numbers for wiring the connector depend on the servomotor that you use.
- \*2 CN1-3 and CN2-3 as well as CN1-8 and CN2-4 on the booster unit are not connected internally. For this reason, connect the battery to the encoder as shown in the figure when you use a booster unit and an absolute encoder.



\*3 'r' indicates shielded twisted-pair cable.



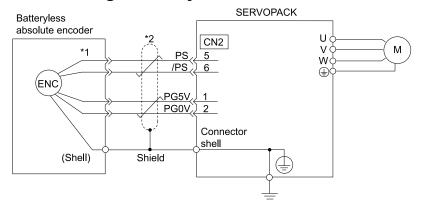
- When Installing a Battery on the Encoder Cable
- Use the encoder cable with a battery unit that is specified by Yaskawa.

Refer to the following manual for details.

- $\hfill \Sigma$ -X-Series Peripheral Device Selection Manual (Manual No.: SIEP C710812 12)
- When Installing a Battery on the Host Controller Insert a diode near the battery to prevent reverse current flow.

<Circuit Example>

□ <u></u> Battery


#### **Required Component Specifications**

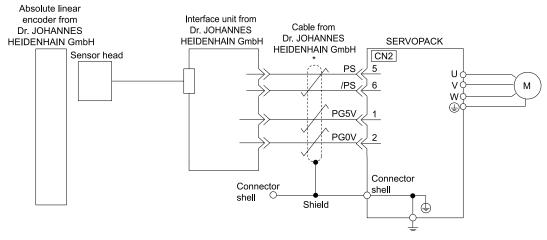
- Schottky Diode

Reverse voltage: Vr  $\ge 40$  V Forward voltage: Vf  $\le 0.37$  V Reverse current: Ir  $\le 5 \mu A$ Junction temperature: Tj  $\ge 125$ °C

- Resistor Resistance: 22 Ω Tolerance: ±5% max. Rated power: 0.25 W min.

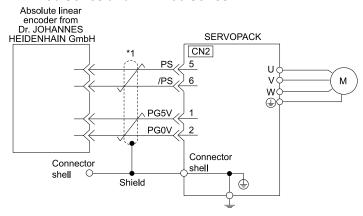
### (2) When Using a Batteryless Absolute Encoder



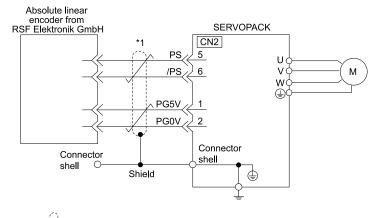

- \*1 The encoder pin numbers for wiring the connector depend on the servomotor that you use.
- \*2 'represents a shielded twisted-pair cable.

## (3) When Using an Absolute Linear Encoder

The wiring depends on the manufacturer of the linear encoder.

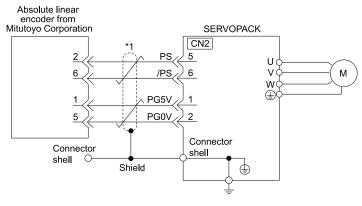

#### (a) Connections to Linear encoder from Dr. JOHANNES HEIDENHAIN GmbH

#### ♦ LC115, LC415



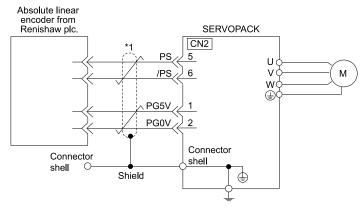

\*1 represents a shielded twisted-pair cable.

#### ♦ LIC4190 Series and LIC2190 Series

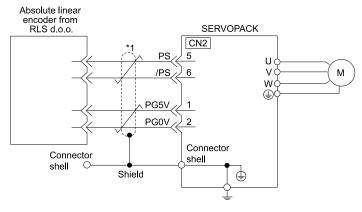



#### (b) Connections to Linear Encoder from RSF Elektronik GmbH




\*1 represents a shielded twisted-pair cable.

### (c) Connections to Absolute Linear Encoder from Mitutoyo Corporation




\*1 represents a shielded twisted-pair cable.

### (d) Connections to Absolute Linear Encoder from Renishaw PLC

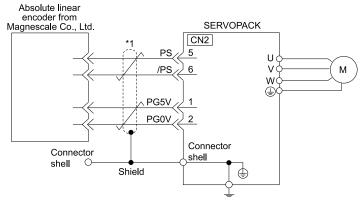
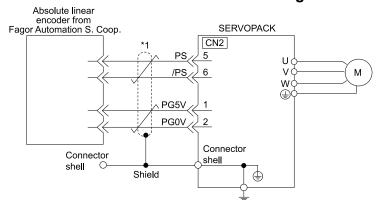


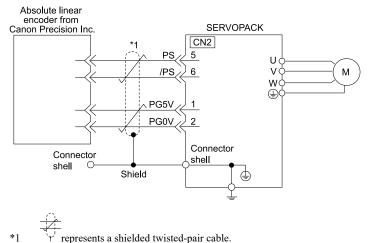
### (e) Connections to Linear Encoder from RLS d.o.o.



\*1 represents a shielded twisted-pair cable.

### (f) Connections to Absolute Linear Encoder from Magnescale Co., Ltd.

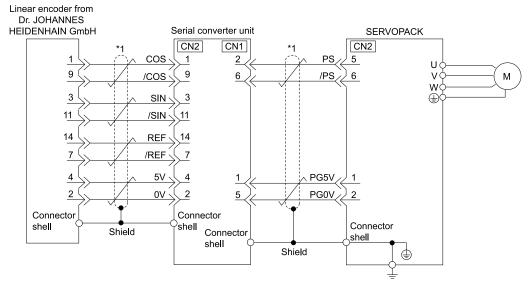





Figure 4.4 SR77, SR87, SQ47, and SQ57

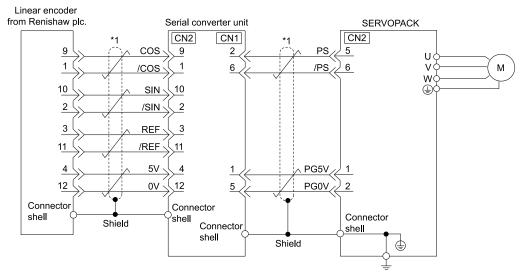
\*1 represents a shielded twisted-pair cable.

## (g) Connections to Linear Encoder from Fagor Automation S. Coop.




#### (h) Connections to Absolute Linear Encoder from Canon Precision Inc.



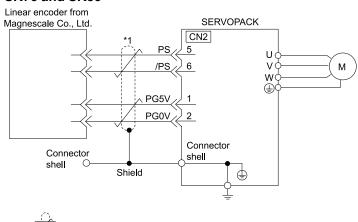

### (4) When Using an Incremental Linear Encoder

The wiring depends on the manufacturer of the linear encoder.

### (a) Connections to Linear Encoder from Dr. JOHANNES HEIDENHAIN GmbH



### (b) Connections to Linear Encoder from Renishaw PLC




represents a shielded twisted-pair cable.

#### (c) Connections to Linear Encoder from Magnescale Co., Ltd.

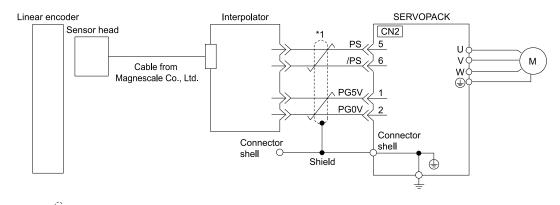
If you use a linear encoder from Magnescale Co., Ltd., the wiring will depend on the model of the linear encoder.

#### ◆ SR75 and SR85



\*1 represents a shielded twisted-pair cable.

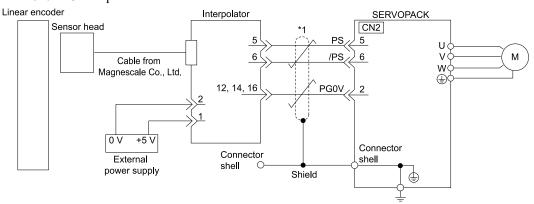
#### ◆ SL700, SL710, SL720, SL730, SQ10


• PL101-RY, MQ10-FLA, or MQ10-GLA Interpolator

The following table gives the linear encoder and interpolator combinations.

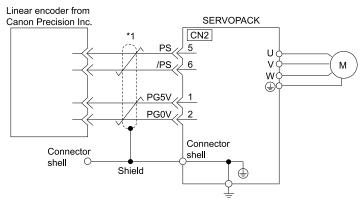
| Linear Encoder Model           | Interpolator Model |  |  |  |
|--------------------------------|--------------------|--|--|--|
| SL700, SL710, SL720, and SL730 | PL101-RY *1        |  |  |  |
| SQ10                           | MQ10-FLA *2        |  |  |  |
|                                | MQ10-GLA *2        |  |  |  |

<sup>\*1</sup> This is the model of the sensor head with interpolator.


<sup>\*2</sup> This is the model of the interpolator.



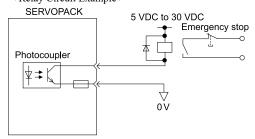
represents a shielded twisted-pair cable.


### ◆ SL700, SL710, SL720, and SL730

• MJ620-T13 Interpolator

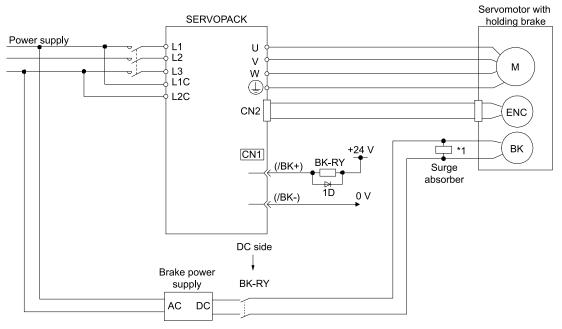


1 represents a shielded twisted-pair cable.


### (d) Connections to Linear Encoder from Canon Precision Inc.



### 4.4.4 Wiring the SERVOPACK to the Holding Brake




- If you use a rotary servomotor, select a surge absorber according to the brake current and brake power supply. Refer to the relevant manual in the following list for details.
- Important Σ-X-series Peripheral Device Selection Manual (Manual No.: SIEP C710812 12)
  - After the surge absorber is connected, check the brake operation delay time in your application. The surge absorber may affect the brake operation delay time.
  - Configure the relay circuit to activate the holding brake for an emergency stop.
  - < Relay Circuit Example >



- You can change the output signal allocation of the /BK signal. Refer to the following section for details. 

  5.11.2 /BK (Brake Output) Signal on page 185
- If you use a 24-V brake, install a separate power supply for the 24-VDC power supply from other power supplies, such as the one for the I/O signals of the CN1 connector. If the power supply is shared, the I/O signals may malfunction.



BK-RY: Brake control relay 1D: Flywheel diode

\*1 Install the surge absorber near the brake terminals on the servomotor.

# 4.5 I/O Signal Connections

## 4.5.1 I/O Signal Connector (CN1) Names and Functions

The following table gives the pin numbers, names, and functions the I/O signal pins for the default settings.

### (1) Input Signals

Default settings are given in parentheses.

| Signal                       | Pin No. | Name                                                               | Function                                                                                                                                                                                                                                                    | Reference Page |
|------------------------------|---------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| /SI1 * <i>I</i><br>(P-OT)    | 7       | General-Purpose Sequence Input 1<br>(Forward Drive Prohibit Input) | You can allocate the input signal to use with a parameter.                                                                                                                                                                                                  | 178            |
| /SI2 * <i>I</i><br>(N-OT)    | 8       | General-Purpose Sequence Input 2<br>(Reverse Drive Prohibit Input) | (Stops servomotor drive (to prevent overtravel) when<br>the moving part of the machine exceeds the range of<br>movement.)                                                                                                                                   |                |
| /SI3 * <i>I</i>              | 9       | General-Purpose Sequence Input 3                                   | You can allocate the input signal to use with a parameter.  (Used for general-purpose input.)                                                                                                                                                               | _              |
| /SI4 * <i>I</i><br>(/Probe1) | 10      | General-Purpose Sequence Input 4<br>(Probe 1 Latch Input)          | You can allocate the input signal to use with a parameter.                                                                                                                                                                                                  |                |
| /SI5 * <i>I</i><br>(/Probe2) | 11      | General-Purpose Sequence Input 5<br>(Probe 2 Latch Input)          | (Connect the external signals that latch the current feedback pulse counter.)                                                                                                                                                                               |                |
| /SI6 * <i>I</i> (/Home)      | 12      | General-Purpose Sequence Input 6<br>(Home Switch Input)            | You can allocate the input signal to use with a parameter.  (Connect the switch that starts homing.)                                                                                                                                                        | 565, 622       |
| /SI0 * <i>I</i>              | 13      | General-Purpose Sequence Input 0                                   | You can allocate the input signal to use with a parameter.  (Used for general-purpose input.)                                                                                                                                                               | _              |
| +24VIN                       | 6       | Sequence Input Signal Power Supply<br>Input                        | Inputs the sequence input signal power supply.  Allowable voltage range: 24 VDC ±20%  The 24-VDC power supply is not provided by Yaskawa.                                                                                                                   | 141            |
| BAT+                         | 14      | Battery for Absolute Encoder (+)                                   | These are the pins to connect the absolute encoder                                                                                                                                                                                                          | 127            |
| BAT-                         | 15      | Battery for Absolute Encoder (-)                                   | backup battery.  Note:  Do not connect these pins if you use the encoder cable with a battery unit.  Do not connect these pins if you use a booster unit. Always use an encoder cable with a battery unit to connect the booster unit and absolute encoder. |                |
| ТН                           | 5       | Overheat Protection Input                                          | Inputs the overheat protection signal from a linear servomotor or from a sensor attached to the machine.                                                                                                                                                    | 271            |

<sup>\*1</sup> You can change the allocations. Refer to the following section for details.

© 6.1.3 Input Signal Allocations on page 216

#### Note:

If forward drive prohibition or reverse drive prohibition is used, the SERVOPACK is stopped by software controls. If the application does not satisfy the safety requirements, add external safety circuits as required.

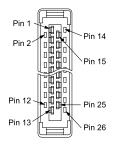
## (2) Output Signals

Default settings are given in parentheses.

| Signal       | Pin No. | Name                             | Function                                                                                                 | Reference Page |
|--------------|---------|----------------------------------|----------------------------------------------------------------------------------------------------------|----------------|
| ALM+         | 3       | Servo Alarm Output               | Turns OFF (opens) when an error is detected.                                                             | 220            |
| ALM-         | 4       |                                  |                                                                                                          |                |
| /SO1+ (/BK+) | 1       | General-Purpose Sequence Output  | You can allocate the output signal to use with a                                                         | 185            |
| /SO1- (/BK-) | 2       | 1 (Brake Output) * <i>I</i> , *2 | parameter. (Controls the brake. The brake is released when the signal turns ON (closes).)                |                |
| /SO2+        | 23      | General-Purpose Sequence Output  | Used for general-purpose outputs. Set the parame-                                                        | 642            |
| /SO2-        | 24      | 2 *1, *2                         | ters to allocate functions.                                                                              |                |
| /SO3+        | 25      | General-Purpose Sequence Output  |                                                                                                          |                |
| /SO3-        | 26      | 3 *1, *2                         |                                                                                                          |                |
| PAO          | 17      | Encoder Divided Pulse Output,    | Output the encoder divided pulse output signals with                                                     | 246, 255       |
| /PAO         | 18      | Phase A *3                       | a 90° phase differential.                                                                                |                |
| PBO          | 19      | Encoder Divided Pulse Output,    |                                                                                                          |                |
| /PBO         | 20      | Phase B *3                       |                                                                                                          |                |
| PCO          | 21      | Encoder Divided Pulse Output,    | Outputs the origin signal once every encoder                                                             |                |
| /PCO         | 22      | Phase C *3                       | rotation.                                                                                                |                |
| SG           | 16      | Signal Ground                    | This is the 0-V signal for the control circuits.                                                         | _              |
| FG           | Shell   | Frame Ground                     | Connected to the frame ground if the shield of the I/O signal cable is connected to the connector shell. | _              |

<sup>\*1</sup> You can change the allocations. Refer to the following section for details. 
© 6.1.4 Output Signal Allocations on page 218

(a) Triggers at Preset Positions Function Selection on page 277


(a) Triggers at Preset Positions Function Selection on page 277

When triggers at preset positions is enabled, the normal outputs for triggers at preset positions are used. The output signals for triggers at preset positions are output using logical OR. This allows other output signals to also be allocated to the same terminals. Refer to the following section for details on the selections of triggers at preset positions.

<sup>\*3</sup> When triggers at preset positions is enabled, the high-speed outputs for triggers at preset positions are used. In this case, encoder divided pulses are not output. Refer to the following section for details on the selections of triggers at preset positions.

# 4.5.2 I/O Signal Connector (CN1) Pin Layout

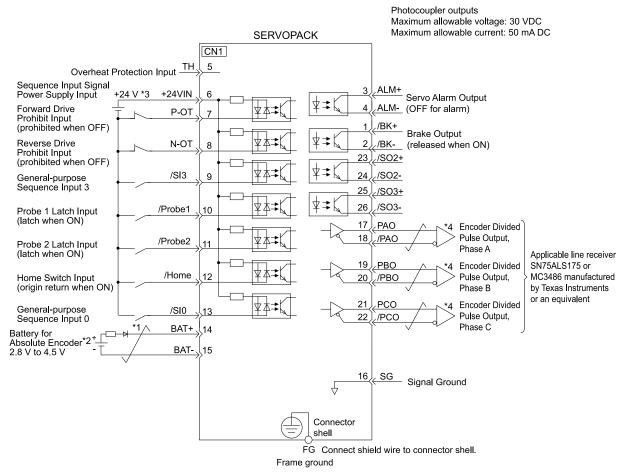
The following figure gives the pin layout of the I/O signal connector (CN1) for the default settings.



The illustration to the left and the following table are from the direction of the following arrow without the connector shell attached.



| 2  | /SO1-<br>(/BK-)   | General-Purpose Sequence Output 1              | 1  | /SO1+<br>(/BK+)   | General-Purpose Sequence Output 1 | 15 | BAT-  | Battery for<br>Absolute<br>Encoder (-)         | 14 | BAT+  | Battery for<br>Absolute<br>Encoder (+)         |
|----|-------------------|------------------------------------------------|----|-------------------|-----------------------------------|----|-------|------------------------------------------------|----|-------|------------------------------------------------|
| 4  | ALM-              | Servo Alarm<br>Output                          | 3  | ALM+              | Servo Alarm<br>Output             | 17 | PAO   | Encoder<br>Divided Pulse<br>Output, Phase<br>A | 16 | SG    | Signal Ground                                  |
| 6  | +24VIN            | Sequence Input<br>Signal Power<br>Supply Input | 5  | ТН                | Overheat Protection Input         | 19 | РВО   | Encoder<br>Divided Pulse<br>Output, Phase<br>B | 18 | /PAO  | Encoder<br>Divided Pulse<br>Output, Phase<br>A |
| 8  | /SI2<br>(N-OT)    | General-Purpose Sequence Input 2               | 7  | /SI1<br>(P-OT)    | General-Purpose Sequence Input 1  | 21 | PCO   | Encoder<br>Divided Pulse<br>Output, Phase<br>C | 20 | /PBO  | Encoder<br>Divided Pulse<br>Output, Phase<br>B |
| 10 | /SI4<br>(/Probe1) | General-Purpose Sequence Input 4               | 9  | /SI3              | General-Purpose Sequence Input 3  | 23 | /SO2+ | General-Purpose Sequence Output 2              | 22 | /PCO  | Encoder<br>Divided Pulse<br>Output, Phase<br>C |
| 12 | /SI6<br>(/Home)   | General-Pur-<br>pose Sequence<br>Input 6       | 11 | /SI5<br>(/Probe2) | General-Purpose Sequence Input 5  | 25 | /SO3+ | General-Purpose Sequence Output 3              | 24 | /SO2- | General-Purpose Sequence Output 2              |
| _  | -                 | _                                              | 13 | /SI0              | General-Purpose Sequence Input 0  | 1  | _     | _                                              | 26 | /SO3- | General-Purpose Sequence Output 3              |

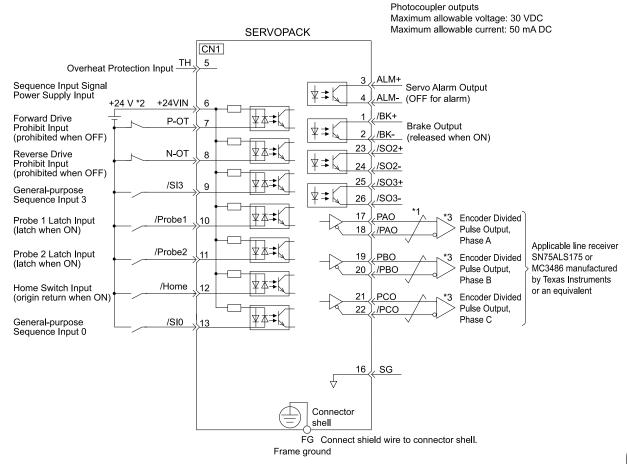

#### Note:

When using triggers at preset positions, the signals for CN1-17 to CN1-22 differ from those listed above. Refer to the following section for details.

**☞** 6.15.2 I/O Signal Connector (CN1) Pin Layout on page 275

### 4.5.3 I/O Signal Wiring Examples

### (1) When Using a Rotary Servomotor




- \*1 represents twisted-pair wires.
- \*2 Connect these when using an absolute encoder. If the encoder cable with a battery unit is connected, do not connect a backup battery.
- \*3 The 24-VDC power supply is not provided by Yaskawa. Use a 24-VDC power supply with double insulation or reinforced insulation.
- \*4 Always use line receivers to receive the output signals.

#### Note:

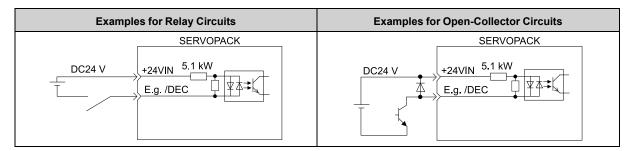
- You can use parameters to change the functions allocated to the /SI0, /SI3, P-OT, N-OT, /Probe1, /Probe2, and /Home input signals and the /SO1, /SO2, and /SO3 output signals. Refer to the following section for details.
   6.1 Changing Allocations of I/O Signals on page 214
- 2. If you use a 24-V brake, install a separate power supply for the 24-VDC power supply from other power supplies, such as the one for the I/O signals of the CN1 connector. If the power supply is shared, the I/O signals may malfunction.

### (2) When Using a Linear Servomotor



- represents twisted-pair wires.
- \*2 The 24-VDC power supply is not provided by Yaskawa. Use a 24-VDC power supply with double insulation or reinforced insulation.
- \*3 Always use line receivers to receive the output signals.

#### Note:


- You can use parameters to change the functions allocated to the /SI0, /SI3, P-OT, N-OT, /Probe1, /Probe2, and /Home input signals and the /SO1, /SO2, and /SO3 output signals. Refer to the following section for details.
   6.1 Changing Allocations of I/O Signals on page 214
- 2. If you use a 24-V brake, install a separate power supply for the 24-VDC power supply from other power supplies, such as the one for the I/O signals of the CN1 connector. If the power supply is shared, the I/O signals may malfunction.

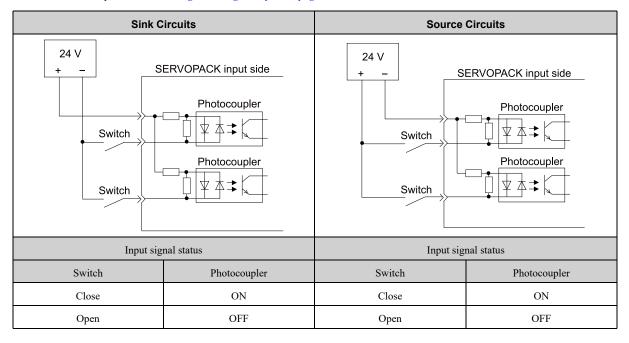
#### 4.5.4 I/O Circuits

### (1) Sequence Input Circuits

#### (a) Photocoupler Input Circuits

This section describes CN1 connector terminals 6 to 13.




#### Note:

For the external power supply (24 VDC), use a power supply with a capacity of 50 mA or higher.

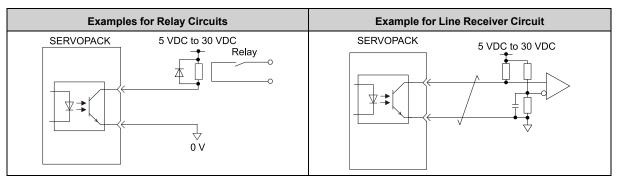
The SERVOPACK input circuits use bidirectional photocouplers. Select either a sink circuit or source circuit according to the specifications required by the machine.

#### Note

The connection examples in 4.5.3 I/O Signal Wiring Examples on page 140 are for sink circuit connections.



### (2) Sequence Output Circuits




Incorrect wiring or incorrect voltage application to the output circuits may cause short-circuit failures.

If a short-circuit failure occurs as a result of any of these causes, the holding brake will not work. This could damage the machine or cause an accident that may result in death or injury.

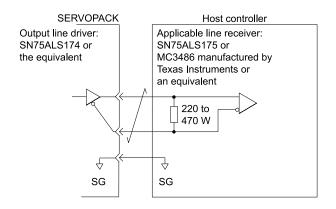
#### (a) Photocoupler Output Circuits

Photocoupler output circuits are used for the ALM (Servo Alarm Output), /S-RDY (Servo Ready Output), and other sequence output signals. Connect a photocoupler output circuit to a relay or line-receiver circuit.



#### Note:

The maximum allowable voltage and current range for photocoupler output circuits are as follows:


- Maximum allowable voltage: 30 VDC
- Current range: 5 mA to 50 mA DC

#### (b) Line-Driver Output Circuits

This section describes CN1 connector terminals 17-18 (Phase-A signal), 19-20 (Phase-B signal), and 21-22 (Phase-C signal).

The serial data from the encoder is converted to two-phase (phases A and B) pulses. The resulting output signals (PAO, /PAO, PBO, and /PBO), origin pulse signal (PCO and /PCO) are output with line-driver output circuits. Connect the line-driver output circuits to line-receiver circuits at the host controller.

<Example for Line-Receiver Circuit>



# 4.6 Connecting Safety Function Signals

This section describes the wiring required to use a safety function.

Refer to the following chapter for details on the safety function.

3 12 Safety Functions on page 523

## 4.6.1 Pin Layout of Safety Function Signals (CN8)

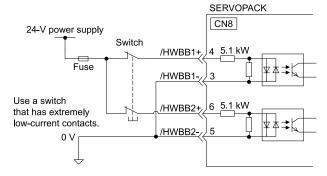
| Pin No. | Signal  | Name                                                                       | Function                                                                                                       |  |  |  |  |
|---------|---------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1       | _       | - (Do not use these pins because they are connected to internal circuits.) |                                                                                                                |  |  |  |  |
| 2       | _       |                                                                            |                                                                                                                |  |  |  |  |
| 3       | /HWBB1- | Hard Wire Base Block Input 1                                               | For a hard wire base block input. The base block (motor power turned OFF) is in effect when the signal is OFF. |  |  |  |  |
| 4       | /HWBB1+ |                                                                            |                                                                                                                |  |  |  |  |
| 5       | /HWBB2- | Hard Wire Base Block Input 2                                               |                                                                                                                |  |  |  |  |
| 6       | /HWBB2+ |                                                                            |                                                                                                                |  |  |  |  |
| 7       | EDM1-   | External Device Monitor Output                                             | Turns ON when the /HWBB1 and the / HWBB2 signals are input and the SERVOPACK enters a base block state.        |  |  |  |  |
| 8       | EDM1+   |                                                                            |                                                                                                                |  |  |  |  |

Whether or not you use the EDM1 signal does not affect the performance level of safety parameters.

### 4.6.2 I/O Circuits



For Safety Function signal connections, the input signal is the 0-V common and the output signal is a source output. This is opposite to other signals described in this manual. To avoid confusion, the ON and OFF status of signals for the Safety Function are defined as follows:


ON: The state in which the relay contacts are closed or the transistor is ON and current flows into the signal line.

OFF: The state in which the relay contacts are open or the transistor is OFF and no current flows into the signal line.

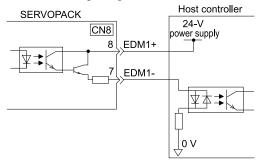
## (1) Safety Input Circuits

Use a 0-V common to connect the Safety Function signals. You must connect redundant input signals.

< Input Signal Connection Example >



## (a) Input (HWBB) Signal Specifications


| Туре  | Signal | Connector Pin No. | Status      | Meaning                                                  |
|-------|--------|-------------------|-------------|----------------------------------------------------------|
| Input | /HWBB1 | CN8-4             | ON (closed) | Does not activate the HWBB (normal operation).           |
|       |        | CN8-3             | OFF (open)  | Activates the HWBB (motor current interruption request). |
|       | /HWBB2 | CN8-6             | ON (closed) | Does not activate the HWBB (normal operation).           |
|       |        | CN8-5             | OFF (open)  | Activates the HWBB (motor current interruption request). |

The input (HWBB) signals have the following electrical characteristics.

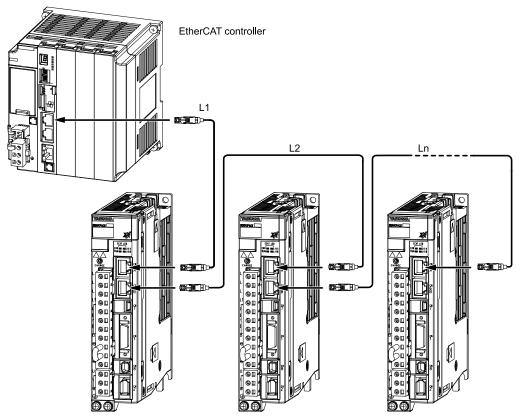
| Item                    | Characteristics | Remarks                                                                 |
|-------------------------|-----------------|-------------------------------------------------------------------------|
| Internal Impedance      | 5.1 kΩ          | -                                                                       |
| Allowable Voltage Range | +24 V± 20%      | For the 24-V power supply, use an SELV power supply.                    |
| Response Time           | 4 ms            | Time from /HWBB1 and /HWBB2 signals turning OFF until HWBB is activated |

## (2) Diagnostic Output Circuits

The EDM1 output signal uses a source circuit. The following figure shows a connection example.



## (a) EDM1 Output Signal Specifications


| Туре   | Signal | Connector Pin No. | Status | Meaning                                                          |
|--------|--------|-------------------|--------|------------------------------------------------------------------|
| Output | EDM1   | CN8-8             | ON     | Both the /HWBB1 and /HWBB2 signals are operating normally.       |
|        |        | CN8-7             | OFF    | The /HWBB1 signal, the /HWBB2 signal, or both are not operating. |

The electrical characteristics of the EDM1 signal are as follows:

| Item                         | Characteristics | Remarks                                                       |
|------------------------------|-----------------|---------------------------------------------------------------|
| Maximum Allowable<br>Voltage | 30 VDC          | _                                                             |
| Maximum Allowable<br>Current | 50 mA DC        | _                                                             |
| Maximum ON Voltage<br>Drop   | 1.0 V           | Voltage between EDM1+ and EDM1- when current is 50 mA         |
| Response Time                | 4 ms            | Time from a change in /HWBB1 or /HWBB2 until a change in EDM1 |

## 4.7 Connecting EtherCAT Communications Cables

Connect the EtherCAT communications cables to the CN6A and CN6B connectors.



Note:

The length of the cable between stations (L1, L2, ... Ln ) be  $50\ m$  or less.

## 4.8 Connecting the SigmaWin+

To connect a computer on which the SigmaWin+ is installed, connect CN7 on the SERVOPACK.



Use the Yaskawa-specified cables. Operation will not be dependable due to low noise resistance with any other cable.

Refer to the following manual for the operating procedures for the SigmaWin+.

Engineering Tool SigmaWin+ Operation Manual (Manual No.: SIET S800001 34)

## 4.9 Connecting a Digital Operator

To use a digital operator, connect CN7 on the SERVOPACK.

Refer to the following manual for the operating procedures for the digital operator.

 $\bigcap$   $\Sigma$ -7-/ $\Sigma$ -X-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)

## 4.10 Using the Analog Monitors

To use an analog monitor, connect CN5 on the SERVOPACK.

• Wiring Example



\*1 The measuring instrument is not provided by Yaskawa.

Refer to the following section for information on the monitoring methods for an analog monitor.

3.3 Monitoring Machine Operation Status and Signal Waveforms on page 462

# **Basic Functions That Require Setting before Operation**

Describes the basic functions that must be set before you start servo system operation. It also describes the setting methods.

| 5.1 | Mani   | pulating SERVOPACK Parameters (Pn□□□)                                        | 154 |
|-----|--------|------------------------------------------------------------------------------|-----|
|     | 5.1.1  | Classifications of SERVOPACK Parameters                                      | 154 |
|     | 5.1.2  | Notation for Parameters                                                      | 154 |
|     | 5.1.3  | Setting Methods for SERVOPACK Parameters                                     | 156 |
|     | 5.1.4  | Write Prohibition Setting for SERVOPACK Parameters                           | 157 |
|     | 5.1.5  | Initializing SERVOPACK Parameter Settings                                    | 160 |
| 5.2 | Powe   | er Supply Type Settings for the Main Circuit and Control                     | 460 |
|     |        | lit                                                                          |     |
|     |        | AC Power Supply Input/DC Power Supply Input Setting                          | 162 |
|     | 5.2.2  | Single-phase AC Power Supply Input/Three-phase AC Power Supply Input Setting | 163 |
| 5.3 | Auto   | matic Detection of Connected Motor                                           | 164 |
| 5.4 | Moto   | r Direction Setting                                                          | 165 |
|     | 5.4.1  | Rotary Servomotors                                                           | 165 |
|     | 5.4.2  | Linear Servomotors                                                           | 165 |
| 5.5 | Settii | ng the Linear Encoder Pitch                                                  | 167 |
| 5.6 | Writi  | ng Linear Servomotor Parameters                                              | 168 |
|     | 5.6.1  | Precautions                                                                  | 168 |
|     | 5.6.2  | Applicable Tools                                                             | 168 |
|     | 5.6.3  | Operating Procedure                                                          | 168 |
|     | 5.6.4  | Confirming If the Motor Constants Have Been Written                          | 171 |
| 5.7 | Selec  | cting the Phase Sequence for a Linear Servomotor                             | 172 |
|     | 5.7.1  | Related Parameters                                                           | 172 |
|     | 5.7.2  | Operating Procedure                                                          | 172 |
| 5.8 | Polar  | rity Sensor Setting                                                          | 174 |
| 5.9 | Polar  | rity Detection                                                               | 175 |

|      | 5.9.1  | Restrictions                                                                        | 175 |
|------|--------|-------------------------------------------------------------------------------------|-----|
|      | 5.9.2  | Using the Servo ON Command (Enable Operation Command) to Perform Polarity Detection | 176 |
|      | 5.9.3  | Using a Tool Function to Perform Polarity Detection                                 | 176 |
| 5.10 | Overt  | ravel and Related Settings                                                          | 178 |
|      | 5.10.1 | Overtravel Signals                                                                  | 178 |
|      | 5.10.2 | Setting to Enable/Disable Overtravel                                                | 179 |
|      | 5.10.3 | Motor Stopping Method for Overtravel                                                | 179 |
|      | 5.10.4 | Overtravel Alarms                                                                   | 180 |
|      | 5.10.5 | Overtravel Warnings                                                                 | 181 |
|      | 5.10.6 | Behavior Selection after Overtravel Release                                         | 182 |
|      | 5.10.7 | Overtravel Status                                                                   | 183 |
|      | 5.10.8 | Overtravel Operation by Mode                                                        | 183 |
| 5.11 | Holdi  | ng Brake                                                                            | 184 |
|      |        | Brake Operating Sequence                                                            |     |
|      |        | /BK (Brake Output) Signal                                                           | 185 |
|      | 5.11.3 | Output Timing of /BK (Brake Output) Signal When the Servomotor Is Stopped           | 186 |
|      | 5.11.4 | Output Timing of /BK (Brake Output) Signal When the Servomotor Is Operating         | 186 |
| 5.12 | Moto   | r Stopping Methods for Servo OFF and Alarms                                         | 188 |
|      | 5.12.1 | Stopping Method for Servo OFF                                                       | 188 |
|      | 5.12.2 | Servomotor Stopping Method for Alarms                                               | 189 |
| 5.13 | Moto   | r Overload Detection Level                                                          | 191 |
|      |        | Detection Timing for Overload Warnings (A.910)                                      |     |
|      | 5.13.2 | Detection Timing for Overload Alarms (A.720)                                        | 191 |
| 5.14 | Settir | ng Unit Systems                                                                     | 193 |
|      | 5.14.1 | Setting the Position Reference Unit                                                 | 193 |
|      | 5.14.2 | Electronic Gear Ratio Setting Examples                                              | 198 |
|      | 5.14.3 | Setting the Speed Reference Unit                                                    | 199 |
|      | 5.14.4 | Setting the Acceleration Reference Unit                                             | 199 |
|      | 5.14.5 | Setting the Torque Reference Unit                                                   | 200 |
| 5.15 | Reset  | ting the Absolute Encoder                                                           | 201 |
|      | 5.15.1 | Precautions on Resetting                                                            | 201 |
|      |        | Preparations                                                                        |     |
|      |        | Applicable Tools                                                                    |     |
|      | 5.15.4 | Operating Procedure                                                                 | 202 |
| 5.16 | Settir | ng the Origin of the Absolute Encoder                                               | 204 |

|      | 5.16.1 Absolute Encoder Origin Offset                         | 204 |
|------|---------------------------------------------------------------|-----|
|      | 5.16.2 Setting the Origin of the Absolute Linear Encoder      | 204 |
| 5.17 | Setting the Regenerative Resistor Capacity                    | 207 |
| 5.18 | $\Sigma$ -V/ $\Sigma$ -7 Compatible Function and Settings     | 209 |
|      | 5.18.1 Setting the Encoder Resolution Compatibility Selection | 209 |

## 5.1 Manipulating SERVOPACK Parameters (Pnpp)

This section describes the classifications, notation, and setting methods for the SERVOPACK parameters given in this manual.

### 5.1.1 Classifications of SERVOPACK Parameters

There are the following two types of SERVOPACK parameters.

| Classification    | Meaning                                                            |  |  |
|-------------------|--------------------------------------------------------------------|--|--|
| Setup Parameters  | Parameters for the basic settings that are required for operation. |  |  |
| Tuning Parameters | Parameters that are used to adjust servo performance.              |  |  |



When you edit parameters with the SigmaWin+, setup parameters and tuning parameters are displayed.

When you edit parameters with a digital operator, only setup parameters are displayed by default. To edit tuning parameters, set Pn00B to  $n.\square\square\square1$  (display all parameters).

| Pn00B<br>(200Bh) | п.□□□Х | Operator     | Parameter Display Selection Speed Pos Trq | When Enabled  |
|------------------|--------|--------------|-------------------------------------------|---------------|
|                  |        | 0<br>Default | Display only setup parameters.            | After restart |
|                  |        | 1            | Display all parameters.                   |               |

The setting method for each type of parameter is described below.

## (1) Setup Parameters

You can use the digital operator or SigmaWin+ to set the setup parameters individually.

Information

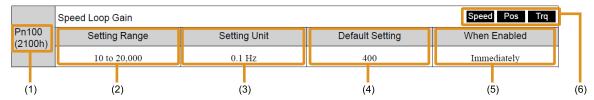
We recommend that you use the Setup Wizard of the SigmaWin+ to easily set the required setup parameters by setting the operating methods, machine specifications, and I/O signals according to on-screen Wizard instructions.

## (2) Tuning Parameters

Normally the user does not need to set the tuning parameters individually.

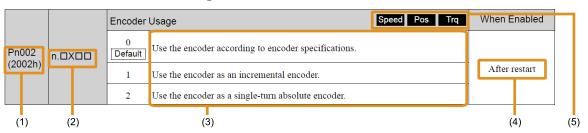
Use the various SigmaWin+ tuning functions to set the related tuning parameters to increase the response even further for the conditions of your machine. Refer to the following section for details.

- 8.7 Autotuning without a Host Reference on page 349
- 8.8 Autotuning with a Host Reference on page 362
- 8.9 Custom Tuning on page 370


You can also set the tuning parameters individually to make adjustments. Refer to the following section for details.

\$\mathbb{G}\$ 8.15 Manual Tuning on page 429

### 5.1.2 Notation for Parameters


The notation depends on whether the parameter requires a numeric setting (parameter for numeric setting) or requires the selection of a function (parameter for selecting functions).

## (1) Parameters for Numeric Settings



| No. | Description                                                                                                                      |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| (1) | Parameter number and object index number  The object index number is used when accessing an object over EtherCAT communications. |  |  |  |
| (2) | This is the setting range for the parameter.                                                                                     |  |  |  |
| (3) | This is the setting unit (setting increment) that you can set for the parameter.                                                 |  |  |  |
| (4) | This is the parameter setting before shipment.                                                                                   |  |  |  |
| (5) | This is when any change made to the parameter will become effective.                                                             |  |  |  |
|     | The control methods for which the parameters apply are given.                                                                    |  |  |  |
|     | Speed: A parameter that can be used in speed control.                                                                            |  |  |  |
| (6) | Pos : A parameter that can be used in position control.                                                                          |  |  |  |
|     | Trq : A parameter that can be used in torque control. "Torque" is used even for linear servomotor parameters.                    |  |  |  |
|     | Grayed-out icons (Speed, Pos, Trq ) indicate parameters that cannot be used in the corresponding control method.                 |  |  |  |

## (2) Parameters for Selecting Functions



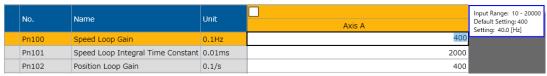
| No. | Description                                                                                                                                     |                                                                                                                                        |                                                     |                        |                                                                      |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------|----------------------------------------------------------------------|--|--|
| (1) | Parameter number and object index number  The object index number is used when accessing an object over EtherCAT communications.                |                                                                                                                                        |                                                     |                        |                                                                      |  |  |
|     | The notation "n.oooo" indiparameter.  Notation Example                                                                                          | icates a parameter for selecting functions. The digit shown as "X" is the content being explained in this  Notation Examples for Pn002 |                                                     |                        |                                                                      |  |  |
|     |                                                                                                                                                 |                                                                                                                                        | Digit Notation                                      | Numeric Value Notation |                                                                      |  |  |
|     | n. 0 0 0 0                                                                                                                                      | Notation                                                                                                                               | Meaning                                             | Notation               | Meaning                                                              |  |  |
| (2) |                                                                                                                                                 | Pn002 =<br>n.□□□X                                                                                                                      | Indicates the first digit from the right in Pn002.  | Pn002 =<br>n.□□□1      | Indicates that the first digit from the right in Pn002 is set to 1.  |  |  |
|     |                                                                                                                                                 | Pn002 =<br>n.□□X□                                                                                                                      | Indicates the second digit from the right in Pn002. | Pn002 =<br>n.□□1□      | Indicates that the second digit from the right in Pn002 is set to 1. |  |  |
|     |                                                                                                                                                 | Pn002 =<br>n.□X□□                                                                                                                      | Indicates the third digit from the right in Pn002.  | Pn002 =<br>n.□1□□      | Indicates that the third digit from the right in Pn002 is set to 1.  |  |  |
|     |                                                                                                                                                 | Pn002 =<br>n.X□□□                                                                                                                      | Indicates the fourth digit from the right in Pn002. | Pn002 =<br>n.1□□□      | Indicates that the fourth digit from the right in Pn002 is set to 1. |  |  |
| (3) | This column explains the selections for the function.  In the above example, the first line gives an explanation of when Pn002 = n.□0□□ is set. |                                                                                                                                        |                                                     |                        |                                                                      |  |  |

Continued on next page.

Continued from previous page.

| No.                                                   | Description                                                                                                      |  |  |  |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|
| (4)                                                   | This is when any change made to the parameter will become effective.                                             |  |  |  |
|                                                       | The control methods for which the parameters apply are given.                                                    |  |  |  |
| Speed: A parameter that can be used in speed control. |                                                                                                                  |  |  |  |
| (5)                                                   | Pos : A parameter that can be used in position control.                                                          |  |  |  |
|                                                       | Trq : A parameter that can be used in torque control. "Torque" is used even for linear servomotor parameters.    |  |  |  |
|                                                       | Grayed-out icons (Speed, Pos, Trq ) indicate parameters that cannot be used in the corresponding control method. |  |  |  |

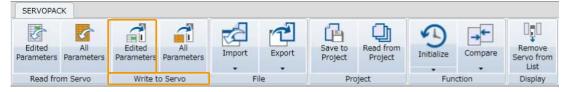
## 5.1.3 Setting Methods for SERVOPACK Parameters


You can use the SigmaWin+ or a digital operator to set the SERVOPACK parameters. Use the following procedure to set the parameters.

## (1) Setting SERVOPACK Parameters with the SigmaWin+

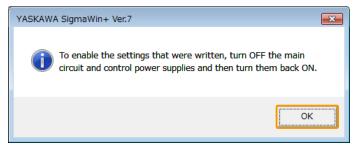
- Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.
- 2. Click [Edit Parameters] in the [Menu] window. The [Edit Parameters] window will be displayed.
- 3. Double-click the cell with the setting of the parameter to change.
  - · Parameters for Numeric Settings




· Parameters for Selecting Functions



- 4. Change the setting of the parameter.
- 5. Press the [Enter] key.


The background of the edited parameter cell will change to green.

6. Click [Edited Parameters] in the [Write to Servo] group.



The edited parameters are written to the SERVOPACK and the backgrounds of the cells change to white.

### 7. Click the [OK] button.



## 8. To enable changes to the settings, turn the power to the SERVOPACK OFF and ON again.

This concludes the procedure to set the parameters.

## (2) Setting SERVOPACK Parameters with a Digital Operator

Refer to the following manual for information on setting the SERVOPACK parameters with a digital operator.  $\square$   $\Sigma$ -7/ $\Sigma$ -X-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)

## (3) Setting SERVOPACK Parameters using the EtherCAT Communications

You can set objects 2000h to 26FFh with EtherCAT communications to set the SERVOPACK parameters (Pn000 to Pn6FF).

Object index 2 \( \pi \) \( \pi \) h corresponds to SERVOPACK parameter number Pn \( \pi \) \( \pi \).

For example, index 2100h is the same as parameter number Pn100 (2100h = Pn100).

When you use EtherCAT communications objects, you must write the SERVOPACK parameters to non-volatile memory.

To write the SERVOPACK parameters to non-volatile memory, set the Store Parameters (1010h) object. Refer to the following section for information on Store Parameters (1010h).

**3** 15.2.5 Store Parameters (1010h) on page 587

## 5.1.4 Write Prohibition Setting for SERVOPACK Parameters

You can prohibit writing SERVOPACK parameters from a digital operator. Even if you do, you will still be able to change SERVOPACK parameter settings from the SigmaWin+ or with EtherCAT communications.

## (1) Preparations

No preparations are required.

## (2) Applicable Tools

The following table lists the tools that you can use to change the Write Prohibition Setting for SERVOPACK parameters.

| Tool             | Fn No./Function Name                   | Reference                                                                      |
|------------------|----------------------------------------|--------------------------------------------------------------------------------|
| Digital Operator | Fn010                                  | Σ-7/Σ-X-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33) |
| SigmaWin+        | [Others] – [Write Prohibition Setting] | (3) Operating Procedure on page 157                                            |

## (3) Operating Procedure

Use the following procedure to prohibit or permit writing parameter settings.

1. Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.

## 2. Click [Write Prohibition Setting] in the [Menu] window.

The [Write Prohibition Setting] window will be displayed.

3. Press the [ ], [ ] for the rightmost digit and set one of the following.



0000: Writing is permitted (default setting).

0001: Writing is prohibited.

## 4. Click the [Setting] button.



### 5. Click the [OK] button.



The setting will be written to the SERVOPACK.

6. To enable the new setting, turn the power to the SERVOPACK OFF and ON again.

This concludes the procedure to prohibit or permit writing parameter settings.

## (4) Restrictions

If you prohibit writing parameter settings, you will no longer be able to execute some functions. Refer to the following table.

| 5                           | SigmaWin+                                                    |        | Digital Operator                                                       |                               |                                                                         |
|-----------------------------|--------------------------------------------------------------|--------|------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------|
| Button in<br>Menu<br>Window | SigmaWin+ Function<br>Name                                   | Fn No. | Utility Function Name                                                  | When Writing<br>Is Prohibited | Reference                                                               |
|                             | Initialize */                                                | Fn005  | Initialize Parameters                                                  | Cannot be executed.           | 5.1.5 Initializing SERVO-<br>PACK Parameter Settings<br>on page 160     |
|                             | Software Reset                                               | Fn030  | Software Reset                                                         | Can be executed.              | 6.10 Software Reset on page 259                                         |
| Basic<br>Functions          |                                                              | Fn011  | Display Servomotor Model                                               | Can be executed.              |                                                                         |
| runctions                   |                                                              | Fn012  | Display Software Version                                               | Can be executed.              |                                                                         |
|                             | Product Information                                          | Fn01E  | Display SERVOPACK and Servomotor IDs                                   | Can be executed.              | 9.1 Monitoring Product Information on page 452                          |
|                             |                                                              | Fn01F  | Display Servomotor ID from<br>Feedback Option Module                   | Can be executed.              |                                                                         |
|                             | Reset Absolute Encoder                                       | Fn008  | Reset Absolute Encoder                                                 | Cannot be executed.           | 5.15 Resetting the Absolute Encoder on page 201                         |
|                             | Multi-turn Limit Setup                                       | Fn013  | Multiturn Limit Setting after<br>Multiturn Limit Disagreement<br>Alarm | Cannot be executed.           | 6.8.8 A.CC0 (Multiturn Limit Disagreement Alarm ) on page 251           |
| Encoder<br>Setting          | Search Origin *2                                             | Fn003  | Origin Search                                                          | Cannot be executed.           | 7.6.2 Origin Search on page 306                                         |
|                             | Zero Point Position<br>Setting                               | Fn020  | Set Absolute Linear Encoder<br>Origin                                  | Cannot be executed.           | 5.16 Setting the Origin of<br>the Absolute Encoder on<br>page 204       |
|                             | Polarity Detection                                           | Fn080  | Polarity Detection                                                     | Cannot be executed.           | 5.9 Polarity Detection on page 175                                      |
|                             | Display Alarm                                                | Fn000  | Display Alarm History                                                  | Can be executed.              | 3 16.2.4 Displaying the Alarm History on page 684                       |
| Trouble-                    |                                                              | Fn006  | Clear Alarm History                                                    | Cannot be executed.           | 3 16.2.5 Clearing the Alarm<br>History on page 686                      |
| shooting                    |                                                              | Fn014  | Reset Option Module Configuration Error                                | Cannot be executed.           | If 16.2.6 Resetting Option  Module Configuration  Error on page 687     |
|                             | Reset Motor Type Alarm                                       | Fn021  | Reset Motor Type Alarm                                                 | Cannot be executed.           | 3 16.2.7 Resetting Motor<br>Type Alarms on page 688                     |
| Operation                   | Jog                                                          | Fn002  | Jog                                                                    | Cannot be executed.           | 7.3 Trial Operation for<br>the Servomotor without a<br>Load on page 295 |
|                             | Program JOG Operation                                        | Fn004  | Jog Program                                                            | Cannot be executed.           | 7.6.1 Program Jogging on page 301                                       |
|                             | Tuning - Autotuning<br>without Host Reference                | Fn201  | Advanced Autotuning without<br>Reference                               | Cannot be executed.           | 8.7 Autotuning without a Host Reference on page 349                     |
| Tuning                      | Tuning - Autotuning<br>with Host Reference                   | Fn202  | Advanced Autotuning with Reference                                     | Cannot be executed.           | 8.8 Autotuning with a Host Reference on page 362                        |
|                             | Tuning - Custom Tuning                                       | Fn203  | One-Parameter Tuning                                                   | Cannot be executed.           | 8.9 Custom Tuning on page 370                                           |
| J                           | Tuning - Custom Tuning<br>- Adjust Anti-resonance<br>Control | Fn204  | Adjust Anti-resonance Control                                          | Cannot be executed.           | 8.10 Anti-Resonance Control Adjustment on page 379                      |
|                             | Tuning - Custom Tuning<br>- Vibration Suppression            | Fn205  | Vibration Suppression                                                  | Cannot be executed.           | 8.11 Vibration Suppression on page 386                                  |
|                             | Response Level Setting                                       | Fn200  | Tuning-less Level Setting                                              | Cannot be executed.           | 8.4 Tuning-less Function on page 324  Continued on next page.           |

Continued on next page.

Continued from previous page.

|                             | SigmaWin+                                         |        | Digital Operator                                         |                               |                                                                            |  |
|-----------------------------|---------------------------------------------------|--------|----------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------|--|
| Button in<br>Menu<br>Window | SigmaWin+ Function<br>Name                        | Fn No. | Utility Function Name                                    | When Writing<br>Is Prohibited | Reference                                                                  |  |
| Diagnostic                  | Easy FFT                                          | Fn206  | Easy FFT                                                 | Cannot be executed.           | 8.16.2 Easy FFT on page 445                                                |  |
|                             | Adjust the Analog Moni-                           |        | Adjust Analog Monitor Output<br>Offset                   | Cannot be executed.           | ■ 9.3.3 Using the Analog                                                   |  |
|                             | tor Output                                        | Fn00D  | Adjust Analog Monitor Output<br>Gain                     | Cannot be executed.           | Monitors on page 464                                                       |  |
|                             | Adjust the Motor Current Detection Signal Offsets | Fn00E  | Autotune Motor Current Detection Signal Offset           | Cannot be executed.           | ■ 6.12 Adjusting the Motor                                                 |  |
| Others                      |                                                   | Fn00F  | Manually Adjust Motor Current<br>Detection Signal Offset | Cannot be executed.           | Current Detection Signal<br>Offset on page 264                             |  |
|                             | Initialize Vibration<br>Detection Level           | Fn01B  | Initialize Vibration Detection<br>Level                  | Cannot be executed.           | 6.11 Vibration Detection<br>Level Initialization on page<br>261            |  |
|                             | Write Prohibited Setting                          | Fn010  | Write Prohibition Setting                                | Can be executed.              | 5.1.4 Write Prohibition<br>Setting for SERVOPACK<br>Parameters on page 157 |  |

<sup>\*1</sup> An [Initialize] button will be displayed in the [Edit Parameters] window.

## 5.1.5 Initializing SERVOPACK Parameter Settings

You can return the SERVOPACK parameters to their default settings.

This function will not initialize the settings of the parameters that are adjusted for the Fn00C, Fn00D, Fn00E, and Fn00F utility functions.



To enable the new settings, turn the power supply to the SERVOPACK OFF and ON again after you complete the operation.

## (1) Preparations

Check the following settings before you initialize the SERVOPACK parameter settings.

- The SERVOPACK parameters must not be write prohibited.
- The servo must be OFF.

## (2) Applicable Tools

The following table lists the tools that you can use to initialize the SERVOPACK parameter settings.

| Tool                    | Fn No./Function Name                  | Reference                                                                      |
|-------------------------|---------------------------------------|--------------------------------------------------------------------------------|
| Digital Operator        | Fn005                                 | Σ-7/Σ-X-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33) |
| SigmaWin+               | [Basic Functions] – [Edit Parameters] | (3) Operating Procedure on page 160                                            |
| EtherCAT Communications | Restore Default Parameters (1011h)    | 15.2.6 Restore Default Parameters (1011h) on page 587                          |

## (3) Operating Procedure


Use the following procedure to initialize the parameter settings.

<sup>\*2</sup> Cannot be used when connecting a linear servomotor.

- 1. Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.
- 2. Click [Edit Parameters] in the [Menu] window.

The [Edit Parameters] window will be displayed.

- 3. Select any parameter of the axis to initialize.
- 4. Click [Initialize] in [Function] group.



5. Click the [OK] button.



Click the [Cancel] button to cancel initialization. The [Edit Parameters] window will return.

6. Click the [OK] button.



 Turn the power to the SERVOPACK OFF and ON again after the parameter settings have been initialized.

This concludes the procedure to initialize the parameter settings.

# 5.2 Power Supply Type Settings for the Main Circuit and Control Circuit

A SERVOPACK can be operated on either an AC power supply input or DC power supply input to the main and control circuits. If you select an AC power supply input, you can operate the SERVOPACK on either a single-phase power supply input or a three-phase power supply input. This section describes the settings related to the power supplies.

## 5.2.1 AC Power Supply Input/DC Power Supply Input Setting

Set  $Pn001 = n.\Box X \Box \Box$  (Main Circuit Power Supply AC/DC Input Selection) to specify whether to use an AC or DC power supply input for the main circuit power supply to the SERVOPACK.

If the setting of  $Pn001 = n.\Box X \Box \Box$  does not agree with the actual power supply input, an A.330 alarm (Main Circuit Power Supply Wiring Error) will occur.

Examples of When an A.330 Alarm (Main Circuit Power Supply Wiring Error) Occurs

- A DC power supply was input between the B1/⊕ ⊖2 terminals when Pn001 is set to n.□0□□ (set to use an AC power supply).
- An AC power supply was input to the L1, L2, and L3 terminals when Pn001 is set to n.□1□□ (set to use a DC power supply).

|                  |        | Main Circ | cuit Power Supply AC/DC Input Selection Speed Pos Trq                                                                                                                             | When Enabled  |
|------------------|--------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Pn001<br>(2001h) | n.□X□□ |           | Input AC power as the main circuit power supply using the L1, L2, and L3 terminals (do not use shared converter).                                                                 |               |
| (200)            |        | 1         | Input DC as the main circuit power supply using the B1/ $\oplus$ , $\ominus$ 2 terminals or the B1 and $\ominus$ 2 terminals (use an external converter or the shared converter). | After restart |

## **MARNING**

Connect the AC or DC power supplies to the specified SERVOPACK terminals.

- Connect an AC power supply to the L1, L2, and L3 terminals and the L1C and L2C terminals on the SERVOPACK.
- Connect a DC power supply to the B1/⊕ and ⊖ 2 terminals and the L1C and L2C terminals on the SERVOPACK.

There is a risk of failure or fire.

Always specify a DC power supply Pn001 =  $n.\Box 1\Box\Box$  (DC power supply input) before you input for the main circuit power supply.

If you input without specifying a DC power supply  $Pn001 = n.\Box 1\Box\Box$  (DC power supply input), the SERVO-PACK's internal elements may burn and may cause fire or damage to the equipment.

Install fuses on the power supply line if you use DC power.

The servomotor returns regenerative energy to the power supply. If you use a SERVOPACK with a DC power supply input, regenerative energy is not processed. Process the regenerative energy at the power supply.

If you use a DC power supply input with any of the following SERVOPACKs, externally connect an inrush current limiting circuit and use the power ON and OFF sequences recommended by Yaskawa: SGDXS-330A, -470A, -550A, -590A, -780A.

There is a risk of equipment damage.

## **A** CAUTION

Wait for at least 20 minutes (or 100 minutes when using DC power supply input) after turning OFF the power and then make sure that the CHARGE indicator is not lit before starting wiring or inspection work. Do not touch the main circuit terminals while the CHARGE indicator is lit because high voltage may still remain in the SERVOPACK even after turning OFF the power.

There is a risk of electric shock.

Refer to the following section for information on wiring the SERVOPACK.

■ 4.3.4 Power Supply Wiring Diagrams on page 120

# 5.2.2 Single-phase AC Power Supply Input/Three-phase AC Power Supply Input Setting

Some models of three-phase 200-VAC SERVOPACKs can also operate on a single-phase 200-VAC power supply.

You can use a single-phase, 200-VAC power supply input with the following models.

• SGDXS-R70A, -R90A, -1R6A, -2R8A, -5R5A

If you use a single-phase, 200-VAC power supply input for the SERVOPACK's main circuit power supply, set parameter Pn00B to  $n.\Box 1\Box\Box$  (use a three-phase power supply input as a single-phase power supply input).

Information

You do not need to change the setting of Pn00B to n. \(\text{n.}\)\(\text{l}\)\(\text{use a three-phase power supply input as a single-phase power supply input (model numbers: SGDXS-120A\(\text{l}\)\(\text{u}\)\(\text{0008}\)).

|                  |        | Power In     | wer Input Selection for Three-phase SERVOPACK Speed Pos Trq                |               |  |
|------------------|--------|--------------|----------------------------------------------------------------------------|---------------|--|
| Pn00B<br>(200Bh) | n.□X□□ | 0<br>Default | Use a three-phase power supply input.                                      | After restart |  |
|                  |        | 1            | Use a three-phase power supply input as a single-phase power supply input. |               |  |



- 1. If you use a single-phase power supply input without setting Pn00B to n.□1□□ (use a three-phase power supply input as a single-phase power supply input), an A.F10 alarm (Power Supply Line Open Phase) will occur.
- Not all SERVOPACKs can be run on a single-phase AC power supply input. If you connect a single-phase AC power supply input to a SERVOPACK that does not support single-phase power, an A.F10 alarm (Power Supply Line Open Phase) will occur.
- 3. If you use a single-phase 200-VAC power supply input, the torque-rotation speed characteristic of the servomotor will not be the same as for a three-phase AC power supply input. Decide whether to use a single-phase or three-phase AC power supply input after checking the characteristics given in the servomotor manual or catalog.

Refer to the following section for information on wiring a single-phase AC power supply input to the SERVOPACK.

(c) Wiring Example for Single-Phase, 200-VAC Power Supply Input on page 121

## 5.3 Automatic Detection of Connected Motor

You can use a SERVOPACK to operate either a rotary servomotor or a linear servomotor.

If you connect the servomotor encoder to the CN2 connector on the SERVOPACK, the SERVOPACK will automatically determine which type of servomotor is connected. Therefore, you normally do not need to specify the servomotor type.

Information

If an encoder is not connected, e.g., for a test without a motor, you can specify a rotary servomotor or a linear servomotor in  $Pn000 = n.X_{\square\square\square}$  (Rotary/Linear Servomotor Startup Selection When Encoder Is Not Connected). If you specify either a rotary or linear servomotor, only the parameters, monitors, alarms, and functions for the specified motor type will be enabled.

|                  |        | Rotary/Li<br>tion Whe | When Enabled                                                                |               |
|------------------|--------|-----------------------|-----------------------------------------------------------------------------|---------------|
| Pn000<br>(2000h) | n.X□□□ | 0<br>Default          | When an encoder is not connected, start as SERVOPACK for rotary servomotor. |               |
|                  |        | 1                     | When an encoder is not connected, start as SERVOPACK for linear servomotor. | After restart |

## 5.4 Motor Direction Setting

You can change the direction of servomotor rotation without changing the polarity of the speed or position reference by setting Pn000 to  $n.\Box\Box X$  (Rotation Direction Selection).

This causes the rotation direction of the servomotor to change, but the polarity of the signals, such as encoder divided pulse output, output from the SERVOPACK do not change. Set the appropriate direction for your system.

Refer to the following section for details on the encoder divided pulse output.

■ 6.5 Encoder Divided Pulse Output on page 233

## 5.4.1 Rotary Servomotors

The default setting for forward rotation is counterclockwise (CCW) as viewed from the load end of the servomotor.

| F       | Parameter                                     | Forward/<br>Reverse<br>Reference | Motor Direction and Encoder Divided Pulse<br>Outputs                                    | Applicable Overtravel<br>Signal (OT)            |
|---------|-----------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------|
|         | n.□□□0 Use CCW as the for-                    | Forward reference                | Torque reference Encoder divided pulse output  PAO TIME  PHO Phase-B lead               | P-OT (Forward Drive Prohibit Input) Signal      |
| Pn000   | ward direction.<br>(default setting)          | Reverse<br>reference             | Torque reference Encoder divided pulse output  PAO Phase-A lead  OW Motor speed PBO     | N-OT (Reverse Drive Pro-<br>hibit Input) Signal |
| (2000h) | n.□□□1 Use CW as the for-                     | Forward reference                | Time PAO Phase-B lead                                                                   | P-OT (Forward Drive Pro-<br>hibit Input) Signal |
|         | ward direction.<br>(Reverse Rotation<br>Mode) | Reverse<br>reference             | Torque reference Encoder divided pulse output Time PAO Phase-A lead Motor speed PBO PBO | N-OT (Reverse Drive Pro-<br>hibit Input) Signal |

### Note:

The trace waveforms of the SigmaWin+ are shown in the above table for the torque reference and motor speed diagrams. If you measure them on a measuring instrument, e.g., with an analog monitor, the polarity will be reversed.

## 5.4.2 Linear Servomotors



Before you set this parameter, make sure that  $Pn080 = n.\Box\Box X\Box$  (Motor Phase Sequence Selection) is set correctly.

5.7 Selecting the Phase Sequence for a Linear Servomotor on page 172

|                  | Parameter                                                           | Forward/<br>Reverse<br>Reference | Motor Direction and Encoder Divided Pulse<br>Outputs                                                                                        | Applicable Overtravel<br>Signal (OT)            |
|------------------|---------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
|                  | n.□□□0  Use the direction in which the linear                       | Forward reference                | Moves in the count-up direction.  Force reference Encoder divided pulse output  PAO TIME PAO Phase-B lead                                   | P-OT (Forward Drive Prohibit Input) Signal      |
| D=000            | encoder counts up as<br>the forward direction.<br>(default setting) | Reverse<br>reference             | Moves in the count-down direction.  Force reference Encoder divided pulse output Phase-A lead                                               | N-OT (Reverse Drive Pro-<br>hibit Input) Signal |
| Pn000<br>(2000h) | n.□□□1 Use the direction in                                         | Forward reference                | Horce reference Encoder divided pulse output  Moves in the count-down Motor speed PBO Phase-B lead direction.                               | P-OT (Forward Drive Pro-<br>hibit Input) Signal |
|                  | which the linear<br>encoder counts up as<br>the reverse direction.  | Reverse<br>reference             | Force reference Encoder divided pulse output  Moves in the count-up direction.  Encoder divided pulse output  PAO Phase-A lead  PBO PBO PBO | N-OT (Reverse Drive Prohibit Input) Signal      |

### Note:

The trace waveforms of the SigmaWin+ are shown in the above table for the force reference and motor speed diagrams. If you measure them on a measuring instrument, e.g., with an analog monitor, the polarity will be reversed.

### **Setting the Linear Encoder Pitch** 5.5

If you connect a linear encoder to the SERVOPACK through a serial converter unit, you must set the scale pitch of the linear encoder in Pn282.

If a serial converter unit is not connected, the setting of Pn282 will be invalid.



### **Serial Converter Unit:**

The serial converter unit converts the signal from the linear encoder into a form that can be read by the SERVOPACK.

A linear encoder has a scale for measuring lengths (positions). The length of one division on this scale is the scale pitch.

|                  | Linear Encoder Scale Pitch |              |                 | Speed Pos Trq |
|------------------|----------------------------|--------------|-----------------|---------------|
| Pn282<br>(2282h) | Setting Range              | Setting Unit | Default Setting | When Enabled  |
| (220211)         | 0 to 6553600               | 0.01 μm      | 0               | After restart |

You will not be able to control the linear servomotor if Pn282 is not set correctly. Check the following table and always set the correct value before you operate the linear servomotor.

| Type of Linear Encoder | Manufacturer           | Model     | Serial Converter Unit<br>Model | Linear Encoder Scale<br>Pitch [µm] |
|------------------------|------------------------|-----------|--------------------------------|------------------------------------|
|                        |                        | I ID 4 40 | JZDP-H003-□□-E                 | 20                                 |
| Incremental            | Heidenhain Corporation | LIDA48□   | JZDP-J003-□□-E                 | 20                                 |
|                        |                        | LIF48□    | JZDP-H003-□□-E                 |                                    |
|                        |                        |           | JZDP-J003-□□-E                 | 4                                  |
|                        |                        |           | JZDP-H005-□□-E                 | 20                                 |
|                        | Renishaw PLC           | RGH22B    | JZDP-J005-□□-E                 | 20                                 |

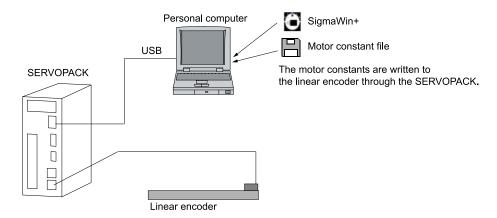
The first time you supply power to the SERVOPACK, the panel display on the front of the servomotor will display an A.080 alarm (Linear Encoder Pitch Setting Error). The A.080 alarm is displayed because the setting of Pn282 has not been changed. The A.080 alarm will be cleared when you change the setting of Pn282 and then turn the power OFF and ON again.

### Information Linear Encoder Scale Pitch

If you do not use a serial converter unit, the linear encoder pitch is automatically set, and the setting of Pn282 will be invalid. Refer to the following sections for details.

◆ Feedback Resolution of Linear Encoder: Incremental Linear Encoder on page 195

◆ Feedback Resolution of Linear Encoder: Absolute Linear Encoder on page 196


## 5.6 Writing Linear Servomotor Parameters

If you connect a linear encoder to the SERVOPACK without going through a serial converter unit, you must use the SigmaWin+ to write the motor constants to the linear encoder. The motor constants contain the information that is required by the SERVOPACK to operate the linear servomotor.

## **⚠ WARNING**

### Check if the servomotor and linear encoder information to write is correct.

There is a risk of the servomotor running out of control, device damage, personal injury, and fire by writing incorrect motor constants.





Serial number information is not included in the motor constants. You cannot use the monitor functions of the SERVO-PACK to monitor the serial number.

Important If you attempt to monitor the serial number, \*\*\*\*\*\* will be displayed.

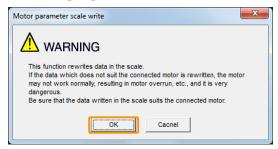
## 5.6.1 Precautions

- If the encoder parameters are not written to the linear encoder, an A.CA0 alarm (Encoder Parameter Error) will occur. Consult the manufacturer of the linear encoder.
- If the motor constants are not written to the linear encoder, an A.CA0 alarm (Encoder Parameter Error) will not occur, but the following alarms will occur.
   A.040 (Parameter Setting Error), A.041 (Encoder Output Pulse Setting Error), A.050 (Combination Error), A.051 (Unsupported Device Alarm), A.550 (Maximum Motor Speed Setting Error), A.710 (Instantaneous Overload), A.720 (Continuous Overload), and A.C90 (Encoder Communications Error)

## 5.6.2 Applicable Tools

The following table lists the tools that you can use to write the parameters to the linear servomotor.

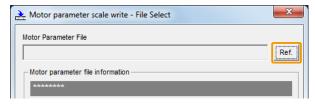
| Tool             | Fn No./Function Name                                                     | Reference                                                         |  |
|------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------|--|
| Digital Operator | You cannot write linear servomotor parameters from the digital operator. |                                                                   |  |
| SigmaWin+        | [Encoder Setting] – [Motor Parameter Scale<br>Write]                     | \$\overline{\overline{G}}\$ 5.6.3 Operating Procedure on page 168 |  |


## 5.6.3 Operating Procedure

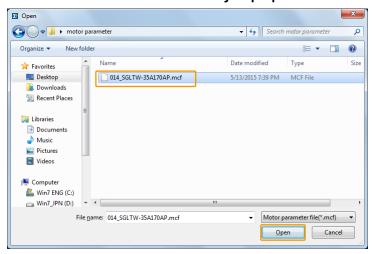
Use the following procedure to write the motor constants to the linear encoder.

- 1. Prepare the motor constant file to write to the linear encoder.
- 2. Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.
- 3. Select [Motor Parameter Scale Write] in the [Menu] window.

The [Motor Parameter Scale Write] window will be displayed.


4. Click the [OK] button.




Click the [Cancel] button to cancel writing the motor constant scale to the linear encoder. The Main Window will return.

If the write is completed normally, the [Motor Parameter Scale Write - File Select] window will be displayed.

5. Click the [Ref.] button.

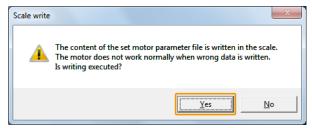


6. Select the motor constant file that you prepared and click the [Open] button.



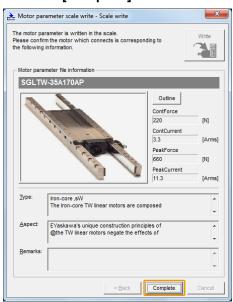
7. Confirm that the motor constant file information that is displayed is suitable for your servomotor, and then click the [Next] button.



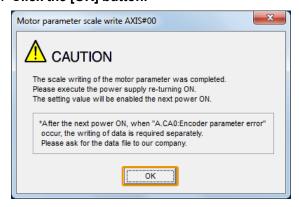

- Information Click the [Outline] button to display the dimensional drawing.
  - Click the image of the servomotor to enlarge the view.

Click the [Cancel] button to cancel writing the motor constant scale to the linear encoder. The Main Window will return.

8. Click the [Write] button.




## 9. Click the [Yes] button.




Click the [No] button to cancel writing the motor constant scale to the linear encoder. If you click the [Yes] button, writing the motor constant scale will start.

### 10. Click the [Complete] button.



### 11. Click the [OK] button.



### 12. Turn the power to the SERVOPACK OFF and ON again.

This concludes the procedure to write the motor constants.

## 5.6.4 Confirming If the Motor Constants Have Been Written

After you write the motor constants, you can use a monitor function to confirm that the motor constants are in the encoder.

If the motor constants have not been written, no information on the servomotor will be displayed.

**3** 9.1 Monitoring Product Information on page 452

# 5.7 Selecting the Phase Sequence for a Linear Servomotor

You must select the phase sequence of the linear servomotor so that the forward direction of the linear servomotor is the same as the encoder's count-up direction. This is accomplished with the setting that synchronizes the position and direction of the servomotor and encoder.

Before you set Pn080 to n.□□X□ (Motor Phase Sequence Selection), check the following items.

- Confirm that the signal from the linear encoder is being received normally.
- Make sure that the forward direction of the linear servomotor and the count-up direction of the linear encoder are in the same direction.



- If you do not confirm the above items before you attempt to operate the servomotor, the servomotor may not operate or it may run out of control. Always confirm these items before you operate the servomotor.
- To set Pn000 to n. und (Direction Selection), first set Pn080 to n. und explained here, and then set Pn000 to n. und X.
- If you changed the setting of Pn080 = n. \( \subseteq X \subseteq \) (Motor Phase Sequence Selection) when using an absolute encoder, always detect the polarity afterward. If you change the setting of Pn080 = n. \( \subseteq X \subseteq \) after the polarity is detected, A.C10 (Servomotor Out of Control) will occur.

## 5.7.1 Related Parameters

|                  |  | Motor Ph     | ase Sequence Selection Speed Pos Trq                   | When Enabled  |
|------------------|--|--------------|--------------------------------------------------------|---------------|
| Pn080<br>(2080h) |  | 0<br>Default | Set a phase-A lead as a phase sequence of U, V, and W. | After restart |
|                  |  | 1            | Set a phase-B lead as a phase sequence of U, V, and W. |               |

## 5.7.2 Operating Procedure

Use the following procedure to select the phase sequence for a linear servomotor.

1. Set Pn000 to n.□□□0 (use the direction in which the linear encoder counts up as the forward direction).

This setting is to make following confirmation work easier to understand.

2. Click [Monitor] in the [Menu] window.

The [Operation] window will be displayed so that you can check the feedback pulse counter. To check the feedback pulse counter with the digital operator, use Un00D (Feedback Pulse Counter).

3. Manually move the moving coil from one end to the other of the stroke and confirm that only the correct number of feedback pulses is returned.

If the correct number and only the correct number of pulses is returned, the signal is being received correctly from the linear encoder.

Setting Example

In this example, assume that a linear encoder with a scale pitch of 20  $\mu$ m and a resolution of 256 is used. If you manually move the moving coil 1 cm in the count-up direction of the linear encoder, the number of feedback pulses would be as follows: 1 cm/(20  $\mu$ m/256) = 128000 pulses



If the value on the feedback pulse counter is 128000 pulses after you manually moved the linear servomotor in the direction of the cable, confirmation is complete.

### Note

The actual monitor display will be offset by the error in the travel distance. There is no problem as long as the above value is close to the calculated value.

Information If the correct value is not displayed for the feedback pulse counter, the following conditions may exist. Check the situation and correct any problems.

- The linear encoder pitch is not correct. If the scale pitch that is set in Pn282 does not agree with the actual scale pitch, the expected number of feedback pulses will not be returned. Check the specifications of the linear encoder.
- The linear encoder is not adjusted properly. If the linear encoder is not adjusted properly, the output signal level from the linear encoder will drop and the correct number of pulses will not be counted. Check the adjustment of the linear encoder. Contact the manufacturer of the linear encoder for details.
- There is a mistake in the wiring between the linear encoder and the serial converter unit. If the wiring is not correct, the correct number of pulses will not be counted. Correct the wiring.
- Manually move the moving coil in the direction of the cable and check the value of the feedback pulse counter in the [Operation] window to confirm that it is counting up.



Manually move the linear servomotor in the direction of the cable.

- If the feedback pulse counter counts up, set Pn080 to n.□□0□ (phase-A lead as a phase sequence of U, V, and W). If the feedback pulse counter counts down, set Pn080 to n.□□1□ (phase-B lead as a phase sequence of U, V, and W).
- Turn the power to the SERVOPACK OFF and ON again.
- If necessary, return Pn000 = n.□□□X (Movement Direction Selection) to its original setting.

This concludes the procedure to set the phase sequence of the linear servomotor.

## 5.8 Polarity Sensor Setting

The polarity sensor detects the polarity of the servomotor. You must set a parameter to specify whether the linear servomotor that is connected to the SERVOPACK has a polarity sensor. Specify whether there is a polarity sensor in  $Pn080 = n.\square\square\square X$  (Polarity Sensor Selection).

If the linear servomotor has a polarity sensor, set Pn080 to n.□□□0 (use polarity sensor) (default setting).

If the linear servomotor does not have a polarity sensor, set Pn080 to n.  $\Box\Box\Box$ 1 (do not use polarity sensor). Turn the power OFF and ON again to enable the new setting.

|                  |        | Polarity Sensor Selection Speed Pos Trq |                             | When Enabled  |
|------------------|--------|-----------------------------------------|-----------------------------|---------------|
| Pn080<br>(2080h) | n.□□□X | 0<br>Default                            | Use polarity sensor.        | After restart |
|                  |        | 1                                       | Do not use polarity sensor. |               |

Information

If you set Pn080 to n. □□□0 (use polarity sensor) and the linear servomotor that is connected to the SERVOPACK does not have a polarity sensor, an A.C21 alarm (Polarity Sensor Error) will occur when you turn the power OFF and ON again.

## 5.9 Polarity Detection

If you use a linear servomotor that does not have a polarity sensor, then you must detect the polarity.

Detecting the polarity means that the position of the electrical phase angle on the electrical angle coordinates of the servomotor is detected. The SERVOPACK cannot control the servomotor correctly unless it accurately knows the position of the electrical angle coordinate of the servomotor.

The execution timing and execution method for polarity detection depend on the encoder specification as described in the following table.

| Encoder Specification | Polarity Detection Execution Timing                                                                                                                                                                                                                | Polarity Detection Execution Method                                                                                                                                    |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | Each time the control power to the SERVO-PACK is turned ON                                                                                                                                                                                         | Use the Servo ON command (Enable Operation command).                                                                                                                   |
| Incremental encoder   | (Even after you execute polarity detection, the position of the polarity will be lost the next time the control power to the SERVOPACK is turned OFF.)                                                                                             | <ul> <li>Use the polarity detection function of the SigmaWin +.</li> <li>Execute the Fn080 (Polarity Detection) utility function from the digital operator.</li> </ul> |
| Absolute encoder      | Only for initial setup, or after the SERVO-PACK, linear encoder, or servomotor has been replaced (The results of polarity detection is stored in the absolute encoder, so the polarity position is not lost when the control power is turned OFF.) | <ul> <li>Use the polarity detection function of the SigmaWin +.</li> <li>Execute the Fn080 (Polarity Detection) utility function from the digital operator.</li> </ul> |



If you changed the setting of  $Pn080 = n. \square \square X \square$  (Motor Phase Sequence Selection) when using an absolute encoder, always detect the polarity afterward. If you change the setting of  $Pn080 = n. \square \square X \square$  after the polarity is detected, A.C10 (Servomotor Out of Control) will occur.

Information

If you use a linear servomotor that does not have a polarity sensor, you will not be able to turn ON the servo until polarity detection has been completed.

### 5.9.1 Restrictions

## (1) Assumed Conditions

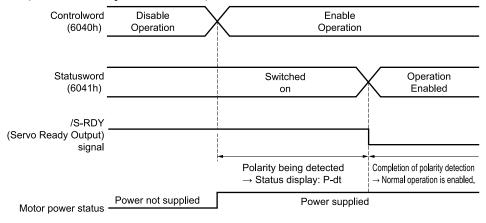
The servomotor will move when you execute polarity detection. The following conditions must be met before you start.

- It must be OK to move the moving coil about 10 mm.(If polarity detection fails, the moving coil may move approximately 5 cm. The amount of movement depends on conditions.)
- The linear encoder pitch must be 100 μm or less. (We recommend a pitch of 40 μm or less for an incremental encoder.)
- As much as possible, the motor must not be subjected to an imbalanced external force. (We recommend 5% or less of the rated force.)
- The mass ratio must be 50x or less.
- The axis must be horizontal.
- There must be friction equivalent to a few percent of the rated force applied to the guides. (Air sliders cannot be used.)

## (2) Preparations

Always check the following before you execute polarity detection.

- Pn080 must be set to n.□□□1 (do not use polarity sensor).
- The servo must be OFF.
- The main circuit power must be ON.
- There must be no hard wire base block (HWBB).
- There must be no alarms except for an A.C22 alarm (Phase Information Disagreement).
- The parameters must not be write prohibited. (This item applies only when using the SigmaWin+ or digital operator.)
- Pn00C must be set to n. \( \subseteq \subseteq 0 \) (test without a motor function is disabled).
- There must be no overtravel.
- If the motor constants have been written or the origin of the absolute linear encoder has been set, the power to the SERVOPACK must be turned OFF and ON again after completion of the writing or setting operation.




- Power is supplied to the servomotor during polarity detection. Be careful not to get an electric shock. Also, the moving coil of the linear servomotor may greatly move during detection. Do not approach the moving parts of the servomotor.
- Polarity detection is affected by many factors. For example, polarity detection may fail if the mass ratio or friction is too large or the cable tension is too strong.

# 5.9.2 Using the Servo ON Command (Enable Operation Command) to Perform Polarity Detection

You can use the Servo ON command (Enable Operation command) to perform polarity detection only with an incremental linear encoder.

Polarity detection will start simultaneously with execution of the Servo ON command (Enable Operation command). As soon as polarity detection is completed, the /S-RDY will turn ON and the servo will change to ON status (Statusword = Operation Enabled).



## 5.9.3 Using a Tool Function to Perform Polarity Detection

## (1) Applicable Tools

The following table lists the tools that you can use to perform polarity detection.

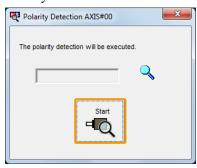
| Tool             | Fn No./Function Name                        | Reference                                                                      |
|------------------|---------------------------------------------|--------------------------------------------------------------------------------|
| Digital Operator | Fn080                                       | Σ-7/Σ-X-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33) |
| SigmaWin+        | [Encoder Setting] – [Polarity<br>Detection] | (2) Operating Procedure on page 176                                            |

## (2) Operating Procedure

Use the following procedure to perform polarity detection.

- 1. Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.
- 2. Click [Polarity Detection] in the [Menu] window.

The [Polarity Detection] window will be displayed.


3. Click the [Continue] button.



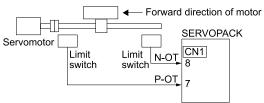
Click the [Cancel] button to cancel polarity detection. The Main Window will return.

4. Click the [Start] button.

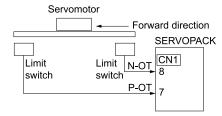
Polarity detection will be executed.



This concludes the polarity detection procedure.


## 5.10 Overtravel and Related Settings

Overtravel is a function of the SERVOPACK that forces the servomotor to stop in response to a signal input from a limit switch that is activated when a moving part of the machine exceeds the safe range of movement.


The overtravel signals include the P-OT (Forward Drive Prohibit Input) and the N-OT (Reverse Drive Prohibit Input) signals. You use the P-OT and N-OT signals to stop the machine by installing limit switches at the positions where you want to stop the machine that is operated by the servomotor.

A SERVOPACK wiring example is provided below.

Rotary Servomotors



**Linear Servomotors** 



Using the overtravel function is not necessary for rotating applications such as rotary tables and conveyors. No wiring for overtravel input signals is required.

This section describes the parameters settings related to overtravel.

## **M** CAUTION

To prevent accidents that may result from poor contact or disconnections, use normally closed limit switches. Do not change the default settings of the polarity of the overtravel signals (P-OT and N-OT).

If you use a servomotor for a vertical axis, the /BK (Brake Output) signal will remain ON (i.e., the brake will be released) when overtravel occurs. This may result in the workpiece falling when overtravel occurs. To prevent the workpiece from falling, set Pn001 to n.  $\Box\Box$ 1 to place the servomotor in a zero-clamped state when it stops.

A base block state is entered after stopping for overtravel. This may cause the servomotor to be pushed back by an external force on the load shaft. To prevent the servomotor from being pushed back, set Pn001 to n. □□1□ to place the servomotor in a zero-clamped state when it stops.

## 5.10.1 Overtravel Signals

The overtravel signals include the P-OT (Forward Drive Prohibit Input) and the N-OT (Reverse Drive Prohibit Input) signals.

| Standard | Signal | Connector Pin No. | Signal<br>Status | Meaning                                           |
|----------|--------|-------------------|------------------|---------------------------------------------------|
| Вот      | D OT   | CNI 7             | ON               | Forward drive is enabled (actual operation).      |
| T .      | P-OT   | CN1-7             | OFF              | Forward drive is prohibited (forward overtravel). |
| Input    |        | CN1-8             | ON               | Reverse drive is enabled (actual operation).      |
|          | N-OT   |                   | OFF              | Reverse drive is prohibited (reverse overtravel). |

You can operate the servomotor in the opposite direction during overtravel by inputting a reference.

## 5.10.2 Setting to Enable/Disable Overtravel

Enable and disable overtravel by setting parameters.

You do not need to wire the overtravel input signals if you are not going to use the overtravel function.

The parameters to use for the settings depend on the allocation method as shown below.

| Allocation Method                     | Parameter to Use                                                                                                                                                                                                                                    |  |  |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Σ-7S-compatible I/O Signal Allocation | <ul> <li>Pn50A = n.□□□1 (use Sigma-7S-compatible I/O signal allocations)</li> <li>Pn50A = n.X□□□ (P-OT (Forward Drive Prohibit Input) Signal Allocation)</li> <li>Pn50B = n.□□□X (N-OT (Reverse Drive Prohibit Input) Signal Allocation)</li> </ul> |  |  |
| Σ-LINK II Input Signal Allocation     | <ul> <li>Pn50A = n.□□□2 (use Σ-LINK II input signal allocations)</li> <li>Pn590 (P-OT (Forward Drive Prohibit Input) Signal Allocation)</li> <li>Pn591 (N-OT (Reverse Drive Prohibit Input) Signal Allocation)</li> </ul>                           |  |  |

Refer to the following section for details on allocations.

**☞** 6.1.2 I/O Signal Allocations on page 216

## **5.10.3 Motor Stopping Method for Overtravel**

You can set the stopping method of the servomotor when overtravel occurs in  $Pn001 = n.\Box\Box XX$  (Motor Stopping Method for Servo OFF and Group 1 Alarms and Overtravel Stopping Method).

|         | Parameter                    | Motor Stopping<br>Method */                        | Status after Stopping | When Enabled  |  |
|---------|------------------------------|----------------------------------------------------|-----------------------|---------------|--|
|         | n.:::00<br>(default setting) | Dynamic brake                                      | Coasting              |               |  |
|         | n.==01                       |                                                    |                       | After restart |  |
| Pn001   | n.□□02                       | Coasting                                           |                       |               |  |
| (2001h) | n.==1=                       | Deceleration according to setting of Pn406 (2406h) | Zero clamp            |               |  |
|         | n.□□2□                       |                                                    | Coasting              |               |  |
|         | n.==3=                       | Deceleration according to setting of Pn30A (230Ah) | Zero clamp            |               |  |
|         | n4_                          |                                                    | Coasting              |               |  |

<sup>\*1</sup> You cannot decelerate a servomotor to a stop during torque control. The servomotor will be stopped with the dynamic braking or coast to a stop (according to the setting of Pn001 = n. \( \subseteq \subseteq X \) (Motor Stopping Method for Servo OFF and Group 1 Alarms)), and then the servomotor will enter a coasting state.

Refer to the following section for information on stopping methods other than those for overtravel.

■ 5.12 Motor Stopping Methods for Servo OFF and Alarms on page 188

## (1) Stopping the Servomotor by Setting Emergency Stop Torque

To stop the servomotor by setting emergency stop torque, set Pn406 (Emergency Stop Torque).

If  $Pn001 = n.\Box\Box X\Box$  is set to 1 or 2, the servomotor will be decelerated to a stop using the torque set in Pn406 as the maximum torque.

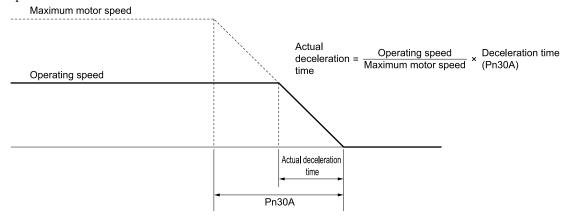
The default setting is 800%. This setting is large enough to allow you to operate the servomotor at the instantaneous maximum torque. However, the maximum emergency stop torque that you can actually use is the instantaneous maximum torque of the servomotor.

| Pn406<br>(2406h) | Emergency Stop Torque Speed Pos Trq |              |                 |              |  |  |
|------------------|-------------------------------------|--------------|-----------------|--------------|--|--|
|                  | Setting Range                       | Setting Unit | Default Setting | When Enabled |  |  |
|                  | 0 to 800                            | 1%           | 800             | Immediately  |  |  |

### Note:

The setting unit is a percentage of the motor rated torque.

## (2) Stopping the Servomotor by Setting the Deceleration Time


To specify the servomotor deceleration time and use it to stop the servomotor, set Pn30A (Deceleration Time for Servo OFF and Forced Stops).

The maximum torque value when stopping is the value set in Pn406 (Emergency Stop Torque).

| Pn30A<br>(230Ah) | Deceleration Time for Servo OFF and Forced Stops  Speed Pos T |              |                 |              |  |
|------------------|---------------------------------------------------------------|--------------|-----------------|--------------|--|
|                  | Setting Range                                                 | Setting Unit | Default Setting | When Enabled |  |
|                  | 0 to 12000                                                    | 1 ms         | 0               | Immediately  |  |

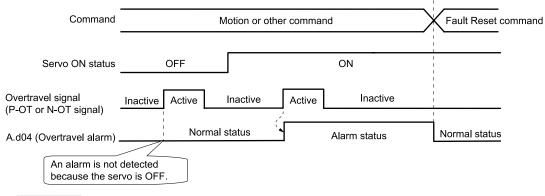
If you set Pn30A to 0, the servomotor will be stopped with a zero speed.

The deceleration time that you set in Pn30A is the time to decelerate the servomotor from the maximum motor speed.



## 5.10.4 Overtravel Alarms

You can set the system to detect an A.d04 alarm (Overtravel) if overtravel occurs while the servo is ON. This function activates an alarm and stops the servomotor when the overtravel signal is input. An alarm occurs only if overtravel occurs while the servo is ON. An overtravel alarm will not be detected when the servo is OFF, even if overtravel occurs.


### Note:

If the overtravel alarm is enabled, homing using a limit switch cannot be performed.

The following parameter is set for this function.

| Pn00D<br>(200Dh) | n.X□□□ | Overtravel Warning Detection Selection Speed Pos Trq |                                    | When Enabled  |
|------------------|--------|------------------------------------------------------|------------------------------------|---------------|
|                  |        | 0<br>Default                                         | Do not detect overtravel warnings. |               |
|                  |        | 1                                                    | Detect overtravel warnings.        | After restart |
|                  |        | 2                                                    | Detect overtravel alarms.          |               |

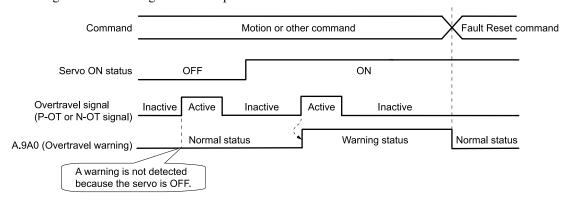
A timing chart for alarm detection is provided below.



- Information
- Alarms are detected for overtravel in the same direction as the reference.
- Alarms are not detected for overtravel in the opposite direction from the reference.
   Example: An alarm will not be output for a forward reference even if the N-OT signal turns ON.
- If the travel command is 0, an alarm will be detected with overtravel in either the forward or reverse direction.
- An alarm will not be detected when the servo is turned ON even if overtravel status exists.
- If software limits are enabled, an alarm will be detected in the same manner as overtravel if a software limit status exists.

### 5.10.5 Overtravel Warnings

You can set the system to detect an A.9A0 warning (Overtravel) if overtravel occurs while the servo is ON. This allows the SERVOPACK to notify the host controller with a warning even when the overtravel signal is input only momentarily. An alarm occurs only if overtravel occurs while the servo is ON. An overtravel warning will not be detected when the servo is OFF, even if overtravel occurs.




- The occurrence of an A.9A0 warning will not stop the motor or have any affect on host controller motion operations. The next step (e.g., the next motion or command) can be executed even if an overtravel warning exists. However, depending on the processing specifications and programming for warnings in the host controller, operation may be affected when an overtravel warning occurs (e.g., motion may stop or not stop). Confirm the specifications and programming in the host controller.
- When overtravel occurs, the SERVOPACK will perform stop processing for overtravel. Therefore, when an A.9A0 warning occurs, the servomotor may not reach the target position specified by the host controller. Check the feedback position to make sure that the axis is stopped at a safe position.

The following parameter is set for this function.

|              |                               | Overtrav                    | ertravel Warning Detection Selection Speed Pos Trq |  |
|--------------|-------------------------------|-----------------------------|----------------------------------------------------|--|
| Pn00D n.X□□□ |                               | 0<br>Default                | Do not detect overtravel warnings.                 |  |
| (200Dh)      | 1 Detect overtravel warnings. | Detect overtravel warnings. | After restart                                      |  |
|              |                               | 2                           | Detect overtravel alarms.                          |  |

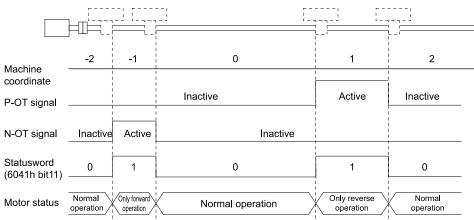
A timing chart for warning detection is provided below.



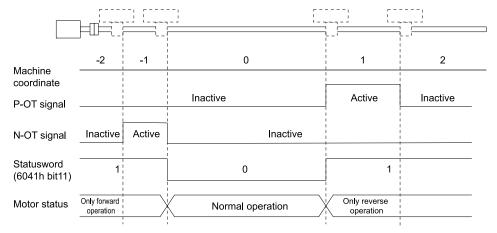
Information

- Warnings are detected for overtravel in the same direction as the reference.
- Warnings are not detected for overtravel in the opposite direction from the reference. Example: A warning will not be output for a forward reference even if the N-OT signal turns ON.
- If the travel command is 0, a warning will be detected with overtravel in either the forward or reverse direction.
- A warning will not be detected when the servo is turned ON even if overtravel status exists.
- You can use the Fault Reset command to clear the warning regardless of the servo ON/OFF status and overtravel signal status.
- If you clear the warning with the Fault Reset command during overtravel status, a warning will not be detected again until the overtravel status is left.
- An overtravel warning will be detected even when the software limit has been detected.

#### 5.10.6 Behavior Selection after Overtravel Release


The servomotor is stopped when overtravel occurs. In the overtravel state, movement is possible in the direction opposite to the previous direction of movement.

However, the servomotor may stop by overrunning the overtravel limit switch depending on the stopping method. In this case, the servomotor will not be in the overtravel state and normal operation is possible again when you turn ON the servo. Therefore, operation is also possible that exceeds the area in which movement is allowed, which may cause damage to the machine or other accidents.


To avoid this, you can limit the movement direction when the OT signal is turned OFF (limit switch was overrun) after overtravel occurs by setting Pn022 to  $n.\Box\Box\Box1$ .

|                         |  | Overtravel Release Method Selection Speed Pos Trq |                                                                                                                            | When Enabled                                               |               |
|-------------------------|--|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------|
| Pn022<br>(2022h) n.□□□X |  | 0<br>Default                                      | Overtravel exists while the P-OT or N-OT signal is being input                                                             | ravel exists while the P-OT or N-OT signal is being input. |               |
|                         |  |                                                   | Overtravel exists while the P-OT or N-OT signal is input and tion of the workpiece is separated from the P-OT signal or N- |                                                            | After restart |

#### (1) When Pn022 is set to n.□□□0



### (2) When Pn022 is set to n. $\square$

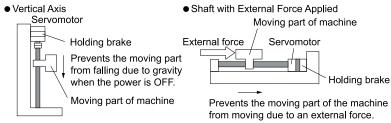


#### 5.10.7 Overtravel Status

If an overtravel signal is input, the following SERVOPACK status will change to 1 and the servomotor will be stopped according to the overtravel stopping method set in Pn001. When the overtravel signal is reset, the status changes to 0.

Internal limit active (bit 11) in Statusword (6041h)

Negative limit switch (bit 0) or Positive limit switch (bit 1) in Digital Inputs (60FDh)


### 5.10.8 Overtravel Operation by Mode

| Operation Mode                                               | Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Profile Position Mode                                        | If an overtravel signal is input, the positioning operation to the current target position will be canceled and, after the motor stops, Target Reached in Statusword will be reset.  A positioning operation (return operation) is started only when a movement reference to a target position in the opposite direction from the overtravel signal is specified in the current Position Actual Value (e.g., a negative movement reference if the P-OT signal is input).                             |
| Homing Mode                                                  | <ul> <li>For Homing Method 1, 11, 12, 13, 14, 28, or 34: If the P-OT signal is input, Homing Error (bit 13) in Statusword (6041h) changes to 1 and the homing operation is canceled.</li> <li>For Homing Method 2, 7, 8, 9, 10, 24, or 33: If the N-OT signal is input, Homing Error (bit 13) in Statusword (6041h) changes to 1 and the homing operation is canceled.</li> </ul>                                                                                                                    |
| Interpolated Position Mode, Cyclic Synchronous Position Mode | <ul> <li>If an overtravel signal is input, the positioning operation to the current target position will be canceled and, after the motor stops, Target Reached in Statusword will be reset.</li> <li>A positioning operation (return operation) is started only when a movement reference to a target position in the opposite direction from the overtravel signal is specified in the current Position Actual Value (e.g., a negative movement reference if the P-OT signal is input).</li> </ul> |
| Profile Velocity Mode, Cyclic Synchronous<br>Velocity Mode   | During overtravel, the motor is operated only when a speed in the direction opposite from the overtravel signal is specified (e.g., a negative target speed when the P-OT signal is input).                                                                                                                                                                                                                                                                                                          |
| Profile Torque Mode, Cyclic Synchronous<br>Torque Mode       | During overtravel, torque is applied only when a torque in the direction opposite from the overtravel signal is specified (e.g., a negative torque when the P-OT signal is input).                                                                                                                                                                                                                                                                                                                   |

# 5.11 Holding Brake

A holding brake is used to hold the position of the moving part of the machine when the SERVOPACK is turned OFF so that moving part does not move due to gravity or an external force. You can use the brake that is built into a servomotor with a brake, or you can provide one on the machine.

The holding brake is used in the following cases.

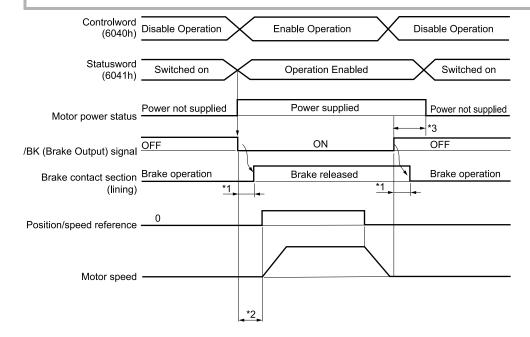




The brake built into a servomotor with a brake is a de-energization brake. It is used only to hold the servomotor and cannot be used for braking. Use the holding brake only to hold a servomotor that is already stopped.

### 5.11.1 Brake Operating Sequence

You must consider the brake release delay time and the brake operation delay time to determine the brake operation timing, as described below.




#### Brake Release Delay Time:

The time from when the /BK (Brake Output) signal is turned ON until the brake is actually released.

#### **Brake Operation Delay Time:**

The time from when the /BK (Brake Output) signal is turned OFF until the brake actually operates.



\*1 Rotary servomotors: The brake delay times for servomotors with holding brakes are given in the following table. The operation delay times in the following table are examples for when the power is switched on the DC side. You must evaluate the actual brake delay times on the actual equipment before using the application.

| Model           | Voltage | Brake Release Delay Time [ms] | Brake Operation Delay<br>Time [ms] |
|-----------------|---------|-------------------------------|------------------------------------|
| SGMXJ-A5 to -04 |         | 60                            |                                    |
| SGMXJ-06, -08   |         | 80                            | 100                                |
| SGMXA-A5 to -04 |         | 60                            | 100                                |
| SGMXA-06 to -10 |         | 80                            |                                    |
| SGMXA-15 to -25 |         | 170                           |                                    |
| SGMXA-30 to -70 |         | 100                           | 80                                 |
| SGMXP-01        |         | 20                            |                                    |
| SGMXP-02, -04   | 24 VDC  | 40                            | 100                                |
| SGMXP-08, -15   |         | 20                            |                                    |
| SGMXG-03 to -20 |         | 100                           | 80                                 |
| SGMXG-30 to -44 |         |                               | 100                                |
| SGMXG-55 to -1A | _       | 170                           |                                    |
| SGMXG-1E        |         | 250                           | 80                                 |
| SGM7M-A1 to -A3 |         | 60                            | 100                                |

Linear servomotors: The brake delay times depend on the brake that you use. Set the parameters related to /BK signal output timing according to the delay times for the brake that you will actually use.

- \*2 Before you output a reference from the host controller to the SERVOPACK, wait for at least 50 ms plus the brake release delay time after you send the Servo ON command (Enable Operation command).
- \*3 Use the following parameters to set the timing of when the brake will operate and when the servo will be turned OFF.
  - Rotary servomotors: Pn506 (Brake Reference-Servo OFF Delay Time), Pn507 (Brake Reference Output Speed Level), and Pn508 (Servo OFF-Brake Command Waiting Time)
  - Linear servomotors: Pn506 (Brake Reference-Servo OFF Delay Time), Pn508 (Servo OFF-Brake Command Waiting Time), and Pn583 (Brake Reference Output Speed Level)

### (1) Connection Example

Refer to the following section for information on brake wiring.

■ 4.4.4 Wiring the SERVOPACK to the Holding Brake on page 136

### 5.11.2 /BK (Brake Output) Signal

The following settings are for the output signal that controls the brake.

The /BK signal is turned OFF (to operate the brake) when the servo is turned OFF or when an alarm is detected. You can adjust the timing of brake operation (i.e., the timing of turning OFF the /BK signal) with the setting of Pn506 (Servo OFF Delay Time).

| Туре   | Signal | Connector Pin No. | Signal<br>Status | Meaning              |
|--------|--------|-------------------|------------------|----------------------|
|        | /DV/   |                   | ON (closed)      | Releases the brake.  |
| Output | /BK    | CN1-1, CN1-2      | OFF (open)       | Activates the brake. |

Information The /BK signal will remain ON during overtravel. The brake will not be applied.

#### Note:

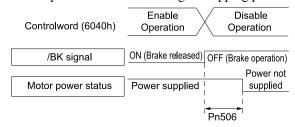
You can change the allocation of the /BK signal. To change the allocation, the parameters that you use depend on the allocation method.

| Allocation Method                     | Parameter to Use                                                                                                                                   |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Σ-7S-compatible I/O Signal Allocation | <ul> <li>Pn50A = n.□□□1 (use Σ-7S-compatible I/O signal allocations)</li> <li>Pn50F = n.X□□□ (/WARN (Warning Output) Signal Allocation)</li> </ul> |
| Σ-LINK II Input Signal Allocation     | <ul> <li>Pn50A = n.□□□2 (use Σ-LINK II input signal allocations)</li> <li>Pn5B7 (/WARN (Warning Output) Signal Allocation)</li> </ul>              |

Refer to the following section for details.

**☞** 6.1.4 Output Signal Allocations on page 218




If you allocate more than one signal to the same output connector pin, a logical OR of the signals is output. Allocate the BK signal to its own output connector pin, i.e., do not use the same output terminal for another signal. For example, never allocate the /TGON (Rotation Detection Output) signal and /BK signal to the same output connector pin. If you did so, the /TGON signal would be turned ON by the falling speed on a vertical axis, and the brake would not operate.

# 5.11.3 Output Timing of /BK (Brake Output) Signal When the Servomotor Is Stopped

When the servomotor is stopped, the /BK signal turns OFF as soon as the Servo OFF command (Disable Operation command) is received. Use Pn506 (Servo OFF Delay Time) to change the timing to turn OFF power to the motor after the Servo OFF command (Disable Operation command) is input.

|                  | Brake Reference-Servo OFF Delay Time Speed Pos Tr |              |                 |              |  |
|------------------|---------------------------------------------------|--------------|-----------------|--------------|--|
| Pn506<br>(2506h) | Setting Range                                     | Setting Unit | Default Setting | When Enabled |  |
| (200011)         | 0 to 50                                           | 10 ms        | 0               | Immediately  |  |

- When the servomotor is used to control a vertical axis, the machine moving part may move slightly due to gravity or an external force. You can eliminate this slight motion by setting the Pn506 (Servo OFF Delay Time) so that power to the motor is stopped after the brake is applied.
- This parameter sets the timing of stopping power to the servomotor while the servomotor is stopped.





Power to the servomotor will be stopped immediately when an alarm occurs, regardless of the setting of this parameter. The machine moving part may move due to gravity or an external force before the brake is applied.

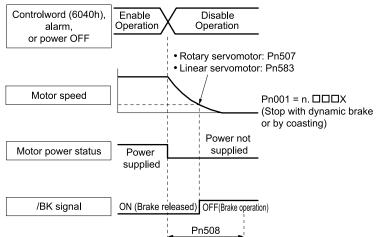
# 5.11.4 Output Timing of /BK (Brake Output) Signal When the Servomotor Is Operating

If an alarm occurs while the servomotor is operating, the servomotor will start stopping and the /BK signal will be turned OFF. You can adjust the timing of /BK signal output by setting Pn508 (Servo OFF-Brake Command Waiting Time) and either Pn507 (Rotary Servomotor Brake Reference Output Speed Level) or Pn583 (Linear Servomotor Brake Reference Output Speed Level).

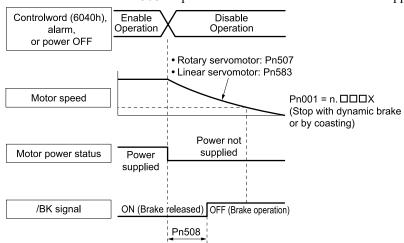
#### Note:

If zero-speed stopping is set as the stopping method for alarms, the setting of Pn506 (Brake Reference- Servo OFF Delay Time) is used after the motor stops.

#### · Rotary Servomotors


|                  | Brake Reference Output Sp                          | Speed Pos Trq       |                 |              |  |
|------------------|----------------------------------------------------|---------------------|-----------------|--------------|--|
| Pn507 (2507h)    | Setting Range                                      | Setting Unit        | Default Setting | When Enabled |  |
| (2001)           | 0 to 10000                                         | 1 min <sup>-1</sup> | 100             | Immediately  |  |
|                  | Servo OFF-Brake Command Waiting Time Speed Pos Trq |                     |                 |              |  |
| Pn508<br>(2508h) | Setting Range                                      | Setting Unit        | Default Setting | When Enabled |  |
| (200011)         | 10 to 100                                          | 10 ms               | 50              | Immediately  |  |

#### • Linear Servomotors


|                  | Brake Reference Output Speed Level                |              |                 | Speed Pos Trq |
|------------------|---------------------------------------------------|--------------|-----------------|---------------|
| Pn583 (2583h)    | Setting Range                                     | Setting Unit | Default Setting | When Enabled  |
| (200011)         | 0 to 10000                                        | 1 mm/s       | 10              | Immediately   |
|                  | Servo OFF-Brake Command Waiting Time Speed Pos Tr |              |                 |               |
| Pn508<br>(2508h) | Setting Range                                     | Setting Unit | Default Setting | When Enabled  |
| (2508n)          | 10 to 100                                         | 10 ms        | 50              | Immediately   |

The brake operates when either of the following conditions is satisfied:

• When the Motor Speed Goes below the Level Set in Pn507 for a Rotary Servomotor or in Pn583 for a Linear Servomotor after the Power to the Motor Is Stopped



• When the Time Set In Pn508 Elapses after the Power to the Motor Is Stopped





The servomotor will be limited to its maximum speed even if a value higher than its maximum speed is set in Pn507 (Rotary Servomotor Brake Reference Output Speed Level) or Pn583 (Linear Servomotor Brake Reference Output Speed Level).

# 5.12 Motor Stopping Methods for Servo OFF and Alarms

You can use the following methods to stop the servomotor when the servo is turned OFF or an alarm occurs. There are the following four stopping methods.

| Motor Stopping Method                  | Meaning                                                                        |  |
|----------------------------------------|--------------------------------------------------------------------------------|--|
| Stopping by Applying the Dynamic Brake | The electric circuits are internally connected to stop the servomotor quickly. |  |
| Coasting to a Stop                     | The motor stops naturally due to friction during operation.                    |  |
| Zero-speed Stopping                    | The speed reference is set to 0 to stop the servomotor quickly.                |  |
| Decelerating to a Stop                 | Emergency stop torque is used to decelerate the motor to a stop.               |  |

There are the following three conditions after stopping.

| Status after Stopping | Meaning                                                                                                                          |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Dynamic Brake Applied | The electric circuits are internally connected to hold the servomotor.                                                           |
| Coasting              | The SERVOPACK does not control the servomotor. (The machine will move in response to a force from the load.)                     |
| Zero Clamping         | A position loop is created and the servomotor remains stopped at a position reference of 0. (The current stop position is held.) |



- The dynamic brake is used for emergency stops. The dynamic brake circuit will operate frequently if the power is turned ON and OFF or the servo is turned ON and OFF while a reference input is applied to start and stop the servomotor. This may result in deterioration of the internal elements in the SERVOPACK. Use speed input references or position references to start and stop the servomotor.
- If you turn OFF the main circuit power or control power during operation before you turn OFF the servo, the servomotor stopping method depends on the SERVOPACK model as shown in the following table.

|                                                            | Servomotor Stopping Method                                                       |                                           |  |
|------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------|--|
| Condition                                                  | For SGDXS-R70A, -1R6A, -2R8A,<br>-3R8A, -5R5A, -7R6A, -120A,<br>-180A, and -200A | SGDXS-330A, -470A, -550A,<br>-590A, -780A |  |
| Main circuit power turned OFF before turning OFF the servo | Stopping with dynamic brake                                                      |                                           |  |
| Control power turned OFF before turning OFF the servo      | Stopping with dynamic brake                                                      | Coasting to a Stop                        |  |

- If the servomotor must be stopped by coasting rather than with the dynamic brake when the main circuit power or the control power is turned OFF before the servo is turned OFF, use a SERVOPACK with the dynamic brake option.
- To minimize the coasting distance of the servomotor to come to a stop when an alarm occurs, zero-speed stopping is the default method for alarms to which it is applicable. However, depending on the application, stopping with the dynamic brake may be more suitable than zero-speed stopping.

For example, when coupling two shafts (twin-drive operation), machine damage may occur if a zero-speed stopping alarm occurs for one of the coupled shafts and the other shaft stops with a dynamic brake. In such cases, change the stopping method to the dynamic brake.

### 5.12.1 Stopping Method for Servo OFF

Set the stopping method for when the servo is turned OFF in  $Pn001 = n.\Box\Box X$  (Motor Stopping Method for Servo OFF and Group 1 Alarms).

|         | Parameter                   | Servomotor Stopping<br>Method | Status after Servomotor Stops | When Enabled  |
|---------|-----------------------------|-------------------------------|-------------------------------|---------------|
| Pn001   | n.uuu0<br>(default setting) | Dynamic brake */              | Dynamic brake *1              |               |
| (2001h) | n.0001                      |                               | Coasting                      | After restart |
|         | n.==2                       | Coasting                      | Coasting                      |               |

\*1 The servomotor will coast to a stop when the SERVOPACK is not equipped with a built-in dynamic brake resistor or an external dynamic brake resistor is not connected.

#### Note:

If Pn001 is set to n.□□□0 (stop the motor by applying the dynamic brake) and the servomotor is stopped or operates at a low speed, braking force may not be generated, just like it is not generated for coasting to a stop.

### 5.12.2 Servomotor Stopping Method for Alarms

There are two types of alarms, group 1 (Gr. 1) alarms and group 2 (Gr. 2) alarms. A different parameter is used to set the stopping method for alarms for each alarm type.

Refer to the following section to see which alarms are in group 1 and which are in group 2.

3 16.2.1 List of Alarms on page 652

### (1) Motor Stopping Method for Group 1 Alarms

When a group 1 alarm occurs, the servomotor will stop according to the setting of  $Pn001 = n.\Box\Box\Box X$ . The default setting is to stop by applying the dynamic brake.

Refer to the following section for details.

■ 5.12.1 Stopping Method for Servo OFF on page 188

### (2) Motor Stopping Method for Group 2 Alarms

When a group 2 alarm occurs, the servomotor will stop according to the settings of the following three parameters. The default setting is for zero clamping.

- Pn001 = n.□□□X (Motor Stopping Method for Servo OFF and Group 1 Alarms)
- $Pn00A = n.\Box\Box X$  (Motor Stopping Method for Group 2 Alarms)
- $Pn00B = n.\Box\Box X\Box$  (Motor Stopping Method for Group 2 Alarms)

However, during torque control, the group 1 stopping method is always used. If you set Pn00B to n. \(\pi\) 1 (apply dynamic brake or coast servomotor to a stop), you can use the same stopping method as group 1. If you are coordinating a number of servomotors, you can use this stopping method to prevent machine damage that may result because of differences in the stopping method.

The following table shows the combinations of the parameter settings and the resulting stopping methods.

| Parameter         |                         |                             |                                                                                   |                               |               |
|-------------------|-------------------------|-----------------------------|-----------------------------------------------------------------------------------|-------------------------------|---------------|
| Pn00B<br>(200Bh)  | Pn00A<br>(200Ah)        | Pn001<br>(2001h)            | Servomotor Stopping<br>Method                                                     | Status after Servomotor Stops | When Enabled  |
| n.□□0□            |                         | n.□□□0 (default setting)    |                                                                                   | Dynamic brake                 |               |
| (default setting) | _                       | n.0001                      | Zero-speed stopping                                                               | Coastino                      |               |
|                   |                         | n.□□□2                      |                                                                                   | Coasting                      |               |
|                   |                         | n.□□□0<br>(default setting) | Dynamic brake                                                                     | Dynamic brake                 |               |
| n.0010            | -                       | n.0001                      |                                                                                   | Coastina                      |               |
|                   |                         | n.□□□2                      | Coasting                                                                          | Coasting                      |               |
|                   |                         | n.□□□0<br>(default setting) | Dynamic brake                                                                     | Dynamic brake                 |               |
|                   | n.□□□0                  | n.0001                      |                                                                                   | Coasting                      |               |
|                   |                         | n.□□□2                      | Coasting                                                                          | Coasting                      |               |
|                   | n.ooo0 (default setting |                             |                                                                                   | Dynamic brake                 |               |
|                   | (default setting)       | n.0001                      | Motor is decelerated using the torque set in Pn406 (2406h) as the maximum torque. | Coasting                      | After restart |
|                   |                         | n.□□□2                      |                                                                                   |                               |               |
|                   |                         | n.□□□0 (default setting)    |                                                                                   |                               |               |
| n.□□2□            | n.□□□2                  | n.0001                      |                                                                                   |                               |               |
|                   |                         | n.□□□2                      |                                                                                   |                               |               |
|                   |                         | n.□□□0<br>(default setting) |                                                                                   | Dynamic brake                 |               |
|                   | n.□□□3                  | n.0001                      |                                                                                   | G ti                          |               |
|                   |                         | n.□□□2                      | Motor is decelerated using the                                                    | Coasting                      |               |
|                   |                         | n.□□□0 (default setting)    | torque set in Pn30A (230Ah) as the maximum torque.                                |                               |               |
|                   | n.□□□4                  | n.0001                      |                                                                                   | Coasting                      |               |
|                   |                         | n.□□□2                      |                                                                                   |                               |               |

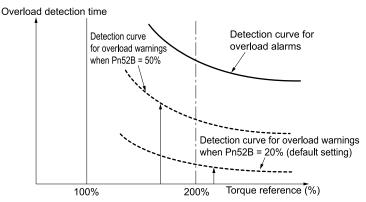
#### Note:

- 1. The setting of Pn00A is ignored if Pn00B is set to n.  $\Box\Box\Box\Box$  or n.  $\Box\Box\Box\Box$  .
- 2. The setting of  $Pn00A = n.\Box\Box\Box X$  is enabled for position control and speed control. During torque control, the setting of  $Pn00A = n.\Box\Box\Box X$  will be ignored and only the setting of  $Pn001 = n.\Box\Box\Box X$  will be used.
- 3. Refer to the following section for details on Pn406 (Emergency Stop Torque).

  (I) Stopping the Servomotor by Setting Emergency Stop Torque on page 179
- 4. Refer to the following section for details on Pn30A (Deceleration Time for Servo OFF and Forced Stops).
  - (2) Stopping the Servomotor by Setting the Deceleration Time on page 180

### 5.13 Motor Overload Detection Level

The motor overload detection level is the threshold used to detect overload alarms and overload warnings when the servomotor is subjected to a continuous load that exceeds the servomotor ratings.


It is designed to prevent servomotor overheating.

You can change the detection timing for A.910 warnings (Overload) and A.720 alarms (Continuous Overload). You cannot change the detection level for A.710 alarms (Instantaneous Overload).

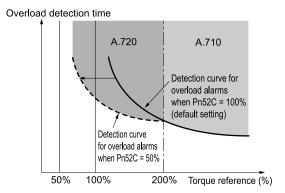
### 5.13.1 Detection Timing for Overload Warnings (A.910)

With the default setting for overload warnings, an overload warning is detected in 20% of the time required to detect an overload alarm. You can change the time required to detect an overload warning by changing the setting of Pn52B (Overload Warning Level). You can increase safety by using overload warning detection as an overload protection function matched to the system.

The following graph shows an example of the detection of overload warnings when the setting of Pn52B (Overload Warning Level) is changed from 20% to 50%. An overload warning is detected in half of the time required to detect an overload alarm.



|                  | Overload Warning Level |              |                 | Speed Pos Trq |
|------------------|------------------------|--------------|-----------------|---------------|
| Pn52B<br>(252Bh) | Setting Range          | Setting Unit | Default Setting | When Enabled  |
| (202511)         | 1 to 100               | 1%           | 20              | After restart |


### 5.13.2 Detection Timing for Overload Alarms (A.720)

If servomotor heat dissipation is insufficient (e.g., if the heat sink is too small), you can lower the overload alarm detection level to help prevent overheating.

To reduce the overload alarm detection level, change the setting of Pn52C (Base Current Derating at Motor Overload Detection).

|                  | Base Current Derating at Motor Overload Detection |              |                 |               |  |
|------------------|---------------------------------------------------|--------------|-----------------|---------------|--|
| Pn52C<br>(252Ch) | Setting Range                                     | Setting Unit | Default Setting | When Enabled  |  |
| (202011)         | 10 to 100                                         | 1%           | 100             | After restart |  |

An A.720 alarm (Continuous Overload) can be detected earlier to protect the servomotor from overloading.



#### Note:

The gray areas in the above graph show where  $A.710\ \mathrm{and}\ A.720\ \mathrm{alarms}\ \mathrm{occur}.$ 

Refer to the relevant manual given below for a diagram that shows the relationships between the servomotor heat dissipation conditions (heat sink size, surrounding air temperature, and derating). You can protect the servomotor from overloads more effectively by setting this derating value in Pn52C.

- Σ-X-Series Rotary Servomotor Product Manual (Manual No.: SIEP C230210 00)
- Σ-7-Series Linear Servomotor Product Manual (Manual No.: SIEP S800001 37)
- $\hfill \Sigma$ -7-Series Direct Drive Servomotor Product Manual (Manual No.: SIEP S800001 38)

# 5.14 Setting Unit Systems

You can set the SERVOPACK reference units with EtherCAT communications. You can set the following four reference units with EtherCAT communications.

- · Position Reference Unit
- · Speed Reference Unit
- Acceleration Reference Unit
- Torque Reference Unit

The setting procedures are given below.

### 5.14.1 Setting the Position Reference Unit

Set the position reference unit in Position User Unit (2701h). The position reference unit setting will be used for the electronic gear ratio setting.



Set the position reference unit within the following range.

0.001 ≤ Position User Unit: Numerator (2701h: 1)/ Position User Unit: Denominator (2701h: 2) ≤ 64000

If the setting range is exceeded, 040h (Parameter Setting Error) will occur.

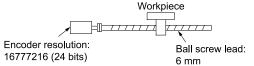
| Index | Subindex | Name              | Data Type | Access | PDO<br>Mapping | Value                            | Saving to EEPROM |
|-------|----------|-------------------|-----------|--------|----------------|----------------------------------|------------------|
|       | 0        | Number of entries | USINT     | RO     | No             | 2                                | No               |
| 2701h | 1        | Numerator         | UDINT     | RW     | No             | 1 to 1073741824<br>(default: 64) | Yes              |
|       | 2        | Denominator       | UDINT     | RW     | No             | 1 to 1073741824<br>(default: 1)  | Yes              |

#### Note

Refer to the following section for information on Position User Unit (2701h).

**15.5.3** Position User Unit (2701h) on page 602

The minimum unit of the position data that is used to move a load is called the reference unit. The reference unit is used to give travel amounts, not in pulses, but rather in distances or other physical units (such as  $\mu m$  or  $^{\circ}$ ) that are easier to understand.

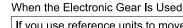

The electronic gear is used to convert the travel amounts that are specified in reference units to pulses, which are required for actual movements.

With the electronic gear, one reference unit is equal to the workpiece travel amount per reference pulse input to the SERVOPACK. In other words, if you use the SERVOPACK's electronic gear, pulses can be read as reference units.

The difference between using and not using the electronic gear is shown below.

• Rotary Servomotor

In this example, the following machine configuration is used to move the workpiece 10 mm.



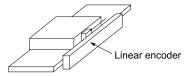

#### When the Electronic Gear Is Not Used

To move a workpiece 10 mm:

- (1) Calculate the number of rotations. The servomotor will move 6 mm for each rotation, so 10/6 rotations are required to move 10 mm.
- (2) Calculate the required number of reference pulses. One rotation is 67108864 pulses. Therefore, "10/6 × 67108864 = 111848106.66... pulses"
  (3) Input 111848107 pulses as the reference.

Calculating the number of reference pulses for each reference is necessary. = Troublesome




If you use reference units to move the workpiece 10 mm, when the reference unit is set to 1  $\mu$ m, the travel amount is 1  $\mu$ m per pulse.

To move the workpiece 10 mm (10000  $\mu$ m), 10000  $\div$  1 = 10000 pulses, so 10000 pulses would be input.

Calculating the number of reference pulses for each reference is not necessary. = Simple

#### · Linear Servomotor

In this example, the following machine configuration is used to move the load 10 mm. We'll assume that the resolution of the serial converter unit is 256 and that the linear encoder scale pitch is 20  $\mu$ m.



#### When the Electronic Gear Is Not Used

To move the load 10 mm:  $10 \times 1000 \div 20 \times 256 = 128000$  pulses, so 128000 pulses is input as the reference.

Calculating the number of reference pulses for each reference is necessary. = Troublesome

When the Electronic Gear Is Used

To move the load 10 mm using reference units: When the reference unit is set to 1  $\mu$ m, the travel amount is 1  $\mu$ m per pulse. To move the load 10 mm (10000  $\mu$ m), 10000/1 = 10000 pulses, so 10000 pulses is input as the reference.

Calculating the number of reference pulses for each reference is not necessary. = Simple

### (1) Calculating the Settings for the Electronic Gear Ratio

#### (a) Rotary Servomotors

If the gear ratio between the servomotor shaft and the load is given as n/m, where n is the number of load rotations for m servomotor shaft rotations, the settings for the electronic gear ratio can be calculated as follows:

 $\frac{\text{Electronic}}{\text{gear ratio}} \quad \frac{B}{A} = \frac{\text{Numerator}}{\text{Denominator}} = \frac{\text{Encoder resolution}}{\text{Travel amount per load shaft rotation (reference unit)}} \times \frac{m}{n}$ 

#### **♦** Encoder Resolution

You can check the encoder resolution in the servomotor model number and with  $Pn21D = n.\Box\Box X\Box$ .

When Pn21D is set to n. \(\sigma \sigma 0\) (disable encoder bit count compatibility)
 You can check the encoder resolution in the servomotor model number. The encoder resolutions are given
 next.

| Servomotor Model | Code for ■ in<br>Interpreting Ser-<br>vomotor Model<br>Number | Specification                          | Encoder<br>Resolution |  |
|------------------|---------------------------------------------------------------|----------------------------------------|-----------------------|--|
| SGMXJ-□□□■□□□□□  | U                                                             | 26 bits (absolute encoder)             |                       |  |
| SGMXA-□□□■□□□□□  |                                                               |                                        | 67108864              |  |
| SGMXP-000 00000  | W                                                             | 26 bits (batteryless absolute encoder) | 07100001              |  |
| SGMXG-000#00000  |                                                               |                                        |                       |  |
| SGM7M-□□□■□□□□□  | 3                                                             | 20 bits (absolute encoder)             | 1048576               |  |
| SGM7D-□□□■□□□□□  | 7                                                             | 24 bits (multiturn absolute encoder)   |                       |  |
| SGM7E-□□□■□□□□□  | Г                                                             | 2417 (                                 | 16777216              |  |
| SGM7E-□□□■□□□□□  | F                                                             | 24 bits (incremental encoder)          |                       |  |

Information With fully-closed loop control, the number of external encoder pulses per motor rotation is the encoder resolution.

• When Pn21D is set to n.□□□1 (enable encoder bit count compatibility) Calculate the encoder resolution with "2 Number of bits set in Pn21D = n.□□X□".

|                  |        | Encoder      | Resolution Compatibility: Resolution Selection Speed Pos Trq | When Enabled  |
|------------------|--------|--------------|--------------------------------------------------------------|---------------|
|                  |        | 4            | Operate as 20-bit encoder.                                   |               |
|                  |        | 6            | Operate as 22-bit encoder.                                   |               |
| Pn21D<br>(221Dh) | n.□□X□ | 8<br>Default | Operate as 24-bit encoder.                                   | After restart |
|                  |        | A            | Operate as 26-bit encoder.                                   |               |
|                  |        | Other values | Reserved (Do not use.)                                       |               |

Refer to the following section for details on Pn21D.

■ 5.18.1 Setting the Encoder Resolution Compatibility Selection on page 209

#### (b) Linear Servomotors

You can calculate the settings for the electronic gear ratio with the following equation:

• When Not Using a Serial Converter Unit

• When Using a Serial Converter Unit

Electronic  $\frac{B}{A} = \frac{Numerator}{Denominator} = \frac{\frac{Numerator}{Number of divisions of the serial converter unit}}{\frac{Number of divisions of the serial converter unit}{\frac{Number of divisions}{\frac{Number o$ 

#### ◆ Feedback Resolution of Linear Encoder: Incremental Linear Encoder

The incremental linear encoder scale pitches and resolutions are given in the following table.

Calculate the electronic gear ratio using the values in the following table.

| Manufacturer         | Linear Encoder<br>Model | Linear Encoder<br>Scale Pitch [µm] */ | Relay Device between<br>SERVOPACK and Linear<br>Encoder | Resolution | Resolution |
|----------------------|-------------------------|---------------------------------------|---------------------------------------------------------|------------|------------|
|                      | I ID A 40               | 20                                    | JZDP-H003-□□-E *2                                       | 256        | 0.078 μm   |
| Dr. JOHANNES         | LIDA48□                 | 20                                    | JZDP-J003-□□-E *2                                       | 4096       | 0.0049 μm  |
| HEIDENHAIN<br>GmbH   | 1 1549-                 | 4                                     | JZDP-H003-□□-E *2                                       | 256        | 0.016 μm   |
|                      | LIF48□                  | 4                                     | JZDP-J003-□□-E *2                                       | 4096       | 0.00098 μm |
| n it nic             | D.CH.22D                | 20                                    | JZDP-H005-□□-E *2                                       | 256        | 0.078 μm   |
| Renishaw PLC         | RGH22B                  | 20                                    | JZDP-J005-□□-E *2                                       | 4096       | 0.0049 μm  |
|                      | SR75-0000LF *3          | 80                                    | _                                                       | 8192       | 0.0098 μm  |
|                      | SR75-000MF              | 80                                    | _                                                       | 1024       | 0.078 μm   |
|                      | SR85-0000LF *3          | 80                                    | _                                                       | 8192       | 0.0098 μm  |
| N 1 G V.1            | SR85-000MF              | 80                                    | _                                                       | 1024       | 0.078 μm   |
| Magnescale Co., Ltd. | SL700 *3, SL710 *3,     | 000                                   | PL101-RY *4                                             | 0102       | 0.0977 µm  |
|                      | SL720 *3, SL730 *3      | 800                                   | MJ620-T13 *5                                            | 8192       |            |
|                      | 2010                    | 400                                   | MQ10-FLA *5                                             | 0100       | 0.0400     |
|                      | SQ10                    | 400                                   | MQ10-GLA *5                                             | 8192       | 0.0488 μm  |
| G P I                | PH03-36110              | 128                                   | _                                                       | 2048       | 0.0625 μm  |
| Canon Precision Inc. | PH03-36120              | 128                                   | _                                                       | 2048       | 0.0625 μm  |

<sup>\*1</sup> These are reference values for setting SERVOPACK parameters. Contact the manufacturer for actual linear encoder scale pitches.

#### ◆ Feedback Resolution of Linear Encoder: Absolute Linear Encoder

The absolute linear encoder scale pitches and resolutions are given in the following table. Calculate the electronic gear ratio using the values in the following table.

| Manufacturer                      | Linear Encoder Model                   | Linear<br>Encoder Scale<br>Pitch [μm] */ | Relay Device<br>between SER-<br>VOPACK and<br>Linear<br>Encoder | Resolution | Resolution |
|-----------------------------------|----------------------------------------|------------------------------------------|-----------------------------------------------------------------|------------|------------|
|                                   |                                        | 40.96                                    | _                                                               | 4096       | 0.01 μm    |
|                                   | LIC4190 Series                         | 20.48                                    | _                                                               | 4096       | 0.005 μm   |
|                                   |                                        | 4.096                                    | _                                                               | 4096       | 0.001 μm   |
| Dr. JOHANNES HEI-<br>DENHAIN GmbH | ************************************** | 409.6                                    | _                                                               | 4096       | 0.1 μm     |
|                                   | LIC2190 Series                         | 204.8                                    | _                                                               | 4096       | 0.05 μm    |
|                                   | LC115                                  | 40.96                                    | EIB3391Y *2                                                     | 4096       | 0.01 μm    |
|                                   | LC415                                  | 40.96                                    | EIB3391Y *2                                                     | 4096       | 0.01 μm    |
| DODELL TO THE                     | MOISTAG :                              | 409.6                                    | _                                                               | 4096       | 0.1 μm     |
| RSF Elektronik GmbH               | MC15Y Series                           | 204.8                                    | _                                                               | 4096       | 0.05 μm    |

Continued on next page.

<sup>\*2</sup> This is the model of the serial converter unit.

<sup>\*3</sup> If you use an encoder pulse output with this linear encoder, the setting range of the encoder output resolution (Pn281) is restricted. Refer to the following section for details on the encoder output resolution (Pn281).

<sup>■ 6.5.2</sup> Setting for the Encoder Divided Pulse Output on page 237 This is the model of the head with interpolator.

<sup>\*5</sup> This is the model of the interpolator.

Continued from previous page.

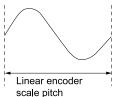
|                      |                                             |                                          |                                                                 | Continued  | from previous pag |
|----------------------|---------------------------------------------|------------------------------------------|-----------------------------------------------------------------|------------|-------------------|
| Manufacturer         | Linear Encoder Model                        | Linear<br>Encoder Scale<br>Pitch [µm] */ | Relay Device<br>between SER-<br>VOPACK and<br>Linear<br>Encoder | Resolution | Resolution        |
|                      | ST781A/ST781AL                              | 256                                      | _                                                               | 512        | 0.5 μm            |
|                      | ST782A/ST782AL                              | 256                                      | _                                                               | 512        | 0.5 μm            |
|                      | ST783/ST783AL                               | 51.2                                     | _                                                               | 512        | 0.1 μm            |
|                      | ST784/ST784AL                               | 51.2                                     | _                                                               | 512        | 0.1 μm            |
| Mitutoyo Corporation | ST788A/ST788AL                              | 51.2                                     | _                                                               | 512        | 0.1 μm            |
|                      | ST789A/ST789AL                              | 25.6                                     | _                                                               | 512        | 0.05 μm           |
|                      | ST1381                                      | 5.12                                     | _                                                               | 512        | 0.01 μm           |
|                      | ST1382                                      | 0.512                                    | _                                                               | 512        | 0.001 μm          |
|                      | EL36Y00050F000                              | 12.8                                     | _                                                               | 256        | 0.05 μm           |
|                      | EL36Y00100F000                              | 25.6                                     | _                                                               | 256        | 0.1 μm            |
| Renishaw PLC         | EL36Y00500F000                              | 128                                      | _                                                               | 256        | 0.5 μm            |
|                      | RL36Y000500000                              | 12.8                                     | _                                                               | 256        | 0.05 μm           |
|                      | RL36Y00010000                               | 0.256                                    | _                                                               | 256        | 0.001 μm          |
|                      |                                             | 2000                                     | _                                                               | 2048       | 0.9765 μm         |
| RLS d.o.o.           | LA11YA Series                               | 2000                                     | _                                                               | 4096       | 0.4882 μm         |
|                      |                                             | 2000                                     | _                                                               | 8192       | 0.2441 μm         |
|                      | SR77-0000LF *3                              | 80                                       | _                                                               | 8192       | 0.0098 μm         |
|                      | SR77-0000MF                                 | 80                                       | _                                                               | 1024       | 0.078 μm          |
|                      | SR87-0000LF *3                              | 80                                       | _                                                               | 8192       | 0.0098 μm         |
| Magnescale Co., Ltd. | SR87-000MF                                  | 80                                       | _                                                               | 1024       | 0.078 μm          |
| ragneseare co., Eta. | SQ47/SQ57-0000SF0000<br>SQ47/SQ57-0000TF000 | 20.48                                    | _                                                               | 4096       | 0.005 μm          |
|                      | SQ47/SQ57-0000AF000<br>SQ47/SQ57-0000FF000  | 40.96                                    | _                                                               | 4096       | 0.01 μm           |
|                      | L2AK208                                     | 20                                       | _                                                               | 256        | 0.078 μm          |
|                      | L2AK211                                     | 20                                       | _                                                               | 2048       | 0.0098 μm         |
|                      | LAK209                                      | 40                                       | _                                                               | 512        | 0.078 μm          |
|                      | LAK212                                      | 40                                       | _                                                               | 4096       | 0.0098 μm         |
| Fagor Automation S.  | S2AK208                                     | 20                                       | _                                                               | 256        | 0.078 μm          |
| Coop.                | SV2AK208                                    | 20                                       | _                                                               | 256        | 0.078 μm          |
|                      | G2AK208                                     | 20                                       | _                                                               | 256        | 0.078 μm          |
|                      | S2AK211                                     | 20                                       | _                                                               | 2048       | 0.0098 μm         |
|                      | SV2AK211                                    | 20                                       | _                                                               | 2048       | 0.0098 μm         |
|                      | G2AK211                                     | 20                                       | _                                                               | 2048       | 0.0098 μm         |
| Canon Precision Inc. | PH03-36E00                                  | 128                                      | _                                                               | 2048       | 0.0625 μm         |

<sup>\*1</sup> \*2 \*3 These are reference values for setting SERVOPACK parameters. Contact the manufacturer for actual linear encoder scale pitches.

This is the model of the interpolator.

If you use an encoder pulse output with this linear encoder, the setting range of Pn281 (Encoder Output Resolution) is restricted. Refer to the following section for details on Pn281 (Encoder Output Resolution).

<sup>6.5.2</sup> Setting for the Encoder Divided Pulse Output on page 237


Information

#### Resolution

You can calculate the resolution that is used inside the SERVOPACK (i.e., the travel distance per feedback pulse) with the following formula.

 $Resolution \ (travel \ amount \ per \ feedback \ pulse) = \frac{Linear \ encoder \ scale \ pitch}{Number \ of \ divisions \ of \ serial \ converter \ unit \ or \ linear \ encoder}$ 

The SERVOPACK uses feedback pulses as the unit to control a servomotor.



# 5.14.2 Electronic Gear Ratio Setting Examples

Setting examples are provided in this section.

### (1) Rotary Servomotors

|      |                                                                   | Machine Configuration                                                                             |                                                                                      |                                                                                                    |  |  |
|------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|
|      |                                                                   | Ball Screw                                                                                        | Ball Screw Rotary Table                                                              |                                                                                                    |  |  |
| Step | Description                                                       | Reference unit: 0.001 mm<br>Load shaft<br>Load shaft<br>Encoder: Ball screw lead:<br>26 bits 6 mm | Reference unit: 0.01°  Reduction gear ratio 1/100 Encoder: 26 bits                   | Reference unit: 0.005 mm Load shaft Reduction gear ratio 1/50 Pulley dia.: 100 mm Encoder: 26 bits |  |  |
| 1    | Machine Specifications                                            | Ball screw lead: 6 mm     Gear ratio: 1/1                                                         | <ul> <li>Rotational angle per revolution: 360°</li> <li>Gear ratio: 1/100</li> </ul> | Pulley dia.: 100 mm (pulley circumference: 314 mm)     Gear ratio: 1/50                            |  |  |
| 2    | Encoder Resolution                                                | 67108864 (26 bits)                                                                                | 67108864 (26 bits)                                                                   | 67108864 (26 bits)                                                                                 |  |  |
| 3    | Reference Unit                                                    | 0.001 mm (1 μm)                                                                                   | 0.01°                                                                                | 0.005 mm (5 μm)                                                                                    |  |  |
| 4    | Travel Distance per<br>Load Shaft Revolution<br>(Reference Units) | 6 mm/0.001 mm = 6000                                                                              | 360°/0.01° = 36000                                                                   | 314 mm/0.005 mm = 62800                                                                            |  |  |
| 5    | Electronic Gear Ratio                                             | $\frac{B}{A} = \frac{67108864}{6000} \times \frac{1}{1}$                                          | $\frac{B}{A} = \frac{16777216}{36000} \times \frac{100}{1}$                          | $\frac{B}{A} = \frac{16777216}{62800} \times \frac{50}{1}$                                         |  |  |
| 6    | Position User Unit (2701h)                                        | <ul><li>Numerator = 1048576</li><li>Denominator = 6000</li></ul>                                  | <ul><li>Numerator = 104857600</li><li>Denominator = 36000</li></ul>                  | <ul> <li>Numerator = 52428800</li> <li>Denominator = 62800</li> </ul>                              |  |  |

### (2) Linear Servomotors

A setting example for a Serial Converter Unit resolution of 256 is given below.

|      |                            | Machine Configuration           |
|------|----------------------------|---------------------------------|
|      |                            | Ball Screw                      |
|      | Step Description           | Reference unit: 0.02 mm (20 µm) |
| Step |                            | Forward                         |
|      |                            | direction                       |
|      |                            |                                 |
| 1    | Linear Encoder Scale Pitch | 0.02 mm (20 μm)                 |
| 2    | Reference Unit             | 0.001 mm (1 μm)                 |

Continued on next page.

Continued from previous page.

|      |                            | Machine Configuration                                                      |  |  |
|------|----------------------------|----------------------------------------------------------------------------|--|--|
|      |                            | Ball Screw                                                                 |  |  |
|      |                            | Reference unit: 0.02 mm (20 µm)                                            |  |  |
| Step | Description                | Forward                                                                    |  |  |
|      |                            | direction                                                                  |  |  |
| 3    | Electronic Gear Ratio      | $\frac{B}{A} = \frac{1 (\mu m)}{20 (\mu m)} \times 256 \times \frac{1}{1}$ |  |  |
| 4    | D V V (27011)              | Numerator: 256                                                             |  |  |
|      | Position User Unit (2701h) | Denominator: 20                                                            |  |  |

### 5.14.3 Setting the Speed Reference Unit

Set the speed reference unit [Vel. Unit] in Velocity User Unit (2702h).

| Index | Subindex | Name              | Data Type | Access | PDO<br>Mapping | Value                            | Saving to<br>EEPROM |
|-------|----------|-------------------|-----------|--------|----------------|----------------------------------|---------------------|
|       | 0        | Number of entries | USINT     | RO     | No             | 2                                | No                  |
| 2702h | 1        | Numerator         | UDINT     | RW     | No             | 1 to 1073741823<br>(default: 64) | Yes                 |
|       | 2        | Denominator       | UDINT     | RW     | No             | 1 to 1073741823<br>(default: 1)  | Yes                 |

Setting range: 1/256 ≤ Velocity User Unit: Numerator (2702h: 1)/Velocity User Unit: Denominator (2702h: 2) ≤ 33554432

If the setting range is exceeded, an A20h alarm (Parameter Setting Error) will occur.

### Speed Reference Unit Setting Example (Electronic Gear Ratio Setting Example for a Ball Screw)

Velocity User Unit (2702h)

Converting one user-defined speed reference unit [0.1 mm/s] into [inc/s]: 1 [Vel unit]

$$= \frac{67108864 [inc]}{6 [mm]} \times 0.1 [mm/s]$$
$$= \frac{67108864}{60} [inc/s]$$

Therefore, the objects are set as follows: Object 2702h: 1 (Numerator) = 67108864 Object 2702h: 2 (Denominator) = 60

### 5.14.4 Setting the Acceleration Reference Unit

Set the acceleration reference unit [Acc. Unit] in Acceleration User Unit (2703h).

| Index | Subindex | Name              | Data Type | Access | PDO<br>Mapping | Value                            | Saving to EEPROM |
|-------|----------|-------------------|-----------|--------|----------------|----------------------------------|------------------|
|       | 0        | Number of entries | USINT     | RO     | No             | 2                                | No               |
| 2703h | 1        | Numerator         | UDINT     | RW     | No             | 1 to 1073741823<br>(default: 64) | Yes              |
|       | 2        | Denominator       | UDINT     | RW     | No             | 1 to 1073741823<br>(default: 1)  | Yes              |

Setting range:  $1/256 \le$  Acceleration User Unit: Numerator (2703h: 1)/Acceleration User Unit: Denominator (2703h: 2)  $\le$  1048576

If the setting range is exceeded, an A20h alarm (Parameter Setting Error) will occur.

# Acceleration Reference Unit Setting Example (Electronic Gear Ratio Setting Example for a Ball Screw)

Acceleration User Unit (2703h)

Converting one user-defined acceleration reference unit [0.1 mm/s<sup>2</sup>] into [10<sup>4</sup> inc/s<sup>2</sup>]:

1 [Acc unit]

= 
$$\frac{67108864 \text{ [inc]}}{6 \text{ [mm]}} \times 0.1 \text{ [mm/s}^2] \times 10^{-4}$$
  
=  $\frac{67108864}{6 \times 10^5} [10^4 \text{ inc/s}^2]$ 

Therefore, the objects are set as follows:

Object 2703h: 1 (Numerator) = 67108864 Object 2703h: 2 (Denominator) = 600000

### 5.14.5 Setting the Torque Reference Unit

Set the torque reference unit [Torque Unit] in Torque User Unit (2704h).

| Index | Subindex | Name              | Data Type | Access | PDO<br>Mapping | Value                            | Saving to EEPROM |
|-------|----------|-------------------|-----------|--------|----------------|----------------------------------|------------------|
|       | 0        | Number of entries | USINT     | RO     | No             | 2                                | No               |
| 2704h | 1        | Numerator         | UDINT     | RW     | No             | 1 to 1073741823<br>(default: 1)  | Yes              |
|       | 2        | Denominator       | UDINT     | RW     | No             | 1 to 1073741823<br>(default: 10) | Yes              |

Setting range:  $1/256 \le$  Torque User Unit: Numerator (2704h: 1)/Torque User Unit: Denominator (2704h: 2)  $\le$  1 Alarm A.A20 (Parameter Setting Error) will be detected if the setting exceeds the setting range.

# 5.15 Resetting the Absolute Encoder

In a system that uses an absolute encoder, the multiturn data must be reset at startup. An A.810 or A.820 alarm (alarm related to the absolute encoder) will occur when the absolute encoder must be reset, such as when the power is turned ON. When you reset the absolute encoder, the multiturn data is reset and any alarms related to the absolute encoder are cleared.

Reset the absolute encoder in the following cases.

- When an A.810 alarm (Encoder Backup Alarm) occurs
- When an A.820 alarm (Encoder Checksum Alarm) occurs
- When starting the system for the first time
- When you want to reset the multiturn data in the absolute encoder
- · When the servomotor has been replaced

# **MARNING**

The multiturn data will be reset to a value between -2 and +2 rotations when the absolute encoder is reset. The reference position of the machine system will change. Adjust the reference position in the host controller to the position that results from resetting the absolute encoder.

If the machine is started without adjusting the position in the host controller, unexpected operation may cause personal injury or damage to the machine.

Information

- 1. The multiturn data will always be zero in the following cases. It is never necessary to reset the absolute encoder in these cases. An A.810 or A.820 alarm (alarm related to the absolute encoder) will not occur.
  - When you use a single-turn absolute encoder
  - When Pn002 is set to n.□2□□ (use the encoder as a single-turn absolute encoder)
- 2. If a batteryless absolute encoder is used, an A.810 alarm (Encoder Backup Alarm) will occur the first time the power is turned ON. After you reset the absolute encoder, the A.810 alarm will no longer occur.

### 5.15.1 Precautions on Resetting

- You cannot use the Alarm/Warning Clear (Fault Reset) command from the SERVOPACK to clear the A.810 alarm (Encoder Backup Alarm) or the A.820 alarm (Encoder Checksum Alarm). Always use the operation to reset the absolute encoder to clear these alarms.
- If an A.8□□ alarm (internal encoder monitoring alarm) occurs, turn OFF the power to reset the alarm.

### 5.15.2 Preparations

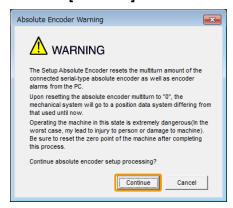
Always check the following before you reset an absolute encoder.

- The parameters must not be write prohibited.
- The servo must be OFF.

# 5.15.3 Applicable Tools

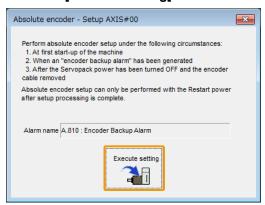
The following table lists the tools that you can use to reset the absolute encoder.

| Tool                    | Fn No./Function Name                         | Reference                                                                      |
|-------------------------|----------------------------------------------|--------------------------------------------------------------------------------|
| Digital Operator        | Fn008                                        | Σ-7/Σ-X-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33) |
| SigmaWin+               | [Encoder Setting] – [Reset Absolute Encoder] | <b>☞</b> 5.15.4 Operating Procedure on page 202                                |
| EtherCAT Communications | SERVOPACK Adjusting Command (2710h)          | 15.5.7 SERVOPACK Adjusting Command (2710h) on page 604                         |


### 5.15.4 Operating Procedure

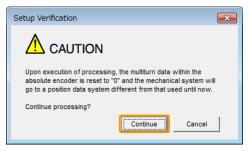
Use the following procedure to reset the absolute encoder.

- 1. Confirm that the servo is OFF.
- Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.
- 3. Click [Reset Absolute Encoder] in the [Menu] window.


The [Absolute Encoder Reset] window will be displayed.

4. Click the [Continue] button.




Click the [Cancel] button to cancel resetting the absolute encoder. The Main Window will return.

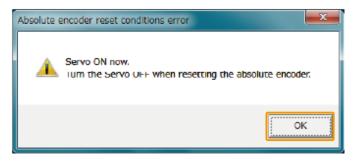
5. Click the [Execute setting] button.



The current alarm code and name will be displayed in the [Alarm name] box.

6. Click the [Continue] button.




Click the [Cancel] button to cancel resetting the absolute encoder. The previous window will return.

#### 7. Click the [OK] button.

The absolute encoder will be reset.

When Resetting Fails

If you attempted to reset the absolute encoder when the servo was ON in the SERVOPACK, the following message dialog box will be displayed and processing will be canceled.



Click the [OK] button. The Main Window will return. Turn OFF the servo and repeat the procedure from step 1.

When Resetting Is Successful

The following message dialog box will be displayed when the absolute encoder has been reset.



The Main Window will return.

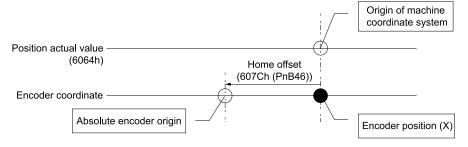
8. To enable changes to the settings, turn the power to the SERVOPACK OFF and ON again.

This concludes the procedure to reset the absolute encoder.

# 5.16 Setting the Origin of the Absolute Encoder

### 5.16.1 Absolute Encoder Origin Offset

# **NOTICE**


This parameter is set from the host controller. For details when the host controller is an MP3000 controller, refer to the motion control manual.

The origin offset of the absolute encoder is a correction that is used to set the origin of the machine coordinate system in addition to the origin of the absolute encoder. Set the offset between the absolute encoder origin and the machine coordinate system position in Home Offset (607Ch).

The offset is added to Position Actual Value (6064h) after the parameters are enabled when the power is turned ON or with User Parameter Configuration (2700h).

| Index | Subindex | Name        | Data Type | Access | PDO<br>Mapping | Value                                                     | Saving to EEPROM |
|-------|----------|-------------|-----------|--------|----------------|-----------------------------------------------------------|------------------|
| 607Ch | _        | Home Offset | DINT      | RW     | No             | -536870912 to<br>536870911<br>(default: 0) [Pos.<br>unit] | Yes              |

If the encoder position (X) is at the origin (0), then Home Offset (607Ch) would be set to the value of "-X."



## 5.16.2 Setting the Origin of the Absolute Linear Encoder

You can set any position as the origin in the following linear encoders.

- Dr. JOHANNES HEIDENHAIN GmbH LIC4190 Series or LIC2190 Series
- RSF Elektronik GmbH
- MC15Y Series
   Mitutoyo Corporation
- ABS ST780A Series or ST1300 Series
  Models: ABS ST78\(\text{DA}\)/ST78\(\text{DA}\)/ST13\(\text{D}\)
- Renishaw PLC EVOLUTE Series

• Renishaw PLC RESOLUTE Series

Models: RL36Y

• Canon Precision Inc. Model: PH03-36E00



- After you set the origin, the /S-RDY (Servo Ready Output) signal will become inactive because the system position data was changed. Always turn the SERVOPACK power OFF and ON again.
- After you set the origin, the servomotor phase data in the SERVOPACK will be discarded. If you are using a linear servomotor without a polarity sensor, execute polarity detection again to save the servomotor phase data in the SERVOPACK.

#### (1) Preparations

Always check the following before you set the origin of an absolute linear encoder.

- The parameters must not be write prohibited.
- The servo must be OFF.

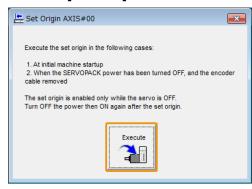
#### (2) Applicable Tools

The following table lists the tools that you can use to set the origin of the absolute linear encoder.

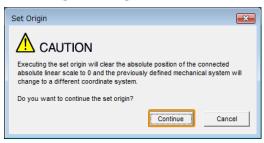
| Tool             | Fn No./Function Name                              | Reference                                                                                       |
|------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Digital Operator | Fn020                                             | $\Sigma$ -7/ $\Sigma$ -X-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33) |
| SigmaWin+        | [Encoder Setting] – [Zero Point Position Setting] | (3) Operating Procedure on page 205                                                             |

### (3) Operating Procedure

Use the following procedure to set the origin of an absolute linear encoder.


- 1. Click the [ ] button for the servo drive in the workspace of the Main Window of the SignaWin+.
- 2. Click [Zero Point Position Setting] in the [Menu] window.

The [Set Origin] window will be displayed.


3. Click the [Continue] button.



4. Click the [Execute] button.



5. Click the [Continue] button.



Click the [Cancel] button to cancel setting the origin of the absolute linear encoder. The previous window will return.

6. Click the [OK] button.



- 7. Turn the power to the SERVOPACK OFF and ON again.
- 8. If you use a linear servomotor that does not have a polarity sensor, perform polarity detection.

Refer to the following section for details on the polarity detection.

\$\overline{\pi}\$ 5.9 Polarity Detection on page 175

This concludes the procedure to set the origin of the absolute linear encoder.

# 5.17 Setting the Regenerative Resistor Capacity

The regenerative resistor consumes regenerative energy that is generated by the servomotor, e.g., when the servomotor decelerates.

If an external regenerative resistor is connected, you must set Pn600 (Regenerative Resistor Capacity) and Pn603 (Regenerative Resistance).

Refer to the following manual to select the capacity of a regenerative resistor.

Σ-X-Series Peripheral Device Selection Manual (Manual No.: SIEP C710812 12)

# **MARNING**

#### If you use an external regenerative resistor, set Pn600 and Pn603 to suitable values.

If you set an unsuitable value, A.320 alarms (Regenerative Overload) cannot be detected correctly, and the external regenerative resistor may suffer a wire break or personal injury or fire may result.

#### Use an regenerative resistor with a suitable capacity for the external regenerative resistor.

If you use an external regenerative resistor with an unsuitable capacity, personal injury or fire may result.

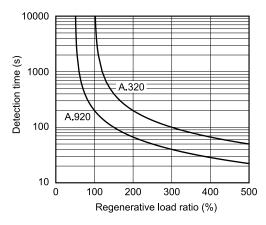
| Pn600<br>(2600h) | Regenerative Resistor Capa                                 | Speed Pos Trq         |                 |              |  |  |
|------------------|------------------------------------------------------------|-----------------------|-----------------|--------------|--|--|
|                  | Setting Range                                              | Setting Unit          | Default Setting | When Enabled |  |  |
|                  | 0 to SERVOPACK's maxi-<br>mum applicable motor<br>capacity | 10 W                  | 0               | Immediately  |  |  |
|                  | Regenerative Resistance Speed Pos T                        |                       |                 |              |  |  |
| Pn603<br>(2603h) | Setting Range                                              | Setting Unit          | Default Setting | When Enabled |  |  |
|                  | 0 to 65535                                                 | $10~\mathrm{m}\Omega$ | 0               | Immediately  |  |  |

Set the regenerative resistor capacity to a value that is consistent with the allowable capacity of the external regenerative resistor. The setting depends on the cooling conditions of the external regenerative resistor.

- For self-cooling (natural convection cooling): Set the parameter to a maximum 20% of the capacity (W) of the actually installed regenerative resistor.
- For forced-air cooling: Set the parameter to a maximum 50% of the capacity (W) of the actually installed regenerative resistor.

#### Note:

- 1. To use the SERVOPACK's built-in regenerative resistor or Yaskawa's regenerative resistor unit, set Pn600 to 0.
- 2. An A.320 alarm will be displayed if the setting is not suitable.


#### Example

For a self-cooling 100-W external regenerative resistor, set Pn600 (2600h) (Regenerative Resistor Capacity) to 2 ( $\times$ 10 W) (100 W  $\times$  20% = 20 W).



- When an external regenerative resistor is used at the normal rated load ratio, the resistor temperature increases to between 200°C and 300°C. Always apply derating. Consult the manufacturer for the resistor's load characteristics.
- For safety, use an external regenerative resistor with a thermoswitch.

A.320 (Regenerative Overload) and A.920 (Regenerative Overload) alarms are detected by the following overload protection characteristics.



The regenerative load ratio differs on whether the regenerative resistor is built-in or external as described next.

- When the regenerative resistor is built-in: Permissible power consumption [W] of the built-in regenerative resistor is detected as regenerative load ratio 100%
- When the regenerative resistor is external: Setting of Pn600 is detected as regenerative load ratio 100% Refer to the following section for the permissible power consumption of the built-in regenerative resistor.

**3** 2.1.1 Ratings on page 68

You can use the [Operation] monitor in the SigmaWin+ to check the regenerative load ratio. Refer to the following section for details.

\$\overline{G}\$ 9.2.2 Operation Monitor, Status Monitor, and I/O Monitor on page 454

# 5.18 $\Sigma$ -V/ $\Sigma$ -7 Compatible Function and Settings

The  $\Sigma$ -V/ $\Sigma$ -7 compatible function allows you to easily replace a  $\Sigma$ -V/ $\Sigma$ -7-Series SERVOPACK with a  $\Sigma$ -X-Series SERVOPACK in an existing servo system.

### 5.18.1 Setting the Encoder Resolution Compatibility Selection

When a  $\Sigma$ -X rotary servomotor is connected to a  $\Sigma$ -X-Series SERVOPACK, the servomotor can be operated with an encoder resolution that differs from the servomotor specifications.

First set Pn21D to n. $\Box\Box\Box$ 1 (enable encoder resolution compatibility), and then set the encoder resolution in Pn21D = n. $\Box\Box$ X $\Box$ .



After setting the parameters, check the details of the settings again. If this settings are incorrect, unexpected machine operation, failure, or personal injury may occur.

|                  |        | Encoder      | Resolution Compatibility Selection             | Speed Pos Trq              | When Enabled  |               |
|------------------|--------|--------------|------------------------------------------------|----------------------------|---------------|---------------|
| Pn21D<br>(221Dh) | n.□□□X | 0<br>Default | Disable encoder resolution compatibility.      |                            | After restart |               |
|                  |        | 1            | Enable encoder resolution compatibility.       |                            |               |               |
|                  |        | Encoder      | Resolution Compatibility: Resolution Selection | Speed Pos Trq              | When Enabled  |               |
|                  |        | 4            | Operate as 20-bit encoder.                     |                            |               |               |
|                  |        | 6            | Operate as 22-bit encoder.                     |                            |               |               |
| Pn21D<br>(221Dh) | n.□□X□ | n.□□X□       | 8<br>Default                                   | Operate as 24-bit encoder. |               | After restart |
|                  |        | A            | Operate as 26-bit encoder.                     |                            |               |               |
|                  |        | Other values | Reserved (Do not use.)                         |                            |               |               |

### (1) Restrictions

Encoder bit count compatibility cannot be used when any of the following conditions apply.

- When fully-closed loop control is being used.
- When the bit count of the encoder in the connected servomotor is less than the bit count selected in Pn21D = n.□□X□.
- When a linear servomotor is connected.
- When the encoder resolution of the connected servomotor is not 2<sup>n</sup>.

# **Application Functions**

Describes the application functions that you can set before you start servo system operation. It also describes the setting methods.

| 6.1 | Changing Allocations of I/O Signals                      | 214 |
|-----|----------------------------------------------------------|-----|
|     | 6.1.1 Changing Allocations of I/O Signals                | 214 |
|     | 6.1.2 I/O Signal Allocations                             | 216 |
|     | 6.1.3 Input Signal Allocations                           | 216 |
|     | 6.1.4 Output Signal Allocations                          | 218 |
|     | 6.1.5 ALM (Servo Alarm Output) Signal                    | 220 |
|     | 6.1.6 /WARN (Warning Output) Signal                      | 221 |
|     | 6.1.7 /TGON (Rotation Detection Output) Signal           | 221 |
|     | 6.1.8 /S-RDY (Servo Ready Output) Signal                 | 222 |
|     | 6.1.9 /V-CMP (Speed Coincidence Detection Output) Signal | 223 |
|     | 6.1.10 /COIN (Positioning Completion Output) Signal      | 224 |
|     | 6.1.11 /NEAR (Near Output) Signal                        | 226 |
|     | 6.1.12 Speed Limit during Torque Control                 | 226 |
| 6.2 | Operation for Momentary Power Interruptions              | 229 |
| 6.3 | SEMI F47 Function                                        | 230 |
|     | 6.3.1 Execution Sequence                                 | 230 |
|     | 6.3.2 Related Parameters                                 | 231 |
| 6.4 | Setting the Maximum Motor Speed                          | 232 |
| 6.5 | Encoder Divided Pulse Output                             | 233 |
|     | 6.5.1 Encoder Divided Pulse Output Signals               | 233 |
|     | 6.5.2 Setting for the Encoder Divided Pulse Output       | 237 |
| 6.6 | Software Limits                                          | 240 |
| 6.7 | Selecting Torque Limits                                  | 241 |
|     | 6.7.1 Internal Torque Limits                             | 241 |
|     | 6.7.2 External Torque Limits                             | 242 |
|     | 6.7.3 /CLT (Torque Limit Detection Output) Signal        | 245 |

| 6.8  | Absolute Encoders                                                         | 246 |
|------|---------------------------------------------------------------------------|-----|
|      | 6.8.1 Connecting an Absolute Encoder                                      | 247 |
|      | 6.8.2 Structure of the Position Data of the Absolute Encoder              | 247 |
|      | 6.8.3 Output Ports for the Position Data from the Absolute Encoder        | 247 |
|      | 6.8.4 Reading the Position Data from the Absolute Encoder                 | 248 |
|      | 6.8.5 Transmission Specifications                                         | 249 |
|      | 6.8.6 Calculating the Current Position in Machine Coordinates             | 249 |
|      | 6.8.7 Multiturn Limit Setting                                             | 250 |
|      | 6.8.8 A.CC0 (Multiturn Limit Disagreement Alarm )                         | 251 |
| 6.9  | Absolute Linear Encoders                                                  | 255 |
|      | 6.9.1 Connecting an Absolute Linear Encoder                               | 255 |
|      | 6.9.2 Structure of the Position Data of the Absolute Linear Encoder       | 255 |
|      | 6.9.3 Output Ports for the Position Data from the Absolute Linear Encoder | 255 |
|      | 6.9.4 Reading the Position Data from the Absolute Linear Encoder          |     |
|      | 6.9.5 Transmission Specifications                                         | 257 |
|      | 6.9.6 Calculating the Current Position in Machine Coordinates             | 258 |
| 6.10 | Software Reset                                                            | 259 |
|      | 6.10.1 Preparations                                                       |     |
|      | 6.10.2 Applicable Tools                                                   |     |
|      | 6.10.3 Operating Procedure                                                | 259 |
| 6.11 | Vibration Detection Level Initialization                                  |     |
|      | 6.11.1 Preparations                                                       |     |
|      | 6.11.2 Applicable Tools                                                   | 261 |
|      | 6.11.3 Operating Procedure                                                |     |
|      | 6.11.4 Related Parameters                                                 | 263 |
| 6.12 | Adjusting the Motor Current Detection Signal Offset                       |     |
|      | 6.12.1 Automatic Adjustment                                               |     |
|      | 6.12.2 Manual Adjustment                                                  | 266 |
| 6.13 | Forcing the Motor to Stop                                                 |     |
|      | 6.13.1 FSTP (Forced Stop Input) Signal                                    |     |
|      | 6.13.2 Stopping Method Selection for Forced Stops                         |     |
|      | 6.13.3 Resetting Method for Forced Stops                                  | 269 |
| 6.14 | Overheat Protection                                                       |     |
|      | 6.14.1 Connecting the Overheat Protection Input (TH) Signal               |     |
|      | 6.14.2 Overheat Protection Selections                                     | 273 |
| 6.15 | Triggers at Preset Positions                                              |     |
|      | 6.15.1 Outline                                                            | 274 |

|      | 6.15.2 I/O Signal Connector (CN1) Pin Layout                                         | 275 |
|------|--------------------------------------------------------------------------------------|-----|
|      | 6.15.3 Procedure to Use Triggers at Preset Positions                                 | 276 |
| 6.16 | Rotational Coordinate System                                                         | 282 |
|      | 6.16.1 Outline                                                                       | 282 |
|      | 6.16.2 Block Diagrams                                                                | 283 |
|      | 6.16.3 Supported Modes of Operation When the Rotational Coordinate System Is Enabled | 283 |
|      | 6.16.4 Setup Procedure                                                               | 283 |
| 6.17 | Soft Start Settings                                                                  | 287 |
| 6.18 | Reference Filters                                                                    | 288 |
|      | 6.18.1 Speed Reference Filter                                                        | 288 |
|      | 6.18.2 Average Position Reference Movement Filter                                    | 288 |

#### 6.1 **Changing Allocations of I/O Signals**

I/O signals are allocated to the pins on the I/O signal connector (CN1) in advance. You can change the allocations and the polarity for some of the signals. Signal allocations and polarity settings are made with the SigmaWin+ or parameters.

Information

Refer to the following section for the default settings of the I/O signal connector (CN1) and pin numbers for which allocations can be changed.

4.5.1 I/O Signal Connector (CN1) Names and Functions on page 137

#### Changing Allocations of I/O Signals 6.1.1

Use the following procedure to change the signals allocated to pins on the I/O signal connector (CN1) and the polarity of the signals.

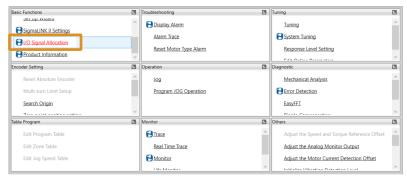
Information

This section gives the procedure using the SigmaWin+. Signal allocations and polarity can also be set with parameters. Refer to the following section for details.

6.1.3 Input Signal Allocations on page 216

6.1.4 Output Signal Allocations on page 218




If you use Σ-LINK II, you must also set the peripheral devices in addition to the I/O signal allocations. Refer to the following chapter instead of this procedure if you use  $\Sigma$ -LINK II.

Important  $\square$  11  $\Sigma$ -LINK II Function on page 495

Click the [-] button for the servo drive in the workspace of the Main Window of the SigmaWin+.

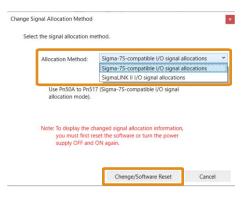

The [Menu] window will be displayed.

Click [I/O Signal Allocation] in the [Basic Functions] area.



The [I/O Signal Allocation] window will be displayed.

Click [Change Method].




The [Change Signal Allocation Method] window will be displayed.

Select the allocation methods and click the [Change/Software Reset] button.

Refer to the following sections for details on allocation methods.

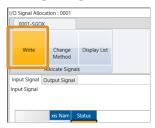
**☞** 6.1.2 I/O Signal Allocations on page 216



The software will be reset to change the set allocation methods. The [I/O Signal Allocation] dialog box will return when the software is reset.

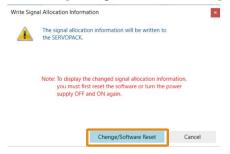
- 5. Click the [Input Signal] tab or [Output Signal] tab for the signal allocations to change.
- 6. Double-click the [Pin Number] cell on the row of the signal with the allocation to change, select the pin number, and then press the [Enter] key.




The background of the cell with the changed signal allocation will change to green.

7. Double-click the [Polarity] cell on the row of the signal with the polarity to change, select the polarity, and then press the [Enter] key.




The background of the cell with the changed polarity will change to green.

8. Click [Write].



The [Write Signal Allocation Information] dialog box will be displayed.

9. Click the [Change/Software Reset] button.



The software will be reset, the changes to the I/O signal allocations and polarities will be applied, and the backgrounds of the cell will return to white.

This concludes the procedure.

#### 6.1.2 I/O Signal Allocations

There are the following two methods to allocate I/O signals.

| Allocation Method                         | Description                                                                                                        | Reference                                                                                                                                                                                      |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Σ-7S-compatible I/O Signal<br>Allocations | Use Pn50A to Pn516 to allocate pin numbers to I/O signals.                                                         | <ul> <li>Input Signals</li> <li>(1) Σ-7S-Compatible Input Signal Allocations on page 216</li> <li>Output Signals</li> <li>(1) Σ-7S-Compatible Output Signal Allocations on page 218</li> </ul> |
|                                           | • When the Σ-LINK II Is Not Used Use Pn590 to Pn5BC to allocate pin numbers to I/O signals.                        | <ul> <li>Input Signals</li> <li>(2) Σ-LINK II Input Signal         Allocations on page 217</li> </ul>                                                                                          |
| Σ-LINK II Input Signal Allocations        | When the Σ-LINK II Is Used     Use Pn590 to Pn5BC to allocate pin numbers or communications data to input signals. | • Output Signals  (2) Σ-LINK II Input Signal  Allocations on page 219                                                                                                                          |

Information

When  $\Sigma$ -LINK II is not used, " $\Sigma$ -7S-compatible I/O Signal Allocations" and " $\Sigma$ -LINK II-compatible I/O Signal Allocations" differ only in the parameters used to allocate I/O signals. The signals and pin numbers to allocate are the same for both methods

Specify the allocation method to use in  $Pn50A = n.\Box\Box\Box X$  (Input Signal Allocation Mode).

|                  | Du 504 |              | nal Allocation Mode Speed Pos Trq                                    | When Enabled  |
|------------------|--------|--------------|----------------------------------------------------------------------|---------------|
| D=504            |        |              | Reserved (Do not use.)                                               |               |
| Pn50A<br>(250Ah) | n.□□□X | 1<br>Default | Use Pn50A to Pn516 (Sigma-7S-compatible I/O signal allocation mode). | After restart |
|                  |        | 2            | Use Pn590 to Pn5BC (SigmaLINK II input signal allocation mode).      |               |

### 6.1.3 Input Signal Allocations

This section describes the parameters used to change allocations and the relationship between pin numbers and polarity by allocation method of input signals.



- If you change the default polarity settings for the P-OT (Forward Drive Prohibit Input), or N-OT (Reverse Drive Prohibit Input) signal, the main circuit power will not be turned OFF and the overtravel function will not operate if there are signal line disconnections or other problems. If you must change the polarity of one of these signals, verify operation and make sure that no safety problems will exist.
- If you allocate two or more signals to the same input circuit, a logical OR of the inputs will be used and all of the allocated signals will operate accordingly.

  This may result in unexpected operation.

### (1) $\Sigma$ -7S-Compatible Input Signal Allocations

The parameters used to change allocations of I/O signals are shown in the following table.

| Siç     | Parameter                           |                                               |
|---------|-------------------------------------|-----------------------------------------------|
| P-OT    | Forward Drive Prohibit Input        | $Pn50A (250Ah) = n.X \square \square \square$ |
| N-OT    | Reverse Drive Prohibit Input        | Pn50B (250Bh) = n.□□□X                        |
| /P-CL   | Forward External Torque Limit Input | Pn50B (250Bh) = n.□X□□                        |
| /N-CL   | Reverse External Torque Limit Input | Pn50B (250Bh) = n.X□□□                        |
| /Probe1 | Probe 1 Latch Input                 | Pn511 (2511h) = n.□□X□                        |
| /Probe2 | Probe 2 Latch Input                 | $Pn511 (2511h) = n.\Box X \Box \Box$          |
| /Home   | /Home Input                         | Pn511 (2511h) = n.X□□□                        |
| FSTP    | Forced Stop Input                   | Pn516 (2516h) = n.□□□X                        |

### (a) Relationship between Parameter Settings, Allocated Pins, and Polarities

The following table shows the relationship between the input signal parameter settings, the pins on the I/O signal connector (CN1), and polarities.

| Parameter<br>Setting | Pin No.   | Description                                                                                                                                             |  |
|----------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0                    | CN1-13 *1 |                                                                                                                                                         |  |
| 1                    | CN1-7 *1  | +24 V                                                                                                                                                   |  |
| 2                    | CN1-8 *1  | Ţ <u>Ÿ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ</u>                                                                                                          |  |
| 3                    | CN1-9 *1  | A reverse signal (a signal with "/" before the signal abbreviation, such as the / P-CL signal) is active                                                |  |
| 4                    | CN1-10    | when the contacts are ON (closed).  A signal that does not have "/" before the signal abbreviation (such as the P-OT signal) is active                  |  |
| 5                    | CN1-11    | when the contacts are OFF (open).                                                                                                                       |  |
| 6                    | CN1-12    |                                                                                                                                                         |  |
| 7                    | _         | The input signal is not allocated to a connector pin and it is always active.  If the signal is processed on a signal edge, then it is always inactive. |  |
| 8                    | _         | The input signal is not allocated to a connector pin and it is always inactive.  Set the parameter to 8 if the signal is not used.                      |  |
| 9                    | CN1-13 */ |                                                                                                                                                         |  |
| A                    | CN1-7 *1  | +24 V                                                                                                                                                   |  |
| В                    | CN1-8 *1  |                                                                                                                                                         |  |
| С                    | CN1-9 *1  | A reverse signal (a signal with "/" before the signal abbreviation, such as the / P-CL signal) is active                                                |  |
| D                    | CN1-10    | when the contacts are OFF (open).  A signal that does not have "/" before the signal abbreviation (such as the P-OT signal) is active                   |  |
| Е                    | CN1-11    | when the contacts are ON (closed).                                                                                                                      |  |
| F                    | CN1-12    |                                                                                                                                                         |  |

<sup>\*1</sup> Cannot be set if Pn511 (2511h) =  $n.\Box X\Box$  (/Probe1 (Probe 1 Latch Input) Signal Allocation), Pn511 (2511h) =  $n.\Box X\Box$  (/Probe2 (Probe 2 Latch Input) Signal Allocation), and Pn511 (2511h) =  $n.X\Box\Box$  (/Home (Home Switch Input) Signal Allocation).

### < Example 1 >

When Pn50A is set to  $n.5 \square \square \square$ , the P-OT (Forward Drive Prohibit Input) signal is active (enable forward drive) when CN1-11 is ON (open).

### < Example 2 >

When Pn50A is set to n.8 \(\pi \pi\), the P-OT (Forward Drive Prohibit Input) signal is always inactive.

# (2) $\Sigma$ -LINK II Input Signal Allocations

The parameters used to change allocations of input signals are shown in the following table.

| Sig     | Parameter                           |               |
|---------|-------------------------------------|---------------|
| P-OT    | Forward Drive Prohibit Input        | Pn590 (2590h) |
| N-OT    | Reverse Drive Prohibit Input        | Pn591 (2591h) |
| /P-CL   | Forward External Torque Limit Input | Pn598 (2598h) |
| /N-CL   | Reverse External Torque Limit Input | Pn599 (2599h) |
| /Probe1 | Probe 1 Latch Input                 | Pn593 (2593h) |
| /Probe2 | Probe 2 Latch Input                 | Pn594 (2594h) |
| /Home   | /Home Input                         | Pn595 (2595h) |
| FSTP    | Forced Stop Input                   | Pn597 (2597h) |

### (a) Relationship between Parameter Settings and Allocated Pin Numbers

The following table shows the relationship between the input signal parameter settings and the pin numbers on the I/O signal connector (CN1).

| Parameter Setting | Description                                           |
|-------------------|-------------------------------------------------------|
| n.□007 * <i>I</i> | Allocate the signal to CN1-7.                         |
| n.□008 * <i>I</i> | Allocate the signal to CN1-8.                         |
| n.□009 * <i>I</i> | Allocate the signal to CN1-9.                         |
| n.□010            | Allocate the signal to CN1-10.                        |
| n.□011            | Allocate the signal to CN1-11.                        |
| n.□012            | Allocate the signal to CN1-12.                        |
| n.□013            | Allocate the signal to CN1-13.                        |
| n.□100            | Allocate the signal to SigmaLINK II Sequence Input 0. |
| n.□101            | Allocate the signal to SigmaLINK II Sequence Input 1. |
| n.□102            | Allocate the signal to SigmaLINK II Sequence Input 2. |
| n.□103            | Allocate the signal to SigmaLINK II Sequence Input 3. |
| n.□104            | Allocate the signal to SigmaLINK II Sequence Input 4. |
| n.□105            | Allocate the signal to SigmaLINK II Sequence Input 5. |
| n.□106            | Allocate the signal to SigmaLINK II Sequence Input 6. |
| n.□107            | Allocate the signal to SigmaLINK II Sequence Input 7. |

<sup>\*1</sup> Cannot be set for Pn593 (2593h) (/Probe1 (Probe 1 Latch Input) Signal Allocation), Pn594 (2594h) (/Probe2 (Probe 2 Latch Input) Signal Allocation), and Pn595 (2595h) (/Home (Home Switch Input) Signal Allocation).



If you will not use  $\Sigma$ -LINK II, always set  $n.\Box 0\Box\Box$  (allocate signal to CN1- $\Box$ ). If you set  $n.\Box 1\Box\Box$  (allocate the signal to SigmaLINK II Sequence Input  $\Box$ ), the signal input will not function.

### (b) Relationship between Parameter Settings and Polarities

The following table shows the relationship between the input signal parameter settings and polarities.

| Parameter Setting | Description                              |
|-------------------|------------------------------------------|
| n.0000            | The signal is always inactive.           |
| n.1000            | Active when input signal is ON (closed). |
| n.2000            | Active when input signal is OFF (open).  |
| n.3□□□            | The signal is always active.             |

# 6.1.4 Output Signal Allocations

This section describes the parameters used to change allocations and the relationship between pin numbers and polarity by allocation method of output signals.



- The signals that are not detected are considered to be OFF. For example, the /COIN (Positioning Completion Output) signal is considered to be OFF during speed control.
- Reversing the polarity of the /BK (Brake Output) signal, i.e., changing it to positive logic, will prevent the holding brake from operating if its signal line is disconnected. If you must change the polarity of this signal, verify operation and make sure that no safety problems will exist.
- If you allocate more than one signal to the same output circuit, a logical OR of the signals will be output.

# (1) $\Sigma$ -7S-Compatible Output Signal Allocations

The parameters used to change allocations of I/O signals are shown in the following table.

| Sig    | Parameter                          |                                    |
|--------|------------------------------------|------------------------------------|
| /COIN  | Positioning Completion Output      | $Pn50E (250Eh) = n.\Box\Box X$     |
| /V-CMP | Speed Coincidence Detection Output | $Pn50E (250Eh) = n.\Box\Box X\Box$ |
| /TGON  | Rotation Detection Output          | Pn50E (250Eh) = n.□X□□             |
| /S-RDY | Servo Ready Output                 | Pn50E (250Eh) = n.X□□□             |
| /CLT   | Torque Limit Detection Output      | $Pn50F (250Fh) = n.\Box\Box\Box X$ |
| /VLT   | Speed Limit Detection Output       | Pn50F (250Fh) = n.□□X□             |
| /BK    | Brake Output                       | Pn50F (250Fh) = n.□X□□             |
| /WARN  | Warning Output                     | $Pn50F (250Fh) = n.X\Box\Box\Box$  |
| /NEAR  | Near Output                        | $Pn510 (2510h) = n.\Box\Box\Box X$ |
| /PM    | Preventative Maintenance Output    | $Pn514 (2514h) = n.\Box X\Box\Box$ |

## (a) Relationship between Parameter Settings and Allocated Pin Numbers

The following table shows the relationship between the output signal parameter settings and the pin numbers on the I/O signal connector (CN1).

| Parameter Setting | Description                                                            |  |  |
|-------------------|------------------------------------------------------------------------|--|--|
| 0                 | Disable (signal output is not used)                                    |  |  |
| 1                 | Output the allocated signal from the CN1-1 or CN1-2 output terminal.   |  |  |
| 2                 | Output the allocated signal from the CN1-23 or CN1-24 output terminal. |  |  |
| 3                 | Output the allocated signal from the CN1-25 or CN1-26 output terminal. |  |  |
| 4 to 6            | Reserved (Do not use.)                                                 |  |  |

## (b) Output Signal Polarity Switching

The polarity of the output signal is switched using Pn512.

|                  |        | Output Si    | gnal Inversion for CN1-1 and CN1-2 Terminals  Speed Pos Trq  | When Enabled  |
|------------------|--------|--------------|--------------------------------------------------------------|---------------|
| Pn512<br>(2512h) | n.□□□X | 0<br>Default | The signal is not inverted.                                  | After restart |
|                  |        | 1            | The signal is inverted.                                      |               |
|                  |        | Output Si    | gnal Inversion for CN1-23 and CN1-24 Terminals Speed Pos Trq | When Enabled  |
| Pn512<br>(2512h) | n.□□X□ | 0<br>Default | The signal is not inverted.                                  | After restart |
|                  |        | 1            | The signal is inverted.                                      |               |
|                  |        | Output Si    | gnal Inversion for CN1-25 and CN1-26 Terminals Speed Pos Trq | When Enabled  |
| Pn512<br>(2512h) | n.□X□□ | 0<br>Default | The signal is not inverted.                                  | After restart |
|                  |        | 1            | The signal is inverted.                                      |               |

# (2) $\Sigma$ -LINK II Input Signal Allocations

The parameters used to change allocations of output signals are shown in the following table.

| Sig    | Parameter                          |               |
|--------|------------------------------------|---------------|
| /COIN  | Positioning Completion Output      | Pn5B0 (25B0h) |
| /V-CMP | Speed Coincidence Detection Output | Pn5B1 (25B1h) |
| /TGON  | Rotation Detection Output          | Pn5B2 (25B2h) |
| /S-RDY | Servo Ready Output                 | Pn5B3 (25B3h) |

Continued on next page.

Continued from previous page.

| Signal |                                 | Parameter     |
|--------|---------------------------------|---------------|
| /CLT   | Torque Limit Detection Output   | Pn5B4 (25B4h) |
| /VLT   | Speed Limit Detection Output    | Pn5B5 (25B5h) |
| /BK    | Brake Output                    | Pn5B6 (25B6h) |
| /WARN  | Warning Output                  | Pn5B7 (25B7h) |
| /NEAR  | Near Output                     | Pn5B8 (25B8h) |
| /PM    | Preventative Maintenance Output | Pn5BC (25BCh) |

### (a) Relationship between Parameter Settings and Allocated Pin Numbers

The following table shows the relationship between the output signal parameter settings and the pin numbers on the I/O signal connector (CN1).

| Parameter Setting | Description                              |  |
|-------------------|------------------------------------------|--|
| n.□000            | Disable (the signal output is not used). |  |
| n.□023            | Allocate the signal to CN1-23.           |  |
| n.□025            | Allocate the signal to CN1-25.           |  |
| n.□027            | Allocate the signal to CN1-27.           |  |
| n.□029            | Allocate the signal to CN1-29.           |  |
| n.□031            | Allocate the signal to CN1-31.           |  |



When the polarity setting is "n.1  $\square$  (output the signal)" or "n.2  $\square$  (invert the signal and output it)", make sure to allocate the signal to a pin number, A.040 (Parameter Setting Error) will occur.

### (b) Relationship between Parameter Settings and Polarities

The following table shows the relationship between the input signal parameter settings and polarities.

| Parameter Setting | Description                              |  |
|-------------------|------------------------------------------|--|
| n.0000            | Disable (the signal output is not used). |  |
| n.1000            | Output the signal.                       |  |
| n.2000            | Invert the signal and output it.         |  |



When the polarity setting is  $n.1 \square \square$  (output the signal) or  $n.2 \square \square$  (invert the signal and output it), make sure to allocate the signal to a pin number on CN1. If you do not allocate the signal to a pin number, A.040 (Parameter Setting Error) will occur.

# 6.1.5 ALM (Servo Alarm Output) Signal

This signal is output when the SERVOPACK detects an error.



Configure an external circuit so that this alarm output turns OFF the main circuit power supply to the SERVOPACK whenever an error occurs.

Important

| Туре       | Signal          | Connector Pin No. | Signal Status           | Meaning |
|------------|-----------------|-------------------|-------------------------|---------|
| Output ALM | CN1-3 and CN1-4 | ON (closed)       | Normal SERVOPACK status |         |
|            |                 | OFF (open)        | SERVOPACK alarm         |         |

## (1) Alarm Reset Methods

Refer to the following section for information on the alarm reset methods.

3 16.2.3 Alarm Reset on page 683

# 6.1.6 /WARN (Warning Output) Signal

Both alarms and warnings are generated by the SERVOPACK. Alarms indicate errors in the SERVOPACK for which operation must be stopped immediately. Warnings indicate situations that may results in alarms but for which stopping operation is not yet necessary.

The /WARN (Warning Output) signal indicates that a condition exists that may result in an alarm.

| Туре     | Signal | Connector Pin No.  | Signal Status | Meaning       |
|----------|--------|--------------------|---------------|---------------|
| a way by |        |                    | ON (closed)   | Warning       |
| Output   | /WARN  | Must be allocated. | OFF (open)    | Normal status |

### Note:

You must allocate the /WARN signal to use it. The parameters that you use depend on the allocation method.

| Allocation Method                      | Parameter to Use                                                                                                      |  |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| Σ-7S-compatible I/O Signal Allocations | • Pn50A = n.□□□1 (Σ-7S-Compatible I/O Signal Allocations) • Pn50F = n.X□□□ (/WARN (Warning Output) Signal Allocation) |  |
| Σ-LINK II Input Allocations            | • Pn50A= n.□□□2 (Σ-LINK II Input Allocations) • Pn5B7 (/WARN (Warning Output) Signal Allocation)                      |  |

Refer to the following section for details.

■ 6.1.4 Output Signal Allocations on page 218

# 6.1.7 /TGON (Rotation Detection Output) Signal

The /TGON signal indicates that the servomotor is operating.

This signal is output when the shaft of the servomotor rotates at the setting of Pn502 (Rotation Detection Level) or faster or the setting of Pn581 (Zero Speed Level) or faster.

| Туре   | Signal | Connector Pin No.  | Signal Status | Servomotor        | Meaning                                                                          |
|--------|--------|--------------------|---------------|-------------------|----------------------------------------------------------------------------------|
| Output | /TGON  | Must be allocated. | ON (closed)   | Rotary servomotor | The servomotor is operating at the setting of Pn502 or faster.                   |
|        |        |                    |               | Linear servomotor | The Servomotor is operating at the setting of Pn581 or faster.                   |
|        |        |                    | OFF (open)    | Rotary servomotor | The servomotor is operating at a speed that is slower than the setting of Pn502. |
|        |        |                    |               | Linear servomotor | The servomotor is operating at a speed that is slower than the setting of Pn581. |

### Note:

You must allocate the /TGON signal to use it. The parameters that you use depend on the allocation method.

| Allocation Method                      | Parameter to Use                                                                                                                                          |  |  |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Σ-7S-compatible I/O Signal Allocations | <ul> <li>Pn50A = n.□□□1 (Σ-7S-compatible I/O Signal Allocations)</li> <li>Pn50E = n.□X□□ (/TGON (Rotation Detection Output) Signal Allocation)</li> </ul> |  |  |
| Σ-LINK II Input Signal Allocations     | • Pn50A = n.□□□2 (Σ-LINK II Input Allocation) • Pn5B2 (/TGON (Rotation Detection Output) Signal Allocation)                                               |  |  |

Refer to the following section for details.

6.1.4 Output Signal Allocations on page 218

# (1) Setting the Rotation Detection Level

Use the following parameter to set the speed detection level at which to output the /TGON signal.

· Rotary Servomotors

|                  | Rotation Detection Level Speed Pos Trq |              |                 |              |  |
|------------------|----------------------------------------|--------------|-----------------|--------------|--|
| Pn502<br>(2502h) | Setting Range                          | Setting Unit | Default Setting | When Enabled |  |
| (200211)         | 1 to 10000                             | 1 min-1      | 20              | Immediately  |  |

Linear Servomotors

|                  | Zero Speed Level | Speed Pos Trq |                 |              |
|------------------|------------------|---------------|-----------------|--------------|
| Pn581<br>(2581h) | Setting Range    | Setting Unit  | Default Setting | When Enabled |
| (200111)         | 1 to 10000       | 1 mm/s        | 20              | Immediately  |

# 6.1.8 /S-RDY (Servo Ready Output) Signal

The /S-RDY (Servo Ready Output) signal turns ON when the SERVOPACK is ready to accept the Servo ON command (Enable Operation command).

The /S-RDY signal is turned ON under the following conditions.

- Main circuit power is ON.
- There is no hard wire base block state.
- · There are no alarms.
- There is no forced stop state (= the Forced Stop Input (FSTP) signal is ON).
- If a servomotor without a polarity sensor is used, polarity detection has been completed \*1.
- \*1 Do not include this condition if the Servo ON command (Enable Operation command) is input for the first time after the control power was turned ON. In that case, when the first Servo ON command (Enable Operation command) is input, polarity detection is started immediately and the /S-RDY signal turns ON at the completion of polarity detection.

| Туре   | Signal | Connector Pin No.  | Signal Status | Meaning                                            |
|--------|--------|--------------------|---------------|----------------------------------------------------|
| (a ppv |        |                    | ON (closed)   | Ready to receive the Enable Operation command.     |
| Output | /S-RDY | Must be allocated. | OFF (open)    | Not ready to receive the Enable Operation command. |

### Note:

· You must allocate the /S-RDY signal to use it. The parameters that you use depend on the allocation method.

| Allocation Method                      | Parameter to Use                                                                                                                            |  |  |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Σ-7S-compatible I/O Signal Allocations | - Pn50A = n.□□□1 (Σ-7S-compatible I/O Signal Allocations) - Pn50E = n.X□□□ (/S-RDY (Servo Ready Output) Signal Allocations)                 |  |  |
| Σ-LINK II Input Signal Allocations     | <ul> <li>Pn50A = n.□□□2 (use Σ-LINK II input signal allocations)</li> <li>Pn5B3 (/S-RDY (Servo Ready Output) Signal Allocations)</li> </ul> |  |  |

Refer to the following section for details.

■ 6.1.4 Output Signal Allocations on page 218

• Refer to the following section for information on the hard wire base block and the /S-RDY signal.

12.2.8 /S-RDY (Servo Ready Output) Signal on page 529

# 6.1.9 /V-CMP (Speed Coincidence Detection Output) Signal

The /V-CMP (Speed Coincidence Detection Output) signal is output when the servomotor speed is the same as the reference speed. This signal is used, for example, to interlock the SERVOPACK and the host controller. You can use this output signal only during speed control.

The /V-CMP signal is described in the following table.

| Туре   | Signal | Connector Pin No.  | Signal Status        | Meaning                      |
|--------|--------|--------------------|----------------------|------------------------------|
|        |        | ON (closed)        | The speed coincides. |                              |
| Output | /V-CMP | Must be allocated. | OFF (open)           | The speed does not coincide. |

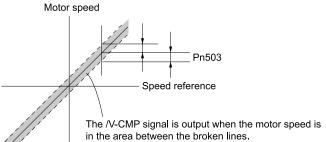
### Note:

You must allocate the /V-CMP signal to use it. The parameters that you use depend on the allocation method.

| Allocation Method                      | Parameter to Use                                                                                                                               |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Σ-7S-compatible I/O Signal Allocations | • Pn50A = n.□□□1 (Σ-7S-Compatible I/O Signal Allocations)  • Pn50E = n.□□X□ (/V-CMP (Speed Coincidence Detection Output) Signal Allocation)    |
| Σ-LINK II Input Allocations            | <ul> <li>Pn50A= n.□□□2 (Σ-LINK II Input Allocations)</li> <li>Pn5B1 (/V-CMP (Speed Coincidence Detection Output) Signal Allocation)</li> </ul> |

Refer to the following section for details.

**☞** 6.1.4 Output Signal Allocations on page 218

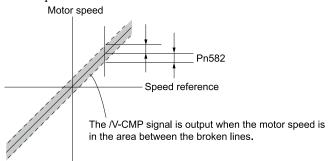

You can set the speed detection width for the /V-CMP signal in Pn503 (Speed Coincidence Detection Signal Output Width) for a rotary servomotor or in Pn582 (Speed Coincidence Detection Signal Output Width) for a linear servomotor.

### • Rotary Servomotors

|               | Speed Coincidence Detection | Speed Pos Trq       |                 |              |
|---------------|-----------------------------|---------------------|-----------------|--------------|
| Pn503 (2503h) | Setting Range               | Setting Unit        | Default Setting | When Enabled |
| (200011)      | 0 to 100                    | 1 min <sup>-1</sup> | 10              | Immediately  |

The signal is output when the difference between the reference speed and motor speed is equal or less than the setting.

For example, if Pn503 is set to 100 and the speed reference is 2000 min<sup>-1</sup>, the signal would be output when the motor speed is between 1900 min<sup>-1</sup> and 2100 min<sup>-1</sup>.




### • Linear Servomotors

|                  | Speed Coincidence Detection | Speed Pos Trq |                 |              |
|------------------|-----------------------------|---------------|-----------------|--------------|
| Pn582<br>(2582h) | Setting Range               | Setting Unit  | Default Setting | When Enabled |
| (200211)         | 0 to 100                    | 1 mm/s        | 10              | Immediately  |

The signal is output when the difference between the reference speed and motor speed is equal or less than the setting.

For example, if Pn582 is set to 100 and the speed reference is 2000 mm/s, the signal would be output when the motor speed is between 1900 mm/s and 2100 mm/s.



# 6.1.10 /COIN (Positioning Completion Output) Signal

The /COIN (Positioning Completion Output) signal indicates that servomotor positioning has been completed during position control.

The /COIN signal is output when the difference between the reference position output by the host controller and the current position of the servomotor (i.e., the position deviation as given by the value of the deviation counter) is equal to or less than the setting of Pn522 (Positioning Completed Width).

Use this signal to check the completion of positioning from the host controller.

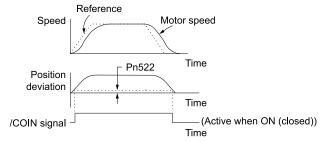
| Туре         | Signal | Connector Pin No.  | Signal Status | Meaning                             |
|--------------|--------|--------------------|---------------|-------------------------------------|
|              |        |                    | ON (closed)   | Positioning has been completed.     |
| Output /COIN |        | Must be allocated. | OFF (open)    | Positioning has not been completed. |

Note:

You must allocate the /COIN signal to use it. The parameters that you use depend on the allocation method.

| Allocation Method                      | Parameter to Use                                                                                                                                              |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Σ-7S-Compatible I/O Signal Allocations | <ul> <li>Pn50A = n.□□□1 (Σ-7S-Compatible I/O Signal Allocations)</li> <li>Pn50E = n.□□□X (/COIN (Positioning Completion Output) Signal Allocation)</li> </ul> |
| Σ-LINK II Input Allocations            | <ul> <li>Pn50A = n.□□□2 (Σ-LINK II Input Allocation)</li> <li>Pn5B0 (/COIN (Positioning Completion Output) Signal Allocation)</li> </ul>                      |

For details, refer to the following section.


■ 6.1.4 Output Signal Allocations on page 218

# (1) Setting the Positioning Completed Width

The /COIN signal is output when the difference between the reference position and the current position (i.e., the position deviation as given by the value of the deviation counter) is equal to or less than the setting of Pn522 (Positioning Completed Width).

|                  | In-position Range Speed Pos Trq |                  |                 |              |  |
|------------------|---------------------------------|------------------|-----------------|--------------|--|
| Pn522<br>(2522h) | Setting Range                   | Setting Unit     | Default Setting | When Enabled |  |
| (202211)         | 0 to 1073741824                 | 1 reference unit | 7               | Immediately  |  |

The setting of this parameter has no effect on final positioning accuracy.



### Note:

If the parameter is set to a value that is too large, the /COIN signal may be output when the position deviation is low during a low-speed operation. If that occurs, reduce the setting until the signal is no longer output.

# (2) Setting the Output Timing of the /COIN (Positioning Completion Output) Signal

You can add a reference input condition to the output conditions for the /COIN signal to change the signal output timing.

If the position deviation is always low and a narrow positioning completed width is used, change the setting of  $Pn207 = n.X \square \square \square$  (/COIN (Positioning Completion Output) Signal Output Timing) to change output timing for the /COIN signal.

|                  |        | /COIN (P<br>Timing | ositioning Completion Output) Signal Output Speed Pos Trq                                                                                                              | When Enabled                                                                                                                                                                                         |               |
|------------------|--------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                  |        | 0<br>Default       | Output when the absolute value of the position deviation is the same or less than the setting of Pn522 (2522h) (Positioning Completed Width).                          |                                                                                                                                                                                                      |               |
| Pn207<br>(2207h) | n.X□□□ | n.X□□□             | 1                                                                                                                                                                      | Output when the absolute value of the position error is the same or less than the setting of Pn522 (2522h) (Positioning Completed Width) and the reference after the position reference filter is 0. | After restart |
|                  |        | 2                  | Output when the absolute value of the position error is the same or less than the setting of Pn522 (2522h) (Positioning Completed Width) and the reference input is 0. |                                                                                                                                                                                                      |               |

# 6.1.11 /NEAR (Near Output) Signal

The /NEAR (Near Output) signal indicates when positioning completion is being approached.

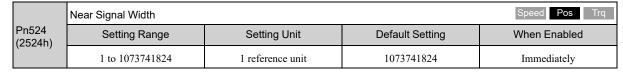
The host controller receives the NEAR signal before it receives the /COIN (Positioning Completion Output) signal, it can start preparations for the operating sequence to use after positioning has been completed. This allows you to reduce the time required for operation when positioning is completed.

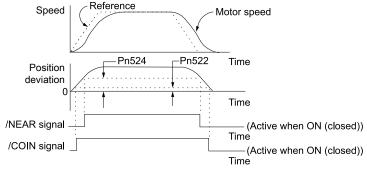
The NEAR signal is generally used in combination with the /COIN signal.

| Туре   | Signal  | Connector Pin No.  | Signal Status | Meaning                                                                |
|--------|---------|--------------------|---------------|------------------------------------------------------------------------|
|        | ave a p |                    | ON (closed)   | The servomotor has reached a point near to positioning completion.     |
| Output | /NEAR   | Must be allocated. | OFF (open)    | The servomotor has not reached a point near to positioning completion. |

### Note:

You must allocate the /NEAR signal to use it. The parameters that you use depend on the allocation method.


| Allocation Method                      | Parameter to Use                                                                                                   |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Σ-7S-compatible I/O Signal Allocations | • Pn50A = n.□□□1 (Σ-7S-Compatible I/O Signal Allocations) • Pn50E = n.□□□X (/NEAR (Near Output) Signal Allocation) |
| Σ-LINK II Input Allocations            | • Pn50A= n.□□□2 (Σ-LINK II Input Allocations) • Pn5B8 (/NEAR (Near Output) Signal Allocation)                      |


Refer to the following section for details.

6.1.4 Output Signal Allocations on page 218

# (1) Setting /NEAR (Near) Signal

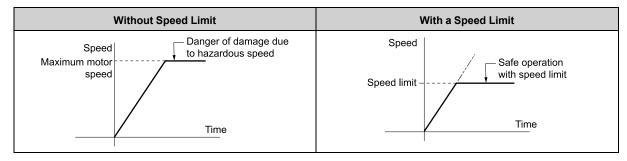
You set the condition for outputting the /NEAR (Near Output) signal (i.e., the near signal width) in Pn524 (Near Signal Width). The /NEAR signal is output when the difference between the reference position and the current position (i.e., the position deviation as given by the value of the deviation counter) is equal to or less than the setting of Pn524.





### Note:

Normally, set Pn524 to a value that is larger than the setting of Pn522 (Positioning Completed Width).


# 6.1.12 Speed Limit during Torque Control

You can limit the speed of the servomotor to protect the machine.

When you use a servomotor for torque control, the servomotor is controlled to output the specified torque, but the motor speed is not controlled. Therefore, if a reference torque is input that is larger than the machine torque, the speed of the servomotor may increase greatly. If that may occur, use this function to limit the speed.

### Note:

The actual limit of servomotor speed depends on the load conditions on the servomotor.



# (1) /VLT (Speed Limit Detection Output) signal

The signal that is output when the motor speed is being limited by the speed limit is described in the following table.

| Туре   | Signal    | Connector Pin No.  | Signal Status | Meaning                                    |
|--------|-----------|--------------------|---------------|--------------------------------------------|
|        | 7. II. T. |                    | ON (closed)   | The servomotor speed is being limited.     |
| Output | /VLT      | Must be allocated. | OFF (open)    | The servomotor speed is not being limited. |

### Note:

You must allocate the /VLT signal to use it. The parameters that you use depend on the allocation method.

| Allocation Method                       | Parameter to Use                                                                                                                       |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| IΣ-7S-compatible I/O Signal Allocations | • Pn50A = n.□□□1 (Σ-7S-Compatible I/O Signal Allocations) • Pn50F = n.□□X□ (/VLT (Speed Limit Detection Output) Signal Allocation)     |
| IΣ-LINK II Input Allocations            | <ul> <li>Pn50A= n.□□□2 (Σ-LINK II Input Allocations)</li> <li>Pn5B5 (/VLT (Speed Limit Detection Output) Signal Allocation)</li> </ul> |

Refer to the following section for details.

6.1.4 Output Signal Allocations on page 218

# (2) Internal Speed Limiting

Set the speed limit for the motor in Pn407 (Speed Limit during Torque Control) or Pn480 (Speed Limit during Force Control).

Also set  $Pn408 = n.\Box\Box X\Box$  (Speed Limit Selection) to specify using the maximum motor speed or the overspeed alarm detection speed as the speed limit.

Use caution as the definition of maximum motor speed depends on your servomotor.

- Rotary servomotor: The maximum rotation speed listed in the ratings table of the servomotor. Refer to the following document for the ratings table of the servomotor.
  - Σ-X-Series Catalog (Catalog No.: KAEP C710812 03)
- Linear servomotor: The setting of Pn385 (Maximum Motor Speed).

The overspeed alarm detection speed is appropriately 1.1-times the maximum motor speed.

| Pn408<br>(2408h) | n.□□X□ | Speed Limit Selection Speed Pos Trq |                                                                                                                                                                                                                          | When Enabled  |
|------------------|--------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                  |        | 0<br>Default                        | Use the smaller of the maximum motor speed and the setting of Pn407 (2407h) as the speed limit.  Use the smaller of the maximum motor speed and the setting of Pn480 (2480h) as the speed limit.                         |               |
| (                |        | 1                                   | Use the smaller of the overspeed alarm detection speed and the setting of Pn407 (2407h) as the speed limit.  Use the smaller of the overspeed alarm detection speed and the setting of Pn480 (2480h) as the speed limit. | After restart |

### Note:

If you are using a rotary servomotor, set Pn407 (Speed Limit during Torque Control). If you are using a linear servomotor, set Pn480 (Speed Limit during Force Control).

## • Rotary Servomotors

|                  | Speed Limit during Torque Control Speed Pos Trq |                     |                 |              |  |
|------------------|-------------------------------------------------|---------------------|-----------------|--------------|--|
| Pn407<br>(2407h) | Setting Range                                   | Setting Unit        | Default Setting | When Enabled |  |
| (210711)         | 0 to 10000                                      | 1 min <sup>-1</sup> | 10000           | Immediately  |  |

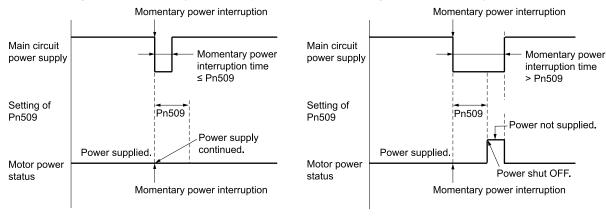
### • Linear Servomotors

|                  | Speed Limit during Force Control |              |                 |              |  |
|------------------|----------------------------------|--------------|-----------------|--------------|--|
| Pn480<br>(2480h) | Setting Range                    | Setting Unit | Default Setting | When Enabled |  |
| (2 10011)        | 0 to 10000                       | 1 mm/s       | 10000           | Immediately  |  |

### Note:

If the parameter setting exceeds the maximum speed of the servomotor, the servomotor's maximum speed or the overspeed alarm detection speed will be used.

# 6.2 Operation for Momentary Power Interruptions


Even if the main power to the SERVOPACK is interrupted momentarily, power to the motor (servo ON status) will be maintained for the time set in Pn509 (Momentary Power Interruption Hold Time).

|               | Momentary Power Interruption Hold Time Speed Pos |              |                 |              |  |
|---------------|--------------------------------------------------|--------------|-----------------|--------------|--|
| Pn509 (2509h) | Setting Range                                    | Setting Unit | Default Setting | When Enabled |  |
| (200011)      | 20 to 50000                                      | 1 ms         | 20              | Immediately  |  |

If the momentary power interruption time is equal to or less than the setting of Pn509, power to the motor will be continued. If it is longer than the setting, power to the motor will be stopped. Power will be supplied to the motor again when the main circuit power supply recovers.

Setting of Pn509 ≥ Momentary power interruption time

Setting of Pn509 < Momentary power interruption time



Information

- If the momentary power interruption time exceeds the setting of Pn509, the /S-RDY (Servo Ready Output) signal will turn OFF.
- If uninterruptible power supplies are used for the control power supply and main circuit power supply, the SERVO-PACK can withstand a power interruption that lasts longer than 50000 ms.
- The holding time of the SERVOPACK control power supply is approximately 100 ms. If control operations become impossible during a momentary power interruption of the control power supply, the setting of Pn509 will be ignored and the same operation will be performed as for when the power is turned OFF normally.
- The detection delay time for main circuit power OFF is approximately 16 ms. Therefore, the actual time that power will continue being supplied to the motor will increase from the setting of Pn509 by the amount of the detection delay time.



The holding time of the main circuit power supply depends on the output from the SERVOPACK. If the load on the servomotor is large and an A.410 alarm (Undervoltage) occurs, the setting of Pn509 will be ignored.

# 6.3 SEMI F47 Function

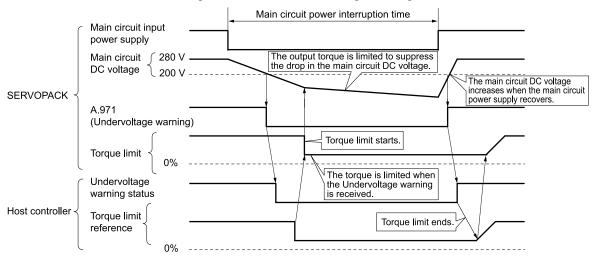
The SEMI F47 function detects an A.971 warning (Undervoltage) and limits the output current if the DC main circuit power supply voltage to the SERVOPACK drops to a specified value or lower because the power was momentarily interrupted or the main circuit power supply voltage was temporarily reduced.

This function complies with the SEMI F47 standards for semiconductor manufacturing equipment.

You can combine this function with the setting of Pn509 (Momentary Power Interruption Hold Time) to allow the servomotor to continue operating without stopping for an alarm or without recovery work even if the power supply voltage drops.

# 6.3.1 Execution Sequence

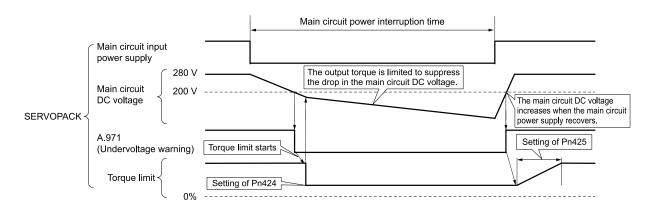
This function can be executed either with the host controller or with the SERVOPACK. Use  $Pn008 = n.\Box\Box X\Box$  (Function Selection for Undervoltage) to specify whether the function is executed by the host controller or by the SERVOPACK.


The default setting is  $Pn008 = n.\Box\Box 0\Box$  (do not detect undervoltage warning).

|         |        | Function                                                                                                     | Selection for Undervoltage Speed Pos Trq                         | When Enabled  |
|---------|--------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------|
| Pn008   | n.□□X□ | 0<br>Default                                                                                                 | Do not detect undervoltage.                                      |               |
| (2008h) | 008h)  |                                                                                                              | Detect undervoltage warning and limit torque at host controller. | After restart |
|         |        | Detect undervoltage warning and limit torque with Pn424 (2424h) and Pn425 (2425h) (i.e., only in SERVOPACK). |                                                                  |               |

## (1) When Pn008 is set to n.□□1□ (Execution with the Host Controller)

The host controller limits the torque in response to an A.971 warning (Undervoltage).


The host controller removes the torque limit after the Undervoltage warning is cleared.



# (2) When Pn008 is set to n. = 2 (Execution with the SERVOPACK)

The torque is limited in the SERVOPACK in response to an Undervoltage warning.

The SERVOPACK controls the torque limit for the set time after the Undervoltage warning is cleared.



## 6.3.2 Related Parameters

The following parameters are related to the SEMI F47 function.

|                  | Torque Limit at Main Circuit \                                            | Speed Pos Trq |                 |              |  |  |
|------------------|---------------------------------------------------------------------------|---------------|-----------------|--------------|--|--|
| Pn424<br>(2424h) | Setting Range                                                             | Setting Unit  | Default Setting | When Enabled |  |  |
| (242411)         | 0 to 100                                                                  | 1%            | 50              | Immediately  |  |  |
|                  | Release Time for Torque Limit at Main Circuit Voltage Drop  Speed Pos Tro |               |                 |              |  |  |
| Pn425<br>(2425h) | Setting Range                                                             | Setting Unit  | Default Setting | When Enabled |  |  |
|                  | 0 to 1000                                                                 | 1 ms          | 100             | Immediately  |  |  |
|                  | Momentary Power Interruption Hold Time Speed Pos Trq                      |               |                 |              |  |  |
| Pn509<br>(2509h) | Setting Range                                                             | Setting Unit  | Default Setting | When Enabled |  |  |
| (200011)         | 20 to 50000                                                               | 1 ms          | 20              | Immediately  |  |  |

### Note:

- 1. The setting unit for Pn424 (Torque Limit at Main Circuit Voltage Drop) is set as percentage of the motor rated torque.
- 2. If you will use the SEMI F47 function, set the time to 1000 ms.



- This function handles momentary power interruptions for the voltage and time ranges stipulated in SEMI F47. An uninterruptible power supply (UPS) is required as a backup for momentary power interruptions that exceed these voltage and time ranges.
- Set the host controller or SERVOPACK torque limit so that a torque reference that exceeds the specified acceleration torque will not be output when the power supply for the main circuit is restored.
- For a vertical axis, do not limit the torque to a value that is lower than the holding torque.
- This function limits torque within the range of the SERVOPACK's capability for power interruptions. It is not intended for use under all load and operating conditions. Set the parameters while monitoring operation on the actual machine.
- You can set the momentary power interruption hold time to increase the amount of time from when the power is turned OFF until power to the motor is stopped.
- To stop the power to the motor immediately, use the Disable Operation command (Servo OFF command).

# 6.4 Setting the Maximum Motor Speed

You can set the maximum speed of the servomotor with the following parameter.

Rotary Servomotors

|               | Maximum Motor Speed |                     |                 | Speed Pos Trq |
|---------------|---------------------|---------------------|-----------------|---------------|
| Pn316 (2316h) | Setting Range       | Setting Unit        | Default Setting | When Enabled  |
| (20.0)        | 0 to 65535          | 1 min <sup>-1</sup> | 10000           | After restart |

• Linear Servomotors

|                  | Maximum Motor Speed |              |                 | Speed Pos Trq |
|------------------|---------------------|--------------|-----------------|---------------|
| Pn385<br>(2385h) | Setting Range       | Setting Unit | Default Setting | When Enabled  |
| (200011)         | 1 to 100            | 100 mm/s     | 50              | After restart |

You can achieve the following by lowering the maximum speed of the servomotor.

- If the servomotor speed exceeds the setting, an A.510 alarm (Overspeed) will occur.
- With a linear servomotor, you can increase the upper limit for the setting of Pn281 (Encoder Output Resolution). Refer to the following section for details.
  - 6.5 Encoder Divided Pulse Output on page 233

Changing the setting of the parameter is effective in the following cases.

- To protect the machine by stopping machine operation with an alarm when the set speed is reached or exceeded
- To limit the speed so that the load is driven beyond the allowable moment load of inertia Refer to relevant manual from the following list for the relationship between the speed and the allowable moment of load inertia.
  - Σ-X-Series Rotary Servomotor Product Manual (Manual No.: SIEP C230210 00)
  - Σ-7-Series Direct Drive Servomotor Product Manual (Manual No.: SIEP S800001 38)
  - Σ-7-Series Linear Servomotor Product Manual (Manual No.: SIEP S800001 37)
- To increase the encoder output resolution and increase the position resolution managed by the host controller (for a linear servomotor)

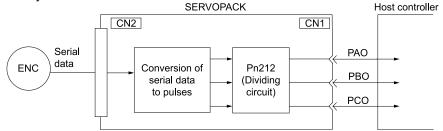
# 6.5 Encoder Divided Pulse Output

The encoder divided pulse output is a signal that is output from the encoder and processed inside the SERVO-PACK. It is then output externally in the form of two phase pulse signals (phases A and B) with a 90° phase differential. At the host controller, it is used as the position feedback.

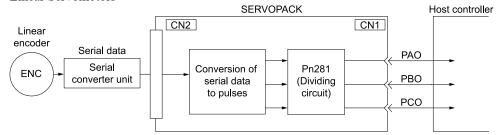
The following table describes the signals and output phase forms.

Note

If Pn660 is set to n.1 \( \pi \) (enable triggers at preset positions), encoder divided pulses are not output.


# 6.5.1 Encoder Divided Pulse Output Signals

| Туре   | Signal | Connector Pin No. | Name                                  | Meaning                                                                                                                                                                                                                            |
|--------|--------|-------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | PAO    | CN1-17            | Encoder Divided Pulse Output, Phase   | Rotary Servomotors                                                                                                                                                                                                                 |
|        | /PAO   | CN1-18            | A                                     | These encoder divided pulse output pins output the number of pulses per servo-                                                                                                                                                     |
|        | РВО    | PBO CN1-19        |                                       | motor resolution that is set in Pn212 (Number of Encoder Output Pulses).                                                                                                                                                           |
|        |        |                   |                                       | The phase difference between phase A and phase B is an electric angle of 90°.                                                                                                                                                      |
| Output | /PBO   | CN1-20            | Encoder Divided Pulse Output, Phase B | Linear Servomotors     These encoder divided pulse output pins output pulses at the resolution that is set in Pn281 (Encoder Output Resolution).     The phase difference between phase A and phase B is an electric angle of 90°. |
|        | PCO    | CN1-21            | Encoder Divided Pulse Output, Phase   | These pins output one pulse every servo-                                                                                                                                                                                           |
|        | /PCO   | CN1-22            | C<br>* <i>I</i>                       | motor rotation.                                                                                                                                                                                                                    |


<sup>\*1</sup> Refer to the following section for information on the origin within one encoder rotation.

(a) Relation between Renishaw PLC Incremental Linear Encoders and Encoder Output Pulse Signal from the SERVOPACK When Using a RGS20 Scale and RGH22B Sensor Head on page 234

### Rotary Servomotors



## • Linear Servomotors



## (1) Output Phase Forms

| Forward Rotation or | Movement (phase B leads by 90°) | Reverse Rotation or | Movement (phase A leads by 90°) |
|---------------------|---------------------------------|---------------------|---------------------------------|
|                     | <b>→</b> 90°                    |                     | →   - 90°                       |
| Phase A             |                                 | Phase A             |                                 |
| Phase B             |                                 | Phase B             |                                 |
| Phase C             |                                 | Phase C             |                                 |
|                     | t                               |                     | t                               |

### Note:

The pulse width of the origin within one encoder rotation depends on the setting of Pn212 (Number of Encoder Output Pulses) or Pn281 (Encoder Output Resolution). It is the same as the width of phase A.

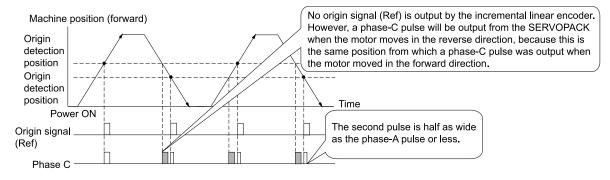
Even for  $Pn000 = n.\square\square\square 1$  (reverse operation), the output phase form is the same as shown above.



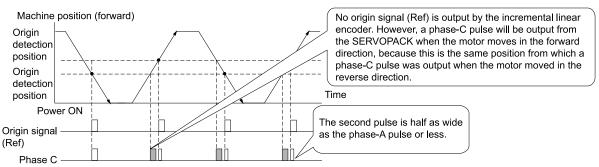
If you use the SERVOPACK's phase-C pulse output for an origin return, rotate the servomotor two or more rotations before you start an origin return. If the servomotor cannot be rotated two or more times, perform an origin return operation at a motor speed of 600 min<sup>-1</sup> or lower. If the motor speed is higher than 600 min<sup>-1</sup>, the phase-C pulse may not be output correctly.

# (2) Linear Encoder Application Precautions

The following precautions apply to the encoder output pulses when an external linear encoder is used.


# (a) Relation between Renishaw PLC Incremental Linear Encoders and Encoder Output Pulse Signal from the SERVOPACK When Using a RGS20 Scale and RGH22B Sensor Head

The output position of the origin signal (Ref) will depend on the direction of movement for some models of incremental linear encoders from Renishaw PLC.


In that case, the phase-C pulse of the SERVOPACK is output at two positions.

For detailed specifications on the origin signal, refer to the manual for the Renishaw PLC incremental linear encoder.

### When Passing the First Origin Signal (Ref) in the Forward Direction and Returning after Turning ON the Power



### When Passing the First Origin Signal (Ref) in the Reverse Direction and Returning after Turning ON the Power



### (b) Precautions When Using a Linear Incremental Encoder from Magnescale Co., Ltd.

### ◆ Encoder Divided Phase-C Pulse Output Selection

You can also output the encoder's phase-C pulse for reverse movement. To do so, set Pn081 to n. \( \sigma \sigma 1. \)

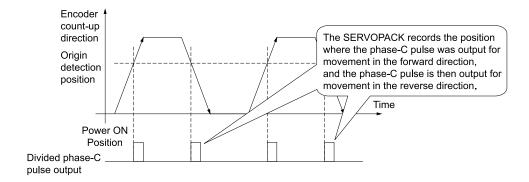
|                  |        | Phase-C      | Pulse Output Selection Speed Pos Trq                              | When Enabled  |
|------------------|--------|--------------|-------------------------------------------------------------------|---------------|
| Pn081<br>(2081h) | n.□□□X | 0<br>Default | Output phase-C pulses only in the forward direction.              | After restart |
|                  |        | 1            | Output phase-C pulses in both the forward and reverse directions. |               |



Observe the following precaution if you set Pn081 to  $n.\Box\Box\Box0$  (output phase-C pulses only in the forward direction).

When a linear incremental encoder from Magnescale Co., Ltd. is used, the count direction of the encoder determines how the phase-C pulse (CN1-21 and CN1-22) is output.

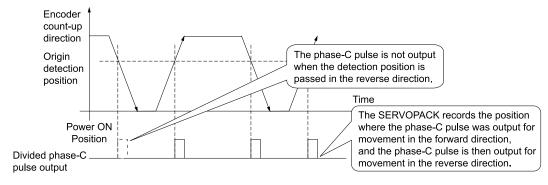
### Note:


The count direction (up or down) of the linear encoder determines whether a phase-C pulse is output. The output of the pulse does not depend on the setting of  $Pn000 = n.\Box\Box\Box1$  (Reverse Movement Mode).

| Encoder Model | Interpolator          | Linear Encoder Scale Pitch [μm] |
|---------------|-----------------------|---------------------------------|
| SL710         |                       | 800                             |
| SL720         | PL101-RY<br>MJ620-T13 | 800                             |
| SL730         | WIJ020-113            | 800                             |
| SI            | 80                    |                                 |
| SI            | 80                    |                                 |
| 2010          | MQ10-FLA              | 400                             |
| SQ10          | MQ10-GLA              | 400                             |

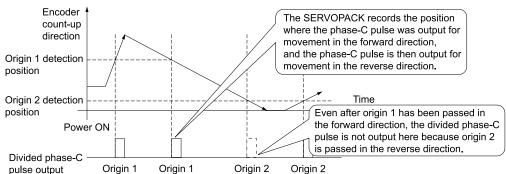
### When First Passing the Origin Signal in the Forward Direction and Returning after Turning ON the Power

The encoder's phase-C pulse (CN1-21 and CN1-22) is output when the origin detection position is passed for the first time in the forward direction after the power is turned ON.


After that, the phase-C pulse is output whenever the origin detection position is passed in the forward or reverse direction.



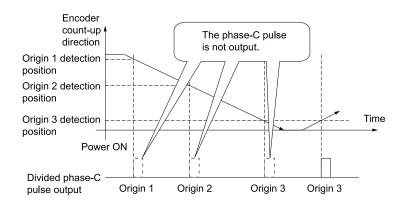
### When First Passing the Origin Signal in the Reverse Direction and Returning after Turning ON the Power


The encoder's phase-C pulse (CN1-21 and CN1-22) is not output when the origin detection position is passed for the first time in the reverse direction after the power is turned ON.

However, after the origin detection position is passed in the forward direction and the encoder's phase-C pulse is output, it will then also be output when the origin detection point is passed in the reverse direction.



### When Using a Linear Encoder with Multiple Origins and First Passing the Origin Position in the Forward Direction and Returning after Turning ON the Power


The encoder's phase-C pulse is output when the origin detection position is passed for the first time in the forward direction after the power is turned ON. After that, the phase-C pulse is output whenever the origin detection position is passed in the forward or reverse direction.



### When Using a Linear Encoder with Multiple Origins and First Passing the Origin Position in the Reverse Direction after Turning ON the Power

The encoder's phase-C pulse is not output when the origin detection position is passed for the first time in the reverse direction after the power is turned ON.

However, after the origin detection position is passed in the forward direction and the encoder's phase-C pulse is output, it will then also be output when the origin detection point is passed in the reverse direction.



# 6.5.2 Setting for the Encoder Divided Pulse Output

This section describes the setting for the encoder divided pulse output for a rotary servomotor or linear servomotor.

# (1) Encoder Divided Pulse Output When Using a Rotary Servomotor

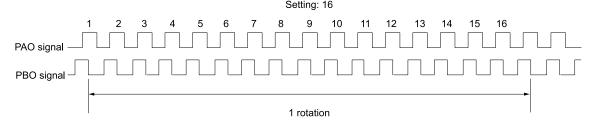
If you will use a rotary servomotor, set Pn212 (Number of Encoder Output Pulses).

|               | Number of Encoder Output F | Pulses       |                 | Speed Pos Trq |
|---------------|----------------------------|--------------|-----------------|---------------|
| Pn212 (2212h) | Setting Range              | Setting Unit | Default Setting | When Enabled  |
| (ZZ TZII)     | 16 to 1073741824           | 1 P/Rev      | 2048            | After restart |

The number of pulses from the encoder per rotation are processed inside the SERVOPACK, divided by the setting of Pn212, and then output.

Set the number of encoder divided output pulses according to the system specifications of the machine or host controller.

The setting of the number of encoder output pulses is limited by the resolution of the encoder.


|                                                              |                      |                                | Encoder l                      | Resolution                      |                                 | Upper Limit of Ser-                                                    |
|--------------------------------------------------------------|----------------------|--------------------------------|--------------------------------|---------------------------------|---------------------------------|------------------------------------------------------------------------|
| Setting of the Number of<br>Encoder Output Pulses<br>[P/Rev] | Setting<br>Increment | 20 bits<br>(1048576<br>pulses) | 22 bits<br>(4194304<br>pulses) | 24 bits<br>(16777216<br>pulses) | 26 bits<br>(67108864<br>pulses) | vomotor Speed for<br>Set Number of<br>Encoder Output<br>Pulses [min-1] |
| 16 to 8192                                                   | 1                    | 0                              | 0                              | 0                               | 0                               | 7000                                                                   |
| 8193 to 16384                                                | 1                    | 0                              | 0                              | 0                               | 0                               | 6000                                                                   |
| 16386 to 32768                                               | 2                    | 0                              | 0                              | 0                               | 0                               | 3000                                                                   |
| 32772 to 65536                                               | 4                    | 0                              | 0                              | 0                               | 0                               | 1500                                                                   |
| 65544 to 131072                                              | 8                    | 0                              | 0                              | 0                               | 0                               | 750                                                                    |
| 131088 to 262144                                             | 16                   | 0                              | 0                              | 0                               | 0                               | 375                                                                    |
| 262176 to 524288                                             | 32                   | -                              | 0                              | 0                               | 0                               | 187                                                                    |
| 524352 to 1048576                                            | 64                   | -                              | 0                              | 0                               | 0                               | 93                                                                     |
| 1048704 to 2097152                                           | 128                  | _                              | _                              | o * <i>I</i>                    | 0                               | 46                                                                     |
| 2097408 to 4194304                                           | 256                  | _                              | _                              | o * <i>I</i>                    | 0                               | 23                                                                     |

<sup>\*1</sup> You can use the encoder as an incremental encoder only.

### Note:

- The setting range of Pn212 (Number of Encoder Output Pulses) depends on the resolution of the servomotor encoder. An A.041 alarm (Encoder Output Pulse Setting Error) will occur if the above setting conditions are not met. Correct setting example: Pn212 can be set to 25000 [P/Rev].
  - Incorrect setting example: Pn212 cannot be set to 25001 (P/Rev) because the setting increment in the above table is not used and A.041 alarm would will occur
- The upper limit of the pulse frequency is approximately 1.6 Mpps. The servomotor speed will be limited if the setting of the number of encoder output pulses is too high. An A.511 alarm (Encoder Output Pulse Overspeed) will occur if the upper limit of the motor speed is exceeded.

Output example: An output example is given below for the PAO (Encoder Pulse Output Phase A) signal and the PBO (Encoder Pulse Output Phase B) signal when Pn212 is set to 16 (16 pulses output per revolution).



### **Encoder Divided Pulse Output When Using a Linear Servomotor** (2)

If you will use a linear servomotor, set Pn281 (Encoder Output Resolution).

|                  | Encoder Output Resolution |              |                 | Speed Pos Trq |
|------------------|---------------------------|--------------|-----------------|---------------|
| Pn281<br>(2281h) | Setting Range             | Setting Unit | Default Setting | When Enabled  |
| (=== 111)        | 1 to 4096                 | 1 edge/pitch | 20              | After restart |

### Note:

• The maximum setting for the encoder output resolution is 4096. If the resolution of the external encoder exceeds 4096, pulse output will no longer be possible at the resolution given in the following section.

Feedback Resolution of Linear Encoder: Incremental Linear Encoder on page 195

► Feedback Resolution of Linear Encoder: Absolute Linear Encoder on page 196

• If the setting of Pn281 exceeds the number of divisions of the external encoder, A.041 (Encoder Output Pulse Setting Error) will be output.

Set the encoder output resolution for the encoder pulse output signals (PAO, PAO, PBO, and PBO) from the SERVOPACK to the host controller.

The number of feedback pulses per linear encoder scale pitch \*/ is divided by the setting of Pn281 (after multiplication by 4) inside the SERVOPACK and then the resulting number of pulses is output. Set the parameter according to the system specifications of the machine or host controller.

The setting range depends on Pn385 (Maximum Motor Speed) and Pn282 (Linear Encoder Scale Pitch) \*/ of the servomotor. You can calculate the upper limit of the setting of Pn281 with the following formula.

Upper limit of Pn281 = 
$$\frac{\text{Linear encoder scale pitch}^{*1}/100}{\text{Pn385}} \times 72$$

The value depends on whether a serial converter unit is used.

| Using a Serial Converter Unit                                                                                                                                                   | Setting of Pn282                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Not Using a Serial Converter Unit (when the linear encoder and SERVOPACK are connected directly or when a linear encoder that does not require a serial converter unit is used) | The linear encoder scale pitch is automatically detected by the SERVOPACK, so the setting of Pn282 is ignored. |

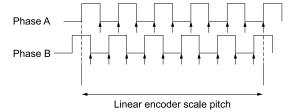
Information

When the linear encoder scale pitch is 4 µm, the maximum motor speed is limited to 1 m/s because of the maximum response frequency of the serial converter unit.

If the setting is out of range or does not satisfy the setting conditions, an A.041 alarm (Encoder Output Pulse Setting Error) will be output. If the motor speed exceeds the upper limit for the set encoder output resolution, an A.511 alarm (Encoder Output Pulse Overspeed) will be output.

The upper limit of the encoder output resolution is restricted by the dividing specifications of the serial converter unit.

<Setting Example>


When the linear encoder scale pitch is 20  $\mu$ m and the maximum motor speed is 5 m/s (Pn385 = 50).

Correct setting: Pn281 = 28 (edges/pitch)

Incorrect setting: Pn281 = 29 (edges/pitch) (An A.041 alarm would will occur.)

<Pulse Output Example>

When Pn281 = 20 (20-edge output (5-pulse output) per linear encoder scale pitch)



# 6.6 Software Limits

You can set limits in the software for machine movement that do not use the overtravel signals (P-OT and N-OT). If a software limit is exceeded, an emergency stop will be executed in the same way as it is for overtravel. Refer to the following section for details on this function.

■ 15.7.2 Software Position Limit (607Dh) on page 620

# 6.7 Selecting Torque Limits

You can limit the torque that is output by the servomotor.

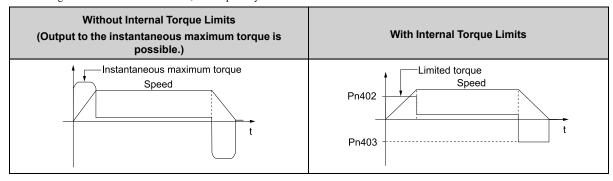
There are four different ways to limit the torque. These are described in the following table.

| Limit Method                                                                                                           | Outline                                                                                       | Control Method | Reference                                                                           |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------|
| Internal Torque Limits                                                                                                 | The torque is always limited with the setting of a parameter.                                 |                | 6.7.1 Internal Torque Limits on page 241                                            |
| External Torque Limits                                                                                                 | The torque limits set by parameters are enabled with the external torque limit input signals. |                | 6.7.2 External Torque Limits on page 242                                            |
| Limiting Torque with<br>Controlword (6040h)                                                                            |                                                                                               |                | 3 15.6 Device Control on page 611                                                   |
| Limiting Torque with Positive Torque Limit Value (60E0h), Negative Torque Limit Value (60E1h), and Max. Torque (6072h) | Torque is controlled with torque limits from the controller.                                  |                | ■ 14.7 Torque Limits<br>on page 572<br>■ 15.14 Torque Limit<br>Function on page 638 |

### Note

If you set a value that exceeds the instantaneous maximum torque of the servomotor, the torque will be limited to the instantaneous maximum torque of the servomotor.

# 6.7.1 Internal Torque Limits

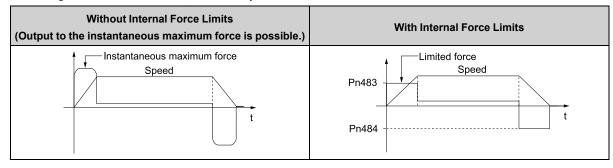

If you use internal torque limits, the maximum output torque will always be limited to the setting of Pn402 (Forward Torque Limit) and Pn403 (Reverse Torque Limit).

# (1) Rotary Servomotors

| Pn402<br>(2402h) | Forward Torque Limit               |              |                 | Speed Pos Trq |  |
|------------------|------------------------------------|--------------|-----------------|---------------|--|
|                  | Setting Range                      | Setting Unit | Default Setting | When Enabled  |  |
|                  | 0 to 800                           | 1%           | 800             | Immediately   |  |
|                  | Reverse Torque Limit Speed Pos Trq |              |                 |               |  |
| Pn403<br>(2403h) | Setting Range                      | Setting Unit | Default Setting | When Enabled  |  |
| (240011)         | 0 to 800                           | 1%           | 800             | Immediately   |  |

### Note:

- The setting unit is a percentage of the motor rated torque.
- If the setting of Pn402 or Pn403 is too low, the torque may be insufficient for acceleration or deceleration of the servomotor.




# (2) Linear Servomotors

|                  | Forward Force Limit               |              |                 | Speed Pos Trq |  |
|------------------|-----------------------------------|--------------|-----------------|---------------|--|
| Pn483 (2483h)    | Setting Range                     | Setting Unit | Default Setting | When Enabled  |  |
| (= 1001.)        | 0 to 800                          | 1%           | 30              | Immediately   |  |
|                  | Reverse Force Limit Speed Pos Trq |              |                 |               |  |
| Pn484<br>(2484h) | Setting Range                     | Setting Unit | Default Setting | When Enabled  |  |
|                  | 0 to 800                          | 1%           | 30              | Immediately   |  |

### Note:

- The setting unit is a percentage of the motor rated force.
- If the setting of Pn483 or Pn484 is too low, the force may be insufficient for acceleration or deceleration of the servomotor.



# 6.7.2 External Torque Limits

You can limit the torque only when required by the operating conditions of the machine by turning a signal ON and OFF.

You can use this for applications such as stopping on physical contact, or holding a workpiece with a robot.

# (1) External Torque Limit Reference Signals

The /P-CL (Forward External Torque Limit Input) and /N-CL (Reverse External Torque Limit Input) signals are used as the external torque limit reference signals. The /P-CL signal is used for the forward torque limit and the /N-CL signal is used for the reverse torque limit.

| Туре  | Signal | Connector Pin No.  | Signal<br>Status | Meaning                                                                                                                 |
|-------|--------|--------------------|------------------|-------------------------------------------------------------------------------------------------------------------------|
| /P-CL |        | Must be allocated. | ON (closed)      | Applies the forward external torque limit.  The torque is limited to the smaller of the settings of Pn402 */ and Pn404. |
|       |        |                    | OFF (open)       | Cancels the forward external torque limit.  The torque is limited to the setting of Pn402 *1.                           |
| Input | /N-CL  | Must be allocated. | ON (closed)      | Applies the reverse external torque limit.  The torque is limited to the smaller of the settings of Pn403 */ and Pn405. |
|       |        |                    | OFF (open)       | Cancels the reverse external torque limit. The torque is limited to the setting of Pn403 */.                            |

<sup>\*1</sup> Pn483 is used for a linear servomotor.

<sup>\*2</sup> Pn484 is used for a linear servomotor.

### Note:

You must allocate the /P-CL signal and /N- CL signal to use them. The parameters that you use depend on the allocation method.

| Allocation Method                      | Parameter to Use                                                                                                                                                                                                                                            |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Σ-7S-compatible I/O Signal Allocations | <ul> <li>Pn50A = n.□□□1 (Σ-7S-compatible I/O Signal Allocations)</li> <li>Pn50B = n.□X□□ (/P-CL (Forward External Torque Limit Input) Signal Allocation)</li> <li>Pn50B = n.X□□□ (/N-CL (Reverse External Torque Limit Input) Signal Allocation)</li> </ul> |
| Σ-LINK II Input Signal Allocations     | <ul> <li>Pn50A = n.□□□2 (use Σ-LINK II input signal allocations)</li> <li>Pn598 (/P-CL (Forward External Torque Limit Input) Signal Allocations)</li> <li>Pn599 (/N-CL (Reverse External Torque Limit Input) Signal Allocations)</li> </ul>                 |

Refer to the following section for details.

■ 6.1.3 Input Signal Allocations on page 216

# (2) Torque Limit Settings

The parameters that are related to setting the torque limits are given below.

### (a) Rotary Servomotors

If the setting of Pn402 (Forward Torque Limit), Pn403 (Reverse Torque Limit), Pn404 (Forward External Torque Limit), or Pn405 (Reverse External Torque Limit) is too low, the torque may be insufficient for acceleration or deceleration of the servomotor.

|                  | Forward Torque Limit        |              |                 | Speed Pos Trq |
|------------------|-----------------------------|--------------|-----------------|---------------|
| Pn402<br>(2402h) | Setting Range               | Setting Unit | Default Setting | When Enabled  |
| (2.10211)        | 0 to 800                    | 1%           | 800             | Immediately   |
|                  | Reverse Torque Limit        |              |                 | Speed Pos Trq |
| Pn403<br>(2403h) | Setting Range               | Setting Unit | Default Setting | When Enabled  |
| (= :00::)        | 0 to 800                    | 1%           | 800             | Immediately   |
|                  | Forward External Torque Lim | nit          |                 | Speed Pos Trq |
| Pn404<br>(2404h) | Setting Range               | Setting Unit | Default Setting | When Enabled  |
| (= : 0 : : : )   | 0 to 800                    | 1%           | 100             | Immediately   |
|                  | Reverse External Torque Lin | nit          |                 | Speed Pos Trq |
| Pn405<br>(2405h) | Setting Range               | Setting Unit | Default Setting | When Enabled  |
|                  | 0 to 800                    | 1%           | 100             | Immediately   |

### Note

The setting unit is a percentage of the motor rated torque.

### (b) Linear Servomotors

If the setting of Pn483 (Forward Force Limit), Pn484 (Reverse Force Limit), Pn404 (Forward External Force Limit), or Pn405 (Reverse External Force Limit) is too low, the force may be insufficient for acceleration or deceleration of the servomotor.

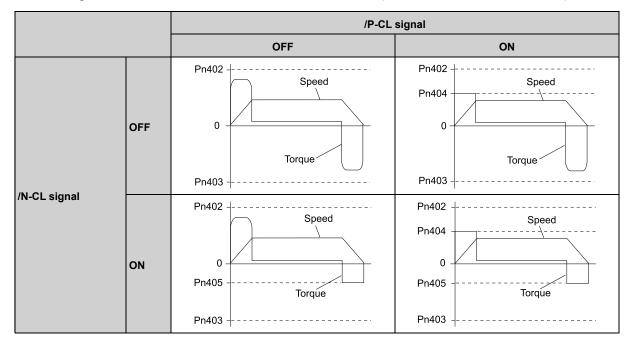
| Pn483<br>(2483h) | Forward Force Limit |              |                 | Speed Pos Trq |
|------------------|---------------------|--------------|-----------------|---------------|
|                  | Setting Range       | Setting Unit | Default Setting | When Enabled  |
|                  | 0 to 800            | 1%           | 30              | Immediately   |
|                  | Reverse Force Limit |              |                 | Speed Pos Trq |
| Pn484<br>(2484h) | Setting Range       | Setting Unit | Default Setting | When Enabled  |
|                  | 0 to 800            | 1%           | 30              | Immediately   |

Continued on next page.

Continued from previous page.

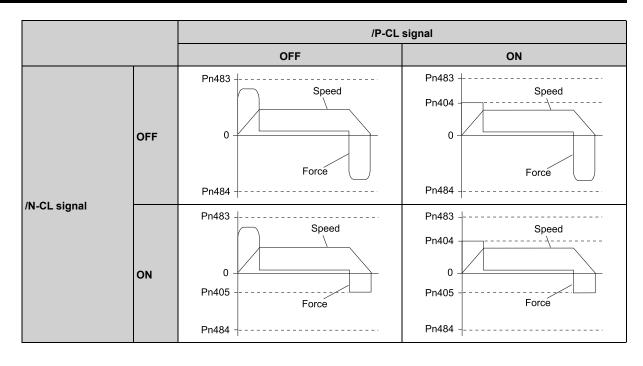
| Pn404<br>(2404h) | Forward External Torque Lim                 | it           |                 | Speed Pos Trq |  |
|------------------|---------------------------------------------|--------------|-----------------|---------------|--|
|                  | Setting Range                               | Setting Unit | Default Setting | When Enabled  |  |
| (210111)         | 0 to 800                                    | 1%           | 100             | Immediately   |  |
|                  | Reverse External Torque Limit Speed Pos Trq |              |                 |               |  |
| Pn405<br>(2405h) | Setting Range                               | Setting Unit | Default Setting | When Enabled  |  |
|                  | 0 to 800                                    | 1%           | 100             | Immediately   |  |

Note:


The setting unit is a percentage of the motor rated force.

# (3) Changes in the Output Torque for External Torque Limits

The following table shows the changes in the output torque when the internal torque limit is set to 800%.


## (a) Rotary Servomotors

In this example, the servomotor direction is set to  $Pn000 = n.\Box\Box\Box$  (use CCW as the forward direction).



### (b) Linear Servomotors

In this example, the servomotor direction is set to  $Pn000 = n.\Box\Box\Box0$  (use the direction in which the linear encoder counts up as the forward direction).



# 6.7.3 /CLT (Torque Limit Detection Output) Signal

This section describes the /CLT signal, which indicates the status of limiting the motor output torque.

| Туре   | Signal | Connector Pin No.  | Signal Status | Meaning                                       |
|--------|--------|--------------------|---------------|-----------------------------------------------|
|        |        |                    | ON (closed)   | The motor output torque is being limited.     |
| Output | /CLT   | Must be allocated. | OFF (open)    | The motor output torque is not being limited. |

### Note:

You must allocate the /CLT signal to use it. The parameters that you use depend on the allocation method.

| Allocation Method                      | Parameter to Use                                                                                                                            |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 15-7S-compatible I/O Signal Allocation | • Pn50A = n.□□□1 (use Sigma-7S-compatible I/O signal allocations) • Pn50F = n.□□□X (/CLT (Torque Limit Detection Output) Signal Allocation) |
| Σ-LINK II Input Allocations            | Pn50A= n.□□□2 (use SigmaLINK II input allocations)     Pn5B4 (/CLT (Torque Limit Detection Output) Signal Allocation)                       |

Refer to the following section for details.

☑ 6.1.4 Output Signal Allocations on page 218

### **Absolute Encoders** 6.8

The absolute encoder records the current position of the stop position even when the power supply is OFF.

With a system that uses an absolute encoder, the host controller can monitor the current position. Therefore, it is not necessary to perform an origin return operation when the power to the system is turned ON.

There are four types of encoders for rotary servomotors. The usage of the encoder is specified in Pn002 = $n.\Box X\Box\Box$ .

 $\hbox{Information} \hspace{0.5cm} \Sigma\text{-X SERVOPACKs can be connected to absolute encoders only. However, an absolute encoder can also be used as an }$ incremental encoder by setting Pn002 to  $n.\square X\square\square$ .

Refer to the following section for encoder models.

**☞** ◆ Encoder Resolution on page 194

· Parameter Settings When Using an Incremental Encoder

| Parameter        |                                      | Meaning                                                                        | When Enabled  |
|------------------|--------------------------------------|--------------------------------------------------------------------------------|---------------|
|                  | n. <b>□0</b> □□<br>(default setting) | Use the encoder as an incremental encoder.  A battery is not required.         |               |
| Pn002<br>(2002h) | n.o1oo                               | Use the encoder as an incremental encoder. A battery is not required.          | After restart |
|                  | n.=2==                               | Use the encoder as a single-turn absolute encoder.  A battery is not required. |               |

Parameter Settings When Using a Single-Turn Absolute Encoder

| Para                      | meter                       | Meaning                                                                        | When Enabled  |
|---------------------------|-----------------------------|--------------------------------------------------------------------------------|---------------|
|                           | n.⊔0□□<br>(default setting) | Use the encoder as a single-turn absolute encoder.  A battery is not required. |               |
| Pn002<br>(2002h) n.::1::: |                             | Use the encoder as an incremental encoder.  A battery is not required.         | After restart |
|                           | n.=2==                      | Use the encoder as a single-turn absolute encoder.  A battery is not required. |               |

• Parameter Settings When Using a Multiturn Absolute Encoder

| Parameter                 |                             | Meaning                                                                        | When Enabled  |
|---------------------------|-----------------------------|--------------------------------------------------------------------------------|---------------|
|                           | n.□0□□<br>(default setting) | Use the encoder as a multiturn absolute encoder.  A battery is required.       |               |
| Pn002<br>(2002h) n.::1::: |                             | Use the encoder as an incremental encoder.  A battery is not required.         | After restart |
|                           | n.u2uu                      | Use the encoder as a single-turn absolute encoder.  A battery is not required. |               |

• Parameter Settings When Using a Batteryless Multiturn Absolute Encoder

| Parameter                 |                                      | Meaning                                                                        | When Enabled  |
|---------------------------|--------------------------------------|--------------------------------------------------------------------------------|---------------|
|                           | n. <b>□0</b> □□<br>(default setting) | Use the encoder as a multiturn absolute encoder.  A battery is not required.   |               |
| Pn002<br>(2002h) n.::1::: |                                      | Use the encoder as an incremental encoder.  A battery is not required.         | After restart |
|                           | n.::2::::                            | Use the encoder as a single-turn absolute encoder.  A battery is not required. |               |

# **NOTICE**

### Install a battery at either the host controller or on the encoder cable.

If you install batteries both at the host controller and on the encoder cable at the same time, you will create a loop circuit between the batteries, resulting in a risk of damage or burning.

# 6.8.1 Connecting an Absolute Encoder

You can get the position data from the absolute encoder with EtherCAT communications.

Therefore, it is not necessary to wire the PAO, PBO, and PCO (Encoder Divided Pulse Output) signals.

If they need to be wired, refer to the following section.

■ 4.4.3 Wiring the SERVOPACK to the Encoder on page 128

■ 4.5.3 I/O Signal Wiring Examples on page 140

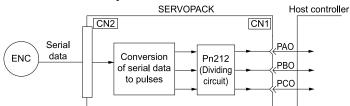
## 6.8.2 Structure of the Position Data of the Absolute Encoder

The position data of the absolute encoder is the position coordinate from the origin of the absolute encoder. If you use the encoder divided pulse output (PAO, PBO, and PCO) signals to get the position information, the position data from the absolute encoder contains the following two items.

- The number of rotations from the origin of the encoder coordinate system (called the multiturn data)
- The position (number of pulses) within one rotation

The position data of the absolute encoder is as follows:

Position data of absolute encoder = Multiturn data  $\times$  Number of pulses within one encoder rotation (setting of Pn212) + Position (number of pulses) within one rotation


For a single-turn absolute encoder, the multiturn data is 0.

# 6.8.3 Output Ports for the Position Data from the Absolute Encoder

You can read the position data of the absolute encoder from the PAO, PBO, and PCO (Encoder Divided Pulse Output) signals.

The output method and timing for the position data of the absolute encoder are different in each case.

A conceptual diagram of the connections of the PAO, PBO, and PCO (Encoder Divided Pulse Output) signals to the host controller is provided below.



| Qiamal. | Status                  | Signal Contents                                           |  |
|---------|-------------------------|-----------------------------------------------------------|--|
| Signal  |                         | When Using an Absolute Encoder                            |  |
| DA O    | First signal            | Multiturn data position within one rotation (pulse train) |  |
| PAO     | During normal operation | Incremental pulses                                        |  |
| nn o    | First signal            | Position within one rotation (pulse train)                |  |
| PBO     | During normal operation | Incremental pulses                                        |  |
| PCO     | Always                  | Origin pulse                                              |  |

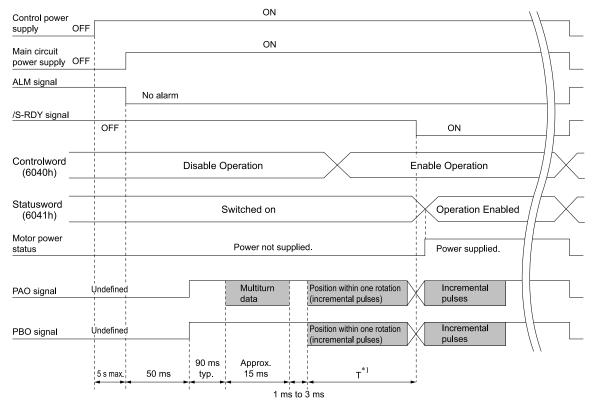
The PAO (Encoder Divided Pulse Output) signal outputs the position data from the absolute encoder after the control power is turned ON.

The position data of the absolute encoder is the current stop position. The absolute encoder outputs the multiturn data with the specified protocol. The absolute encoder outputs the position within one rotation as a pulse train. It then outputs pulses as an incremental encoder (incremental operation status).

The host controller must have a reception circuit (e.g., UART) for the position data from the absolute encoder. The pulse counter at the host controller will not count pulses when the multiturn data (communications message)

is input because only phase A is input. Counting starts from the position of the absolute encoder within one rotation.

The output circuits for the PAO, PBO, and PCO signals use line drivers. Refer to the following section for details on line drivers.


3 4.5.4 I/O Circuits on page 141

# 6.8.4 Reading the Position Data from the Absolute Encoder

The sequence to read the position data from the absolute encoder of a rotary servomotor is given below.

The multiturn data is sent according to the transmission specifications.

The position of the absolute encoder within one rotation is output as a pulse train.



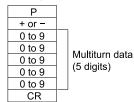
\*1 The pulse output time T for the position of the absolute encoder within one rotation depends on the setting of Pn212 (Number of Encoder Output Pulses). Refer to the following table.

| Setting of Pn212 (2212h) | Calculation of the Pulse Output<br>Speed for the Position of the Abso-<br>lute Encoder within One Rotation | Calculation of the Pulse Output Time<br>T for the Position of the Absolute<br>Encoder within One Rotation |
|--------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 16 to 16384              | 680 × Pn212 / 16384 [kpps]                                                                                 | 25 ms max.                                                                                                |
| 16386 to 32768           | 680 × Pn212 / 32768 [kpps]                                                                                 | 50 ms max.                                                                                                |
| 32722 to 65536           | 680 × Pn212 / 65536 [kpps]                                                                                 | 100 ms max.                                                                                               |
| 65544 to 131072          | 680 × Pn212 / 131072 [kpps]                                                                                | 200 ms max.                                                                                               |
| 131088 to 262144         | 680 × Pn212 / 262144 [kpps]                                                                                | 400 ms max.                                                                                               |
| 262176 to 524288         | 680 × Pn212 / 524288 [kpps]                                                                                | 800 ms max.                                                                                               |
| 524352 to 1048576        | 680 × Pn212 / 1048576 [kpps]                                                                               | 1600 ms max.                                                                                              |

# 6.8.5 Transmission Specifications

The position data transmission specifications for the PAO (Encoder Divided Pulse Output) signal are given in the following table.

The PAO signal sends only the multiturn data.


Refer to the following section for the timing of sending the position data from the absolute encoder.

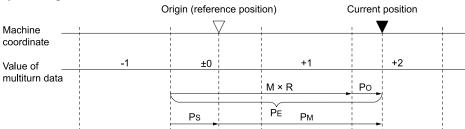
■ 6.8.4 Reading the Position Data from the Absolute Encoder on page 248

| Item                   | PAO Signal                                     |
|------------------------|------------------------------------------------|
| Synchronization Method | Start-stop synchronization (ASYNC)             |
| Transmission Speed     | 9600 bps                                       |
| Start Bits             | 1 bit                                          |
| Stop Bits              | 1 bit                                          |
| Parity                 | Even                                           |
| Character Code         | ASCII, 7 bits                                  |
| Data Format            | Refer to data format of PAO signal.            |
| Data Output Cycle      | Only once after the control power is turned ON |

# (1) Data Format of PAO Signal

As shown below, the message format consists of eight characters: "P," the sign, the 5-digit multiturn data, and "CR" (which indicates the end of the message).




# 6.8.6 Calculating the Current Position in Machine Coordinates

When you reset the absolute encoder, the reset position becomes the reference position.

The host controller reads the coordinate Ps from the origin of the encoder coordinate system. The host controller must record the value of coordinate Ps.

This section describes the reference position in the machine coordinate system.

The method to calculate the coordinate value of the present position from the origin of the machine coordinate system is given below.



The current position P<sub>M</sub> in the machine coordinate system is calculated as follows:

$$P_{M} = P_{E} - P_{S}$$

$$P_E = M \times R + P_O$$

$$P_S = M_S \times R + P_S$$

| Symbol           | Meaning                                                                              |
|------------------|--------------------------------------------------------------------------------------|
| $P_{\rm E}$      | Position data for the current position of the absolute encoder                       |
| M                | Current position of the multiturn data of the absolute encoder                       |
| $P_{\rm O}$      | Position of the current position within one rotation                                 |
| $P_{S}$          | Position data of the absolute encoder when absolute encoder was reset                |
| $M_{\mathrm{S}}$ | Multiturn data of the absolute encoder when absolute encoder was reset               |
| Ps'              | Position of the absolute encoder within one rotation when absolute encoder was reset |
| P <sub>M</sub>   | Current position in machine coordinate system                                        |
| R                | Pulse output for one encoder rotation                                                |

### Note:

The calculations for  $Pn000 = n.\Box\Box\Box 1$  (reverse rotation mode) are given below.

 $P_{\rm M} = P_{\rm E} - P_{\rm S}$ 

 $P_E = -M \times R + P_O$ 

 $P_S = M_S \times R + P_S'$ 

- Information 1. If you are using a rotary servomotor, you must reset the absolute encoder. Refer to the following section for information on resetting the absolute encoder.
  - 2. You can set the origin to a different position from the reset position. Refer to the following section for information on the origin position offset.
    - 5.16 Setting the Origin of the Absolute Encoder on page 204

### **Multiturn Limit Setting** 6.8.7

The multiturn limit is used in position control for a turntable or other rotating body.

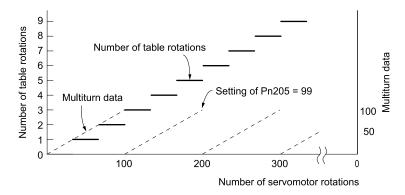
■ 5.15 Resetting the Absolute Encoder on page 201

For example, consider a machine that moves the turntable shown in the following diagram in only one direction. Turntable



Because the turntable moves in only one direction, the upper limit to the number of rotations that can be counted by an absolute encoder will eventually be exceeded.

The multiturn limit is used in cases like this to prevent fractions from being produced by the integral ratio of the number of servomotor rotations and the number of turntable revolutions.


For a machine with a ratio of n:m between the number of servomotor rotations and the number of turntable rotations, as shown above, the value of m minus 1 will be the setting of Pn205 (Multiturn Limit).

Pn205 (Multiturn Limit) = m - 1

If m = 100 and n = 3 (i.e., the turntable rotates three times for each 100 servomotor rotations), the relationship between the number of servomotor rotations and the number of turntable rotations would be as shown below.

Set Pn205 to 99.

Pn205 = 100 - 1 = 99

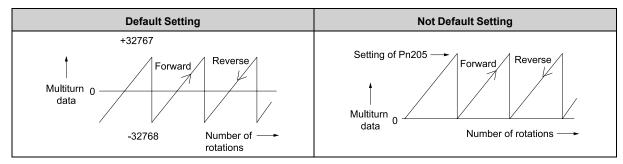


|                  | Multiturn Limit |              |                 | Speed Pos Trq |
|------------------|-----------------|--------------|-----------------|---------------|
| Pn205<br>(2205h) | Setting Range   | Setting Unit | Default Setting | When Enabled  |
| (220011)         | 0 to 65535      | 1 rev        | 65535           | After restart |

Note:

Information

This parameter is enabled when you use an absolute encoder.


The data will change as shown below when this parameter is set to anything other than the default setting.

- If the servomotor operates in the reverse direction when the multiturn data is 0, the multiturn data will change to the value set in Pn205.
- If the servomotor operates in the forward direction when the multiturn data is at the value set in Pn205, the multiturn data will change to 0.

Set Pn205 to one less than the desired multiturn data.

If you change the setting of Pn205, an A.CC0 alarm (Multiturn Limit Disagreement) will be displayed because the setting disagrees with the value in the encoder. Refer to the following section for the procedure to change the multiturn limit settings in the encoder.

■ 6.8.8 A.CC0 (Multiturn Limit Disagreement Alarm ) on page 251



The multiturn data will always be zero in the following cases. It is never necessary to reset the absolute encoder in these

When you use a single-turn absolute encoder

• When Pn002 is set to n.□2□□ (use the encoder as a single-turn absolute encoder)

A.810 and A.820 (alarms related to the absolute encoder) will also not occur.

# 6.8.8 A.CC0 (Multiturn Limit Disagreement Alarm )

If you change the multiturn limit in Pn205 (Multiturn Limit), an A.CC0 alarm (Multiturn Limit Disagreement) will be displayed because the setting disagrees with the value in the encoder.

| Display | Name                         | Meaning                                                          |
|---------|------------------------------|------------------------------------------------------------------|
| A.CC0   | Multiturn Limit Disagreement | Different multiturn limits are set in the encoder and SERVOPACK. |

If this alarm is displayed, use the following procedure to change the multiturn limit in the encoder to the same value as the setting of Pn205.

# (1) Applicable Tools

The following table lists the tools that you can use to set the multiturn limit.

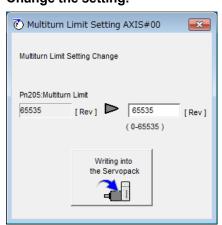
| Tool                    | Fn No./Function Name                        | Operating Procedure Reference                          |
|-------------------------|---------------------------------------------|--------------------------------------------------------|
| Digital Operator        | Fn013                                       |                                                        |
| SigmaWin+               | [Encoder Setting] – [Multiturn Limit Setup] | (2) Operating Procedure on page 252                    |
| EtherCAT Communications | SERVOPACK Adjusting Command (2710h)         | 15.5.7 SERVOPACK Adjusting Command (2710h) on page 604 |

# (2) Operating Procedure

Use the following procedure to adjust the multiturn limit setting.

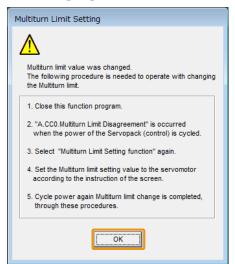
- 1. Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.
- 2. Click [Multi-turn Limit Setup] in the [Menu] window.

The [Multiturn Limit Setting] window will be displayed.


3. Click the [Continue] button.



Click the [Cancel] button to cancel setting the multiturn limit.


The Main Window will return.

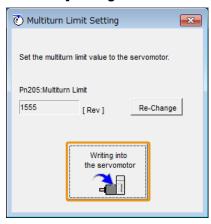
4. Change the setting.



5. Click the [Writing into the Servopack] button.

### 6. Click the [OK] button.




### 7. Turn the power to the SERVOPACK OFF and ON again.

An A.CC0 alarm (Multiturn Limit Disagreement) will occur because setting the multiturn limit in the servomotor is not yet completed even though the setting has been changed in the SERVOPACK.

- 8. Click [Multi-turn Limit Setup] in the [Menu] window.
- 9. Click the [Continue] button.



10. Click the [Writing into the servomotor] button.



### 11. Click the [OK] button.



This concludes the procedure to set the multiturn limit.

# 6.9 Absolute Linear Encoders

The absolute linear encoder records the current position of the stop position even when the power is OFF.

With a system that uses an absolute linear encoder, the host controller can monitor the current position. Therefore, it is not necessary to perform an origin return operation when the power to the system is turned ON.

There are two types of linear encoders for linear servomotors. The usage of the linear encoder is specified in  $Pn002 = n.\Box X\Box\Box$ .

Refer to the following section for linear encoder models.

- ☞ ◆ Feedback Resolution of Linear Encoder: Absolute Linear Encoder on page 196
- Parameter Settings When Using an Incremental Linear Encoder

| Para    | meter                       | Meaning                                           | When Enabled  |
|---------|-----------------------------|---------------------------------------------------|---------------|
| Pn002   | n.u0uu<br>(default setting) | Use the encoder as an incremental linear encoder. | After restart |
| (2002h) | n.a1aa                      | Use the encoder as an incremental linear encoder. |               |

Parameter Settings When Using an Absolute Linear Encoder

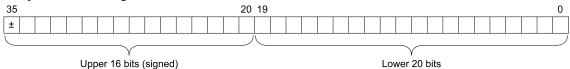
| Parameter |                         | Meaning                                           | When Enabled  |
|-----------|-------------------------|---------------------------------------------------|---------------|
| Pn002     | n0<br>(default setting) | Use the encoder as an absolute linear encoder.    | After restart |
| (2002h)   | n.::1::::               | Use the encoder as an incremental linear encoder. |               |

# 6.9.1 Connecting an Absolute Linear Encoder

You can get the position data from the absolute linear encoder with EtherCAT communications.

Therefore, it is not necessary to wire the PAO, PBO, and PCO (Encoder Divided Pulse Output) signals.

If they need to be wired, refer to the following section.

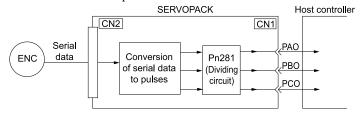

3 4.4.3 Wiring the SERVOPACK to the Encoder on page 128

■ 4.5.3 I/O Signal Wiring Examples on page 140

### 6.9.2 Structure of the Position Data of the Absolute Linear Encoder

The position data of the absolute linear encoder is the distance (number of pulses) from the origin of the absolute linear encoder.

The position data is signed 36-bit data.




When the SERVOPACK sends the position data, it sends the upper 16-bit data (with sign) separately from the lower 20-bit data.

# 6.9.3 Output Ports for the Position Data from the Absolute Linear Encoder

You can read the position data of the absolute linear encoder from the PAO, PBO, and PCO (Encoder Divided Pulse Output) signals.

The output method and timing for the position data of the absolute linear encoder are different in each case. A conceptual diagram of the connections of the PAO, PBO, and PCO (Encoder Divided Pulse Output) ports to the host controller is provided below.



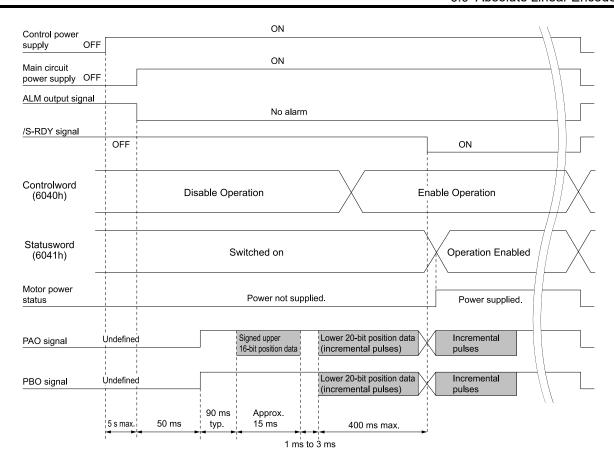
| 01     | Status                  | Signal Contents                                               |  |
|--------|-------------------------|---------------------------------------------------------------|--|
| Signal |                         | When Using an Absolute Linear Encoder                         |  |
| PAO    | First signal            | Upper 16-bit data (with sign) Lower 20-bit data (pulse train) |  |
| PAO    | During normal operation | Incremental pulses                                            |  |
| РВО    | First signal            | Lower 20-bit data (pulse train)                               |  |
|        | During normal operation | Incremental pulses                                            |  |
| PCO    | Always                  | Origin pulse                                                  |  |

The PAO (Encoder Divided Pulse Output) signal outputs the position data from the absolute linear encoder after the control power is turned ON.

The position data of the absolute linear encoder is the current stop position. The absolute linear encoder outputs the upper 16-bit data (with sign) according to the specified protocol. The absolute linear encoder outputs the lower 20-bit data as a pulse train. It then outputs pulses as an incremental linear encoder (incremental operation status).

The host controller must have a reception circuit (e.g., UART) for the position data from the absolute linear encoder. The pulse counter at the host controller will not count pulses when the upper 16-bit data (with sign) (communications message) is input because only phase A is input.

The output circuits for the PAO, PBO, and PCO signals use line drivers. Refer to the following section for details on line drivers.


**3** 4.5.4 I/O Circuits on page 141

# 6.9.4 Reading the Position Data from the Absolute Linear Encoder

The sequence to read the position data from the absolute linear encoder of a linear servomotor is given below.

The upper 16-bit position data (with sign) are sent according to the transmission specifications.

The lower 20-bit data is output as a pulse train.



# 6.9.5 Transmission Specifications

The position data transmission specifications for the PAO (Encoder Divided Pulse Output) signal are given in the following table.

The PAO signal sends only the 16-bit data (with sign).

Refer to the following section for the timing of sending the position data from the absolute encoder.

6.9.4 Reading the Position Data from the Absolute Linear Encoder on page 256

| Item                   | PAO Signal                                     |
|------------------------|------------------------------------------------|
| Synchronization Method | Start-stop synchronization (ASYNC)             |
| Transmission Speed     | 9600 bps                                       |
| Start Bits             | 1 bit                                          |
| Stop Bits              | 1 bit                                          |
| Parity                 | Even                                           |
| Character Code         | ASCII, 7 bits                                  |
| Data Format            | Refer to data format of PAO signal.            |
| Data Output Cycle      | Only once after the control power is turned ON |

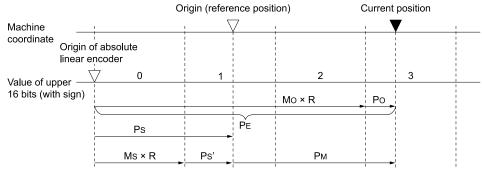
# (1) Data Format of PAO Signal

As shown below, the message format consists of eight characters: "P," the sign, the 5-digit upper 15-bit position data, and "CR" (which indicates the end of the message).

| Р      |                  |
|--------|------------------|
| + or – |                  |
| 0 to 9 |                  |
| 0 to 9 | Upper 15 bits    |
| 0 to 9 | of position data |
| 0 to 9 | or position data |
| 0 to 9 |                  |
| CR     | <u> </u>         |

# 6.9.6 Calculating the Current Position in Machine Coordinates

With an absolute linear encoder, you must set the position of the origin (i.e., the origin of the machine coordinate system).


The host controller reads the coordinate from the origin of the encoder coordinate system. The host controller must record the value of this coordinate.

The method to calculate the coordinate value of the present position from the origin of the machine coordinate system is given below.

The position data from the absolute linear encoder is signed 36-bit data, but the upper 16 bits (with sign) and the lower 20 bits are output separately.

For the upper 16-bit data (with sign), the upper bits (16 bits, including the sign) of the current position after dividing by the setting of Pn281 are output with serial communications according to the transmission specifications.

For the lower 20-bit data, the lower bits (20 bits) of the current position after dividing by the setting of Pn281 are output as a pulse train.



The current position P<sub>M</sub> in the machine coordinate system is calculated as follows:

$$P_M = P_E - P_S$$

$$P_{E} = M_{O} \times R + P_{O}$$

$$P_S = M_S \times R + P_S$$

| Symbol           | Meaning                                                                                                |
|------------------|--------------------------------------------------------------------------------------------------------|
| $P_{\rm E}$      | Position data for the current position of the absolute linear encoder                                  |
| $M_{O}$          | Upper 16 bits (with sign) of the position data for the current position of the absolute linear encoder |
| Po               | Lower 20 bits of the position data for the current position of the absolute linear encoder             |
| $P_{S}$          | Position data of the origin                                                                            |
| $M_{S}$          | Upper 16 bits (with sign) of the position data of the origin                                           |
| Ps'              | Lower 20 bits of the position data of the origin                                                       |
| $P_{\mathrm{M}}$ | Current position in machine coordinate system                                                          |
| R                | 1048576 (= 2 <sup>20</sup> )                                                                           |

### Note:

The above calculations are also used for  $Pn000 = n.\Box\Box\Box 1$  (reverse movement mode).

If you are using a linear servomotor, you do not need to reset the absolute linear encoder to define the origin. (Some absolute linear encoders also allow you to set any position as the origin.)

#### 6.10 **Software Reset**

You can reset the SERVOPACK internally with the software. A software reset is used when resetting alarms and changing the settings of parameters that normally require turning the power to the SERVOPACK OFF and ON again. This can be used to change those parameters without turning the power to the SERVOPACK OFF and ON again.

- Always confirm that the servo is OFF and servomotor is stopped before you start a software reset.
  - This function resets the SERVOPACK independently of the host controller. The SERVOPACK carries out the same processing as when the power is turned ON and outputs the ALM (Servo Alarm Output) signal. The status of other output signals may be forcibly changed.
  - When you execute a software reset, the SERVOPACK will not respond for approximately five seconds. Before you execute a software reset, check the status of the SERVOPACK and servomotor and make sure that no problems will occur.

#### 6.10.1 **Preparations**

Always check the following before you perform a software reset.

- The servo must be OFF.
- The motor must be stopped.

# 6.10.2 Applicable Tools

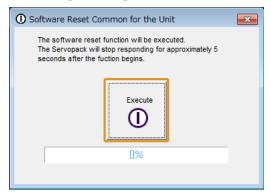
The following table lists the tools that you can use to perform a software reset.

| Tool             | Fn No./Function Name                 | Operating Procedure Reference                                                  |
|------------------|--------------------------------------|--------------------------------------------------------------------------------|
| Digital Operator | Fn030                                | Σ-7/Σ-X-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33) |
| SigmaWin+        | [Basic Functions] – [Software Reset] | 6.10.3 Operating Procedure on page 259                                         |

#### 6.10.3 **Operating Procedure**

Use the following procedure to perform a software reset.

- Click the [41] button for the servo drive in the workspace of the Main Window of the Sig-1.
- 2. Select [Software Reset] in the [Menu] window.


The [Software Reset] window will be displayed.

Click the [Execute] button.



Click the [Cancel] button to cancel the software reset. The Main Window will return.

### 4. Click the [Execute] button.



### 5. Click the [OK] button to end the software reset operation.

All settings including parameters will have been re-calculated. When you finish this operation, disconnect the SigmaWin+ from the SERVOPACK, and then connect it again.



This concludes the procedure to reset the software.

#### 6.11 **Vibration Detection Level Initialization**

You can detect machine vibration during operation to automatically adjust the settings of Pn312 or Pn384 (Vibration Detection Level) to detect A.520 alarms (Vibration Alarm) and A.911 warnings (Vibration) more precisely. This function detects specific vibration components in the servomotor speed.

|         |        | Vibration    | Detection Selection Speed Pos Trq                  | When Enabled |
|---------|--------|--------------|----------------------------------------------------|--------------|
| Pn310   | n.□□□X | 0<br>Default | Do not detect vibration.                           |              |
| (2310h) |        | 1            | Output a warning (A.911) if vibration is detected. | Immediately  |
|         |        | 2            | Output an alarm (A.520) if vibration is detected.  |              |

If the vibration exceeds the detection level calculated with the following formula, an alarm or warning occurs according to Pn310 (Vibration Detection Selection).

Rotary Servomotors

Pn312 [min<sup>-1</sup>] (Vibration detection level) × Pn311 [%] (Vibration detection sensitivity) Detection level =

· Linear Servomotors

Detection level = Pn384 [mm/s] (Vibration detection level) × Pn311 [%] (Vibration detection sensitivity)

Use this function only if A.520 or A.911 alarms are not output at the correct timing when vibration is detected with the default setting of Pn312 or Pn384 (Vibration Detection Level).

There will be discrepancies in the detection sensitivity for vibration alarms and warnings depending on the condition of your machine. If there is a discrepancy, use the above formula to adjust the setting of Pn311 (Vibration Detection Sensitivity).

|                  | Vibration Detection Sensitivity Speed Pos |              |                 |              |
|------------------|-------------------------------------------|--------------|-----------------|--------------|
| Pn311<br>(2311h) | Setting Range                             | Setting Unit | Default Setting | When Enabled |
| (201111)         | 50 to 500                                 | 1%           | 100             | Immediately  |

- Information Vibration may not be detected because of unsuitable servo gains. Also, not all kinds of vibrations can be detected.
  - Set a suitable value to Pn103 (Moment of Inertia Ratio). An unsuitable setting may result in falsely detecting or not detecting vibration alarms or vibration warnings.
  - To use this function, you must input the actual references that will be used to operate your system.
  - Execute this function under the operating conditions for which you want to set the vibration detection level.
  - Execute this function while the servomotor is operating at 10% of its maximum speed or faster.

#### 6.11.1 **Preparations**

Always check the following before you initialize the vibration detection level.

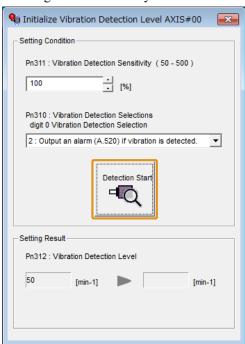
- The parameters must not be write prohibited.
- Pn00C must be set to n. \( \sigma \sigma 0 \) (Function Selection for Test without a Motor is disabled).

#### 6.11.2 **Applicable Tools**

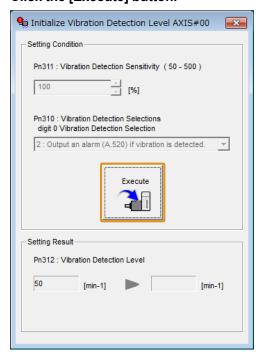
The following table lists the tools that you can use to initialize the vibration detection level.

| Tool             | Fn No./Function Name                              | Operating Procedure Reference                                                  |
|------------------|---------------------------------------------------|--------------------------------------------------------------------------------|
| Digital Operator | Fn01B                                             | Σ-7/Σ-X-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33) |
| SigmaWin+        | [Others] – [Initialize Vibration Detection Level] | 6.11.3 Operating Procedure on page 262                                         |

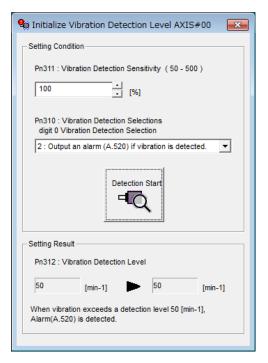
### 6.11.3 Operating Procedure


Use the following procedure to initialize the vibration detection level.

- 1. Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.
- 2. Select [Initialize Vibration Detection Level] in the [Menu] window.


The [Initialize Vibration Detection Level] window will be displayed.

Select [Pn311: Vibration Detection Sensitivity] and [Pn310: Vibration Detection Selections] and then click the [Detection Start] button.


A setting execution standby mode will be entered.



4. Click the [Execute] button.



The newly set vibration detection level will be displayed and the value will be saved in the SERVOPACK.



This concludes the procedure to initialize the vibration detection level.

### 6.11.4 Related Parameters

The following three items are given in the following table.

- Parameters Related to this Function
   These are the parameters that are used or referenced when this function is executed.
- Changes during Function Execution
   Not allowed: The parameter cannot be changed using the SigmaWin+ or other tool while this function is being executed.

Allowed: The parameter can be changed using the SigmaWin+ or other tool while this function is being executed.

• Automatic Changes after Function Execution

Yes: The parameter is automatically set or adjusted after execution of this function.

No: The parameter is not automatically set or adjusted after execution of this function.

| Parameter     | Name                            | Setting Changes | Automatic Changes |
|---------------|---------------------------------|-----------------|-------------------|
| Pn311 (2311h) | Vibration Detection Sensitivity | Allowed         | No                |
| Pn312 (2312h) | Vibration Detection Level       | Not allowed     | Yes               |
| Pn384 (2384h) | Vibration Detection Level       | Not allowed     | Yes               |

### 6.12 **Adjusting the Motor Current Detection Signal Offset**

The motor current detection signal offset is used to reduce ripple in the torque. You can adjust the motor current detection signal offset either automatically or manually.

#### 6.12.1 **Automatic Adjustment**

Perform this adjustment only if highly accurate adjustment is required to reduce torque ripple. It is normally not necessary to adjust this offset.



Execute the automatic offset adjustment if the torque ripple is too large when compared with other SERVOPACKs.

Information The offset does not use a parameter, so it will not change even if the parameter settings are initialized.

### (1) Preparations

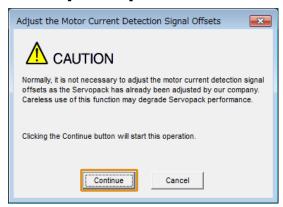
Always check the following before you automatically adjust the motor current detection signal offset.

- The main circuit power must be ON.
- The servo must be OFF.
- The servomotor must be stopped.
- There must be no hard wire base block (HWBB).
- The parameters must not be write prohibited.

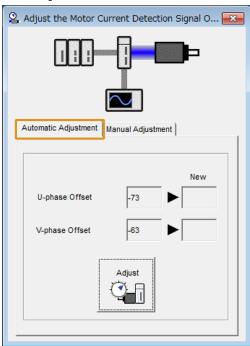
### (2) Applicable Tools

The following table lists the tools that you can use to perform automatic tuning.

| Tool                    | Fn No./Function Name                                             | Operating Procedure Reference                                                  |
|-------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Digital Operator        | Fn00E                                                            | Σ-7/Σ-X-series Digital Operator Operating Manual (Manual No.: SIEP S800001 33) |
| SigmaWin+               | [Others] –[Adjust the Motor Current Detection<br>Signal Offsets] | (3) Operating Procedure on page 264                                            |
| EtherCAT Communications | SERVOPACK Adjusting Command (2710h)                              | 3 15.5.7 SERVOPACK Adjusting Command (2710h) on page 604                       |

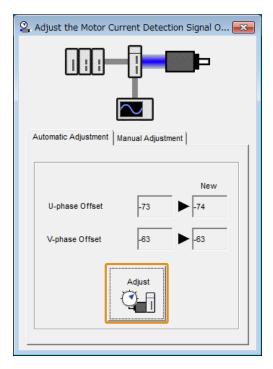

#### (3) **Operating Procedure**

Use the following procedure to automatically adjust the motor current detection signal offset.


- Click the [41] button for the servo drive in the workspace of the Main Window of the SigmaWin+.
- Click [Adjust the Motor Current Detection Signal Offsets] in the [Menu] window.

The [Adjust the Motor Current Detection Signal Offsets] window will be displayed.

### 3. Click the [Continue] button.




4. Click the [Automatic Adjustment] tab in the [Adjust the Motor Current Detection Signal Offsets] window.



5. Click the [Adjust] button.

The values that result from automatic adjustment will be displayed in the [New] boxes.



This concludes the procedure to automatically adjust the motor current detection signal offset.

## 6.12.2 Manual Adjustment

You can use this function if you automatically adjust the motor current detection signal offset and the torque ripple is still too large.



If the offset is incorrectly adjusted with this function, the servomotor characteristics may be adversely affected. Observe the following precautions when you manually adjust the offset.

- Operate the servomotor at a speed of approximately 100 min<sup>-1</sup>.
- · Adjust the offset while monitoring the torque reference with the analog monitor until the ripple is minimized.
- Adjust the offsets for the phase-U current and phase-V current of the servomotor so that they are balanced. Alternately
  adjust both offsets several times.

Information

The offset does not use a parameter, so it will not change even if the parameter settings are initialized.

# (1) Preparations

Always check the following before you manually adjust the motor current detection signal offset.

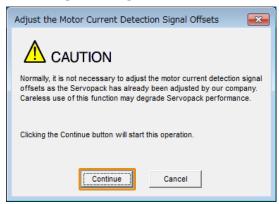
• The parameters must not be write prohibited.

# (2) Applicable Tools

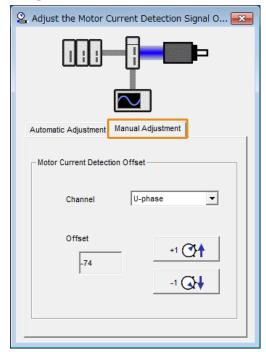
The following table lists the tools that you can use to perform manual tuning.

| Tool             | Fn No./Function Name                                             | Operating Procedure Reference                                                  |
|------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Digital Operator | Fn00F                                                            | Σ-7/Σ-X-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33) |
| SigmaWin+        | [Others] –[Adjust the Motor Current Detection<br>Signal Offsets] | (3) Operating Procedure on page 266                                            |

# (3) Operating Procedure


Use the following procedure to manually adjust the motor current detection signal offset.

1. Operate the servomotor at approximately 100 min-1.


- 2. Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.
- 3. Click [Adjust the Motor Current Detection Signal Offsets] in the [Menu] window.

The [Adjust the Motor Current Detection Signal Offsets] window will be displayed.

4. Click the [Continue] button.



5. Click the [Manual Adjustment] tab in the [Adjust the Motor Current Detection Signal Offsets] window.



- 6. Set the [Channel] in the [Motor Current Detection Offset] to [U-phase].
- 7. Use the [+1] and [-1] buttons to adjust the offset for phase U.

Change the offset by about 10 in the direction that reduces the torque ripple. Adjustment range: -512 to +511

- 8. Set the [Channel] in the [Motor Current Detection Offset] to [V-phase].
- 9. Use the [+1] and [-1] buttons to adjust the offset for phase V. Change the offset by about 10 in the direction that reduces the torque ripple.
- 10. Repeat steps 6 to 9 until the torque ripple cannot be decreased any further regardless of whether you increase or decrease the offsets.
- $11.\,$  Reduce the amount by which you change the offsets each time and repeat steps 6 to 9.

This concludes the procedure to manually adjust the motor current detection signal offset.

### **Forcing the Motor to Stop** 6.13

You can force the servomotor to stop for a signal from the host controller or an external device.

To force the motor to stop, you must set Pn516 to n.□□□X (FSTP (Forced Stop Input) Signal Allocation). You can specify one of the following stopping methods: dynamic brake (DB), coasting to a stop, or decelerating to a

Forcing the motor to stop is not designed to comply with any safety standard. In this respect, it is different from the hard wire base block (HWBB).

Information Panel Display and Digital Operator Display

When a forced stop is performed, the panel and the digital operator will display "FSTP."



To prevent accidents that may result from contact faults or disconnections, use a normally closed switch for the Forced Stop Input signal.

#### **FSTP (Forced Stop Input) Signal** 6.13.1

| Туре       | Signal             | Connector Pin No. | Signal Status         | Meaning                              |
|------------|--------------------|-------------------|-----------------------|--------------------------------------|
| Input FSTP |                    |                   | ON (closed)           | Drive is enabled (normal operation). |
|            | Must be allocated. | OFF (open)        | The motor is stopped. |                                      |

#### Note:

You must allocate the FSTP signal to use it. The parameters that you use depend on the allocation method.

| Allocation Method                     | Parameter to Use                                                                                                                |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Σ-7S-compatible I/O Signal Allocation | • Pn50A = n.□□□1 (use Sigma-7S-compatible I/O signal allocations) • Pn516 = n.□□□X (FSTP (Forced Stop Input) Signal Allocation) |
| Σ-LINK II Input Allocations           | • Pn50A= n.□□□2 (use SigmaLINK II input allocations) • Pn597 (FSTP (Forced Stop Input) Signal Allocation)                       |

Refer to the following section for details.

■ 6.1.3 Input Signal Allocations on page 216

#### 6.13.2 **Stopping Method Selection for Forced Stops**

Use  $Pn00A = n.\Box\Box X\Box$  (Stopping Method for Forced Stops) to set the stopping method for forced stops.

|                         |   | Stopping Method for Forced Stops Speed Pos Trq                                                                                                                                   |                                                                                                                                                           | When Enabled |
|-------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Pn00A<br>(200Ah) n.□□X□ |   | 0<br>Default                                                                                                                                                                     | Apply the dynamic brake or coast the motor to a stop (use the stopping method set in Pn001 (2001h) = $n.\Box\Box\Box X$ ).                                |              |
|                         | 1 | Decelerate the motor to a stop using the torque set in Pn406 (2406h) as the maximum torque. Use the setting of Pn001 (2001h) = $n.\Box\Box\Box X$ for the status after stopping. |                                                                                                                                                           |              |
|                         | 2 | Decelerate the motor to a stop using the torque set in Pn406 (2406h) as the maximum torque and then let the motor coast.                                                         | After restart                                                                                                                                             |              |
|                         |   | 3                                                                                                                                                                                | Decelerate the motor to a stop using the deceleration time set in Pn30A (230Ah). Use the setting of Pn001 (2001h) = n.□□□X for the status after stopping. |              |
|                         |   | 4                                                                                                                                                                                | Decelerate the motor to a stop using the deceleration time set in Pn30A (230Ah) and then let the motor coast.                                             |              |

#### Note:

You cannot decelerate a servomotor to a stop during torque control. The servomotor will be stopped with the dynamic braking or coast to a stop according to the setting of  $Pn001 = n.\square\square\square X$  (Motor Stopping Method for Servo OFF and Group 1 Alarms).

### (1) Stopping the Servomotor by Setting Pn406 (Emergency Stop Torque)

To stop the servomotor by setting emergency stop torque, set Pn406 (Emergency Stop Torque).

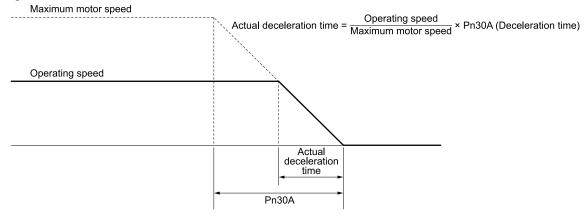
If  $Pn00A = n.\Box\Box X\Box$  is set to 1 or 2, the servomotor will be decelerated to a stop using the torque set in Pn406 as the maximum torque.

The default setting is 800%. This setting is large enough to allow you to operate the servomotor at instantaneous maximum torque. However, the maximum emergency stop torque that you can actually use is the instantaneous maximum torque of the servomotor.

|                  | Emergency Stop Torque |              |                 | Speed Pos Trq |
|------------------|-----------------------|--------------|-----------------|---------------|
| Pn406<br>(2406h) | Setting Range         | Setting Unit | Default Setting | When Enabled  |
| (2.3011)         | 0 to 800              | 1%           | 800             | Immediately   |

#### Note:

The setting unit is a percentage of the motor rated torque.

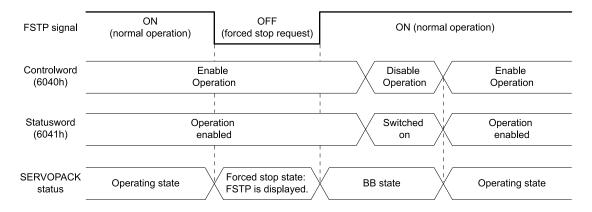

# (2) Stopping the Servomotor by Setting Pn30A (Deceleration Time for Servo OFF and Forced Stops)

To specify the servomotor deceleration time and use it to stop the servomotor, set Pn30A (Deceleration Time for Servo OFF and Forced Stops).

|                  | Deceleration Time for Servo OFF and Forced Stops  Speed Pos |              |                 |              |
|------------------|-------------------------------------------------------------|--------------|-----------------|--------------|
| Pn30A<br>(230Ah) | Setting Range                                               | Setting Unit | Default Setting | When Enabled |
| (2007411)        | 0 to 12000                                                  | 1 ms         | 0               | Immediately  |

If you set Pn30A to 0, the servomotor will be stopped with a zero speed.

The deceleration time that you set in Pn30A is the time to decelerate the servomotor from the maximum motor speed.




# 6.13.3 Resetting Method for Forced Stops

This section describes the reset methods that can be used after stopping operation for an FSTP (Forced Stop Input) signal.

If the FSTP (Forced Stop Input) signal is OFF and the Enable Operation command (Servo ON command) is input, the forced stop state will be maintained even after the FSTP signal is turned ON.

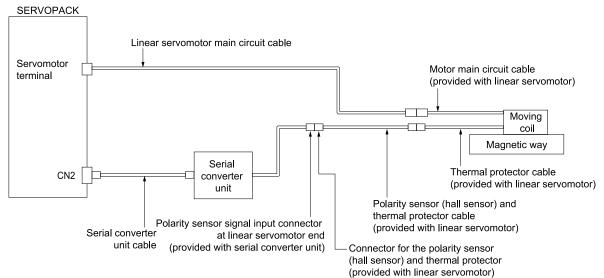
Send the Disable Operation command to place the SERVOPACK in the base block (BB) state and then send the Enable Operation command again.



# 6.14 Overheat Protection

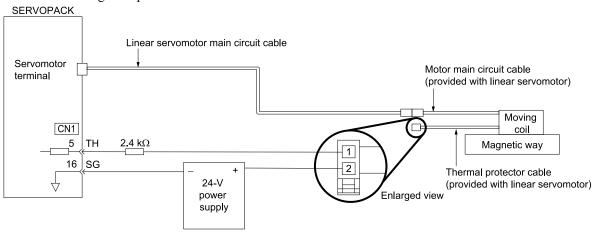
Overheat protection detects an A.93B warning (Overheat Warning) and an A.862 alarm (Overheat Alarm) by monitoring the overheat protection input signal from a Yaskawa SGLFW2 linear servomotor or from a sensor attached to the machine.

When you use overheat protection, you must wire the TH (Overheat Protection Input) signal and set Pn61A to  $n.\Box\Box\Box X$  (Overheat Protection Selection).


# 6.14.1 Connecting the Overheat Protection Input (TH) Signal

To use overheat protection, you must connect an overheat protection input (TH) signal to the SERVOPACK. This section describes the connection methods for the overheat protection input (TH) signal.

### (1) Using Overheat Protection in the Linear Servomotor

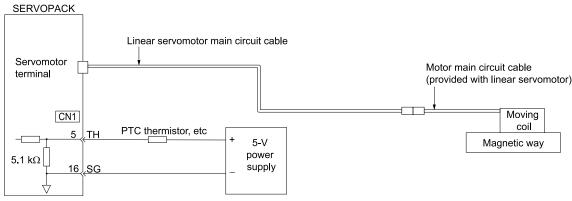

### (a) When Using a Serial Converter Unit

Connect the connector for the polarity sensor (hall sensor) and thermal protector of the linear servomotor to the serial converter unit.



### (b) When Not Using a Serial Converter Unit

Connect the thermal protector cable of the linear servomotor to CN1-5 on the SERVOPACK. The following figure shows a wiring example.






- The thermal protector signal from the linear servomotor must be input to the host controller. This example shows the connection to the SERVOPACK.
- The thermal protector signal is closed when the temperature is normal and open when the thermal protector is activated. Do not exceed 3 A or 30 V.
- The recommended length of the thermal protector cable is 15 m maximum.
- The 24-V power supply and 24-k $\Omega$  resistor are not provided by Yaskawa. Use a 0.3 W or greater 24-V power supply, and use a 0.2 W or greater 24-k $\Omega$  resistor.
- Be sure to connect the positive and negative sides of the power supply correctly. Otherwise there is a risk of SERVOPACK failure.

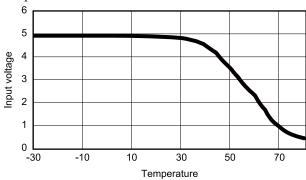
### (2) Using Overheat Protection for the Machine

To use overheat protection for the machine, connect the overheat protection input (an analog voltage input) from the sensor mounted to the machine to the CN1-5 on the SERVOPACK. The following figure shows a wiring example.



The equation when wired as shown in the above wiring example is as follows:

Input voltage =  $5 \text{ V} \times 5.1 \text{ k}\Omega/(5.1 \text{ k}\Omega + \text{thermistor resistance})$ 


When an NTC thermistor is used, the input voltage increases because the thermistor resistance decreases when the temperature increases. The voltage input when an NTC thermistor is being used is called "positive voltage input" in this manual.

When a PTC thermistor is used, the input voltage decreases because the thermistor resistance increases when the temperature increases. The voltage input when a PTC thermistor is being used is called "negative voltage input" in this manual.

You must consider the following three elements for the detection error of overheat protection.

- SERVOPACK detection accuracy: ±5% (= 4.5 V maximum)
- Variations in the external 5-V power supply
- · Variations in thermistor resistance

The following graph shows an example of the relationship between PTC thermistor input voltage and temperature.





- The 5-V power supply is not provided by Yaskawa.
- The customer is responsible for adjusting the detection level.
- Be sure to connect the positive and negative sides of the power supply correctly. Otherwise there is a risk of SERVOPACK failure.

#### 6.14.2 **Overheat Protection Selections**

The overheat protection function is selected with  $Pn61A = n.\Box\Box X$  (Overheat Protection Selections).

|         | Overhea |              | Protection Selections Speed Pos Trq                                                                 | When Enabled  |
|---------|---------|--------------|-----------------------------------------------------------------------------------------------------|---------------|
|         |         | 0<br>Default | Disable overheat protection.                                                                        |               |
| Pn61A   | n.□□□X  | 1            | Use overheat protection in the Yaskawa linear servomotor.                                           |               |
| (261Ah) |         | 2            | Monitor a negative voltage input from a sensor attached to the machine and use overheat protection. | After restart |
|         |         | 3            | Monitor a positive voltage input from a sensor attached to the machine and use overheat protection. |               |



The SGLFW2 is the only Yaskawa linear servomotor that supports this function.

## Using Overheat Protection in the Yaskawa Linear Servomotor

To use the overheat protection in the Yaskawa linear servomotor (SGLFW2), set Pn61A to n. \( \sigma \sigma 1. \)

An A.93B warning (Overheat Warning) will be detected if the TH (Overheat Protection Input) signal from the Yaskawa SGLFW2 linear servomotor exceeds the warning temperature.

An A.862 alarm (Overheat Alarm) will be detected if the TH (Overheat Protection Input) signal from the Yaskawa SGLFW2 linear servomotor exceeds the alarm temperature.



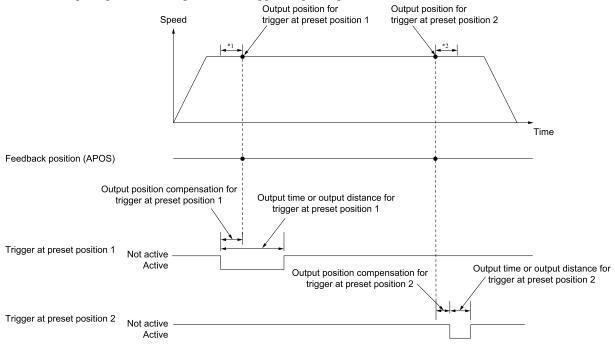
- If the overheat protection input signal line is disconnected or short-circuited, an A.862 alarm (Overheat Alarm) will
- Important 2. If you set Pn61A to n. □□□1 (use overheat protection in the Yaskawa linear servomotor), the parameters in the servomotor are enabled and the following parameters are disabled.
  - Pn61B (Overheat Alarm Level)
  - Pn61C (Overheat Warning Level)
  - Pn61D (Overheat Alarm Filter Time)

# Monitoring the Machine's Temperature and Using Overheat Protection

Set  $Pn61A = n.\Box\Box\Box X$  to 2 or 3 to use overheat protection for the machine. Set the following parameters as required.

|                  | Overheat Alarm Level       |              |                 | Speed Pos Trq |
|------------------|----------------------------|--------------|-----------------|---------------|
| Pn61B<br>(261Bh) | Setting Range              | Setting Unit | Default Setting | When Enabled  |
| (23:2)           | 0 to 500                   | 0.01 V       | 250             | Immediately   |
|                  | Overheat Warning Level     |              |                 | Speed Pos Trq |
| Pn61C<br>(261Ch) | Setting Range              | Setting Unit | Default Setting | When Enabled  |
| (201011)         | 0 to 100                   | 1%           | 100             | Immediately   |
|                  | Overheat Alarm Filter Time |              |                 | Speed Pos Trq |
| Pn61D<br>(261Dh) | Setting Range              | Setting Unit | Default Setting | When Enabled  |
|                  | 0 to 65535                 | 1 s          | 0               | Immediately   |




- When Pn61A is set to n. upu 2, an A.862 alarm (Overheat Alarm) will occur if the overheat protection input signal line is disconnected or short-circuited.
- When Pn61A is set to n. and A862 alarm will not occur if the overheat protection input signal line is disconnected or short-circuited. To ensure safety, we recommend that you connect the external circuits so that you can use a negative voltage input for the overheat protection input (an analog voltage input).
- 3. Set Pn61B to a value that matches the actually measured level of the connected sensor. Additionally, when Pn61B is set to a value of 450 (= 4.5 V) or higher, the detection error of the overheat alarm/warning will increase. For this reason, we recommend setting a value less than 450 (= 4.5 V).

# 6.15 Triggers at Preset Positions

### 6.15.1 **Outline**

Triggers at preset positions are signals that are output when a moving part of a machine passes preset reference positions. You can use this function to set signal outputs for up to 32 positions.

The following image shows the operation of triggers at preset positions.



- \*1 For triggers at preset positions to function, the speed must be constant for at least 250 µs before the machine passes a preset position.
- \*2 When you set the output width of a signal output at a preset position as a distance, use a distance that does not exceed the point where deceleration of the constant speed starts.



When using an incremental encoder, this function is enabled after an origin return is executed from the host controller. When using an absolute encoder, this function is always enabled.

You can use both high-speed outputs that output signals from line drivers and normal outputs that output signals from photocouplers for triggers at preset positions. They can also be used together.

Output circuit specifications for the line-driver and photocoupler output are given below.

# (1) Line-Driver Output Specifications

Compared with a photocoupler, a line driver is capable of more precise output, and it is suitable for applications with no margin for output signal delays or variations.

| Item                                     | Specification                                                                             |
|------------------------------------------|-------------------------------------------------------------------------------------------|
| Number of Output Position Settings       | 32                                                                                        |
| Range of Output Position Settings        | -2147483648 to 2147483647 reference units                                                 |
| Outputs for Triggers at Preset Positions | Triggers at preset positions are allocated to output signals /PAO, /PBO, and /PCO on CN1. |
| Output Time Setting Range                | 0 to 32767000 μs                                                                          |
| Output Distance Setting Range            | 0 to 2147483647 reference units                                                           |
| Output Position Compensation Range       | -2147483648 to 2147483647 reference units                                                 |

Continued on next page.

| ~ · ·     |      |          |       |
|-----------|------|----------|-------|
| Continued | from | previous | page. |

| Item                        | Specification                                                                       |
|-----------------------------|-------------------------------------------------------------------------------------|
| Signal Output Delay Time    | ON to OFF: 1 µs or less, OFF to ON: 1 µs or less                                    |
| I Stonal Unitable Variation | At constant speed of 1000000 [reference unit/sec] or greater: 5 $\mu$ s max. *1, *2 |

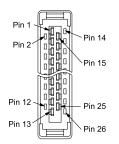
<sup>1</sup> The accuracy of high-speed output signals for triggers at preset positions is reduced during acceleration, deceleration, and low-speed operation.

### (2) Photocoupler Output Specifications

| Item                                     | Specification                                                                             |
|------------------------------------------|-------------------------------------------------------------------------------------------|
| Number of Output Position Settings       | 32                                                                                        |
| Range of Output Position Settings        | -2147483648 to 2147483647 reference units                                                 |
| Outputs for Triggers at Preset Positions | Triggers at preset positions are allocated to output signals /SO1, /SO2, and /SO3 on CN1. |
| Output Time Setting Range                | 0 to 32767000 μs                                                                          |
| Output Distance Setting Range            | 0 to 2147483647 reference units                                                           |
| Output Position Compensation Range       | -2147483648 to 2147483647 reference units                                                 |
| Signal Output Delay Time                 | ON to OFF: 2 ms or less, OFF to ON: 1 ms or less                                          |
| Signal Output Variation                  | 250 μs max.                                                                               |

## (3) Restrictions

The following restrictions apply to triggers at preset positions when using the rotational coordinate system.


- Set the output position setting to a value in the range of coordinates (in the range of the settings of Min Position Range Limit (607Bh:01) and Max Position Range Limit (607Bh:02)).
- Set the output distance setting to a value less than half the range of coordinates (the range of the settings of Min Position Range Limit (607Bh:01) and Max Position Range Limit (607Bh:02)).

# 6.15.2 I/O Signal Connector (CN1) Pin Layout

The following figure gives the pin layout of the I/O signal connector (CN1) when using triggers at preset positions.

For the high-speed outputs for triggers at preset positions, allocate and wire High-Speed Output Signal for Triggers at Preset Positions 1 to 3 to CN1-17 to CN1-22.

For the normal outputs for triggers at preset positions, allocate and wire Normal Output Signal for Triggers at Preset Positions 1 to 3 to CN1-1, CN1-2, or CN1-23 to CN1-26.



The illustration to the left and the following table are from the direction of the following arrow without the connector shell attached.



<sup>\*2</sup> This value is when a  $\Sigma$ -X-series rotary servomotor is connected.

| 2  | /SO1-<br>(/BK-) * <i>I</i> | Normal Output<br>for Triggers at<br>Preset Positions<br>1<br>(Brake Output) | 1  | /SO1+<br>(/BK+) * <i>I</i> | Normal Output<br>for Triggers at<br>Preset Positions<br>1<br>(Brake Output) | 15 | BAT-             | Battery for<br>Absolute<br>Encoder (-)                          | 14 | BAT+               | Battery for<br>Absolute<br>Encoder (+)                          |
|----|----------------------------|-----------------------------------------------------------------------------|----|----------------------------|-----------------------------------------------------------------------------|----|------------------|-----------------------------------------------------------------|----|--------------------|-----------------------------------------------------------------|
| 4  | ALM-                       | Servo Alarm<br>Output                                                       | 3  | ALM+                       | Servo Alarm<br>Output                                                       | 17 | PAO *2<br>(HSO1) | High-Speed<br>Output for Trig-<br>gers at Preset<br>Positions 1 | 16 | SG                 | Signal Ground                                                   |
| 6  | +24VIN                     | Sequence Input<br>Signal Power<br>Supply Input                              | 5  | ТН                         | Overheat Protection Input                                                   | 19 | PBO *2<br>(HSO2) | High-Speed<br>Output for Trig-<br>gers at Preset<br>Positions 2 | 18 | /PAO *2<br>(/HSO1) | High-Speed<br>Output for Trig-<br>gers at Preset<br>Positions 1 |
| 8  | /SI2<br>(N-OT)             | General-Purpose Sequence Input 2                                            | 7  | /SI1<br>(P-OT)             | General-Purpose Sequence Input 1                                            | 21 | PCO *2<br>(HSO3) | High-Speed<br>Output for Trig-<br>gers at Preset<br>Positions 3 | 20 | /PBO *2<br>(/HSO2) | High-Speed<br>Output for Trig-<br>gers at Preset<br>Positions 2 |
| 10 | /SI4<br>(/Probe1)          | General-Purpose Sequence Input 4                                            | 9  | /SI3                       | General-Purpose Sequence Input 3                                            | 23 | /SO2+ * <i>I</i> | Normal Output<br>for Triggers at<br>Preset Positions<br>2       | 22 | /PCO *2<br>(/HSO3) | High-Speed<br>Output for Trig-<br>gers at Preset<br>Positions 3 |
| 12 | /SI6<br>(/Home)            | General-Pur-<br>pose Sequence<br>Input 6                                    | 11 | /SI5<br>(/Probe2)          | General-Purpose Sequence Input 5                                            | 25 | /SO3+ * <i>I</i> | Normal Output<br>for Triggers at<br>Preset Positions<br>3       | 24 | /SO2- *1           | Normal Output<br>for Triggers at<br>Preset Positions<br>2       |
| _  | _                          | _                                                                           | 13 | /SI0                       | General-Purpose Sequence Input 0                                            | -  | _                | _                                                               | 26 | /SO3- *1           | Normal Output<br>for Triggers at<br>Preset Positions<br>3       |

<sup>\*1</sup> When Pn660 is set to n.1 \( \pi \) (enable triggers at preset positions), the normal outputs for triggers at preset positions are used. The output signals for triggers at preset positions are output using logical OR. This allows other output signals to also be allocated to the same terminals.

# 6.15.3 Procedure to Use Triggers at Preset Positions

The following table gives the steps to use triggers at preset positions.

| Step | Item                                                                                                                                                                                                                                                                                                                                                                      | Reference                                                                                  |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|
| 1    | Parameter Settings                                                                                                                                                                                                                                                                                                                                                        | _                                                                                          |  |  |
| 1-1  | Set Pn50A to n.□□□2 (use Pn590 to Pn5BC (Sigma-LINK II input signal allocation mode)).  Note:  If Pn50A is not set to n.□□□2, A.042 (Parameter Combination Error) will occur.                                                                                                                                                                                             | (c) Input Signal Allocation Mode Setting on page 277                                       |  |  |
| 1-2  | Set Pn590 to Pn5BC (SigmaLINK II input signal allocation mode).                                                                                                                                                                                                                                                                                                           | 709 17.1.2 List of Parameters on page                                                      |  |  |
|      | Set the signal polarity with Pn5D7 (Output Signal Inversion for Triggers at Preset Positions).                                                                                                                                                                                                                                                                            |                                                                                            |  |  |
| 1-3  | Information  You can use the EtherCAT object Controlword_VenderS  (2776h) to forcibly stop the triggers at preset positions output signals. This allows triggers at preset positions to be paused when necessary, such as during an origin return operation.  Refer to the following section for details on the settings.  15.6.3 Controlword_VenderS (2776h) on page 613 | (e) Inverse Settings for Output Signals<br>for Triggers at Preset Positions on<br>page 278 |  |  |
| 1-4  | Set $Pn660 = n.\square\square\square X$ (Output Unit Setting).                                                                                                                                                                                                                                                                                                            | (b) Output Unit Setting on page 277                                                        |  |  |
| 1-5  | Set Pn660 to n.1 \( \pi \) (enable triggers at preset positions).                                                                                                                                                                                                                                                                                                         | (a) Triggers at Preset Positions Function Selection on page 277                            |  |  |

Continued on next page.

<sup>\*2</sup> When Pn660 is set to n.1uuu (enable triggers at preset positions), the high-speed outputs for triggers at preset positions are used. Encoder divided pulses are not output.

### Continued from previous page.

| St | tep | Item                                                                                                                                                                    | Reference                                                            |
|----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
|    | 2   | Turn the power to the SERVOPACK OFF and ON again.                                                                                                                       | _                                                                    |
|    | 3   | Edit the triggers at preset positions table in the SigmaWin+.  Information  You can also use an EtherCAT object to configure the triggers at preset positions table. *1 |                                                                      |
|    | 3-1 | Set the output position in reference units.                                                                                                                             |                                                                      |
|    | 3-2 | Set the axis number, output terminal selection, passing direction selection, and encoder selection with the output function selection.                                  | (2) Configuring the Triggers at Preset Positions Table on page 278   |
|    | 3-3 | If Pn660 is set to n. $\Box\Box\Box$ 0, set the signal output width in the output distance of the triggers at preset positions table as a time in $\mu$ s.              | (3) Details on the Triggers at Preset<br>Positions Table on page 280 |
|    | 3-4 | If Pn660 is set to n. \( \pi \pi \)1, set the signal output width in the output time of the triggers at preset positions table as a distance in reference units.        |                                                                      |
|    | 3-5 | Set the output position compensation as a distance in reference units.                                                                                                  |                                                                      |
|    | 3-6 | Save the triggers at preset positions table to flash memory.                                                                                                            |                                                                      |
|    | 4   | Operate the servomotor from the host controller.  When the moving part of the machine passes a preset position, a trigger at preset position signal will be output.     | _                                                                    |

<sup>\*1</sup> Refer to the following sections for details on settings configured by using objects.

3 15.5.10 Output Position Setting (2778h) on page 609

15.5.11 Output Function Setting (2779h) on page 609

15.5.12 Output Time Setting (277Ah) on page 610

15.5.13 Output Distance Setting (277Bh) on page 610

15.5.14 Output Position Correction Setting (277Ch) on page 610

Refer to the following section for the procedure to save the settings.

(a) Example Settings for Triggers at Preset Positions on page 606

## (1) Parameter Settings

### (a) Triggers at Preset Positions Function Selection

Select the triggers at preset positions function with  $Pn660 = n.X_{\square\square\square}$  (Triggers at Preset Positions Selections).

|         |        | Triggers     | When Enabled                          |               |
|---------|--------|--------------|---------------------------------------|---------------|
| Pn660   | n.X000 | 0<br>Default | Disable triggers at preset positions. |               |
| (2660h) |        | 1            | Enable triggers at preset positions.  | After restart |
|         |        | 2            | Reserved (Do not use.)                |               |

### (b) Output Unit Setting

Set the output width of the preset position output signals to time [ $\mu$ s] or distance [reference units] with Pn660 = n.  $\Box \Box \Box X$  (Output Unit Setting).

|                                                                | Outpu  | Output U     | nit Setting Speed Pos Trq                   | When Enabled  |
|----------------------------------------------------------------|--------|--------------|---------------------------------------------|---------------|
| Pn660<br>(2660h)                                               | n.□□□X | 0<br>Default | Set the signal output width as a time [µs]. | After restart |
| 1 Set the signal output width as a distance [reference units]. |        |              |                                             |               |

### (c) Input Signal Allocation Mode Setting

Set the input signal allocation mode to  $Pn50A = n.\Box\Box\Box 2$  (use Pn590 to Pn5BC (Sigma-LINK II input signal allocation mode)).

### Note

If Pn50A is not set to n.□□□2, A.042 (Parameter Combination Error) will occur.

|                  |        | Input Sig    | nal Allocation Mode Speed Pos Trq                                    | When Enabled  |
|------------------|--------|--------------|----------------------------------------------------------------------|---------------|
| D:: 50 A         | n.□□□X | 0            | Reserved (Do not use.)                                               |               |
| Pn50A<br>(250Ah) |        | 1<br>Default | Use Pn50A to Pn516 (Sigma-7S-compatible I/O signal allocation mode). | After restart |
|                  |        | 2            | Use Pn590 to Pn5BC (SigmaLINK II input signal allocation mode).      |               |

### (d) Signal Allocations

Set the signal allocations with Pn590 to Pn5BC (SigmaLINK II input signal allocation mode). Refer to the following sections for details on the parameters.

3 17.1.2 List of Parameters on page 709

### (e) Inverse Settings for Output Signals for Triggers at Preset Positions

The output signals for triggers at preset positions can be inverted with Pn5D7 (Output Signal Inversion for Triggers at Preset Positions).

|         |        | High-Spe<br>Preset Po  | eed Output Signal Inverse Settings for Triggers at Speed Pos Trq ositions           | When Enabled  |  |  |  |
|---------|--------|------------------------|-------------------------------------------------------------------------------------|---------------|--|--|--|
|         |        | 0<br>Default           | The signal is not inverted.                                                         |               |  |  |  |
|         |        | 1                      | Invert CN1-17, -18 (PAO) and output it.                                             |               |  |  |  |
| Pn5D7   |        | 2                      | 2 Invert CN1-19, -20 (PBO) and output it.                                           |               |  |  |  |
| (25D7h) | n.□□□X | 3                      | Invert CN1-17, -18 (PAO) and CN1-19, -20 (PBO) and output them.                     | 4.0           |  |  |  |
|         |        | 4                      | Invert CN1-21, -22 (PCO) and output it.                                             | After restart |  |  |  |
|         |        | 5                      | Invert CN1-17, -18 (PAO) and CN1-21, -22 (PCO) and output them.                     |               |  |  |  |
|         |        | 6                      | Invert CN1-19, -20 (PBO) and CN1-21, -22 (PCO) and output them.                     |               |  |  |  |
|         |        | 7                      | Invert CN1-17, -18 (PAO), CN1-19, -20 (PBO), and CN1-21, -22 (PCO) and output them. |               |  |  |  |
|         |        | Normal C<br>set Positi | Output Signal Inverse Settings for Triggers at Preons 1                             | When Enabled  |  |  |  |
|         |        | 0<br>Default           | The signal is not inverted.                                                         |               |  |  |  |
|         |        | 1                      | Invert CN1-1, -2 (SO1) and output it.                                               |               |  |  |  |
| Pn5D7   |        | 2                      | Invert CN1-23, -24 (SO2) and output it.                                             |               |  |  |  |
| (25D7h) | n.□□X□ | 3                      | Invert CN1-1, -2 (SO1) and CN1-23, -24 (SO2) and output them.                       | After restart |  |  |  |
|         |        | 4                      | Invert CN1-25, -26 (SO3) and output it.                                             | After restart |  |  |  |
|         |        | 5                      | Invert CN1-1, -2 (SO1) and CN1-25, -26 (SO3) and output them.                       |               |  |  |  |
|         |        | 6                      | Invert CN1-23, -24 (SO2) and CN1-25, -26 (SO3) and output them.                     |               |  |  |  |
|         |        | 7                      | Invert CN1-1, -2 (SO1), CN1-23, -24 (SO2), and CN1-25, -26 (SO3) and output them.   |               |  |  |  |

### Note:

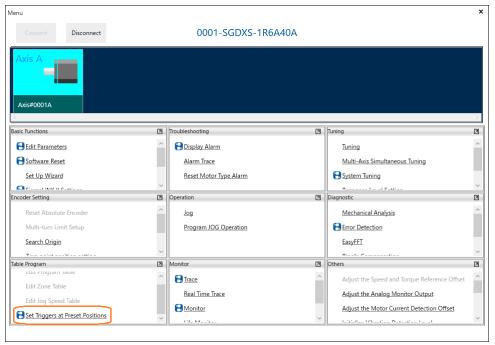
The output signals for triggers at preset positions are output using OR circuits. This allows other signals set with Pn5B0 to Pn5BC to be allocated to SO1 to SO3. Be careful when setting the output signals.

# (2) Configuring the Triggers at Preset Positions Table

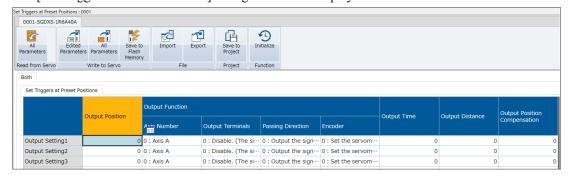
This section provides the procedure to configure the triggers at preset positions table from the SigmaWin+.

The flow of operation from making settings for triggers at preset positions through writing data to the SERVO-PACK is described. Refer to the following manual for details on editing tables on the SigmaWin+.

Engineering Tool SigmaWin+ Operation Manual (Manual No.: SIET S800001 34)


Information

You can also use an EtherCAT object to configure the triggers at preset positions table. Refer to the following sections for details on settings configured by using objects.


- 15.5.10 Output Position Setting (2778h) on page 609
- 15.5.11 Output Function Setting (2779h) on page 609
- 15.5.12 Output Time Setting (277Ah) on page 610
- 15.5.13 Output Distance Setting (277Bh) on page 610
- 15.5.14 Output Position Correction Setting (277Ch) on page 610

Refer to the following section for the procedure to save the settings.

- (a) Example Settings for Triggers at Preset Positions on page 606
- 1. Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.
- $2. \hspace{0.1in}$  Select [Set Triggers at Preset Positions] in [Table Program].



The [Set Triggers at Preset Positions] dialog box will be displayed.



3. Set the items for the Output Setting 1 to 32 to use.

Refer to the following section for details on the settings.

(3) Details on the Triggers at Preset Positions Table on page 280

4. After the settings are completed, click the [All Parameters] button.

The edited data will be written to the volatile memory in the SERVOPACK.

5. Click the [Save to Flash Memory] button.

The edited data will be written to the non-volatile memory in the SERVOPACK.

Note

When you write edited data to the SERVOPACK, you must save it to flash memory. If the data is not saved to flash memory, the edited data will be erased from memory when the power to the SERVOPACK is turned OFF.

This concludes the procedure to configure the triggers at preset positions table.

### (3) Details on the Triggers at Preset Positions Table



The polarity of the output signals for triggers at preset positions can be inverted with Pn5D7 (Output Signal Inversion for Triggers at Preset Positions). Check the settings of Pn5D7 when allocating the output signals for triggers at preset positions.

The details of the triggers at preset positions table are shown below.

|                  | (a)             | (D)             | (C)         | (a)             | (e)                             |
|------------------|-----------------|-----------------|-------------|-----------------|---------------------------------|
| Name             | Output Position | Output Function | Output Time | Output Distance | Output Position<br>Compensation |
| Output Setting 1 |                 |                 |             |                 |                                 |
| Output Setting 2 |                 |                 |             |                 |                                 |
| Output Setting 3 |                 |                 |             |                 |                                 |
| :                |                 |                 |             |                 |                                 |
|                  |                 |                 |             |                 |                                 |

### (a) Output Position

Output Setting 32

Set the reference position for outputting a signal for the trigger at the preset position.

| Size | Setting Range             | Setting Unit      | Default Setting | When Enabled | Classification |
|------|---------------------------|-------------------|-----------------|--------------|----------------|
| 4    | -2147483648 to 2147483647 | Reference unit *1 | 0               | Immediately  | Setup          |

<sup>\*1</sup> When an external encoder is selected in the output function (third digit), the setting unit is the external encoder resolution.

### (b) Output Function

Select the axis number, output terminals, signal logic, and passing direction to use for the trigger at the preset position.

| Size | Setting Range Setting Unit Default Setting |                | When Enabled | Classification |       |
|------|--------------------------------------------|----------------|--------------|----------------|-------|
| 4    | 00000000h to<br>000112A2h                  | Reference unit | 00000000h    | *1             | Setup |

<sup>\*1</sup> The passing direction (second digit) is enabled immediately after it is changed. The other digits are enabled after the power is turned OFF and ON again or after the parameters are recalculated.

| Digit | Name                      | Setting | Description                                                                                             |
|-------|---------------------------|---------|---------------------------------------------------------------------------------------------------------|
| 0     | Axis No.                  | 0       | Set the axis number to 0.                                                                               |
|       |                           | 0       | Disable. (The signal is not output.)                                                                    |
|       |                           | 1       | Output HSO1 (High-Speed Output Signal for Triggers at Preset Positions 1) signal from the PAO terminal. |
|       |                           | 2       | Output HSO2 (High-Speed Output Signal for Triggers at Preset Positions 2) signal from the PBO terminal. |
| ,     |                           | 3       | Output HSO3 (High-Speed Output Signal for Triggers at Preset Positions 3) signal from the PCO terminal. |
| 1     | Output Terminal Selection | 4       | Output /NSO1 (Normal Output Signal for Triggers at Preset Positions 1) signal from the /SO1 terminal.   |
|       |                           | 5       | Output /NSO2 (Normal Output Signal for Triggers at Preset Positions 2) signal from the /SO2 terminal.   |
|       |                           | 6       | Output /NSO3 (Normal Output Signal for Triggers at Preset Positions 3) signal from the /SO3 terminal.   |
|       |                           | 7 to F  | Disable. (The signal is not output.)                                                                    |

Continued on next page.

Continued from previous page.

| Digit  | Name                        | Setting | Description                                                                  |  |  |
|--------|-----------------------------|---------|------------------------------------------------------------------------------|--|--|
|        |                             | 0       | Output the signal at the preset position during forward movement.            |  |  |
| 2      | Passing Direction Selection | 1       | Output the signal at the preset position during reverse movement.            |  |  |
|        |                             | 2       | Output the signal at the preset position during forward or reverse movement. |  |  |
| 2      | Encoder Selection           | 0 *1    | Set the servomotor encoder position as the reference.                        |  |  |
| 3      |                             | 1       | Set the external encoder monitor position as the reference.                  |  |  |
| 4 to 7 | Reserved (Do not change.)   |         |                                                                              |  |  |

<sup>\*1</sup> When Pn002 is set to n.1 \( \pi \) (the external encoder moves in the forward direction for CCW motor rotation) or n.3 \( \pi \) (the external encoder moves in the reverse direction for CCW motor rotation), the signal can be output at the position of the fully-closed encoder by setting the encoder selection value to 0.

### (c) Output Time

Set the output time of the preset position signal output. This is valid when Pn660 is set to  $n.\Box\Box\Box0$  (set the signal output width as a time [ $\mu$ s]).

| Size | Setting Range | Setting Unit | Default Setting | When Enabled | Classification |
|------|---------------|--------------|-----------------|--------------|----------------|
| 4    | 0 to 32767000 | 1 μs         | 0               | Immediately  | Setup          |

### (d) Output Distance

Set the output width of the output signals for triggers at preset positions as distance. This is valid when Pn660 is set to  $n.\square\square\square1$  (set the signal output width as a distance [reference units]).

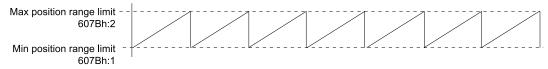
| Size | Setting Range   | Setting Unit   | Default Setting | When Enabled | Classification |
|------|-----------------|----------------|-----------------|--------------|----------------|
| 4    | 0 to 2147483647 | Reference unit | 0               | Immediately  | Setup          |

### (e) Output Position Compensation

Set the compensation distance in reference units from the reference position set in the output position setting.

| Size | Setting Range             | Setting Unit   | Default Setting | When Enabled | Classification |
|------|---------------------------|----------------|-----------------|--------------|----------------|
| 4    | -2147483648 to 2147483647 | Reference unit | 0               | Immediately  | Setup          |

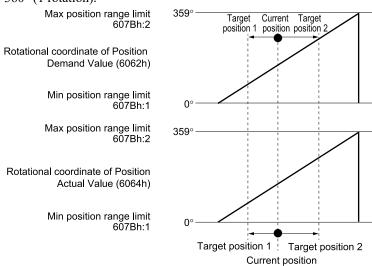
# 6.16 Rotational Coordinate System

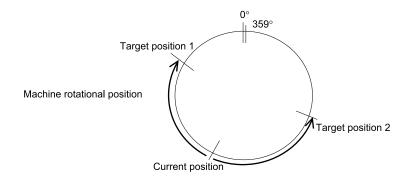

### **6.16.1** Outline

You can set the range of the rotational coordinate system for position data ((Position Demand Value (6062h) and Position Actual Value (6064h)) with Position Range Limit (607Bh).

The coordinates will be in the range that is set with Min Position Range Limit (607Bh:01) and Max Position Range Limit (607Bh:02).

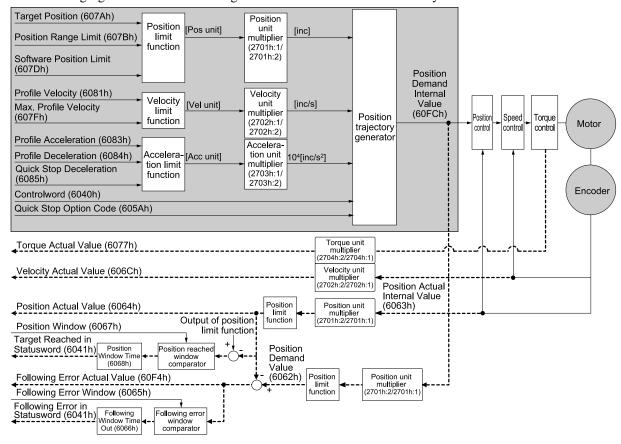
This function is enabled after the power is turned OFF and ON again or after User Parameter Configuration (2700h) is executed from the host controller.


The following figure illustrates the operation of the rotational coordinate system.






- Confirm that the system (e.g., host controller) supports the rotational coordinate system over EtherCAT communications. There is a risk of unexpected operation if the system does not support the rotational coordinate system.
- The rotational coordinate system is enabled when Min Position Range Limit (607Bh:1) or Max Position Range Limit (607Bh:2) is not set to 0.


The following figure gives an example of operation when the range of the rotational coordinates for the system is 360° (1 rotation).





### 6.16.2 Block Diagrams

The following figure shows the block diagram when the rotational coordinate system is enabled.



# 6.16.3 Supported Modes of Operation When the Rotational Coordinate System Is Enabled

| Modes of Operation               | Reference      | Monitoring |
|----------------------------------|----------------|------------|
| Profile Position Mode            | Supported.     | Supported. |
| Interpolated Position Mode       | Supported.     | Supported. |
| Cyclic Synchronous Position Mode | Supported.     | Supported. |
| Homing                           | Supported.     | Supported. |
| Profile Velocity Mode            | Not supported. | Supported. |
| Cyclic Syncronous Velocity Mode  | Not supported. | Supported. |
| Profile Torque Mode              | Not supported. | Supported. |
| Cyclic Sync Torque Mode          | Not supported. | Supported. |

# 6.16.4 Setup Procedure

The following table gives the procedure for making settings for the rotational coordinate system.

### · When Using an Absolute Encoder

| Step | Description                                                                                                                                                         |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Set the first rotational coordinate in Min Position Range Limit (607Bh:1) and the last rotational coordinate in Max Position Range Limit (607Bh:2).                 |
| 2    | Set the multiturn limit to match the machine rotational coordinate system. Refer to the following section for details.  [3] Setting the Multiturn Limit on page 284 |
| 3    | Set the absolute encoder origin offset in Home Offset (607Ch). Refer to the following section for details.  3.16.1 Absolute Encoder Origin Offset on page 204       |
| 4    | Turn the SERVOPACK power OFF and ON again or execute User Parameter Configuration (2700h) from the host controller. */                                              |
| 5    | Set Position Option Code (60F2h).                                                                                                                                   |
| 6    | Start operation.                                                                                                                                                    |

### · When Using an Incremental Encoder

| Step                                                                                               | Description                                                                                                                                         |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                                  | Set the first rotational coordinate in Min Position Range Limit (607Bh:1) and the last rotational coordinate in Max Position Range Limit (607Bh:2). |
| Turn the SERVOPACK power OFF and ON again or execute User Parameter Configuration (2700h) from the |                                                                                                                                                     |
| 3                                                                                                  | Execute an origin return.                                                                                                                           |
| 4                                                                                                  | Set Position Option Code (60F2h).                                                                                                                   |
| 5                                                                                                  | Start operation.                                                                                                                                    |

<sup>\*1</sup> Even if you set User Parameter Configuration (2700h), Min Position Range Limit (607Bh:1), Max Position Range Limit (607Bh:2), and Home Offset (607Ch) will not be saved in non-volatile memory. Refer to the following section for details on saving to non-volatile memory.

3 15.2.5 Store Parameters (1010h) on page 587

# (1) Setting the Rotational Coordinate System

Set the first and last rotational coordinates with the following object.

| Index | Subindex | Name                     | Data Type | Access | PDO<br>Mapping | Value                                           | Saving to EEPROM |
|-------|----------|--------------------------|-----------|--------|----------------|-------------------------------------------------|------------------|
|       | 0        | Number of entries        | USINT     | RO     | No             | 2                                               | No               |
| 607Bh | 1        | Min position range limit | DINT      | RW     | Yes            | -2147483648 to 0<br>(default: 0) [Pos.<br>unit] | Yes              |
|       | 2        | Max position range limit | DINT      | RW     | Yes            | 0 to 2147483647<br>(default: 0) [Pos.<br>unit]  | Yes              |

### Note:

To enable the object, turn the power OFF and ON again or execute User Parameter Configuration (2700h) from the host controller.



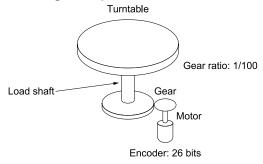
- 607Bh: 01 and 607Bh: 02 are set to 0, operation will be performed with linear coordinates (-2147483648 to 2147483647).
- In Reverse Rotation Mode (Pn000 = n. und 1), the motor will operate in the reverse direction, but 607Bh:01 and 607Bh:02 are set to the same direction as the reference direction.
- When the rotational coordinate system is enabled (Min Position Range Limit (607Bh:1) or Max Position Range Limit (607Bh:2) is not set to 0), Software Position Limit (607Dh) is disabled.
- When the rotational coordinate system is enabled (Min Position Range Limit (607Bh:1) or Max Position Range Limit (607Bh:2) is not set to 0), the Touch Probe 1 Positive Edge (60BAh) and Touch Probe 2 Positive Edge (60BCh) latch positions by touch probe are output after being converted to rotational coordinates.

# (2) Setting the Multiturn Limit

When you use an absolute encoder, set the multiturn limit to match the rotational coordinate system that is used by the system.

When using a rotational coordinate system, be sure to set the multiturn limit based on the following example.

### Refer to the following section for details on the setting the multiturn limit.


■ 6.8.7 Multiturn Limit Setting on page 250

|                  | Multiturn Limit Speed Pos T |              |                 |               |  |
|------------------|-----------------------------|--------------|-----------------|---------------|--|
| Pn205<br>(2205h) | Setting Range               | Setting Unit | Default Setting | When Enabled  |  |
| (220011)         | 0 to 65535                  | 1 rev        | 65535           | After restart |  |

#### Note:

To enable the multiturn limit, turn the power OFF and ON again or execute User Parameter Configuration (2700h) from the host controller.

### <Setting Example for the Multiturn Limit (Pn205)>



Conditions

A turntable is controlled with rotational coordinates where one revolution equals 360°, which is equal to 36000 refer-

Max position range limit (607Bh:2): 0 Min position range limit (607Bh:1): 35999

Gear ratio: 1/100

The electronic gear ratio is as follows:

$$\frac{B}{A} = \frac{\text{Numerator}}{\text{Denominator}} = \frac{\text{Encoder resolution}}{\text{Travel amount per load shaft rotation (reference unit)}} \times \frac{m}{m}$$

$$= \frac{67108864}{360000} \times \frac{100}{1} = \frac{67108864}{3600}$$

With this gear ratio, the motor will turn 100 times for 1 revolution of the turntable. The Multiturn Limit (Pn205) is therefore 99 (100 - 1 = 99).

### Note

For the settings related to the electronic gear, use objects 2701h to 2704h. Refer to the following section for details.

■ 15.5 Manufacturer Specific Objects on page 602

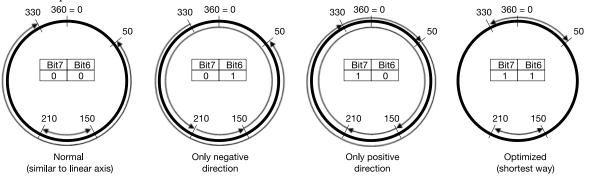


If the multiturn limit is not set to match the machine rotational coordinate system, the position may become offset.

# (3) Setting the Moving Method of the Rotational Coordinate System

Set the movement in rotational coordinates with Position Option Code (60F2h).

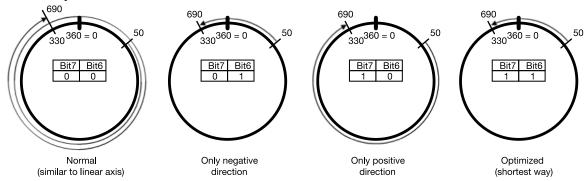
| Index | Subindex | Name                 | Data Type | Access | PDO<br>Mapping | Value                    | Saving to EEPROM |
|-------|----------|----------------------|-----------|--------|----------------|--------------------------|------------------|
| 60F2h | 0        | Position option code | UINT      | RW     | Yes            | 0 to 0xFFFF (default: 0) | No               |


### (a) Data Description

| Bit     | Value | Name                            | Description                           |  |
|---------|-------|---------------------------------|---------------------------------------|--|
| 0 to 5  | 0     | _                               | Reserved.                             |  |
|         | 0     | Normal (similar to linear axis) | Simple absolute position positioning  |  |
| 6.7     | 1     | Only negative direction         | Positioning in the reverse direction  |  |
| 6, 7    | 2     | Only negative direction         | Positioning in the forward direction  |  |
|         | 3     | Optimized (shortest way)        | Positioning in the shortest direction |  |
| 8 to 15 | 0     | _                               | Reserved.                             |  |

### (b) Example 1 (Target Position Is Inside the Rotational Coordinate System)

These examples show the operation when positioning is performed between  $50^{\circ}$  and  $330^{\circ}$  and between  $150^{\circ}$  and  $210^{\circ}$  in a rotational coordinate system from  $0^{\circ}$  to  $359^{\circ}$ .


In the following examples, there is no difference in the operation whether the target position is an absolute value or relative position.

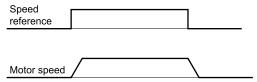


### (c) Example 2 (Target Position Is Outside the Rotational Coordinate System)

These examples show the operation when positioning is performed from  $50^{\circ}$  to  $690^{\circ}$  in a rotational coordinate system from  $0^{\circ}$  to  $359^{\circ}$ . For operations other than absolute position positioning, the target position will be converted to the relevant position inside the rotational coordinate system (operation within one rotation).

In the following examples, there is no difference in the operation whether the target position is an absolute value or relative position.






- If you use the rotational coordinate system in an interpolation feed command (e.g., interpolated position mode or cyclic sync position mode), specify a position between the first and last rotational coordinates as the target position.
- Use this function after setting the position deviation overflow alarm level provided as a protective function to an appropriate value for the system.

# 6.17 Soft Start Settings

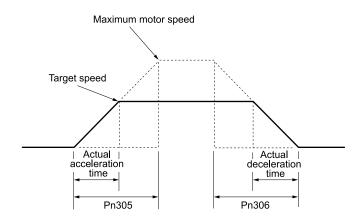
The soft start function takes a stepwise speed reference input and applies the specified acceleration/ deceleration rates to convert it to a trapezoidal speed reference.

You specify the acceleration/deceleration rates in Pn305 (Soft Start Acceleration Time) and Pn306 (Soft Start Deceleration Time).



Use this function to perform smoother speed control (including internal set speed control).

|               | Soft Start Acceleration Time               |              |                 | Speed Pos Trq |  |
|---------------|--------------------------------------------|--------------|-----------------|---------------|--|
| Pn305 (2305h) | Setting Range                              | Setting Unit | Default Setting | When Enabled  |  |
| (200011)      | 0 to 12000                                 | 1 ms         | 0               | Immediately   |  |
|               | Soft Start Deceleration Time Speed Pos Trq |              |                 |               |  |
| Pn306 (2306h) | Setting Range                              | Setting Unit | Default Setting | When Enabled  |  |
| (200011)      | 0 to 12000                                 | 1 ms         | 0               | Immediately   |  |


Pn305: The time required for the servomotor to accelerate from a stopped state to the maximum motor speed.

Pn306: The time required for the servomotor to decelerate from the maximum motor speed to a stopped state.

You can calculate the actual acceleration/deceleration times with the following formulas.

•Actual acceleration time = 
$$\frac{\text{Target speed}}{\text{Maximum motor speed}} \times \text{Pn305 (Soft start acceleration time)}$$

•Actual deceleration time = 
$$\frac{\text{Target speed}}{\text{Maximum motor speed}} \times \text{Pn306 (Soft start deceleration time)}$$



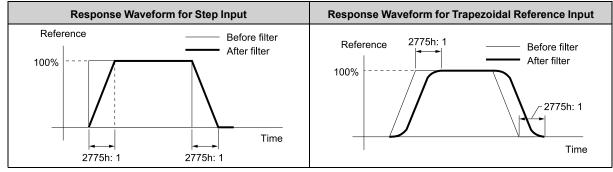
#### **Reference Filters** 6.18

#### 6.18.1 Speed Reference Filter

The speed reference filter smooths the speed reference by applying a first order lag filter to the speed reference

You set the speed reference filter in Pn307 (Speed Reference Filter Time Constant).

It is normally not necessary to change this parameter. If the setting is too high, the response to the speed reference may be slowed down. Monitor the response to the speed reference as you set this parameter.


|                  | Speed Reference Filter Time | Constant     |                 | Speed Pos Trq |
|------------------|-----------------------------|--------------|-----------------|---------------|
| Pn307<br>(2307h) | Setting Range               | Setting Unit | Default Setting | When Enabled  |
| (200711)         | 0 to 65535                  | 0.01 ms      | 0               | Immediately   |

#### **Average Position Reference Movement Filter** 6.18.2

The average position reference movement filter is a function that smooths servomotor rotation by applying an average position reference movement filter to Position Demand Internal Value (60FCh). Smoothing is effective in the following cases.

- When the host controller that outputs the references cannot perform acceleration or deceleration
- · When the electronic gear ratio is 10-times or higher

The following figures show the response waveforms when the average position reference movement filter is applied.



This setting does not affect the travel amount.

The object used to set the average position reference movement filter is given in the following table.

Change the settings while there is no reference input and the servomotor is stopped.

| Index | Subindex | Name                  | Data Type | Access | PDO<br>Mapping | Value                                 | Saving to EEPROM |
|-------|----------|-----------------------|-----------|--------|----------------|---------------------------------------|------------------|
| 2775h | 0        | Number of entries     | USINT     | RO     | No             | 2                                     | No               |
|       | 1        | Movement Average Time | UINT      | RW     | No             | 0 to 5100<br>(default: 0) [0.1<br>ms] | Yes              |
|       | 2        | Reserved              | UINT      | RW     | No             | ı                                     | Yes              |

- The filter is disabled if you set the object to 0.
  - · Changes to the object are not applied while the servomotor is operating. The changes will be enabled the next time the servomotor comes to a stop after reference distribution.

# **Trial Operation and Actual Operation**

Provides information on the flow and procedures for trial operation and convenient functions to use during trial operation.

| 7.1 | Flow of Trial Operation                                  |         |  |  |  |
|-----|----------------------------------------------------------|---------|--|--|--|
|     | 7.1.1 Flow of Trial Operation for Rotary Servomotors     | 290     |  |  |  |
|     | 7.1.2 Flow of Trial Operation for Linear Servomotors     | 291     |  |  |  |
| 7.2 | Inspections and Confirmations before Trial Operation     | 294     |  |  |  |
| 7.3 | Trial Operation for the Servomotor without a Load        | 295     |  |  |  |
|     | 7.3.1 Preparations                                       | 295     |  |  |  |
|     | 7.3.2 Applicable Tools                                   | 296     |  |  |  |
|     | 7.3.3 Operating Procedure                                | 296     |  |  |  |
| 7.4 | Trial Operation with EtherCAT Communications             | 298     |  |  |  |
| 7.5 | Trial Operation with the Servomotor Connected to the Mac | hine299 |  |  |  |
|     | 7.5.1 Precautions                                        | 299     |  |  |  |
|     | 7.5.2 Preparations                                       | 299     |  |  |  |
|     | 7.5.3 Operating Procedure                                | 300     |  |  |  |
| 7.6 | Convenient Function to Use during Trial Operation        | 301     |  |  |  |
|     | 7.6.1 Program Jogging                                    | 301     |  |  |  |
|     | 7.6.2 Origin Search                                      | 306     |  |  |  |
|     | 7.6.3 Test without a Motor                               | 308     |  |  |  |

# 7.1 Flow of Trial Operation

## 7.1.1 Flow of Trial Operation for Rotary Servomotors

The procedure for trial operation is given below.

## (1) Preparations for Trial Operation

#### 1. Installation

Install the servomotor and SERVOPACK according to the conditions.

First, operation is checked with no load. Do not connect the servomotor to the machine.

3 SERVOPACK Installation on page 95

#### 2. Wiring and Connections

Wire and connect the SERVOPACK.

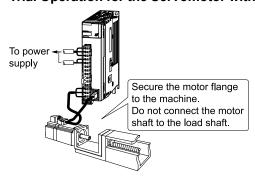
First, servomotor operation is checked without a load. Do not connect the CN1 connector on the SERVOPACK.

3 4 Wiring and Connecting SERVOPACKs on page 105

#### 3. Confirmations before Trial Operation

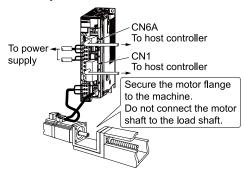
■ 7.2 Inspections and Confirmations before Trial Operation on page 294

#### 4. Power ON


#### 5. Resetting the Absolute Encoder

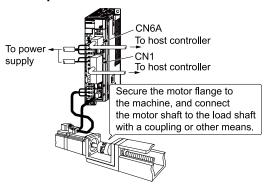
This step is necessary only for a servomotor with an absolute encoder.

■ 5.15 Resetting the Absolute Encoder on page 201


# (2) Trial Operation

#### 1. Trial Operation for the Servomotor without a Load




■ 7.3 Trial Operation for the Servomotor without a Load on page 295

#### 2. Trial Operation with EtherCAT Communications



3.4 Trial Operation with EtherCAT Communications on page 298

#### 3. Trial Operation with the Servomotor Connected to the Machine



\$\overline{G}\$ 7.5 Trial Operation with the Servomotor Connected to the Machine on page 299

# 7.1.2 Flow of Trial Operation for Linear Servomotors

The procedure for trial operation is given below.

## (1) Preparations for Trial Operation

#### 1. Installation

Install the servomotor and SERVOPACK according to the conditions.

First, operation is checked with no load. Do not connect the servomotor to the machine.

3 SERVOPACK Installation on page 95

#### 2. Wiring and Connections

Wire and connect the SERVOPACK.

First, servomotor operation is checked without a load. Do not connect the CN1 connector on the SERVOPACK.

■ 4 Wiring and Connecting SERVOPACKs on page 105

#### 3. Confirmations before Trial Operation

3.2 Inspections and Confirmations before Trial Operation on page 294

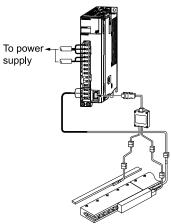
#### 4. Power ON

#### 5. Setting Parameters in the SERVOPACK

| Step | No. of Parameter to Set | Description                                    | Remarks                                                               | Reference                                                                             |
|------|-------------------------|------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 5-1  | Pn282 (2282h)           | Linear Encoder Scale Pitch                     | Set this parameter only if you are using a serial converter unit.     | 5.5 Setting<br>the Linear<br>Encoder Pitch<br>on page 167                             |
| 5-2  | _                       | Writing Parameters to the<br>Linear Servomotor | Set this parameter only if you are not using a serial converter unit. | 5.6 Writing Linear Servo- motor Param- eters on page 168                              |
| 5-3  | Pn080 (2080h) = n.□□X□  | Motor Phase Sequence<br>Selection              | _                                                                     | 5.7 Selecting<br>the Phase<br>Sequence for a<br>Linear Servo-<br>motor on page<br>172 |
| 5-4  | Pn080 (2080h) = n.□□□X  | Polarity Sensor Selection                      | _                                                                     | Sensor Setting on page 174                                                            |

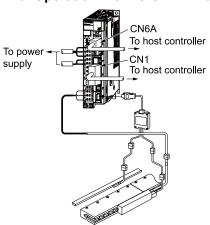
Continued on next page.

Continued from previous page.


| Step | No. of Parameter to Set                                                                                                                    | Description                      | Remarks                                                                     | Reference                                                        |
|------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------|
| 5-5  | _                                                                                                                                          | Polarity Detection               | This step is necessary only for a linear servomotor with a polarity sensor. | 5.9 Polarity Detection on page 175                               |
| 5-6  | <ul> <li>Pn50A (250Ah) = n.</li> <li>X□□□ and Pn50B</li> <li>(250Bh) = n.□□□X</li> <li>Pn590 (2590h) and</li> <li>Pn591 (2591h)</li> </ul> | Overtravel Signal<br>Allocations | _                                                                           | © 5.1-<br>0 Overtravel<br>and Related<br>Settings on<br>page 178 |
| 5-7  | Pn483 (2483h), Pn484<br>(2484h)                                                                                                            | Force Control                    | _                                                                           | © 6.7.1 Internal<br>Torque Limits<br>on page 241                 |

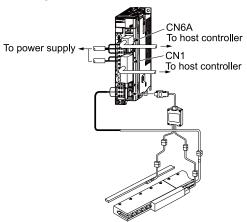
#### 6. Setting the Origin of the Absolute Linear Encoder

■ 5.16.2 Setting the Origin of the Absolute Linear Encoder on page 204


# (2) Trial Operation

1. Trial Operation for the Servomotor without a Load




3 7.3 Trial Operation for the Servomotor without a Load on page 295

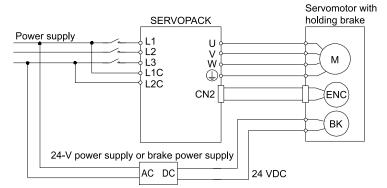
### 2. Trial Operation with EtherCAT Communications



3 7.4 Trial Operation with EtherCAT Communications on page 298

## **Trial Operation with the Servomotor Connected to the Machine**




3.5 Trial Operation with the Servomotor Connected to the Machine on page 299

# 7.2 Inspections and Confirmations before Trial Operation

To ensure safe and correct trial operation, check the following items before you start trial operation.

- Make sure that the SERVOPACK and servomotor are installed, wired, and connected correctly.
- Make sure that the correct power supply voltage is supplied to the SERVOPACK.
- Make sure that there are no loose parts in the servomotor mounting.
- If you are using a servomotor with an oil seal, make sure that the oil seal is not damaged. Also make sure that oil has been applied.
- If you are performing trial operation on a servomotor that has been stored for a long period of time, make sure that all servomotor inspection and maintenance procedures have been completed.

  Refer to the manual for your servomotor for servomotor maintenance and inspection information.
- If you are using a servomotor with a holding brake, make sure that the brake is released in advance. To release
  the brake, you must apply the specified voltage of 24 VDC to the brake.
  A circuit example for trial operation is provided below.



#### Trial Operation for the Servomotor without a Load 7.3

You use jogging operation for trial operation of the servomotor without a load.

Jogging operation is used to check the operation of the servomotor without connecting the SERVOPACK to the host controller. The servomotor is moved at the preset jogging speed.

# CAUTION

During jogging operation, the overtravel function is disabled. Consider the range of motion of your machine when you jog the servomotor.



The tuning-less function is enabled as the default setting. When the tuning-less function is enabled, gain will increase and vibration may occur if the servomotor is operated with no load. If vibration occurs, set Pn170 = n.□□□0 (disable the tuning-Important less function).

#### 7.3.1 **Preparations**

Always check the following before you execute jogging.

- The parameters must not be write prohibited.
- The main circuit power must be ON.
- There must be no alarms.
- There must be no hard wire base block (HWBB).
- The servo must be OFF.
- The jogging speed must be set considering the operating range of the machine. The jogging speed is set with the following parameters.
  - Rotary Servomotors

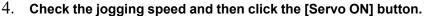
|               | Jogging Speed                |                                                                    |                 | Speed Pos Trq |
|---------------|------------------------------|--------------------------------------------------------------------|-----------------|---------------|
| Pn304         | Setting Range                | Setting Unit                                                       | Default Setting | When Enabled  |
| (2304h)       | 0 to 10000                   | Rotary: 1 min <sup>-1</sup><br>Direct Drive: 0.1 min <sup>-1</sup> | 500             | Immediately   |
|               | Soft Start Acceleration Time | )                                                                  |                 | Speed Pos Trq |
| Pn305 (2305h) | Setting Range                | Setting Unit                                                       | Default Setting | When Enabled  |
| (2000)        | 0 to 12000                   | 1 ms                                                               | 0               | Immediately   |
|               | Soft Start Deceleration Time | е                                                                  |                 | Speed Pos Trq |
| Pn306 (2306h) | Setting Range                | Setting Unit                                                       | Default Setting | When Enabled  |
| (200011)      | 0 to 12000                   | 1 ms                                                               | 0               | Immediately   |

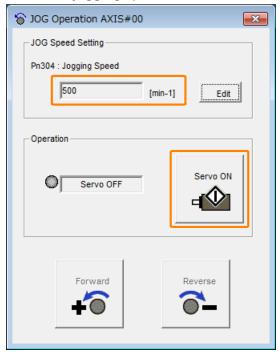
#### - Linear Servomotors

|                  | Jogging Speed                |              |                 | Speed Pos Trq |
|------------------|------------------------------|--------------|-----------------|---------------|
| Pn383 (2383h)    | Setting Range                | Setting Unit | Default Setting | When Enabled  |
| (200011)         | 0 to 10000                   | 1 mm/s       | 50              | Immediately   |
|                  | Soft Start Acceleration Time | 9            |                 | Speed Pos Trq |
| Pn305<br>(2305h) | Setting Range                | Setting Unit | Default Setting | When Enabled  |
| (200011)         | 0 to 12000                   | 1 ms         | 0               | Immediately   |
|                  | Soft Start Deceleration Time | e            |                 | Speed Pos Trq |
| Pn306<br>(2306h) | Setting Range                | Setting Unit | Default Setting | When Enabled  |
|                  | 0 to 12000                   | 1 ms         | 0               | Immediately   |

## 7.3.2 Applicable Tools

The following table lists the tools that you can use to perform jogging.


| Tool             | Fn No./Function Name | Reference                             |
|------------------|----------------------|---------------------------------------|
| Digital Operator | Fn002                |                                       |
| SigmaWin+        | [Operation] - [Jog]  | 7.3.3 Operating Procedure on page 296 |

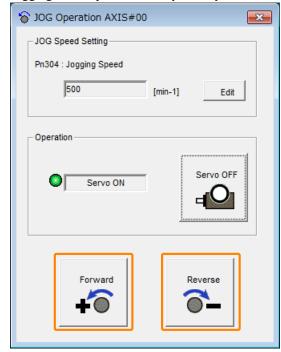

## 7.3.3 Operating Procedure

Use the following procedure to jog the motor.

- 1. Click the [ 🕮 ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.
- 2. Click [Jog] in the [Menu] window.
  The [Jog Operation] window will be displayed.
- 3. Read the warnings and then click the [OK] button.








The display in the [Operation] area will change to [Servo ON].

Information To change the speed, click the [Edit] button and enter the new speed.

#### 5. Click the [Forward] button or the [Reverse] button.

Jogging will be performed only while you hold down the mouse button.



6. Turn the power to the SERVOPACK OFF and ON again after you finish jogging.

This concludes the jogging procedure.

# 7.4 Trial Operation with EtherCAT Communications

A trial operation example for EtherCAT communications is given below.

In this example, operation in Profile Position Mode is described.

Refer to the following chapter for details on operation with EtherCAT communications.

■ 14 CiA402 Drive Profile on page 551

# 1. Confirm that the wiring is correct, and then connect the I/O signal connector (CN1) and EtherCAT communications connector (CN6A).

Refer to the following chapter for details on wiring.

■ 4 Wiring and Connecting SERVOPACKs on page 105

#### 2. Set the EtherCAT communications station address and PDO mappings.

The PDO mappings are set from the host controller. Refer to the following section for details on PDO mappings.

3.5 PDO Mappings on page 545

#### 3. Turn ON the power to the SERVOPACK.

If power is being supplied correctly, the CHARGE indicator on the SERVOPACK will light.

#### Note:

If the COM indicator does not light, recheck the settings of EtherCAT setting switches (S1 and S2) and then turn the power OFF and ON again.

#### 4. Place the EtherCAT communications in the Operational state.

Refer to the following chapter for details on the EtherCAT communications status.

3.3 EtherCAT State Machine on page 542

#### 5. Set the Modes of Operation to Profile Position Mode.

Refer to the following section for details on Modes of Operation.

**3** 15.6.10 Modes of Operation (6060h) on page 618

#### 6. Change the Controlword to supply power to the motor.

When Statusword shows the Operation Enabled state, power is supplied to the motor.

Note:

Manipulate the objects that were mapped to PDOs. Values will not be written if you manipulate SDOs.

# 7. Set target position, profile velocity, profile acceleration, and profile deceleration, and then manipulate Controlword to start positioning.

When Statusword shows the Operation Enabled state, power is supplied to the motor.

Note:

Manipulate the objects that were mapped to PDOs. Values will not be written if you manipulate SDOs.

#### 8. While operation is in progress for step 6, confirm the following items.

| Confirmation Item                                                                                                                                                             | Reference                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Confirm that the rotational direction of the servomotor agrees with the forward or reverse reference. If they do not agree, correct the rotation direction of the servomotor. | 5.4 Motor Direction Setting on page 165                                                  |
| Confirm that no abnormal vibration, noise, or temperature rise occurs. If any abnormalities are found, implement corrections.                                                 | 16.4 Troubleshooting Based on the Operation and Conditions of the Servomotor on page 697 |

#### Note:

If the load machine is not sufficiently broken in before trial operation, the servomotor may become overloaded.

# 7.5 Trial Operation with the Servomotor Connected to the Machine

This section provides the procedure for trial operation with both the machine and servomotor.

#### 7.5.1 Precautions

# **MARNING**

Perform the correct operation with the servomotor connected to the machine.

There is a risk of machine damage or personal injury.



If you disabled the overtravel function for trial operation of the servomotor without a load, enable the overtravel function (P-OT and N-OT signal) before you preform trial operation with the servomotor connected to the machine in order to provide protection.

If you will use a holding brake, observe the following precautions during trial operation.

- Before you check the operation of the brake, implement measures to prevent the machine from falling due to gravity and to prevent vibration from being caused by an external force.
- First check the servomotor operation and brake operation with the servomotor uncoupled from the machine. If no problems are found, connect the servomotor to the machine and perform trial operation again.

Control the operation of the brake with the /BK (Brake Output) signal from the SERVOPACK.

Refer to the following sections for information on wiring and the related parameter settings.

\$\mathbb{G}\$ 4.4.4 Wiring the SERVOPACK to the Holding Brake on page 136

3.11 Holding Brake on page 184



Failures caused by incorrect wiring or incorrect voltage application in the brake circuit may cause the SERVOPACK to fail, damage the SERVOPACK, damage the equipment, or cause an accident resulting in death or injury.

Observe the precautions and instructions for wiring and trial operation precisely as described in this manual.

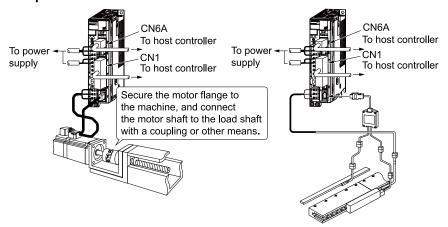
# 7.5.2 Preparations

Always confirm the following before you perform the trial operation procedure for both the machine and servomotor.

- Make sure that the procedure described in the following has been completed. 

  7.4 Trial Operation with EtherCAT Communications on page 298
- Make sure that the SERVOPACK is connected correctly to both the host controller and the peripheral devices.
  - Safety Function wiring
    - If you are not using the Safety Function, leave the safety jumper connector (provided as an accessory with the SERVOPACK) connected to CN8.
    - If you are using the Safety Function, remove the safety jumper connector from CN8 and connect the Safety Function device.
  - Overtravel wiring
  - Brake wiring
  - Allocation of the /BK (Brake) signal to a pin on the I/O signal connector (CN1)
  - Emergency stop circuit wiring
  - Host controller wiring

### 7.5.3 Operating Procedure


 ${f l}$  . Enable the overtravel signals.

\$\overline{G}\$ 5.10.2 Setting to Enable/Disable Overtravel on page 179

- Make the settings for the protective functions, such as the Safety Function, overtravel, and the brake.
  - **3** 4.6 Connecting Safety Function Signals on page 144
  - \$\overline{\pi}\$ 5.10 Overtravel and Related Settings on page 178
  - 3.11 Holding Brake on page 184
- 3. Turn OFF the power to the SERVOPACK.

The control power and main circuit power will turn OFF.

4. Couple the servomotor to the machine.



- 5. Turn ON the power to the machine and host controller and turn ON the control power and main circuit power to the SERVOPACK.
- 6. Check the protective functions, such as overtravel and the brake, to confirm that they operate correctly.

Note

Enable activating an emergency stop so that the servomotor can be stopped safely should an error occur during the remainder of the procedure.

- 7. Perform trial operation according to the following and confirm that the same results are obtained as when trial operation was performed on the servomotor without a load.
  - 3.4 Trial Operation with EtherCAT Communications on page 298
- 8. If necessary, adjust the servo gain to improve the servomotor response characteristics.

The servomotor and machine may not be broken in completely for the trial operation. Therefore, let the system run for a sufficient amount of time to ensure that it is properly broken in.

- 9. For future maintenance, save the parameter settings with one of the following methods.
  - Use the SigmaWin+ to save the parameters as a file.
  - Record the settings manually.

This concludes the procedure for trial operation with both the machine and servomotor.

# 7.6 Convenient Function to Use during Trial Operation

This section describes some convenient operations that you can use during trial operation. Use them as required.

# 7.6.1 Program Jogging

You can use program jogging to perform continuous operation with a preset operation pattern, travel distance, movement speed, acceleration/deceleration time, waiting time, and number of movements.

You can use this operation when you set up the system in the same way as for normal jogging to move the servomotor without connecting it to the host controller in order to check servomotor operation and execute simple positioning operations.

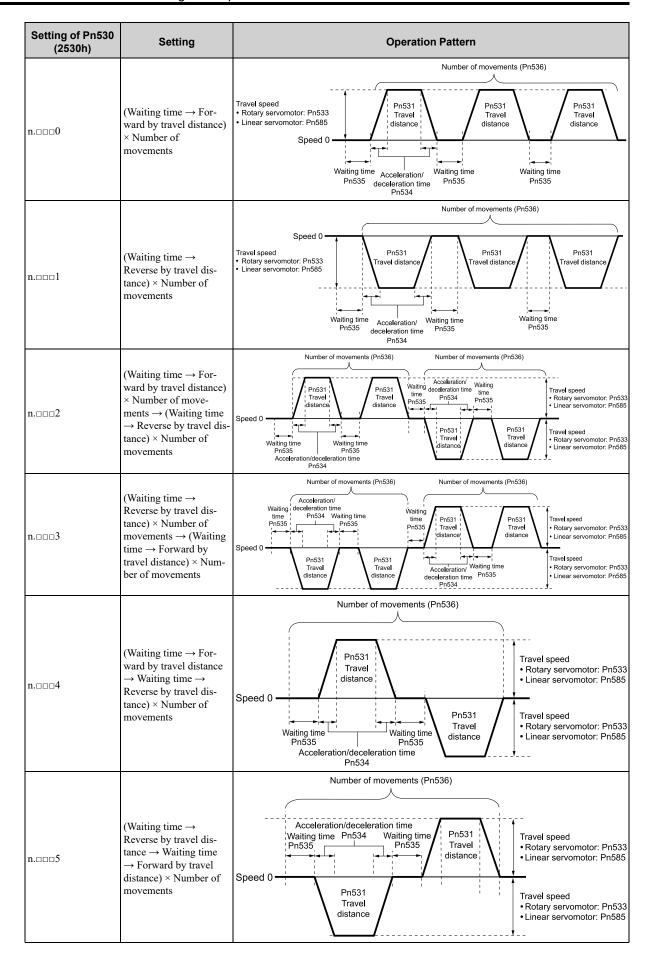
## (1) Preparations

Always check the following before you execute program jogging.

- The parameters must not be write prohibited.
- The main circuit power must be ON.
- There must be no alarms.
- There must be no hard wire base block (HWBB).
- The servo must be OFF.
- The range of machine motion and the safe travel speed of your machine must be considered when you set the travel distance and travel speed.
- There must be no overtravel.
- The settings of Pn533 or Pn585 (Program Jogging Movement Speed) and Pn385 (Maximum Motor Speed) must not satisfy either of the conditional expressions shown below.
   If either of these conditional expressions is satisfied, an A.042 (Parameter Combination Error) will occur.
  - Rotary Servomotors

```
Encoder resolution
  · Pn533 [min<sup>-1</sup>] ×
                              6 \times 10^{5}
                                        Encoder resolution
  · Maximum motor speed [min-1] ×
                                       Approx. 3.66 \times 10^{12}
       Information Refer to the following section for details on the encoder resolution.
                       Encoder Resolution on page 194

    Linear Servomotors


             Pn585 [mm/s]
                                          Number of divisions of the serial converter unit
    Linear encoder scale pitch [µm]
           Pn385 [100 mm/s]
                                          Number of divisions of the serial converter unit
   Linear encoder scale pitch [µm]
                                                         Approx. 6.10×105
```

# (2) Additional Information

- You can use the functions that are applicable to position control. However, functions related to motion control through EtherCAT communications are disabled.
- The overtravel function is enabled.

# (3) Program Jogging Operation Pattern

An example of a program jogging operation pattern is given below. In this example, the motor rotation direction is set to  $Pn000 = n.\Box\Box\Box 0$  (use CCW as the forward direction).



Information If Pn530 is set to n. a logo in Se 0 to perform infinite time operation.

You cannot use infinite time operation if Pn530 is set  $n.\Box\Box\Box$ 2 or  $n.\Box\Box\Box$ 3.

If you perform infinite time operation from the digital operator, press the [JOG/SVON] key to turn OFF the servo to end infinite time operation.

#### (4) **Related Parameters**

Use the following parameters to set the program jogging operation pattern. Do not change the settings while the program jogging operation is being executed.

### (a) Rotary Servomotors

|         |        | Program      | Jogging Operation Pattern Speed Pos Trq                                                                                                                                                            | When Enabled                                                                                                         |                                                                                                                                                                                                    |
|---------|--------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |        | 0<br>Default | (Waiting time in Pn535 (2535h) → Forward by travel distance in Pn531 (2531h)) × Number of movements in Pn536 (2536h)                                                                               |                                                                                                                      |                                                                                                                                                                                                    |
|         |        | 1            | (Waiting time in Pn535 (2535h) → Reverse by travel distance in Pn531 (2531h)) × Number of movements in Pn536 (2536h)                                                                               |                                                                                                                      |                                                                                                                                                                                                    |
|         |        | 2            | (Waiting time in Pn535 (2535h) → Forward by travel distance in Pn531 (2531h)) × Number of movements in Pn536 (2536h)                                                                               |                                                                                                                      |                                                                                                                                                                                                    |
| Pn530   | n.□□□X | Z            | (Waiting time in Pn535 (2535h) → Reverse by travel distance in Pn531 (2531h)) × Number of movements in Pn536 (2536h)                                                                               |                                                                                                                      |                                                                                                                                                                                                    |
| (2530h) |        | 3            | (Waiting time in Pn535 (2535h) → Reverse by travel distance in Pn531 (2531h)) × Number of movements in Pn536 (2536h)                                                                               | Immediately                                                                                                          |                                                                                                                                                                                                    |
|         |        |              | 3                                                                                                                                                                                                  | (Waiting time in Pn535 (2535h) → Forward by travel distance in Pn531 (2531h)) × Number of movements in Pn536 (2536h) |                                                                                                                                                                                                    |
|         |        |              |                                                                                                                                                                                                    | 4                                                                                                                    | (Waiting time in Pn535 (2535h) → Forward by travel distance in Pn531 (2531h) → Waiting time in Pn535 (2535h) → Reverse by travel distance in Pn531 (2531h)) × Number of movements in Pn536 (2536h) |
|         |        | 5            | (Waiting time in Pn535 (2535h) → Reverse by travel distance in Pn531 (2531h) → Waiting time in Pn535 (2535h) → Forward by travel distance in Pn531 (2531h)) × Number of movements in Pn536 (2536h) |                                                                                                                      |                                                                                                                                                                                                    |

|                  | Program Jogging Travel Distance Speed Pos 1                  |                                                                    |                 |               |  |
|------------------|--------------------------------------------------------------|--------------------------------------------------------------------|-----------------|---------------|--|
| Pn531 (2531h)    | Setting Range                                                | Setting Unit                                                       | Default Setting | When Enabled  |  |
| (200)            | 1 to 1073741824                                              | 1 reference unit                                                   | 32768           | Immediately   |  |
|                  | Program Jogging Movement                                     | Speed                                                              |                 | Speed Pos Trq |  |
| Pn533            | Setting Range                                                | Setting Unit                                                       | Default Setting | When Enabled  |  |
| (2533h)          | 1 to 10000                                                   | Rotary: 1 min <sup>-1</sup><br>Direct Drive: 0.1 min <sup>-1</sup> | 500             | Immediately   |  |
|                  | Program Jogging Acceleration/Deceleration Time Speed Pos Trq |                                                                    |                 |               |  |
| Pn534<br>(2534h) | Setting Range                                                | Setting Unit                                                       | Default Setting | When Enabled  |  |
| (====,           | 2 to 10000                                                   | 1 ms                                                               | 100             | Immediately   |  |
|                  | Program Jogging Waiting Time Speed Pos Tro                   |                                                                    |                 |               |  |
| Pn535 (2535h)    | Setting Range                                                | Setting Unit                                                       | Default Setting | When Enabled  |  |
| (2000)           | 0 to 10000                                                   | 1 ms                                                               | 100             | Immediately   |  |
|                  | Program Jogging Number of                                    | Movements                                                          |                 | Speed Pos Trq |  |
| Pn536 (2536h)    | Setting Range                                                | Setting Unit                                                       | Default Setting | When Enabled  |  |
| (2000)           | 0 to 1000                                                    | 1 time                                                             | 1               | Immediately   |  |

#### (b) Linear Servomotors

|         |        | Program                                                                                                              | Jogging Operation Pattern Speed Pos Trq                                                                                                                                                            | When Enabled                                                                                                         |  |
|---------|--------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|
|         |        | 0<br>Default                                                                                                         | (Waiting time in Pn535 (2535h) → Forward by travel distance in Pn531 (2531h)) × Number of movements in Pn536 (2536h)                                                                               |                                                                                                                      |  |
|         |        | (Waiting time in Pn535 (2535h) → Reverse by travel distance in Pn531 (2531h)) × Number of movements in Pn536 (2536h) |                                                                                                                                                                                                    |                                                                                                                      |  |
|         |        | 2                                                                                                                    | (Waiting time in Pn535 (2535h) → Forward by travel distance in Pn531 (2531h)) × Number of movements in Pn536 (2536h)                                                                               |                                                                                                                      |  |
| Pn530   | n.□□□X | 2                                                                                                                    | (Waiting time in Pn535 (2535h) → Reverse by travel distance in Pn531 (2531h)) × Number of movements in Pn536 (2536h)                                                                               |                                                                                                                      |  |
| (2530h) | 11     | 3                                                                                                                    | (Waiting time in Pn535 (2535h) → Reverse by travel distance in Pn531 (2531h)) × Number of movements in Pn536 (2536h)                                                                               | Immediately                                                                                                          |  |
|         |        |                                                                                                                      | _                                                                                                                                                                                                  | (Waiting time in Pn535 (2535h) → Forward by travel distance in Pn531 (2531h)) × Number of movements in Pn536 (2536h) |  |
|         |        | 4                                                                                                                    | (Waiting time in Pn535 (2535h) → Forward by travel distance in Pn531 (2531h) → Waiting time in Pn535 (2535h) → Reverse by travel distance in Pn531 (2531h)) × Number of movements in Pn536 (2536h) |                                                                                                                      |  |
|         |        | 5                                                                                                                    | (Waiting time in Pn535 (2535h) → Reverse by travel distance in Pn531 (2531h) → Waiting time in Pn535 (2535h) → Forward by travel distance in Pn531 (2531h)) × Number of movements in Pn536 (2536h) |                                                                                                                      |  |

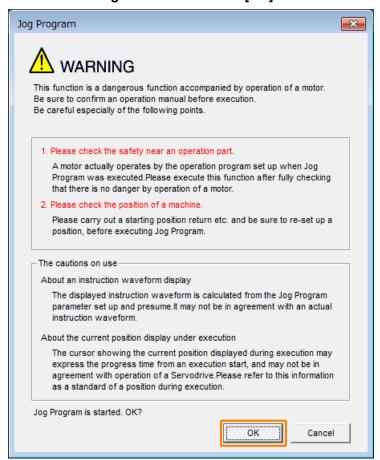
|                  | Program Jogging Travel Dist                | ance                |                 | Speed Pos Trq |  |
|------------------|--------------------------------------------|---------------------|-----------------|---------------|--|
| Pn531 (2531h)    | Setting Range                              | Setting Unit        | Default Setting | When Enabled  |  |
| (200111)         | 1 to 1073741824                            | 1 reference unit    | 32768           | Immediately   |  |
|                  | Program Jogging Movement                   | Speed               |                 | Speed Pos Trq |  |
| Pn585 (2585h)    | Setting Range                              | Setting Unit        | Default Setting | When Enabled  |  |
| (=====)          | 1 to 10000                                 | 1 mm/s              | 50              | Immediately   |  |
|                  | Program Jogging Acceleration               | n/Deceleration Time |                 | Speed Pos Trq |  |
| Pn534<br>(2534h) | Setting Range                              | Setting Unit        | Default Setting | When Enabled  |  |
| (====,           | 2 to 10000                                 | 1 ms                | 100             | Immediately   |  |
|                  | Program Jogging Waiting Time Speed Pos Trq |                     |                 |               |  |
| Pn535 (2535h)    | Setting Range                              | Setting Unit        | Default Setting | When Enabled  |  |
| (2000)           | 0 to 10000                                 | 1 ms                | 100             | Immediately   |  |
|                  | Program Jogging Number of                  | Movements           |                 | Speed Pos Trq |  |
| Pn536 (2536h)    | Setting Range                              | Setting Unit        | Default Setting | When Enabled  |  |
| (200011)         | 0 to 1000                                  | 1 time              | 1               | Immediately   |  |

# (5) Applicable Tools

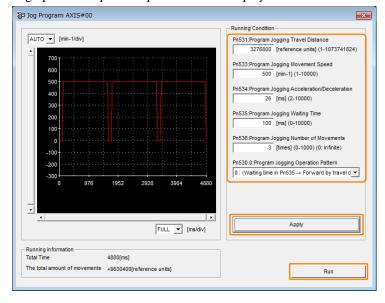
The following table lists the tools that you can use to perform program jogging.

| Tool             | Fn No./Function Name                  | Reference                                                                      |
|------------------|---------------------------------------|--------------------------------------------------------------------------------|
| Digital Operator | Fn004                                 | Σ-7/Σ-X series Digital Operator Operating Manual (Manual No.: SIEP S800001 33) |
| SigmaWin+        | [Operation] - [Program JOG Operation] | (6) Operating Procedure on page 304                                            |

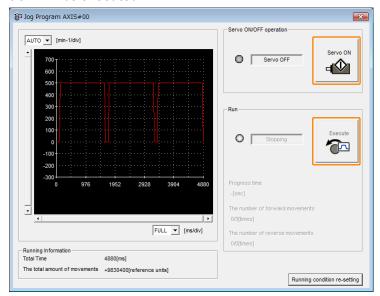
# (6) Operating Procedure


Use the following procedure for program jogging.

1. Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.


2. Click [Jog Program] in the [Menu] window.

The [Jog Program] window will be displayed.


3. Read the warnings and then click the [OK] button.



4. Set the operating conditions, click the [Apply] button, and then click the [Run] button. A graph of the operation pattern will be displayed.



Click the [Servo ON] button and then the [Execute] button. The program jogging operation will be executed.



Important

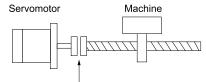
The stopping method if you cancel the program jogging operation while the servomotor is operating is given below.

- If you cancel operation with the [Servo OFF] button, the servomotor will stop according to the setting of  $Pn001 = n.\Box\Box X$  (Motor Stopping Method for Servo OFF).
- If you cancel operation with the [Cancel] button, the servomotor will decelerate to a stop and then enter a zero-clamped state.

This concludes the program jogging procedure.

# 7.6.2 Origin Search

The origin search operation positions the motor to the origin within one rotation and then clamps it there. The overtravel function is disabled during an origin search.


# **CAUTION**

#### Make sure that the load is not coupled when you execute an origin search.

Since the P-OT (Forward Drive Prohibit Input) signal and N-OT (Reverse Drive Prohibit Input) signal are disabled during an origin search, the machine may be damaged by exceeding its movement limits.

Use an origin search when it is necessary to align the origin within one rotation with the machine origin. The following speeds are used for origin searches.

- Rotary servomotors: 60 min-1
- Direct drive servomotors: 6 min-1
- Linear servomotors: 15 mm/s



To align the origin within one encoder rotation with the machine origin

# (1) Preparations

Always check the following before you execute an origin search.

- The load must not be coupled.
- The parameters must not be write prohibited.
- The main circuit power must be ON.
- There must be no alarms.
- There must be no hard wire base block (HWBB).
- The servo must be OFF.

## (2) Applicable Tools

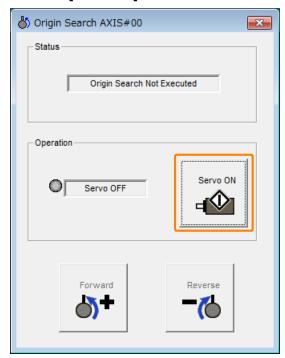
The following table lists the tools that you can use to perform origin search.

| Tool             | Fn No./Function Name                | Reference                                                                      |  |  |
|------------------|-------------------------------------|--------------------------------------------------------------------------------|--|--|
| Digital Operator | Fn003                               | Σ-7/Σ-X series Digital Operator Operating Manual (Manual No.: SIEP S800001 33) |  |  |
| SigmaWin+ */     | [Encoder Setting] - [Origin Search] | (3) Operating Procedure on page 307                                            |  |  |

<sup>\*1</sup> Cannot be used when connecting a linear servomotor.

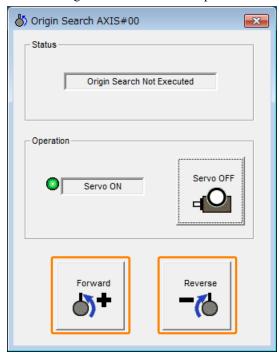
## (3) Operating Procedure

Use the following procedure to perform an origin search.


- 1. Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.
- 2. Click [Origin Search] in the [Menu] window.

The [Origin Search] window will be displayed.

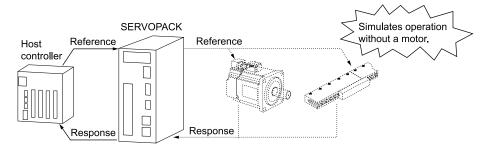
3. Read the warnings and then click the [OK] button.




#### 4. Click the [Servo ON] button.



#### 5. Click the [Forward] button or the [Reverse] button.


An origin search will be performed only while you hold down the mouse button. The motor will stop when the origin search has been completed.



This concludes the origin search procedure.

#### 7.6.3 Test without a Motor

A test without a motor is used to check the operation of the host controller and peripheral devices by simulating the operation of the servomotor in the SERVOPACK, i.e., without actually operating a servomotor. This test allows you to check wiring, debug the system, and verify parameters to shorten the time required for setup work and to prevent damage to the machine that may result from possible malfunctions. The operation of the servomotor can be checked with this test regardless of whether the servomotor is actually connected or not.



Use  $Pn00C = n.\Box\Box\Box X$  to enable or disable the test without a motor.

|                  |        | Function     | Selection for Test without a Motor Speed Pos Trq | When Enabled  |
|------------------|--------|--------------|--------------------------------------------------|---------------|
| Pn00C<br>(200Ch) | n.□□□X | 0<br>Default | Disable tests without a motor.                   | After restart |
|                  |        | 1            | Enable tests without a motor.                    |               |

Information An asterisk is displayed on the status display of the digital operator while a test without a motor is being executed.

## (1) Motor Information and Encoder Information

The motor and encoder information is used during tests without a motor. The source of the information depends on the connection status.

#### (a) Rotary Servomotors

| Motor Connection<br>Status | Information That Is Used                                                                                                 | Source of Information                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Connected                  | Motor information  • Motor rated speed  • Maximum motor speed  Encoder information  • Encoder resolution  • Encoder type | Information in the servomotor that is connected                                                                                                                                                                                                                                                                                                                               |
| Not connected              | Motor information  • Motor rated speed  • Maximum motor speed                                                            | Setting of Pn000 = n.X□□□ (Rotary/Linear Servomotor Startup Selection When Encoder Is Not Connected)     Motor rated speed and maximum motor speed     The values previously saved in the SERVOPACK will be used for the motor rated speed and maximum motor speed.     Use the motor displays (Un020: Motor Rated Speed and Un021: Maximum Motor Speed) to check the values. |
|                            | Encoder information                                                                                                      | Encoder resolution: Setting of Pn00C = n.□□X□ (Encoder Resolution for Tests without a Motor)     Encoder type: Setting of Pn00C = n.□X□□ (Encoder Type Selection for Tests without a Motor)                                                                                                                                                                                   |

If you use fully-closed loop control, the external encoder information is also used.

| External Encoder Con-<br>nection Status | Information That Is Used                                                                | Source of Information                                                                                                                                                        |
|-----------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Connected                               |                                                                                         | Information in the external encoder that is connected                                                                                                                        |
| Not connected                           | <ul> <li>External encoder number of divisions</li> <li>External encoder type</li> </ul> | Because you do not connect an external encoder to the SERVPOACK, the following values will always be displayed.  Number of divisions: 256  Encoder type: Incremental encoder |

#### (b) Linear Servomotor

| Motor Connection<br>Status | Information That Is Used                                                           | Source of Information                                                                                                                                                                                                        |
|----------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | Motor information                                                                  | Information in the motor that is connected                                                                                                                                                                                   |
| Connected                  | Linear encoder information  Number of divisions  Encoder scale pitch  Encoder type | Information in the linear encoder that is connected                                                                                                                                                                          |
|                            | Motor information                                                                  | Setting of Pn000 = n.X \( \pi \) (Rotary/Linear Servomotor Startup Selection When Encoder Is Not Connected)                                                                                                                  |
| Not connected              | Encoder information  Number of divisions  Encoder scale pitch  Encoder type        | <ul> <li>Number of divisions: 256</li> <li>Encoder scale pitch: Setting of Pn282 (Linear Encoder Scale Pitch)</li> <li>Encoder type: Setting of Pn00C = n.□X□□ (Encoder Type Selection for Tests without a Motor)</li> </ul> |

### (c) Related Parameters

|                  |        | Rotary/Li | near Servomotor Startup Selection When Encoder Speed Pos Trq                | When Enabled  |
|------------------|--------|-----------|-----------------------------------------------------------------------------|---------------|
| Pn000<br>(2000h) | n.X□□□ | 1         | When an encoder is not connected, start as SERVOPACK for rotary servomotor. | 4.0           |
|                  |        | 1         | When an encoder is not connected, start as SERVOPACK for linear servomotor. | After restart |

|                  | Linear Encoder Scale Pitch |              |                 | Speed Pos Trq |
|------------------|----------------------------|--------------|-----------------|---------------|
| Pn282<br>(2282h) | Setting Range              | Setting Unit | Default Setting | When Enabled  |
| (220211)         | 0 to 6553600               | 0.01 μm      | 0               | After restart |

|                  |        | Encoder Resolution for Tests without a Motor Speed Pos Trq |                                                        |               |  |  |  |
|------------------|--------|------------------------------------------------------------|--------------------------------------------------------|---------------|--|--|--|
|                  |        | 0                                                          | Use 13 bits.                                           |               |  |  |  |
| D=00C            |        | 1                                                          | Use 20 bits.                                           |               |  |  |  |
| Pn00C<br>(200Ch) | n.□□X□ | 2                                                          | Use 22 bits.                                           | After restart |  |  |  |
|                  |        | 3                                                          | Use 24 bits.                                           |               |  |  |  |
|                  |        | 4<br>Default                                               | Use 26 bits.                                           |               |  |  |  |
|                  |        | Encoder                                                    | Type Selection for Tests without a Motor Speed Pos Trq | When Enabled  |  |  |  |
| Pn00C<br>(200Ch) | n.□X□□ | 0<br>Default                                               | Use an incremental encoder.                            | After restart |  |  |  |
|                  |        | 1                                                          | Use an absolute encoder.                               |               |  |  |  |

# (2) Motor Position and Speed Responses

For a test without a motor, the following responses are simulated for references from the host controller according to the gain settings for position or speed control.

- Motor position
- Motor speed
- External encoder position

The load model will be for a rigid system with the moment of inertia ratio that is set in Pn103.

# (3) Restrictions

The following functions cannot be used during the test without a motor.

- Regeneration and dynamic brake operation
- Brake output signal
- Items marked with "x" in the following utility function table

| 5                           | SigmaWin+                  |        | Digital Operator                                                       | Execu                               | ıtable?                 |                                                                     |
|-----------------------------|----------------------------|--------|------------------------------------------------------------------------|-------------------------------------|-------------------------|---------------------------------------------------------------------|
| Button in<br>Menu<br>Window | SigmaWin+ Function<br>Name | Fn No. | Utility Function Name                                                  | Motor<br>Not<br>Con-<br>nec-<br>ted | Motor<br>Con-<br>nected | Reference                                                           |
|                             | Initialize */              | Fn005  | Initialize Parameters                                                  | 0                                   | 0                       | 5.1.5 Initializing SERVO-<br>PACK Parameter Settings<br>on page 160 |
|                             | Software Reset             | Fn030  | Software Reset                                                         | 0                                   | 0                       | 6.10 Software Reset on page 259                                     |
| Basic<br>Functions          |                            | Fn011  | Display Servomotor Model                                               | 0                                   | 0                       |                                                                     |
| runctions                   |                            | Fn012  | Display Software Version                                               | 0                                   | 0                       |                                                                     |
|                             | Product Information        | Fn01E  | Display SERVOPACK and Servomotor IDs                                   | 0                                   | 0                       | ■ 9.1 Monitoring Product Information on page 452                    |
|                             |                            | Fn01F  | Display Servomotor ID from<br>Feedback Option Module                   | 0                                   | 0                       |                                                                     |
|                             | Reset Absolute Encoder     | Fn008  | Reset Absolute Encoder                                                 | ×                                   | 0                       | 5.15 Resetting the Absolute Encoder on page 201                     |
|                             | Multiturn Limit Setting    | Fn013  | Multiturn Limit Setting after<br>Multiturn Limit Disagreement<br>Alarm | ×                                   | 0                       | 6.8.8 A.CCO (Multiturn Limit Disagreement Alarm) on page 251        |
| Encoder<br>Setting          | Origin Search              | Fn003  | Origin Search                                                          | 0                                   | 0                       | 7.6.2 Origin Search on page 306                                     |
|                             | Set Origin                 | Fn020  | Set Absolute Linear Encoder<br>Origin                                  | ×                                   | 0                       | 5.16 Setting the Origin of the Absolute Encoder on page 204         |
|                             | Polarity Detection         | Fn080  | Polarity Detection                                                     | ×                                   | ×                       | 5.9 Polarity Detection on page 175                                  |
|                             |                            | Fn000  | Display Alarm History                                                  | 0                                   | 0                       | 16.2.4 Displaying the Alarm History on page 684                     |
| Trauble                     | Display Alarm              | Fn006  | Clear Alarm History                                                    | 0                                   | 0                       | 16.2.5 Clearing the Alarm History on page 686                       |
| Trouble-<br>shooting        |                            | Fn014  | Reset Option Module Configuration Error                                | 0                                   | 0                       | 16.2.6 Resetting Option  Module Configuration  Error on page 687    |
|                             | Reset Motor Type Alarm     | Fn021  | Reset Motor Type Alarm                                                 | 0                                   | 0                       | 16.2.7 Resetting Motor Type Alarms on page 688                      |
| Operation                   | Jog                        | Fn002  | Jog                                                                    | 0                                   | 0                       | 7.3 Trial Operation for the Servomotor without a Load on page 295   |
|                             | Program JOG Operation      | Fn004  | Jog Program                                                            | 0                                   | 0                       | 3.6.1 Program Jogging on page 301                                   |

Continued from previous page.

|                             | SigmaWin+                                                    |        | Digital Operator                                         | Execu                               | ıtable?                 |                                                                            |
|-----------------------------|--------------------------------------------------------------|--------|----------------------------------------------------------|-------------------------------------|-------------------------|----------------------------------------------------------------------------|
| Button in<br>Menu<br>Window | SigmaWin+ Function<br>Name                                   | Fn No. | Utility Function Name                                    | Motor<br>Not<br>Con-<br>nec-<br>ted | Motor<br>Con-<br>nected | Reference                                                                  |
|                             | Tuning - Autotuning<br>without Host Reference                | Fn201  | Advanced Autotuning without<br>Reference                 | ×                                   | ×                       | 8.7 Autotuning without a Host Reference on page 349                        |
|                             | Tuning - Autotuning<br>with Host Reference                   | Fn202  | Advanced Autotuning with Reference                       | ×                                   | ×                       | 8.8 Autotuning with a Host Reference on page 362                           |
| Tuning                      | Tuning - Custom Tuning                                       | Fn203  | One-Parameter Tuning                                     | ×                                   | ×                       | 8.9 Custom Tuning on page 370                                              |
| · 3                         | Tuning - Custom Tuning<br>- Adjust Anti-resonance<br>Control | Fn204  | Adjust Anti-resonance Control                            | ×                                   | ×                       | 8.10 Anti-Resonance Control Adjustment on page 379                         |
|                             | Tuning - Custom Tuning<br>- Vibration Suppression            | Fn205  | Vibration Suppression                                    | ×                                   | ×                       | 8.11 Vibration Suppression on page 386                                     |
|                             | Response Level Setting                                       | Fn200  | Tuning-less Level Setting                                | ×                                   | ×                       | 8.4 Tuning-less Function on page 324                                       |
| Diagnostic                  | Easy FFT                                                     | Fn206  | Easy FFT                                                 | ×                                   | ×                       | 8.16.2 Easy FFT on page 445                                                |
|                             | Adjust the Analog Moni-                                      | Fn00C  | Adjust Analog Monitor Output<br>Offset                   | 0                                   | 0                       | ■ 9.3.3 Using the Analog                                                   |
|                             | tor Output                                                   | Fn00D  | Adjust Analog Monitor Output<br>Gain                     | 0                                   | 0                       | Monitors on page 464                                                       |
|                             | Adjust the Motor Current                                     | Fn00E  | Autotune Motor Current Detection Signal Offset           | ×                                   | 0                       | 6.12 Adjusting the Motor                                                   |
| Others                      | Detection Offsets                                            | Fn00F  | Manually Adjust Motor Current<br>Detection Signal Offset | ×                                   | 0                       | Current Detection Signal<br>Offset on page 264                             |
|                             | Initialize Vibration<br>Detection Level                      | Fn01B  | Initialize Vibration Detection<br>Level                  | ×                                   | ×                       | 6.11 Vibration Detection Level Initialization on page 261                  |
|                             | Write Prohibited Setting                                     | Fn010  | Write Prohibition Setting                                | 0                                   | 0                       | 5.1.4 Write Prohibition<br>Setting for SERVOPACK<br>Parameters on page 157 |

<sup>\*1</sup> An [Initialize] button will be displayed in the [Edit Parameters] window.

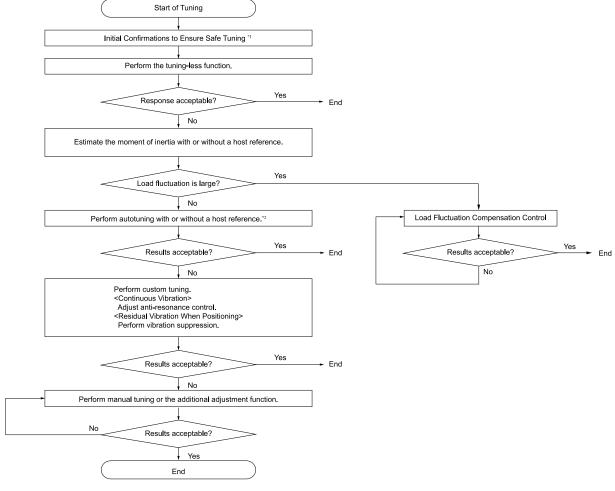
# **Tuning**

This chapter provides information on the flow of tuning, details on tuning functions, and related operating procedures.

| 8.1 | Over                              | view and Flow of Tuning                                         | 316 |  |  |  |  |
|-----|-----------------------------------|-----------------------------------------------------------------|-----|--|--|--|--|
|     | 8.1.1                             | Tuning Functions                                                | 317 |  |  |  |  |
|     | 8.1.2                             | Diagnostic Tool                                                 | 318 |  |  |  |  |
| 8.2 | Moni                              | toring Methods                                                  | 319 |  |  |  |  |
| 8.3 | Precautions to Ensure Safe Tuning |                                                                 |     |  |  |  |  |
|     | 8.3.1                             | Overtravel Settings                                             | 320 |  |  |  |  |
|     | 8.3.2                             | Torque Limit Settings                                           | 320 |  |  |  |  |
|     | 8.3.3                             | Setting the Position Deviation Overflow Alarm Level             | 320 |  |  |  |  |
|     | 8.3.4                             | Vibration Detection Level Setting                               | 322 |  |  |  |  |
|     | 8.3.5                             | Setting the Position Deviation Overflow Alarm Level at Servo ON | 322 |  |  |  |  |
| 8.4 | Tunir                             | ng-less Function                                                | 324 |  |  |  |  |
|     | 8.4.1                             | Application Restrictions                                        | 324 |  |  |  |  |
|     | 8.4.2                             | Operating Procedure                                             | 325 |  |  |  |  |
|     | 8.4.3                             | Troubleshooting Alarms                                          | 327 |  |  |  |  |
|     | 8.4.4                             | Parameters Disabled by Tuning-less Function                     | 327 |  |  |  |  |
|     | 8.4.5                             | Automatically Adjusted Function Setting                         | 327 |  |  |  |  |
|     | 8.4.6                             | Related Parameters                                              | 327 |  |  |  |  |
| 8.5 | Mom                               | ent of Inertia Estimation without a Host Reference              | 329 |  |  |  |  |
|     | 8.5.1                             | Outline                                                         | 329 |  |  |  |  |
|     | 8.5.2                             | Restrictions                                                    | 329 |  |  |  |  |
|     | 8.5.3                             | Applicable Tools                                                | 330 |  |  |  |  |
|     | 8.5.4                             | Operating Procedure                                             | 330 |  |  |  |  |
| 8.6 | Mom                               | ent of Inertia Estimation with a Host Reference                 | 346 |  |  |  |  |
|     | 8.6.1                             | Outline                                                         | 346 |  |  |  |  |
|     | 8.6.2                             | Restrictions                                                    | 346 |  |  |  |  |
|     | 8.6.3                             | Applicable Tools                                                | 347 |  |  |  |  |
|     | 8.6.4                             | Operating Procedure                                             | 347 |  |  |  |  |

| 8.7  | Auto   | tuning without a Host Reference                                         | 349 |
|------|--------|-------------------------------------------------------------------------|-----|
|      | 8.7.1  | Outline                                                                 | 349 |
|      | 8.7.2  | Restrictions                                                            | 350 |
|      | 8.7.3  | Applicable Tools                                                        | 351 |
|      | 8.7.4  | Operating Procedure                                                     | 351 |
|      | 8.7.5  | Troubleshooting Problems in Autotuning without a Host Reference         | 356 |
|      | 8.7.6  | Automatically Adjusted Function Setting                                 |     |
|      | 8.7.7  | Related Parameters                                                      |     |
| 8.8  | Auto   | tuning with a Host Reference                                            | 362 |
|      | 8.8.1  | Outline                                                                 |     |
|      | 8.8.2  | Restrictions                                                            |     |
|      | 8.8.3  | Applicable Tools                                                        |     |
|      | 8.8.4  | Operating Procedure                                                     |     |
|      | 8.8.5  | Troubleshooting Problems in Autotuning with a Host Reference            |     |
|      | 8.8.6  | Automatically Adjusted Function Setting                                 |     |
|      | 8.8.7  | Related Parameters                                                      |     |
| 8.9  | Custo  | om Tuning                                                               | 370 |
|      | 8.9.1  | Outline                                                                 | 370 |
|      | 8.9.2  | Preparations                                                            | 370 |
|      | 8.9.3  | Applicable Tools                                                        | 371 |
|      | 8.9.4  | Operating Procedure                                                     | 371 |
|      | 8.9.5  | Automatically Adjusted Function Setting                                 | 376 |
|      | 8.9.6  | Tuning Example for Tuning Mode 2 or 3                                   | 376 |
|      | 8.9.7  | Related Parameters                                                      | 377 |
| 8.10 | Anti-  | Resonance Control Adjustment                                            | 379 |
|      | 8.10.1 | Outline                                                                 | 379 |
|      | 8.10.2 | Preparations                                                            | 379 |
|      | 8.10.3 | Applicable Tools                                                        | 379 |
|      | 8.10.4 | Operating Procedure                                                     | 380 |
|      | 8.10.5 | Related Parameters                                                      | 384 |
|      | 8.10.6 | Suppressing Different Vibration Frequencies with Anti-resonance Control | 384 |
| 8.11 | Vibra  | tion Suppression                                                        | 386 |
|      |        | Outline                                                                 |     |
|      |        | Preparations                                                            |     |
|      |        | Applicable Tools                                                        |     |
|      |        | Operating Procedure                                                     |     |
|      |        | Setting Combined Functions                                              |     |
|      |        | Related Parameters                                                      |     |

| 0.40 | Creed Direct Company of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 200 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 8.12 | The state of the s |     |
|      | 8.12.1 Outline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 390 |
|      | 8.12.2 Speed Ripple Compensation when a Rotary Servomotor Is Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 390 |
|      | 8.12.3 Speed Ripple Compensation when a Linear Servomotor Is Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 396 |
|      | 8.12.4 Speed Ripple Compensation during Torque Control Mode and during Torque Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 408 |
|      | 8.12.5 Parameter Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 409 |
| 8.13 | Load Fluctuation Compensation Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 412 |
|      | 8.13.1 Outline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 412 |
|      | 8.13.2 Application Restrictions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 412 |
|      | 8.13.3 Preparations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 412 |
|      | 8.13.4 Required Parameter Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 412 |
|      | 8.13.5 Operating Procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 413 |
|      | 8.13.6 Parameters Disabled by a Load Fluctuation Compensation  Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 413 |
| 8.14 | Additional Adjustment Functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 415 |
|      | 8.14.1 Gain Switching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 415 |
|      | 8.14.2 Friction Compensation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 418 |
|      | 8.14.3 Gravity Compensation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 420 |
|      | 8.14.4 Output Torque Compensation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 421 |
|      | 8.14.5 Current Control Mode Selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 422 |
|      | 8.14.6 Current Gain Level Setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 422 |
|      | 8.14.7 Speed Detection Method Selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 422 |
|      | 8.14.8 Speed Feedback Filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 423 |
|      | 8.14.9 Backlash Compensation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 423 |
| 8.15 | Manual Tuning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 429 |
|      | 8.15.1 Tuning the Servo Gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 429 |
|      | 8.15.2 Compatible Adjustment Functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 439 |
| 8.16 | Diagnostic Tool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|      | 8.16.1 Mechanical Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 444 |
|      | 8.16.2 Easy FFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 445 |


# 8.1 Overview and Flow of Tuning

Tuning is performed to optimize response by adjusting the servo gains in the SERVOPACK.

The servo gains are set using a combination of parameters, such as parameters for the speed loop gain, position loop gain, filters, friction compensation, and moment of inertia ratio. These parameters influence each other, so you must consider the balance between them.

The servo gains are set to stable settings by default. Use the various tuning functions to increase the response even further for the conditions of your machine.

The basic tuning procedure is shown in the following flowchart. Make suitable adjustments considering the conditions and operating requirements of your machine.



- \*1 Refer to the following section for details.
  - 8.3 Precautions to Ensure Safe Tuning on page 320
- \*2 If possible, perform autotuning with a host reference.

If a host controller is not available, set an operation pattern that is as close as possible to the host reference and perform autotuning without a host reference.

If an operation pattern that is close to the host reference is not possible, perform autotuning with a host reference while performing program jogging.

# 8.1.1 Tuning Functions

The following table provides an overview of the tuning functions.

| Tuning Function                                               | Outline                                                                                                                                                                                                                                                                                                                                                                                                                            | Applicable<br>Control<br>Methods                         | Reference                                                             |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------|
| Tuning-less Function                                          | This automatic adjustment function is designed to enable stable operation without servo tuning.  This function can be used to obtain a stable response regardless of the type of machine or changes in the load. You can use it with the default settings.                                                                                                                                                                         | Speed control or position control                        | 8.4 Tuning-less Function on page 324                                  |
| Moment of Inertia Esti-<br>mation without a Host<br>Reference | The moment of inertia during operation is automatically calculated by the SERVOPACK for round-trip operation. A reference from the host controller is not used.  The moment of inertia ratio that is calculated here is used in other tuning functions.                                                                                                                                                                            | Speed control,<br>position control,<br>or torque control | 8.5 Moment of Inertia Estimation without a Host Reference on page 329 |
| Moment of Inertia Esti-<br>mation with a Host<br>Reference    | The load moment of inertia is estimated from operation by reference (position control) from the host controller.  The moment of inertia ratio that is calculated here is used in other tuning functions.                                                                                                                                                                                                                           | Speed control,<br>position control,<br>or torque control | 8.6 Moment of Inertia Estimation with a Host Reference on page 346    |
| Autotuning without a<br>Host Reference                        | The following parameters are automatically adjusted in the internal references in the SERVOPACK during automatic operation.  • Gains (e.g., position loop gain and speed loop gain)  • Filters (torque reference filter and notch filters)  • Friction compensation  • Anti-resonance control  • Vibration suppression                                                                                                             | Speed control or position control                        | 8.7 Autotuning without a<br>Host Reference on page<br>349             |
| Autotuning with a Host<br>Reference                           | The following parameters are automatically adjusted with the position reference input from the host controller while the machine is in operation. You can use this function for finetuning after you perform autotuning without a host reference.  Gains (e.g., position loop gain and speed loop gain)  Filters (torque reference filter and notch filters)  Friction compensation  Anti-resonance control  Vibration suppression | Position control                                         | 8.8 Autotuning with a Host Reference on page 362                      |
| Custom Tuning                                                 | The following parameters are adjusted with the position reference or speed reference input from the host controller while the machine is in operation.  • Gains (e.g., position loop gain and speed loop gain)  • Filters (torque reference filter and notch filters)  • Friction compensation  • Anti-resonance control                                                                                                           | Speed control or position control                        | 8.9 Custom Tuning on page 370                                         |
| Anti-Resonance Control Adjustment                             | This function effectively suppresses continuous vibration.                                                                                                                                                                                                                                                                                                                                                                         | Speed control or position control                        | 8.10 Anti-Resonance Control Adjustment on page 379                    |
| Vibration Suppression                                         | This function effectively suppresses residual vibration if it occurs when positioning.                                                                                                                                                                                                                                                                                                                                             | Position control                                         | 8.11 Vibration Suppression on page 386                                |
| Load Fluctuation Compensation Control                         | This function is used to control fluctuations in response for applications where the load (moment of inertia) fluctuates greatly.                                                                                                                                                                                                                                                                                                  | Position control,<br>speed control, or<br>torque control | 8.13 Load Fluctuation<br>Compensation Control on<br>page 412          |
| Additional Adjustment<br>Function                             | This function combines autotuning with custom tuning. You can use it to improve adjustment results.                                                                                                                                                                                                                                                                                                                                | Depends on the functions that you use.                   | 8.14 Additional Adjust-<br>ment Functions on page<br>415              |
| Manual Tuning                                                 | You can manually adjust the servo gains to adjust the response.                                                                                                                                                                                                                                                                                                                                                                    | Speed control,<br>position control,<br>or torque control | 8.15 Manual Tuning on page 429                                        |

# 8.1.2 Diagnostic Tool

You can use the following tools to measure the frequency characteristics of the machine and set notch filters.

| Diagnostic Tool     | Outline                                                                                                                                    | Applicable Control<br>Methods                      | Reference                              |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------|
| Mechanical Analysis | The machine is subjected to vibration to detect resonance frequencies. The measurement results are displayed as waveforms or numeric data. | Speed control, position control, or torque control | 8.16.1 Mechanical Analysis on page 444 |
| Easy FFT            | The machine is subjected to vibration to detect resonance frequencies. The measurement results are displayed only as numeric data.         | Speed control, position control, or torque control | 8.16.2 Easy FFT on page 445            |

# 8.2 Monitoring Methods

You can use the data tracing function of the SigmaWin+ or the analog monitor signals of the SERVOPACK for monitoring. If you perform custom tuning or manual tuning, always use the above functions to monitor the machine operating status and SERVOPACK signal waveform while you adjust the servo gains.

Check the adjustment results with the following response waveforms.

#### • Position Control

| 14                       | Unit                   |                   |  |
|--------------------------|------------------------|-------------------|--|
| Item                     | Rotary Servomotor      | Linear Servomotor |  |
| Torque reference         | %                      |                   |  |
| Feedback speed           | min <sup>-1</sup> mm/s |                   |  |
| Position reference speed | min-1                  | mm/s              |  |
| Position deviation       | Referen                | ace units         |  |

#### • Speed Control

| 14               | Unit              |                   |  |
|------------------|-------------------|-------------------|--|
| Item             | Rotary Servomotor | Linear Servomotor |  |
| Torque reference | %                 |                   |  |
| Feedback speed   | min-1             | mm/s              |  |
| Reference speed  | min-1 mm/s        |                   |  |

#### · Torque Control

| Mana.            | Unit              |                   |  |
|------------------|-------------------|-------------------|--|
| Item             | Rotary Servomotor | Linear Servomotor |  |
| Torque reference | %                 |                   |  |
| Feedback speed   | min-1             | mm/s              |  |

# 8.3 Precautions to Ensure Safe Tuning

# **CAUTION**

Observe the following precautions when you perform tuning.

- Do not touch the rotating parts of the motor when the servo is ON.
- Before starting the servomotor, make sure that an emergency stop can be performed at any time.
- Make sure that trial operation has been successfully performed without any problems.
- · Provide an appropriate stopping device on the machine to ensure safety.

There is a risk of machine damage or injury.

Perform the following settings in a way that is suitable for tuning.

## 8.3.1 Overtravel Settings

Overtravel settings are made to force the servomotor to stop for a signal input from a limit switch when a moving part of the machine exceeds the safe movement range.

Refer to the following section for details.

■ 5.10 Overtravel and Related Settings on page 178

## 8.3.2 Torque Limit Settings

You can limit the torque that is output by the servomotor based on calculations of the torque required for machine operation. You can use torque limits to reduce the amount of shock applied to the machine when problems occur, such as collisions or interference. If the torque limit is lower than the torque that is required for operation, overshooting or vibration may occur.

Refer to the following section for details.

**☞** 6.7 Selecting Torque Limits on page 241

# 8.3.3 Setting the Position Deviation Overflow Alarm Level

The position deviation overflow alarm is a protective function that is enabled when the SERVOPACK is used in position control.

If the alarm level is set to a suitable value, the SERVOPACK will detect excessive position deviation and will stop the servomotor operation does not agree with the reference.

The position deviation is the difference between the position reference value and the actual position.

You can calculate the position deviation from the setting of Pn102 (Position Loop Gain) and the motor speed with the following formula.

Rotary Servomotors

```
Position deviation [reference units] = \frac{\text{Motor speed [min-1]}}{60} \times \frac{\text{Encoder resolution}}{\text{Pn102 [0.1/s]/10}^{2.,*3}} \times \frac{\text{Denominator}^{*1}}{\text{Numerator}}
```

Linear Servomotors

```
Position deviation [reference units] = \frac{\text{Motor speed [mm/s]}}{\text{Pn102 [0.1/s]/10*2.*3}} \times \frac{\text{Number of divisions}}{\text{Linear encoder scale pitch [µm]/1000}} \times \frac{\text{Denominator Numerator Polymerator}}{\text{Numerator Numerator Polymerator Polymerator}}
```

Pn520 (Position Deviation Overflow Alarm Level) [setting unit: reference units]

U

· Rotary Servomotors

$$Pn520 > \frac{\text{Maximum motor speed [min^-1]}}{60} \times \frac{\text{Encoder resolution}}{Pn102 \ [0.1/s]/10^{*2.*3}} \times \frac{\text{Denominator}^{*1}}{\text{Numerator}} \times \underbrace{(1.2 \text{ to } 2)^{*4}}_{\text{Numerator}}$$

Linear Servomotors

$$Pn520 > \frac{\text{Maximum motor speed [mm/s]}}{Pn102 \ [0.1/s]/10^{*2,*3}} \times \frac{\text{Number of divisions}}{\text{Linear encoder pitch [}\mu\text{m] }/1000} \times \frac{\text{Denominator*}^{1}}{\text{Numerator}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2}} \times \frac{(1.2 \text{ to } 2)^{*2}}{(1.2 \text{ to } 2)^{*2$$

- \*1 Refer to the following section for details.
  - 5.14 Setting Unit Systems on page 193
- \*2 When Pn140 is set to n. \u2210 1 (use model following control), use the setting of Pn141 (Model Following Control Gain) instead of the setting of Pn102 (Position Loop Gain).
- \*3 To check the setting of Pn102 on the digital operator, set Pn00B to n. \( \sigma \sigma 1 \) (display all parameters).
- \*4 The underlined coefficient "× (1.2 to 2)" adds a margin to prevent an A.d00 alarm (Position Deviation Overflow) from occurring too frequently.

If you set a value that satisfies the formula, an A.d00 alarm (Position Deviation Overflow) should not occur during normal operation.

If the servomotor operation does not agree with the reference, position deviation will occur, an error will be detected, and the servomotor will stop.

The following calculation example uses a rotary servomotor with a maximum motor speed of 7000 and an

encoder resolution of 67108864 (26 bits). Pn102 is set to 400. 
$$\frac{\text{Denominator}}{\text{Numerator}} = \frac{1}{64}$$
Pn520 =  $\frac{7000}{\text{Numerator}} \times \frac{67108864}{\text{Numerator}} \times \frac{1}{\text{Numerator}} \times \frac{1}{\text{$ 

$$Pn520 = \frac{7000}{60} \times \frac{67108864}{400/10} \times \frac{1}{64} \times \frac{1}{64}$$

 $= 3058347 \times 2$ 

= 6116694

If the acceleration/deceleration rate required for the position reference exceeds the tracking capacity of the servomotor, the tracking delay will increase and the position deviation will no longer satisfy the above formulas. If this occurs, lower the acceleration/deceleration rate so that the servomotor can follow the position reference or increase the position deviation overflow alarm level.

## (1) Related Parameters

| Pn520<br>(2520h) | Position Deviation Overflow Alarm Level   |                  |                 | Speed Pos Trq |
|------------------|-------------------------------------------|------------------|-----------------|---------------|
|                  | Setting Range                             | Setting Unit     | Default Setting | When Enabled  |
|                  | 1 to 1073741823                           | 1 reference unit | 6116694         | Immediately   |
| Pn51E<br>(251Eh) | Position Deviation Overflow Warning Level |                  |                 | Speed Pos Trq |
|                  | Setting Range                             | Setting Unit     | Default Setting | When Enabled  |
|                  | 10 to 100                                 | 1%               | 100             | Immediately   |

### (2) Related Alarms

| Alarm Number | Alarm Name | Alarm Meaning                                                                                                                 |
|--------------|------------|-------------------------------------------------------------------------------------------------------------------------------|
| A.d00        |            | The setting of Pn520 (Position Deviation Overflow Alarm Level) was exceeded by the position deviation while the servo was ON. |

# (3) Related Warnings

| Warning Number | Warning Name | Warning Meaning                                                                                    |
|----------------|--------------|----------------------------------------------------------------------------------------------------|
| A.900          |              | The position deviation exceeded the percentage set with the following formula: (Pn520 × Pn51E/100) |

## 8.3.4 Vibration Detection Level Setting

You can set Pn312 (Vibration Detection Level) to more accurately detect A.520 alarms (Vibration Alarm) and A.911 warnings (Vibration) when vibration is detected during machine operation.

Set the initial vibration detection level to an appropriate value. Refer to the following section for details.

**☞** 6.11 Vibration Detection Level Initialization on page 261

# 8.3.5 Setting the Position Deviation Overflow Alarm Level at Servo ON

If the servo is turned ON when there is a large position deviation, the servomotor will attempt to return to the original position to bring the position deviation to 0, which may create a hazardous situation. To prevent this, you can set a position deviation overflow alarm level at servo ON to restrict operation.

The related parameters and alarms are given in the following tables.

## (1) Related Parameters

| Pn526<br>(2526h) | Position Deviation Overflow Alarm Level at Servo ON             |                  |                 | Speed Pos Trq |
|------------------|-----------------------------------------------------------------|------------------|-----------------|---------------|
|                  | Setting Range                                                   | Setting Unit     | Default Setting | When Enabled  |
| (202011)         | 1 to 1073741823                                                 | 1 reference unit | 6116694         | Immediately   |
|                  | Position Deviation Overflow Warning Level at Servo ON Speed Pos |                  |                 | Speed Pos Trq |
| Pn528<br>(2528h) | Setting Range                                                   | Setting Unit     | Default Setting | When Enabled  |
|                  | 10 to 100                                                       | 1%               | 100             | Immediately   |

#### Rotary Servomotors

|               | Speed Limit Level at Servo ON Speed Pos Trq |                     |                 |              |
|---------------|---------------------------------------------|---------------------|-----------------|--------------|
| Pn529 (2529h) | Setting Range                               | Setting Unit        | Default Setting | When Enabled |
| (232911)      | 0 to 10000                                  | 1 min <sup>-1</sup> | 10000           | Immediately  |

#### • Linear Servomotors

| Pn584<br>(2584h) | Speed Limit Level at Servo ON Speed Pos Tro |              |                 |              |
|------------------|---------------------------------------------|--------------|-----------------|--------------|
|                  | Setting Range                               | Setting Unit | Default Setting | When Enabled |
|                  | 0 to 10000                                  | 1 mm/s       | 10000           | Immediately  |

# (2) Related Alarms

| Alarm Number | Alarm Name                                                            | Alarm Meaning                                                                                                                                                                                                                                                                                                                     |
|--------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A.d01        | Position Deviation Over-<br>flow Alarm at Servo ON                    | The servo was turned ON after the position deviation exceeded the setting of Pn526 (Position Deviation Overflow Alarm Level at Servo ON) while the servo was OFF.                                                                                                                                                                 |
| A.d02        | Position Deviation Over-<br>flow Alarm for Speed<br>Limit at Servo ON | If position deviation remains in the deviation counter, the setting of Pn529 or Pn584 (Speed Limit Level at Servo ON) limits the speed when the servo is turned ON.  This alarm occurs if position reference is input and the setting of Pn520 (Position Deviation Overflow Alarm Level) is exceeded before the limit is cleared. |

Refer to the following section for information on troubleshooting alarms.

3 16.2.3 Alarm Reset on page 683

# (3) Related Warnings

| Warning Number | Warning Name            | Warning Meaning                                                                                                                 |
|----------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| A.901          | Iflow Alarm at Servo ON | The position deviation when the servo was turned ON exceeded the percentage set with the following formula: (Pn526 × Pn528/100) |

# 8.4 Tuning-less Function

The tuning-less function performs autotuning to obtain a stable response regardless of the type of machine or changes in the load. Autotuning is started when the servo is turned ON.

# **A** CAUTION

To ensure safety, make sure that you can perform an emergency stop at any time when you change the tuning-less level and change the tuning-less type.



The servomotor may vibrate if it exceeds the allowable load moment of inertia. If that occurs, set Pn170 to n.2 $\Box\Box$  (set the load level for the tuning-less function to 2) or reduce the setting of Pn170 = n. $\Box$ X $\Box$  (Rigidity Level).

Information

- The tuning-less function is disabled during torque control.
- The servomotor may momentarily emit a sound or vibrate the first time the servo is turned ON after the servomotor is connected to the machine. This sound is caused by setting the automatic notch filter. It does not indicate a problem. Depending on the mechanism, the automatic notch filter may not be set to an appropriate frequency. If this sound or vibration continues, set Pn460 to n. \( \pi \) \( \pi \) \( \pi \) (do not adjust automatically) and manually set a function to suppress vibration (e.g., a notch filter). Refer to the following section for the settings of functions that are automatically adjusted.

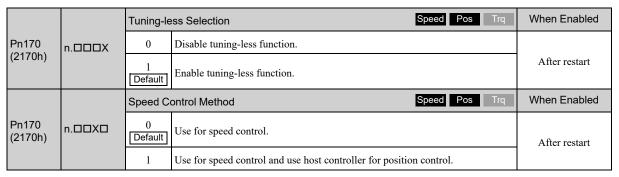
  \( \begin{align\*}
  \text{ 8.4.5 Automatically Adjusted Function Setting on page 327} \end{align\*}
  \)

# 8.4.1 Application Restrictions

The following application restrictions apply to the tuning-less function.

| Function                                    | Executable? */ | Remarks                                                                                                                                                            |
|---------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vibration Detection<br>Level Initialization | 0              | _                                                                                                                                                                  |
| Moment of Inertia<br>Estimation             | ×              | Set Pn170 to n.□□□0 (disable the tuning-less function) before you execute moment of inertia estimation.                                                            |
| Autotuning without a<br>Host Reference      | ×              | Set Pn170 to n.□□□0 (disable the tuning-less function) before you execute autotuning without a host reference. *2                                                  |
| Autotuning with a Host<br>Reference         | ×              | _                                                                                                                                                                  |
| Custom Tuning                               | ×              | -                                                                                                                                                                  |
| Anti-Resonance Control<br>Adjustment        | ×              | _                                                                                                                                                                  |
| Vibration Suppression                       | ×              | _                                                                                                                                                                  |
| Load Fluctuation<br>Compensation            | ×              | Set Pn170 to n.□□□0 (disable the tuning-less function), turn the power OFF and then ON again, and then set Pn173 to n.□□□1 (enable load fluctuation compensation). |
| EasyFFT                                     | 0              | The tuning-less function is disabled while you execute Easy FFT and then it is enabled when Easy FFT has been completed.                                           |
| Friction Compensation                       | ×              | _                                                                                                                                                                  |
| Gain Switching                              | ×              | -                                                                                                                                                                  |
| Mechanical Analysis                         | 0              | The tuning-less function is disabled while you execute mechanical analysis and then it is enabled when mechanical analysis has been completed.                     |

<sup>\*1 0:</sup> Yes ×: No


<sup>\*2</sup> To execute this function from the digital operator, set Jcalc = ON (estimate moment of inertia) [default setting] on the Fn201 (Advanced Autotuning without Reference) setting display of the digital operator when Pn170 = n. \( \subseteq \subseteq \subseteq \) (enable the tuning-less function) [default setting], and then autotuning without a host reference can be executed.

Refer to the following manual for the operating procedures for the digital operator.

 $<sup>\</sup>hfill \Sigma$ -7/\Sigma-X-series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)

#### 8.4.2 **Operating Procedure**

The tuning-less function is enabled in the default settings. No specific procedure is required. You can use the following parameter to enable or disable the tuning-less function.



When you enable the tuning-less function, you can select the tuning-less type.

Normally, set Pn14F to n.□□3□ (use tuning-less type 4) (default setting). If you set Pn14F to n.□□3□, load level correction will be switched automatically.

If you require compatibility with previous products, use one of the following settings.

- Pn14F=  $n.\Box\Box 0\Box$  (use tuning-less type 1)
- Pn14F=  $n.\Box\Box1\Box$  (use tuning-less type 2)
- $Pn14F = n.\Box\Box\Box\Box$  (use tuning-less type 3)

If you set the parameter to one of the above settings, load level correction will not be switched automatically.

Automatic switching of load level correction is used to automatically switch Pn170 = n.Xunu (Tuning-less Load Level) according to the load. Automatic switching of load level correction is used to execute tuning automatically so that the SERVOPACK can handle a load up to 100-times that of the normal load.

| Pn14F<br>(214Fh) | n.□□X□ | Tuning-le | ess Type Selection Speed Pos Trq | When Enabled            |               |
|------------------|--------|-----------|----------------------------------|-------------------------|---------------|
|                  |        | 0         | Use tuning-less type 1.          |                         |               |
|                  |        | 1         | Use tuning-less type 2.          |                         |               |
|                  |        | _         | 2                                | Use tuning-less type 3. | After restart |
|                  |        |           | 3<br>Default                     | Use tuning-less type 4. |               |

# **Tuning-less Level Settings**

If vibration or other problems occur, change the tuning-less levels. To change the tuning-less levels, use the SigmaWin+.

#### (a) Preparations

Always check the following before you set the tuning-less levels.

- Pn170 must be set to n. \pi\pi\1 (Tuning-less Selection is enabled).
- Pn00C must be set to n. \( \sigma \sigma 0 \) (Function Selection for Test without a Motor is disabled).
- The servomotor must be connected to the machine.

#### (b) Procedure

Use the following procedure to set the tuning-less levels.

Information This section gives the procedure using the SigmaWin+, but the tuning-less levels can also be set with parameters. Refer to the following sections for details on the parameters to set.

(c) Related Parameters on page 326

- Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.
- Select [Response Level Setting] in the [Menu] window.

The [Turning-less Level Setting-Adj] window will be displayed.

3. Click the [▲] or [▼] button to adjust the turning-less level setting. Increase the turning-less level setting to increase the response. Decrease the turning-less level setting to suppress vibration.

The default response level setting is 4.

| Tuning-less<br>Rigidity Level | Description             | Remarks                                                                                          |
|-------------------------------|-------------------------|--------------------------------------------------------------------------------------------------|
| 7                             | Response level:<br>High | These levels cannot be selected if Pn14F is set to n. \( \pi \) or n. \( \pi \) (use tuning-less |
| 6                             |                         | type 1 or 2).                                                                                    |
| 5                             |                         |                                                                                                  |
| 4 (default setting)           |                         |                                                                                                  |
| 3                             |                         |                                                                                                  |
| 2                             |                         | _                                                                                                |
| 1                             | V                       |                                                                                                  |
| 0                             | Response level:<br>Low  |                                                                                                  |

#### 4. Click the [Completed] button.

The adjustment results will be saved in the SERVOPACK.



If the servomotor will be removed from the machine, always reset the tuning-less levels back to the default settings. If you turn ON the servo when the servomotor has been removed from the machine without resetting the default settings, there is a risk of servomotor vibration.

### (c) Related Parameters

#### ◆ Tuning-less Rigidity Level

If Pn14F is set to  $n.\Box\Box\Box\Box$  or  $n.\Box\Box\Box\Box$  (use tuning-less type 1 or 2), set Pn170 to  $n.\Box\Box\Box\Box$  to  $n.\Box4\Box\Box$  (tuning-less level 0 to 4). Do not set Pn170 to  $n.\Box5\Box\Box$  to  $n.\Box7\Box\Box$  (tuning-less level 5 to 7).

Information Tuning-less level 0 is the lowest response level, and then levels increase up to the largest response level at tuning-less level 7.

|                         | Tuning-less Level Speed Pos Trq |              | When Enabled                    |                                 |
|-------------------------|---------------------------------|--------------|---------------------------------|---------------------------------|
|                         |                                 | 0            | Set the tuning-less level to 0. |                                 |
|                         |                                 | 1            | Set the tuning-less level to 1. |                                 |
| Pn170<br>(2170h) n.□X□□ |                                 | 2            | Set the tuning-less level to 2. |                                 |
|                         | n.□X□□                          | 3            | Set the tuning-less level to 3. |                                 |
|                         |                                 | 4<br>Default | Set the tuning-less level to 4. | Immediately                     |
|                         |                                 | 5            | Set the tuning-less level to 5. |                                 |
|                         |                                 |              | 6                               | Set the tuning-less level to 6. |
|                         |                                 | 7            | Set the tuning-less level to 7. |                                 |

### Tuning-less Load Level

|                  |        | Tuning-le    | ss Load Level Speed Pos Trq          | When Enabled |
|------------------|--------|--------------|--------------------------------------|--------------|
| Pn170<br>(2170h) | n.X□□□ | 0            | Set the tuning-less load level to 0. |              |
|                  |        | 1<br>Default | Set the tuning-less load level to 1. | Immediately  |
|                  |        | 2            | Set the tuning-less load level to 2. |              |

# 8

# 8.4.3 Troubleshooting Alarms

An A.521 alarm (Autotuning Alarm) will occur if a resonant sound occurs or if excessive vibration occurs during position control. If an alarm occurs, implement the following measures.

- Resonant Sound Decrease the setting of Pn170 = n.X□□□ or Pn170 = n.□X□□.
- Excessive Vibration during Position Control Increase the setting of Pn170 = n.X□□□ or decrease the setting of Pn170 = n.□X□□.

# 8.4.4 Parameters Disabled by Tuning-less Function

When Pn170 is set to  $n.\square\square\square1$  (the tuning-less function is enabled) (default setting), the parameters in the following table are disabled.

| Parameter Name                                                             | Parameter Number               |
|----------------------------------------------------------------------------|--------------------------------|
| Speed Loop Gain                                                            | Pn100 (2100h)                  |
| Second Speed Loop Gain                                                     | Pn104 (2104h)                  |
| Speed Loop Integral Time Constant Second Speed Loop Integral Time Constant | Pn101 (2101h)<br>Pn105 (2105h) |
| Position Loop Gain<br>Second Position Loop Gain                            | Pn102 (2102h)<br>Pn106 (2106h) |
| Moment of Inertia Ratio                                                    | Pn103 (2103h)                  |
| Friction Compensation Function Selection                                   | Pn408 (2408h) = n.X□□□         |
| Anti-Resonance Control Selection                                           | Pn160 (2160h) = n X            |
| Gain Switching Selection                                                   | $Pn139 (2139h) = n.\Box\Box X$ |

The tuning-less function is disabled during torque control, Easy FFT, and mechanical analysis for a vertical axis. In addition, Pn100, Pn104, Pn101, Pn105, Pn102, Pn106, and Pn103 in the above table are enabled for torque control, Easy FFT, and mechanical analysis for a vertical axis. Of these, only Pn100, Pn103, and Pn104 are enabled for torque control.

# 8.4.5 Automatically Adjusted Function Setting

You can also automatically adjust notch filters.

Normally, set Pn460 to  $n.\Box 1\Box\Box$  (adjust automatically) (default setting). Vibration is automatically detected and a notch filter is set.

Set Pn460 to  $n.\Box 0\Box\Box$  (do not adjust automatically) only if you do not change the setting of the notch filter before you execute this function.

|                  |        | Notch Fil    | ter Adjustment Selection 2 Speed Pos Trq                                                                                                                                                                            | When Enabled |
|------------------|--------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Pn460<br>(2460h) | n.□X□□ | 0            | Do not adjust the second stage notch filter automatically when the tuning-less function is enabled or during execution of autotuning without a host reference, autotuning with a host reference, and custom tuning. |              |
| (= 11511)        |        | 1<br>Default | Adjust the second stage notch filter automatically when the tuning-less function is enabled or during execution of autotuning without a host reference, autotuning with a host reference, and custom tuning.        | Immediately  |

# 8.4.6 Related Parameters

The following parameters are automatically adjusted when you execute the tuning-less function.

Do not manually change the settings of these parameters after you have enabled the tuning-less function.

| Parameter                                       | Name                                                    |  |
|-------------------------------------------------|---------------------------------------------------------|--|
| Pn401 (2401h)                                   | First Stage First Torque Reference Filter Time Constant |  |
| Pn40A (240Ah)                                   | A (240Ah) First Stage Notch Filter Q Value              |  |
| Pn40C (240Ch)                                   | Second Stage Notch Filter Frequency                     |  |
| Pn40D (240Dh) Second Stage Notch Filter Q Value |                                                         |  |

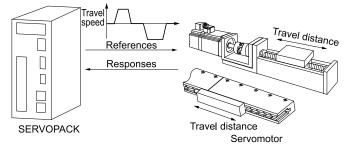
#### ) IIII

#### 8

# 8.5 Moment of Inertia Estimation without a Host Reference

This section describes how the moment of inertia without a host reference is calculated.

The moment of inertia ratio that is calculated here is used in other tuning functions. You can also estimate the moment of inertia during autotuning without a host reference. Refer to the following section for the procedure.


■ 8.7.4 Operating Procedure on page 351

## 8.5.1 Outline

The moment of inertia during operation is automatically calculated by the SERVOPACK for round-trip operation. A reference from the host controller is not used.

The moment of inertia ratio (i.e., the ratio of the load moment of inertia to the motor moment of inertia) is a basic parameter for adjusting gains. It must be set as accurately as possible.

Although the load moment of inertia can be calculated from the weight and structure of the mechanisms, doing so is very troublesome and calculating it accurately can be very difficult with the complex mechanical structures that are used these days. With this function, you can estimate load moment of inertia with good accuracy.



#### Note:

Execute this function after jogging to a position that ensures a suitable range of motion.

## 8.5.2 Restrictions

The following restrictions apply to estimating the moment of inertia without a host reference.

# (1) Systems for which Execution Cannot Be Performed

- When the machine system can move only in one direction
- When the range of motion is greater than 0.25 rotations and less than or equal to 0.5 rotations

# (2) Systems for Which Adjustments Cannot Be Made Accurately

- When a suitable range of motion is not possible
- When the moment of inertia changes within the set operating range
- When the machine has high dynamic friction
- · When the rigidity of the machine is low and vibration occurs when positioning is performed
- When the position integration function is used
- When P control is used
- When mode switching is used

#### Note

If you specify moment of inertia estimation, mode switching will be disabled and PI control will be used while the moment of inertia is being calculated. Mode switching will be enabled after moment of inertia estimation has been completed.

• When speed feedforward or torque feedforward is input

## (3) Preparations

Always check the following before you execute moment of inertia estimation without a host reference.

- The main circuit power must be ON.
- There must be no overtravel.
- The servo must be OFF.
- The control method must not be set to torque control.
- The gain 1 must be selected.
- Pn00C must be set to n. \( \sigma \sigma 0 \) (Function Selection for Test without a Motor is disabled).
- Pn170 must be set to n. \( \sigma \sigma 0 \) (tuning-less function is disabled).
- Pn173 must be set to n. \( \pi \) \( \pi \) (a load fluctuation compensation control is disabled).
- There must be no alarms or warnings.
- There must be no hard wire base block (HWBB).
- The parameters must not be write prohibited.

# 8.5.3 Applicable Tools

The following table lists the tools that you can use to estimate the moment of inertia without a host reference.

| Tool             | Fn No./Function Name                                                                          | Operating Procedure Reference         |
|------------------|-----------------------------------------------------------------------------------------------|---------------------------------------|
| Digital Operator | You cannot estimate the moment of inertia without a host reference from the digital operator. |                                       |
| SigmaWin+        | [Tuning] - [Tuning]                                                                           | 8.5.4 Operating Procedure on page 330 |

# 8.5.4 Operating Procedure

# **WARNING**

Moment of inertia estimation is a measurement function that actually drives the machine and therefore presents hazards. Observe the following precautions.

- Confirm safety around moving parts.
- This function involves automatic reciprocating operation. Make sure that you can perform an emergency stop (to turn OFF the power supply) at any time.
- There will be movement in both directions within the set range of movement. Check the range of movement and the directions and implement protective measures for safety, such as the overtravel functions.

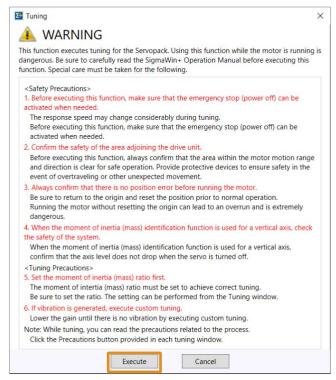


The stopping method if you cancel the moment of inertia estimation without a host reference is given below.

- If you cancel operation with the [Servo OFF] button, the servomotor will stop according to the setting of  $Pn001 = n.\Box\Box X$  (Motor Stopping Method for Servo OFF).
- If you cancel operation with the [Cancel] button, the servomotor will decelerate to a stop and then enter a zero-clamped state.

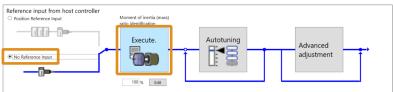
Use the following procedure to estimate the moment of inertia without a host reference.

1. Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.


The [Menu] window will be displayed.

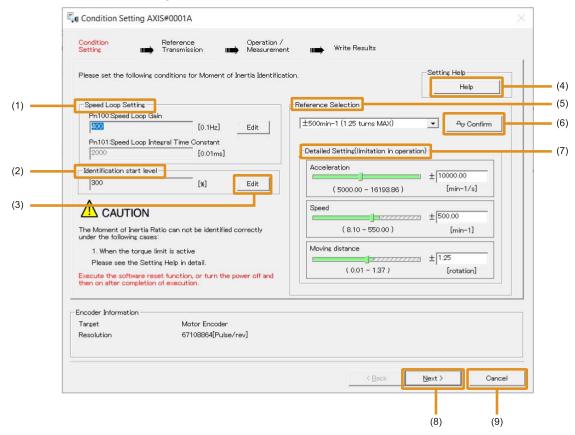
#### 2. Click [Tuning] in the [Tuning] area.




The [Tuning] window will be displayed.

3. Click the [Execute] button.

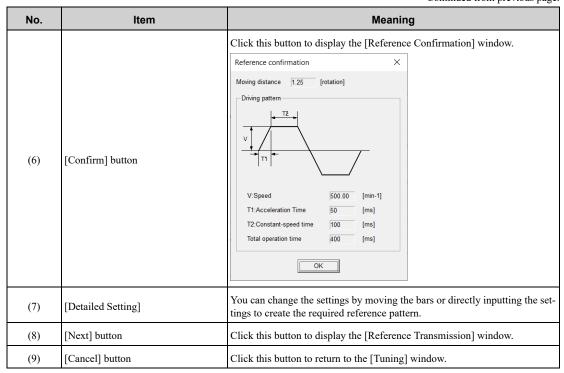



The [Tuning] window will be displayed.

4. Under [Reference input from host controller], select [No Reference Input], and then click the [Execute] button.



The [Condition Setting] window will be displayed.


### 5. Set the conditions as required.



| No. | Item                         | Meaning                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                              | Make the speed loop settings in this area.                                                                                                                                                                                                                                                                                                                                                                 |
|     |                              | If the speed loop response is too bad, it will not be possible to measure the moment of inertia ratio accurately.                                                                                                                                                                                                                                                                                          |
| (1) | [Speed Loop Setting]         | A suitable value is set to perform the moment of inertia estimation. It is normally not necessary to change these settings.                                                                                                                                                                                                                                                                                |
|     |                              | If the default speed loop gain is too high for the machine (i.e., if vibration occurs), lower the setting. It is not necessary to increase the setting any farther.                                                                                                                                                                                                                                        |
|     |                              | This is the setting of the moment of inertia calculation starting level.                                                                                                                                                                                                                                                                                                                                   |
| (2) | [Identification start level] | If the load is large or the machine has low rigidity, the torque limit may be applied, causing moment of inertia estimation to fail.                                                                                                                                                                                                                                                                       |
|     |                              | If that occurs, estimation may be possible if you double the setting of the start level.                                                                                                                                                                                                                                                                                                                   |
| (3) | [Edit] button                | Click the button to display a window to change the settings related to the speed loop or estimation start level.                                                                                                                                                                                                                                                                                           |
|     | [Help] button                | Click this button to display guidelines for setting the reference conditions.  Make the following settings as required.                                                                                                                                                                                                                                                                                    |
|     |                              | Operate the servomotor to measure the load moment of inertia of the machine in comparison with the rotor moment of inertia.                                                                                                                                                                                                                                                                                |
| (4) |                              | Set the operation mode, reference pattern (maximum acceleration rate, maximum speed, and maximum travel distance), and speed loop-related parameters.                                                                                                                                                                                                                                                      |
|     |                              | <ul> <li>Correct measurement of the moment of inertia ratio may not be possible<br/>depending on the settings. Set suitable settings using the measurement<br/>results as reference.</li> </ul>                                                                                                                                                                                                            |
| (5) | [Reference Selection]        | Either select the reference pattern for estimation processing from the box, or set the values in the [Detailed Setting]. Generally speaking, the larger the maximum acceleration rate is, the more accurate the moment of inertia estimation will be. Set the maximum acceleration range within the possible range of movement considering the gear ratio, e.g., the pulley diameters or ball screw pitch. |

Continued on next page.

Continued from previous page.





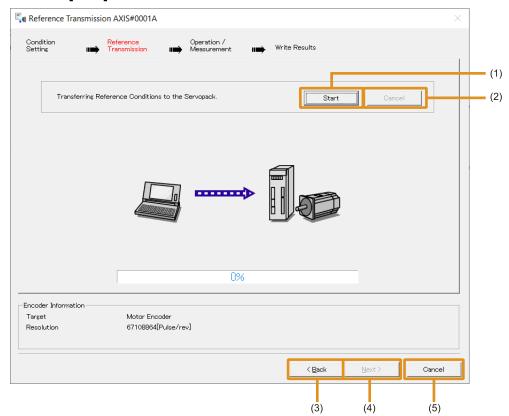

- The travel distance is the distance for one operation in the forward or reverse direction. During multiple operations, the operation starting position may move in one direction or the other. Confirm the possible operating range for each measurement or operation.
- Depending on the parameter settings and the moment of inertia of the machine, overshooting may occur and may cause the maximum speed setting to be exceeded temporarily. Allow sufficient leeway in the settings.

#### Information When Measurement Is Not Correct

Estimating the moment of inertia ratio cannot be performed correctly if the torque limit is activated. Adjust the limits or reduce the acceleration rate in the reference selection so that the torque limit is not activated.

## 6. Click the [Next] button.

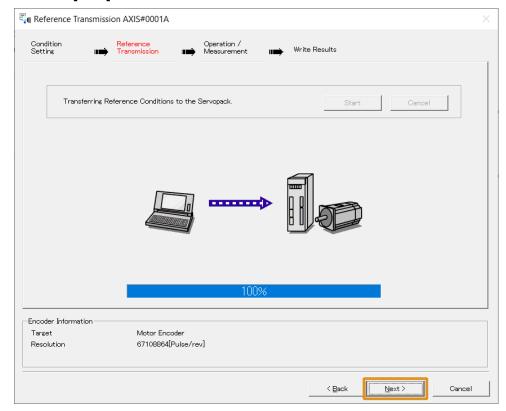



The procedure after this step depends on the travel distance. If any of the following apply, proceed to the next step.

- The travel distance of a rotary servomotor is 0.25 rotations or more.
- The travel distance of a direct drive servomotors is 0.04 rotations or more.
- The travel distance of a linear servomotor is 2.5 mm or more.

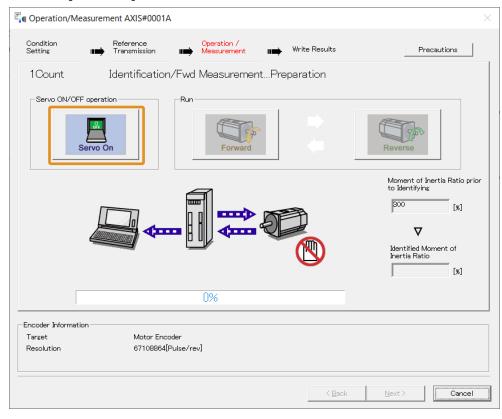
If none of the above apply, refer to the following section.

(1) Moment of Inertia Estimation without a Host Reference When Travel Distance Is Short on page 340

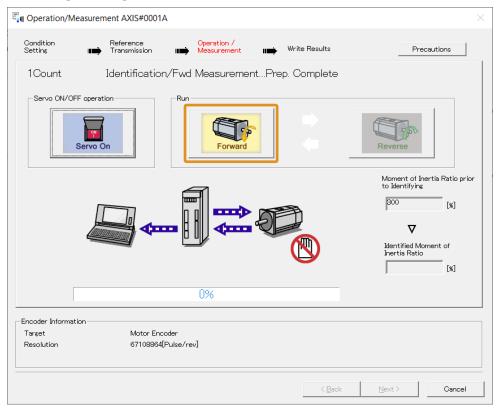

### 7. Click the [Start] button.



| No. | Item            | Meaning                                                                                                                                                                                                                                      |
|-----|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) | [Start] button  | The reference conditions will be transferred to the SERVOPACK. A progress bar will show the progress of the transfer.                                                                                                                        |
| (2) | [Cancel] button | The [Cancel] button is enabled only while data is being transferred to the SERVOPACK. You cannot use it after the transfer has been completed.                                                                                               |
| (3) | [Back] button   | This button returns you to the [Condition Setting] window. It is disabled while data is being transferred.                                                                                                                                   |
| (4) | [Next] button   | This button is enabled only when the data has been transferred correctly. You cannot use it if an error occurs or if you cancel the transfer before it is completed.  Click the [Next] button to display the [Operation/Measurement] window. |
| (5) | [Cancel] button | This button cancels processing and returns you to the [Tuning] window.                                                                                                                                                                       |

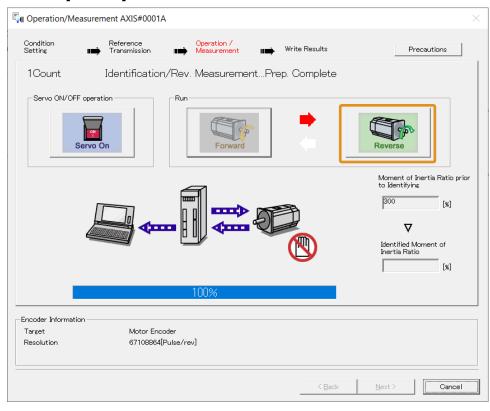

# ٠

# 8. Click the [Next] button.

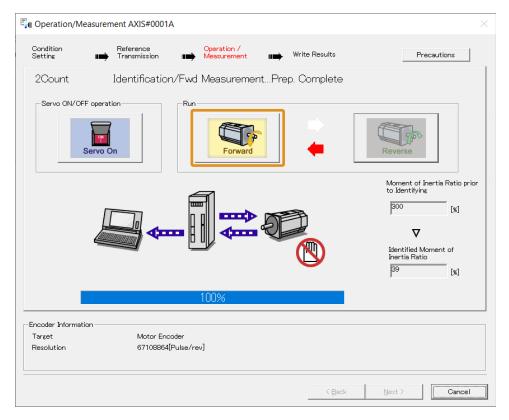



The [Operation/Measurement] window will be displayed.

### 9. Click the [Servo On] button.



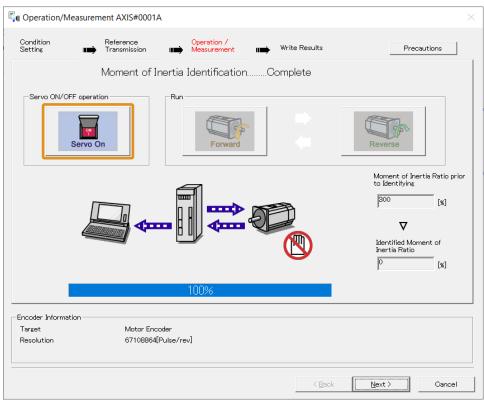

#### 10. Click the [Forward] button.



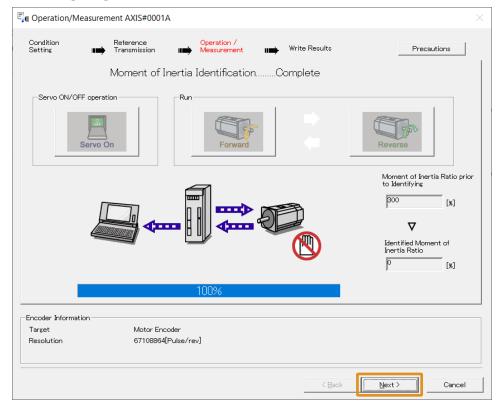

The servomotor shaft will rotate in the forward direction and the measurement will start. After the measurement and data transfer have been completed, the [Reverse] button will be displayed in color.

### 11. Click the [Reverse] button.




The servomotor shaft will rotate in the reverse direction and the measurement will start. After the measurement and data transfer have been completed, the [Forward] button will be displayed in color.




### 12. Repeat steps 10 to 11 until the [Next] button is enabled.

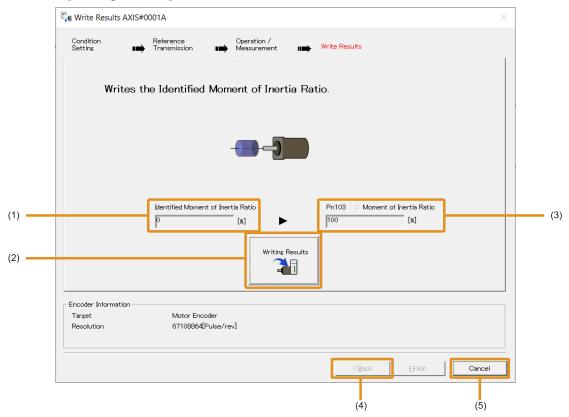
Measurements are performed from 2 to 7 times and then verified. The number of measurements is displayed in upper left corner of the window. A progress bar at the bottom of the window will show the progress of the transfer each time.

# 13. When the measurements have been completed, click the [Servo On] button to turn OFF the servo.



### 14. Click the [Next] button.




The [Write Results] window will be displayed.

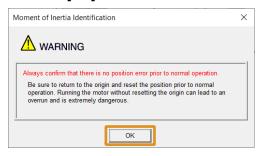
Information If you click the [Next]

If you click the [Next] button before you turn OFF the servo, the following message dialog box will be displayed. Click the [OK] button to turn OFF the servo.



# 15. Click the [Writing Results] button.




| No. | Item                                 | Meaning                                                                                                                                                                                                  |
|-----|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) | [Identified Moment of Inertia Ratio] | The moment of inertia ratio that was found with operation and measurements is displayed here.                                                                                                            |
| (2) | [Writing Results] button             | If you click this button, Pn103 (Moment of Inertia Ratio) in the SERVO-PACK is set to the value that is displayed for the identified moment of inertia ratio.                                            |
| (3) | [Pn103: Moment of Inertia Ratio]     | The value that is set for the parameter is displayed here.  After you click the [Writing Results] button, the value that was found with operation and measurements will be displayed as the new setting. |
| (4) | [Back] button                        | This button is disabled.                                                                                                                                                                                 |
| (5) | [Cancel] button                      | You will return to the [Tuning] window.                                                                                                                                                                  |

# 16. Confirm that the [Identified Moment of Inertia Ratio] and the [Pn103: Moment of Inertia Ratio] show the same value and then click the [Finish] button.



The message dialog box will be displayed.

#### 17. Click the [OK] button.

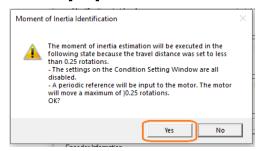


If the setting of Pn103 (Moment of Inertia Ratio) was changed, the new value will be saved and the [Tuning] window will be displayed again.

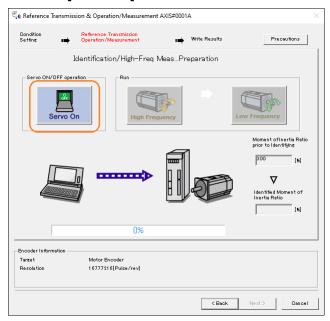
This concludes the procedure to estimate the moment of inertia ratio without a host reference.

# (1) Moment of Inertia Estimation without a Host Reference When Travel Distance Is Short

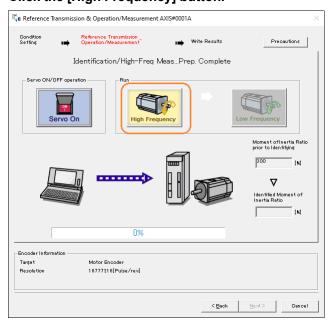
Use the following procedure to estimate the moment of inertia without a host reference when any of the following apply to the travel distance.


- The travel distance of a rotary servomotor is less than 0.25 rotations.
- The travel distance of a direct drive servomotors is less than 0.04 rotations.
- The travel distance of a linear servomotor is less than 2.5 mm.

#### Note:


This section does not contain the complete procedure to estimate moment of inertia without a host reference. Refer to the following section before using this procedure.

8.5.4 Operating Procedure on page 330

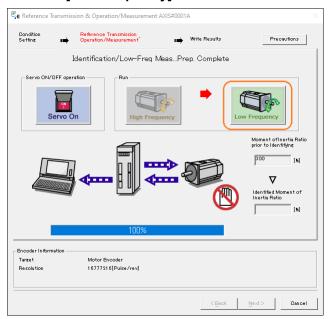

#### 1. Click the [Yes] button.



#### 2. Click the [Servo On] button.



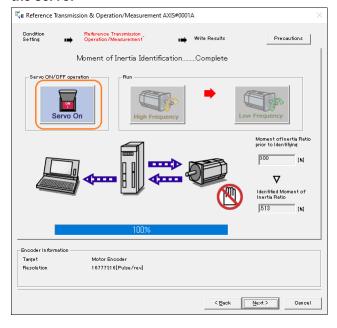
#### 3. Click the [High Frequency] button.



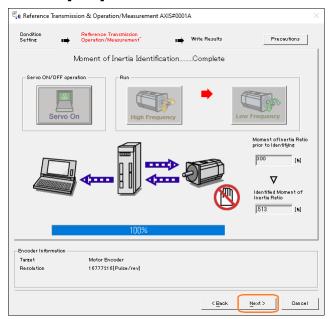

The servomotor shaft will rotate and measurements will start. After the measurement and data transfer have been completed, the [Low Frequency] button will be displayed in color.

Information

- The servomotor shaft will rotate only a maximum of 0.25 rotations (0.04 rotations for a direct drive servomotor) at one time.
- The servomotor may not operate as configured because it will operate at a constant frequency.
- Noise may occur during operation.


#### Click the [Low Frequency] button.



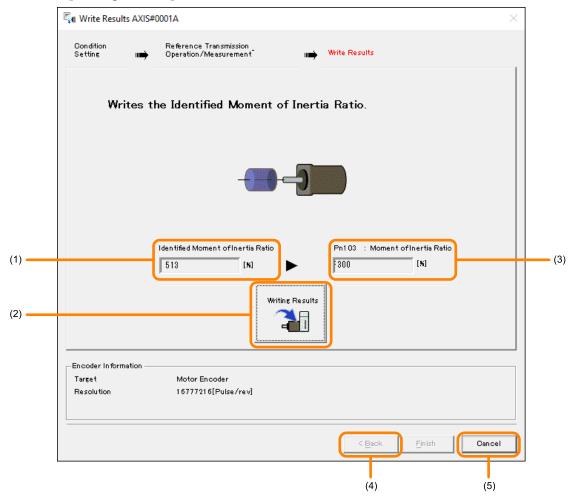

The servomotor shaft will rotate and measurements will start. After the measurement and data transfer have been completed, the [Next] button will be enabled.

- The servomotor shaft will rotate only a maximum of 0.25 rotations (0.04 rotations for a direct drive servomotor) at one time.
  - The servomotor may not operate as configured because it will operate at a constant frequency.
  - Noise may occur during operation.

#### 5. When the measurements have been completed, click the [Servo On] button to turn OFF the servo.

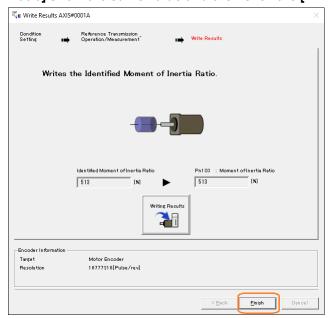


# 6. Click the [Next] button.



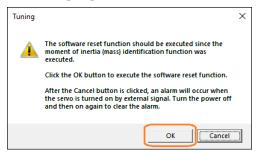

The [Write Results] window will be displayed.

Information If you click the [Next] button before you turn OFF the servo, the following message dialog box will be displayed. Click the [OK] button to turn OFF the servo.




# $7. \quad \hbox{Click the [Writing Results] button.}$




| No. | Item                                 | Meaning                                                                                                                                                                                                  |
|-----|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) | [Identified Moment of Inertia Ratio] | The moment of inertia ratio that was found with operation and measurements is displayed here.                                                                                                            |
| (2) | [Writing Results] button             | If you click this button, Pn103 (Moment of Inertia Ratio) in the SERVO-PACK is set to the value that is displayed for the identified moment of inertia ratio.                                            |
| (3) | [Pn103: Moment of Inertia Ratio]     | The value that is set for the parameter is displayed here.  After you click the [Writing Results] button, the value that was found with operation and measurements will be displayed as the new setting. |
| (4) | [Back] button                        | This button is disabled.                                                                                                                                                                                 |
| (5) | [Cancel] button                      | You will return to the [Tuning] window.                                                                                                                                                                  |

8. Confirm that the [Identified Moment of Inertia Ratio] and the [Pn103: Moment of Inertia Ratio] show the same value and then click the [Finish] button.



The message dialog box will be displayed.

9. Click the [OK] button.



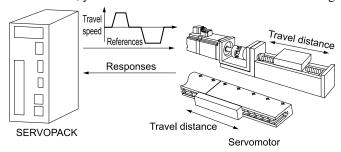
10. Click the [OK] button.



This concludes the procedure to estimate the moment of inertia ratio without a host reference when the travel distance is short.

# 8.6 Moment of Inertia Estimation with a Host Reference

This section describes how the moment of inertia with a host reference is calculated.


The moment of inertia ratio that is calculated here is used in other tuning functions.

## 8.6.1 Outline

The load moment of inertia is estimated from operation by reference (position control) from the host controller. This function is called real-time moment of inertia estimation.

The moment of inertia ratio (i.e., the ratio of the load moment of inertia to the motor moment of inertia) is a basic parameter for adjusting gains. It must be set as accurately as possible.

Although the load moment of inertia can be calculated from the weight and structure of the mechanisms, calculating it accurately can be very difficult with the complex mechanical structures that are used these days. With this function, you can estimate load moment of inertia with good accuracy.



#### Note:

Execute this function after jogging to a position that ensures a suitable range of motion.

## 8.6.2 Restrictions

The following restrictions apply to estimating the moment of inertia with a host reference.

# (1) Systems for which Execution Cannot Be Performed

- When the operating time is shorter than 200 ms
- · For low speed operations

# (2) Systems for Which Adjustments Cannot Be Made Accurately

- When a suitable range of motion is not possible
- · When the machine has high dynamic friction

# (3) Preparations

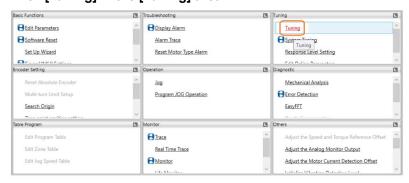
Always check the following before you execute moment of inertia estimation with a host reference.

- The main circuit power must be ON.
- There must be no overtravel.
- The servo must be OFF.
- The control method must not be set to torque control.
- Pn00C must be set to n. \( \pi \) (Function Selection for Test without a Motor is disabled).
- There must be no alarms or warnings.
- There must be no hard wire base block (HWBB).
- The parameters must not be write prohibited.

# 8.6.3 Applicable Tools

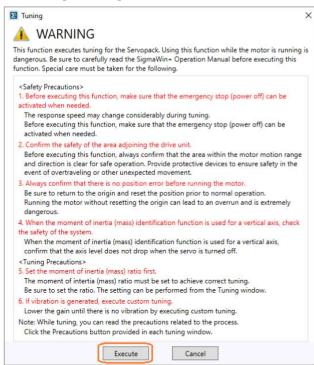
The following table lists the tools that you can use to estimate the moment of inertia with a host reference.

| Tool                          | Fn No./Function Name                                                                       | Operating Procedure Reference         |
|-------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------|
| Digital Operator              | You cannot estimate the moment of inertia with a host reference from the digital operator. |                                       |
| SigmaWin+ [Tuning] - [Tuning] |                                                                                            | 8.6.4 Operating Procedure on page 347 |


# 8.6.4 Operating Procedure

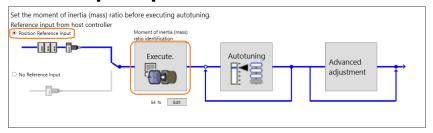
Use the following procedure to estimate the moment of inertia with a host reference.

 Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.


The [Menu] window will be displayed.

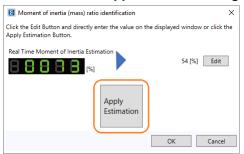
2. Click [Tuning] in the [Tuning] area.



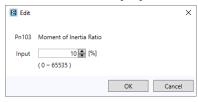

The [Tuning] window will be displayed.

3. Click the [Execute] button.

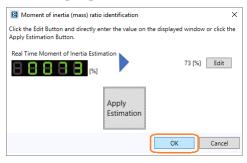



The [Tuning] window will be displayed.

4. Under [Reference input from host controller], select [Position Reference Input], and then click the [Execute] button.




The [Moment of inertia (mass) ratio identification] window will be displayed.


5. If you click the [Apply Estimation] button, the estimated value of the real-time moment of inertia will be applied to the settings area.



Information Click the [Edit] button to display the [Edit] window on which you can manually enter the value. Set the value and click the [OK] button.



6. Click the [OK] button.



This concludes the procedure to estimate the moment of inertia ratio with a host reference.

# 8.7 Autotuning without a Host Reference

This section describes autotuning without a host reference.



- Autotuning without a host reference performs adjustments based on the setting of Pn100 (Speed Loop Gain). Therefore, precise adjustments cannot be made if there is vibration when adjustments are started. Make adjustments after lowering the setting of Pn100 (Speed Loop Gain) until vibration is eliminated.
- You cannot execute autotuning without a host reference if Pn170 is set to n. \u2210 1 (enable tuning-less function)(default setting). Set Pn170 to n. \u2210 \u2210 0 (disable the tuning-less function) before you execute autotuning without a host reference.
- You cannot execute autotuning without a host reference if Pn173 is set to n.□□□1 (enable load fluctuation compensation control). Set Pn173 to n.□□□0 (disable load fluctuation compensation control) before you execute autotuning without a host reference.
- If you change the machine load conditions or drive system after you execute autotuning without a host reference and then you execute autotuning without a host reference with moment of inertia estimation specified, use the following parameter settings. If you execute autotuning without a host reference for any other conditions, the machine may vibrate and may be damaged.

 $Pn140 = n.\Box\Box\Box 0$  (do not use model following control)

 $Pn160 = n.\Box\Box\Box 0$  (do not use anti-resonance control)

Pn408 = n.00 □ 0 (disable friction compensation, first stage notch filter, and second stage notch filter)

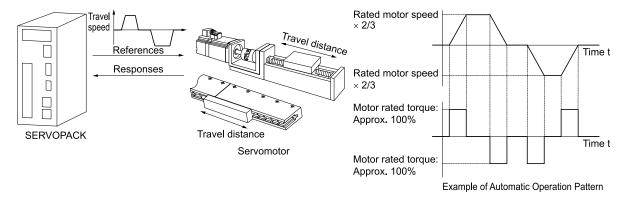
#### Note:

If you are using the digital operator and the above parameters are not displayed, set Pn00B to  $n.\Box\Box\Box1$  (display all parameters) and then turn the power OFF and ON again.

## 8.7.1 Outline

For autotuning without a host reference, operation is automatically performed by the SERVOPACK for round-trip (forward and reverse) operation to adjust for machine characteristics during operation. A reference from the host controller is not used.

The following items are adjusted automatically.


- · Moment of inertia ratio
- Gains (e.g., speed loop gain and position loop gain)
- Filters (torque reference filter and notch filters)
- Friction compensation
- · Anti-resonance control
- Vibration suppression (only for mode 2 or 3)

Refer to the following section for details on the parameters that are adjusted.

#### ■ 8.7.7 Related Parameters on page 360

The servomotor is operated with the following specifications.

| Maximum<br>Motor Speed | Rated motor speed $\times$ 2/3                                                                                                                                                               |                                                                                                                         |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Acceleration<br>Torque | Rated motor torque: Approx. 100%  Note:  The acceleration torque depends on the setting of Pn103 (Moment of Inertia Ratio), and the influences of machine friction and external disturbance. |                                                                                                                         |
|                        | Rotary Servomotors                                                                                                                                                                           | You can set the desired travel distance. The default setting is for a value equivalent to 3 servomotor shaft rotations. |
| Travel<br>Distance     | Direct Drive Servomotors                                                                                                                                                                     | You can set the desired travel distance. The default setting is for a value equivalent to 0.3 rotations.                |
|                        | Linear Servomotors                                                                                                                                                                           | You can set the desired travel distance in increments of 1000 reference units. The default setting is for 90 mm.        |



#### Note:

Execute this function after jogging to a position that ensures a suitable range of motion.

# **WARNING**

Autotuning without a host reference is a measurement function that actually drives the machine and therefore presents hazards. Observe the following precautions.

- Confirm safety around moving parts.
- This function involves automatic reciprocating operation. Make sure that you can perform an emergency stop (to turn OFF the power supply) at any time.
- There will be movement in both directions within the set range of movement. Check the range of movement and the directions and implement protective measures for safety, such as the overtravel functions.

### 8.7.2 Restrictions

The following restrictions apply to autotuning without a host reference.

If you cannot use autotuning without a host reference because of these restrictions, use autotuning with a host reference or custom tuning. Refer to the following section for details.

\$\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\over

**3** 8.9 Custom Tuning on page 370

# (1) Systems for which Execution Cannot Be Performed

- · When the machine system can move only in one direction
- When the range of motion is 0.5 rotations or less

# (2) Systems for Which Adjustments Cannot Be Made Accurately

- When a suitable range of motion is not possible
- When the moment of inertia changes within the set operating range
- When the machine has high dynamic friction
- When the rigidity of the machine is low and vibration occurs when positioning is performed
- When the position integration function is used
- When P control is used
- · When mode switching is used

#### Note:

If you specify moment of inertia estimation, mode switching will be disabled and PI control will be used while the moment of inertia is being calculated. Mode switching will be enabled after moment of inertia estimation has been completed.

- When speed feedforward or torque feedforward is input
- When the setting of Pn522 (Positioning Completed Width) is too small

## (3) Preparations

Always check the following before you execute autotuning without a host reference.

- The main circuit power must be ON.
- There must be no overtravel.
- The servo must be OFF.
- The control method must not be set to torque control.
- The gain 1 must be selected.
- Pn00C must be set to n. \( \sigma \sigma 0 \) (Function Selection for Test without a Motor is disabled).
- Pn173 must be set to n. \( \sigma \sigma 0 \) (a load fluctuation compensation control is disabled).
- There must be no alarms or warnings.
- There must be no hard wire base block (HWBB).
- The parameters must not be write prohibited.
- Moment of inertia estimation must be specified when Pn170 is set to n.□□□0 (tuning-less function is disabled) or Pn170 is set to n.□□□1 (tuning-less function is enabled) (default setting).
- If you execute autotuning without a host reference during speed control, set the mode to 1.

Information If you start autotuning without a host reference while the SERVOPACK is in speed control for mode 2 or 3, the SERVOPACK will change to position control automatically to perform autotuning without a host reference. The SERVOPACK will return to speed control after autotuning has been completed.

The settings of Pn533 or Pn585 (Program Jogging Movement Speed) and Pn385 (Maximum Motor Speed) must not satisfy either of the conditional expressions shown below.
 If either of these conditional expressions is satisfied, an A.042 (Parameter Combination Error) will occur.

- Rotary Servomotors

# 8.7.3 Applicable Tools

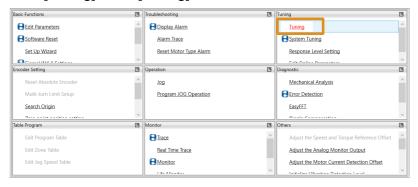
The following table lists the tools that you can use to perform autotuning without a host reference.

| Tool             | Fn No./Function Name | Operating Procedure Reference                                                  |
|------------------|----------------------|--------------------------------------------------------------------------------|
| Digital Operator | Fn201                | Σ-7/Σ-X-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33) |
| SigmaWin+        | [Tuning] - [Tuning]  | ■ 8.7.4 Operating Procedure on page 351                                        |

# 8.7.4 Operating Procedure

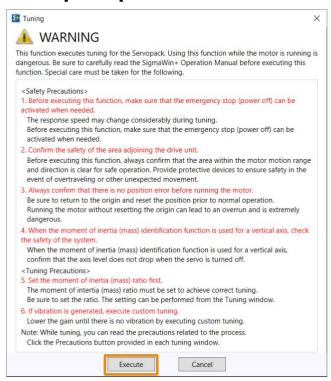
Use the following procedure to perform autotuning without a host reference.

# **A** CAUTION

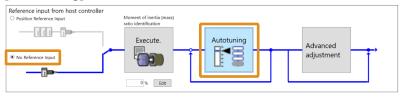

If you specify not estimating the moment of inertia, set Pn103 (Moment of Inertia Ratio) correctly.

If the setting greatly differs from the actual moment of inertia ratio, normal control of the machine may not be possible, and vibration may result.

- 1. Confirm that the value of Pn103 (Moment of Inertia Ratio) is set correctly.
- 2. Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.

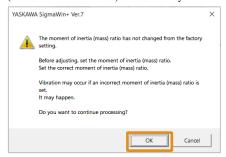

The [Menu] window will be displayed.

3. Click [Tuning] in the [Tuning] area.

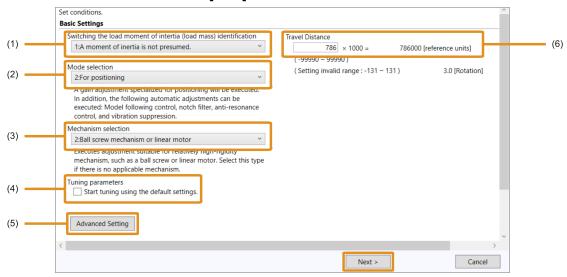



The [Tuning] window will be displayed.

4. Click the [Execute] button.




5. Click [No Reference Input] in [Reference input from host controller] and then click the [Autotuning] button.



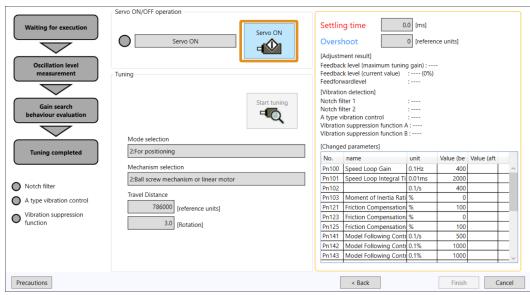

Information

When the following message dialog box is displayed, click the [OK] button and then confirm that Pn103 (Moment of Inertia Ratio) is set correctly.

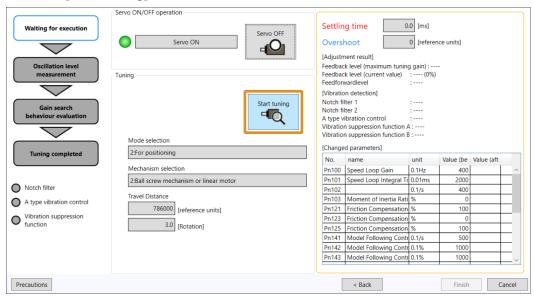


### 6. Set the conditions and click the [Next] button.




| No. | Item                                                              | Meaning                                                                                                                                                                                                                                            |
|-----|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) | [Switching the load moment of inertia (load mass) identification] | Specify whether to estimate the moment of inertia.                                                                                                                                                                                                 |
| (2) | [Mode selection]                                                  | Set the mode. For details on the options, refer to the explanations on the window.                                                                                                                                                                 |
| (3) | [Mechanism selection]                                             | Select the type according to the machine element to drive.  If there is noise or if the gain does not increase, better results may be obtained by changing the rigidity type. For details on the options, refer to the explanations on the window. |
| (4) | [Tuning parameters]                                               | Specify the parameters to use for tuning.  If you select [Start tuning using the default settings], the tuning parameters will be returned to the default settings before tuning is started.                                                       |

Continued on next page.

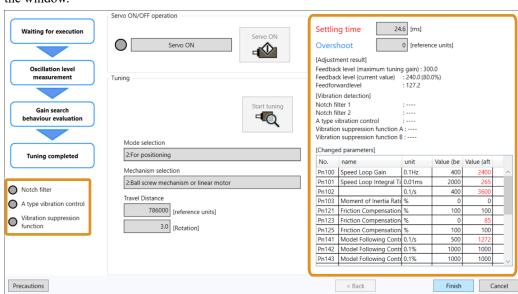

Continued from previous page.

| No. | Item                      | Meaning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (5) | [Advanced Setting] button | Click this button to display the [Advanced Setting] window on which you can set the details of tuning conditions. Configure detailed tuning conditions in the following cases:  • To tune a higher response than the tuning results  • When tuning fails with a large amount of overshoot  • To tune with speed I-P control  Advanced Setting  Set conditions.  Setting  Gain Upper Limit (Pn540) (1 - 400)  300.0 [Hz]  Adjustment margin to Maximum Search Gain (Pn562) (10 - 100)  80 [%]  10 100  Overshoot Allowable Width (Pn561) (0 - 1000)  7 [reference units] × 100 [%] = 7 [reference units]  Speed I-P Control  ?                                                               |
| (6) | [Travel Distance]         | Set the travel distance.  Movement range: -99990000 to +99990000 [reference units]  Minimum setting increment for travel distance: 1000 [reference units]  Negative values are for reverse operation and positive values are for forward operation from the current position.  Default settings:  Rotary servomotors: Approx. 3 rotations  Direct drive servomotors: Approx. 0.3 rotations  Linear servomotors: Approx. 90 mm  Set the distance to the following values or higher. To ensure tuning precision, we recommend that you use approximately the default distance setting.  Rotary servomotors: 0.5 rotations  Direct drive servomotors: 0.05 rotations  Linear servomotors: 5 mm |

## 7. Click the [Servo ON] button.



#### 8. Click the [Start tuning] button.




### 9. Confirm safety around moving parts and click the [Yes] button.

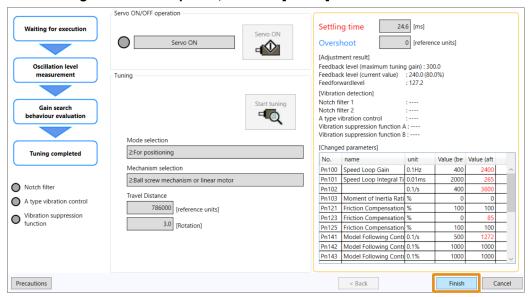


The servomotor will start operating and tuning will be executed.

Vibration that occurs during tuning will be detected automatically and suitable settings will be made for that vibration. The content to set will be displayed on the right side of the window. When the settings have been completed, the indicators for the functions that were used will light at the lower left of the window.

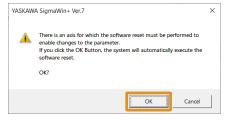


Details on the content to set are shown below.


| Item            | Meaning                                               |
|-----------------|-------------------------------------------------------|
| [Settling time] | Displays the settling time by the tuning results.     |
| [Overshoot]     | Displays the maximum overshoot by the tuning results. |

Continued on next page.

Continued from previous page.


| Item                                                                  | Meaning                                                                                                                            |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| [Feedback level (maximum tuning gain)                                 | Displays the maximum value of Pn100 (Speed Loop Gain) during tuning.                                                               |
| [Feedback level (current value)]                                      | Displays the value of Pn100 (Speed Loop Gain) after tuning. The number in parentheses is the percentage of adjusting maximum gain. |
| [Feedforward level]                                                   | Displays the value of Pn141 (Model Following Control Gain) after tuning.                                                           |
| [Notch filter 1] [Notch filter 2]                                     | Displays the frequencies set by the notch filters. "——" is displayed if not set.                                                   |
| [A type vibration control]                                            | Displays the frequency set by anti-resonance control. "——" is displayed if not set.                                                |
| [Vibration suppression function A] [Vibration suppression function B] | Displays the frequencies set by vibration suppression. "——" is displayed if not set.                                               |

### 10. When tuning has been completed, click the [Finish] button.



The message dialog box will be displayed.

#### 11. Click the [OK] button.



The software will be reset, the results of tuning will be set in the parameters, and you will return to the [Tuning] window.

This concludes the procedure to perform autotuning without a host reference.

# 8.7.5 Troubleshooting Problems in Autotuning without a Host Reference

The following tables give the causes of and corrections for problems that may occur in autotuning without a host reference.

# (1) Autotuning without a Host Reference Was Not Performed

| Possible Cause                                             | Corrective Action                                                                                                                                                                    |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Main circuit power is OFF.                                 | Turn ON the main circuit power.                                                                                                                                                      |
| An alarm or warning occurred.                              | Remove the cause of the alarm or warning.                                                                                                                                            |
| Overtraveling occurred.                                    | Remove the cause of overtraveling.                                                                                                                                                   |
| The gain 2 was selected with the gain selection.           | Disable automatic gain switching.                                                                                                                                                    |
| The HWBB was activated.                                    | Release the HWBB.                                                                                                                                                                    |
| The setting of the travel distance is too small.           | Set the travel distance again in step 6 of the procedure.                                                                                                                            |
| The settings for the tuning-less function are not correct. | <ul> <li>Set Pn170 to n.□□□0 (disable the tuning-less function).</li> <li>Set Pn170 to n.□□□1 (enable the tuning-less function) and specify moment of inertia estimation.</li> </ul> |

# (2) When an Error Occurs during Execution of Autotuning without a Host Reference

| Error                                                                                                  | Possible Cause                                                                                         | Corrective Action                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The gain adjustments were not successfully completed.                                                  | Machine vibration occurs or the positioning completion signal is not stable when the servomotor stops. | <ul> <li>On the [Detailed Setting] window, increase the setting of Pn561 (Overshoot Detection Level).</li> <li>Increase the setting of Pn522 (Positioning Completed Width).</li> <li>On the [Detailed Setting] window, decrease the setting of Pn562 (Setting Gain Ratio).</li> <li>Change the mode from 2 to 3.</li> <li>If machine vibration occurs, suppress the vibration with the antiresonance control adjustment and the vibration suppression function.</li> </ul> |
| An error occurred during calculation of the moment of inertia.                                         | Refer to the following section for tro  (3) When an Error Occurs during                                | ubleshooting information.  ng Calculation of Moment of Inertia on page 357                                                                                                                                                                                                                                                                                                                                                                                                 |
| Positioning was not completed within approximately 10 seconds after position adjustment was completed. | The positioning completed width is too narrow or proportional control is being used.                   | Increase the setting of Pn522 (Positioning Completed Width).                                                                                                                                                                                                                                                                                                                                                                                                               |

# (3) When an Error Occurs during Calculation of Moment of Inertia

| Possible Cause                                                                                 | Corrective Action                                                                                                                                                      |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The SERVOPACK started calculating the moment of inertia but the calculation was not completed. | <ul> <li>Increase the setting of Pn100 (Speed Loop Gain).</li> <li>Increase the stroke (travel distance).</li> </ul>                                                   |
| The moment of inertia fluctuated greatly and did not converge within 10 tries.                 | Set Pn103 (Moment of Inertia Ratio) from the machine specifications and specify not estimating the moment of inertia.                                                  |
| Low-frequency vibration was detected.                                                          | Double the setting of Pn324 (Moment of Inertia Calculation Starting Level).                                                                                            |
| The torque limit was reached.                                                                  | <ul> <li>If you are using the torque limit, increase the torque limit.</li> <li>Double the setting of Pn324 (Moment of Inertia Calculation Starting Level).</li> </ul> |
| Speed control changed to proportional control during calculation of the moment of inertia.     | Use PI control when calculating the moment of inertia.                                                                                                                 |

# (4) Adjustment Results Are Not Satisfactory for Position Control

Configuring parameters as shown below may improve the adjustment results.

• Change Pn522 (Positioning Completed Width) and the Position User Unit (2701h).

Adjust Pn561 (Overshoot Detection Level).
 You can change these parameters on the [Adjustment Settings] window. Details on the settings of Pn561 are shown below.

| Setting of Pn561       | Meaning                                                                                                                                                                                                                                                               |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0% to 99%              | This will allow tuning to be performed without overshooting within the positioning completed width, but the positioning completed width may be extended.                                                                                                              |
| 100% (default setting) | This will allow tuning with overshooting that is equivalent to the positioning completed width.                                                                                                                                                                       |
| 101% to 1000%          | The settings that allow overshooting to exceed the positioning completed width. Adjust Pn561 (Overshoot Detection Level) without changing the positioning completed width. Increase this setting when high responsiveness is required even if overshooting increases. |

• Increase the upper limits for tuning.

However, the changes in these settings are valid only when the tuning results are Pn100 = 2400 [0.1 Hz] (speed loop gain = 240 Hz) and Pn141 = 6000 [0.1/s] (model following control gain = 600/s). If you increase the upper limits of tuning at this time, you may be able to further decrease the settling time. You can change the upper limits of tuning on the [Detailed Setting] window. Set the parameters as shown below

- Pn540 = 3000 [0.1 Hz] or higher (maximum search gain = 300 Hz [default setting] or higher)
- Pn562 = 80 [%] or higher (setting gain ratio = 80% [default setting] or higher)

# 8.7.6 Automatically Adjusted Function Setting

You can specify whether to automatically adjust the following functions during autotuning.

## (1) Automatic Notch Filters

Normally, set Pn460 to n.□1□□ (adjust automatically) (default setting).

Vibration will be detected during autotuning without a host reference and a notch filter will be adjusted.

Set Pn460 to  $n.\Box 0\Box\Box$  (do not adjust automatically) only if you do not change the setting of the notch filter before you execute this function.

|                  |                                | Notch Fil                                | ter Adjustment Selection 1 Speed Pos Trq                                                                                                                                                                            | When Enabled |
|------------------|--------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Pn460<br>(2460h) | n.□□□X                         | 0                                        | Do not adjust the first stage notch filter automatically during execution of autotuning without a host reference, autotuning with a host reference, and custom tuning.                                              | Immediately  |
|                  |                                | 1<br>Default                             | Adjust the first stage notch filter automatically during execution of autotuning without a host reference, autotuning with a host reference, and custom tuning.                                                     |              |
|                  | Notch Fi 0  n.□X□□  1  Default | ter Adjustment Selection 2 Speed Pos Trq | When Enabled                                                                                                                                                                                                        |              |
| Pn460<br>(2460h) |                                | 0                                        | Do not adjust the second stage notch filter automatically when the tuning-less function is enabled or during execution of autotuning without a host reference, autotuning with a host reference, and custom tuning. |              |
|                  |                                | 1<br>Default                             | Adjust the second stage notch filter automatically when the tuning-less function is enabled or during execution of autotuning without a host reference, autotuning with a host reference, and custom tuning.        | Immediately  |

# (2) Anti-Resonance Control Adjustment

This function reduces low vibration frequencies, for which the notch filters cannot be used.

Normally, set Pn160 to  $n.\Box\Box\Box\Box$  (adjust automatically) (default setting).

Vibration will be detected during autotuning without a host reference and anti-resonance control will be automatically adjusted.

| Pn160<br>(2160h) | n.□□X□ | Anti-Res     | onance Control Adjustment Selection Speed Pos Trq                                                                                                                        | When Enabled |  |
|------------------|--------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|
|                  |        | 0            | Do not adjust anti-resonance control automatically during execution of auto-<br>tuning without a host reference, autotuning with a host reference, and custom<br>tuning. | Immediately  |  |
|                  |        | 1<br>Default | Adjust anti-resonance control automatically during execution of autotuning without a host reference, autotuning with a host reference, and custom tuning.                | ·            |  |

# (3) Vibration Suppression

You can use vibration suppression to suppress transitional vibration at a low frequency from 1 Hz to 100 Hz, which is generated mainly when the machine vibrates during positioning.

Normally, set Pn140 to n.□1□□ (adjust automatically) (default setting).

Vibration will be detected during autotuning without a host reference and vibration suppression control will be automatically set.

Set  $Pn140 = n.\Box 0\Box\Box$  (do not adjust automatically) only if you do not change the settings for vibration suppression before you execute this function.

#### Note

This function uses model following control. Therefore, it can be executed only if the mode is set to 2 or 3.

| Pn140<br>(2140h) | n.□X□□ | Vibration    | Suppression Adjustment Selection Speed Pos Trq                                                                                                                  | When Enabled |
|------------------|--------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                  |        | 0            | Do not adjust vibration suppression automatically during execution of autotuning without a host reference, autotuning with a host reference, and custom tuning. | Immediately  |
|                  |        | 1<br>Default | Adjust vibration suppression automatically during execution of autotuning without a host reference, autotuning with a host reference, and custom tuning.        | ·            |

# (4) Friction Compensation

Friction compensation compensates for changes in the following conditions.

- · Changes in the viscous resistance of the lubricant, such as grease, on the sliding parts of the machine
- · Changes in the friction resistance resulting from variations in the machine assembly
- · Changes in the friction resistance due to aging

The conditions for applying friction compensation depend on the mode selection.

| Mode Selection Settings          | Friction Compensation                                                                                           |  |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| 1. Standard                      | Based on the setting of Pn408 = n.X $\square$ $\square$ $\square$ (Friction Compensation Function Selection) */ |  |
| 2. Priority to settling time     |                                                                                                                 |  |
| 3: Priority to overshoot control | Adjusted with friction compensation.                                                                            |  |

|                  | n.X□□□ | Friction Compensation Function Selection Speed Pos Trq |                                | When Enabled |
|------------------|--------|--------------------------------------------------------|--------------------------------|--------------|
| Pn408<br>(2408h) |        | 0<br>Default                                           | Disable friction compensation. | Immediately  |
|                  |        | 1                                                      | Enable friction compensation.  | j            |

<sup>\*1</sup> Refer to the following section for details.

(1) Required Parameter Settings on page 419

# (5) Feedforward

If Pn140 is set to n.0 \(\pi\) \(\pi\) (do not use model following control and speed/torque feedforward together (default setting)) and tuning is performed with the mode selection set to 2 or 3, the setting of Pn109 (Feedforward), the speed feedforward input, and the torque feedforward input will be disabled.

To use the speed feedforward input, the torque feedforward input, and model following control from the host controller in the system, set Pn140 to  $n.1 \square \square \square$  (use model following control and speed/torque feedforward together).

| Pn140<br>(2140h) |  | Speed Feedforward (VFF)/Torque Feedforward (TFF) Selection |                                                                           | When Enabled |
|------------------|--|------------------------------------------------------------|---------------------------------------------------------------------------|--------------|
|                  |  | 0<br>Default                                               | Do not use model following control and speed/torque feedforward together. | Immediately  |
|                  |  | 1                                                          | Use model following control and speed/torque feedforward together.        | J            |



When model following control is used with this function, it is used to make optimum feedforward settings in the SERVO-PACK. Therefore, model following control is not normally used together with either the speed feedforward input or torque feedforward input from the host controller. However, model following control can be used with the speed feedforward input or torque feedforward input if required. An unsuitable feedforward input may result in overshooting.

# 8.7.7 Related Parameters

The following parameters are automatically adjusted or used as reference when you execute autotuning without a host reference.

Do not change the settings while autotuning without a host reference is being executed.

| Parameter                 | Name                                                    | Automatic Changes |
|---------------------------|---------------------------------------------------------|-------------------|
| Pn100 (2100h)             | Speed Loop Gain                                         | Yes               |
| Pn101 (2101h)             | Speed Loop Integral Time Constant                       | Yes               |
| Pn102 (2102h)             | Pn102 (2102h) Position Loop Gain                        |                   |
| Pn103 (2103h)             | Pn103 (2103h) Moment of Inertia Ratio                   |                   |
| Pn121 (2121h)             |                                                         |                   |
| Pn123 (2123h)             |                                                         |                   |
| Pn124 (2124h)             | Friction Compensation Frequency Correction              | No                |
| Pn125 (2125h)             | Friction Compensation Gain Correction                   | Yes               |
| Pn401 (2401h)             | First Stage First Torque Reference Filter Time Constant | Yes               |
| Pn408 (2408h)             | Torque-Related Function Selections                      | Yes               |
| Pn409 (2409h)             | First Stage Notch Filter Frequency                      | Yes               |
| Pn40A (240Ah)             | First Stage Notch Filter Q Value                        | Yes               |
| Pn40C (240Ch)             | Second Stage Notch Filter Frequency                     | Yes               |
| Pn40D (240Dh)             | Second Stage Notch Filter Q Value                       | Yes               |
| Pn140 (2140h)             | Model Following Control-Related Selections              | Yes               |
| Pn141 (2141h)             | Model Following Control Gain                            | Yes               |
| Pn142 (2142h)             | Model Following Control Gain Correction                 | Yes               |
| Pn143 (2143h)             | Model Following Control Bias in the Forward Direction   | Yes               |
| Pn144 (2144h)             | Model Following Control Bias in the Reverse Direction   | Yes               |
| Pn145 (2145h)             | Vibration Suppression 1 Frequency A                     | Yes               |
| Pn146 (2146h)             | Vibration Suppression 1 Frequency B                     | Yes               |
| Pn147 (2147h)             | Model Following Control Speed Feedforward Compensation  | Yes               |
| Pn14F (214Fh) =<br>n.□□□X | Model Following Control Type Selection                  | Yes               |
| Pn160 (2160h)             | Anti-Resonance Control-Related Selections               | Yes               |
| Pn161 (2161h)             | Anti-Resonance Frequency                                | Yes               |
| Pn163 (2163h)             | Anti-Resonance Damping Gain                             | Yes               |

Continued on next page.

Continued from previous page.

Name **Automatic Changes** No No No

**Parameter** Pn531 (2531h) Program Jogging Travel Distance Pn533 (2533h) Program Jogging Movement Speed for Rotary Servomotor Pn585 (2585h) Program Jogging Movement Speed for Linear Servomotor Pn534 (2534h) Program Jogging Acceleration/Deceleration Time No Pn535 (2535h) Program Jogging Waiting Time No Pn536 (2536h) Program Jogging Number of Movements No

Yes: The parameter is automatically set.

No: The parameter is not automatically set, but the setting is read during execution.

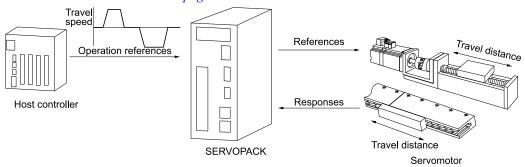
## 8.8 Autotuning with a Host Reference

This section describes autotuning with a host reference.



Autotuning with a host reference makes adjustments based on the setting of Pn100 (Speed Loop Gain). Therefore, precise adjustments cannot be made if there is vibration when adjustments are started. Make adjustments after lowering the setting of Pn100 (Speed Loop Gain) until vibration is eliminated.

### 8.8.1 Outline


Autotuning with a host reference automatically makes optimum adjustments for operation references from the host controller.

The following items are adjusted automatically.

- Gains (e.g., speed loop gain and position loop gain)
- Filters (torque reference filter and notch filters)
- Friction compensation
- · Anti-resonance control
- Vibration suppression

Refer to the following section for details on the parameters that are adjusted.

### **☞** 8.8.7 Related Parameters on page 368



## **CAUTION**

Because autotuning with a host reference adjusts the SERVOPACK during automatic operation, vibration or overshooting may occur. To ensure safety, make sure that you can perform an emergency stop at any time when you execute this function.

### 8.8.2 Restrictions

## (1) Systems for Which Adjustments Cannot Be Made Accurately

Adjustments will not be made correctly for autotuning with a host reference in the following cases. Use custom tuning.

8

- When the travel distance for the reference from the host controller is equal to or lower than the setting of Pn522 (Positioning Completed Width).
- Rotary Servomotors: When the movement speed for the reference from the host controller is equal to or lower than the setting of Pn502 (Rotation Detection Level)
- Linear Servomotors: When the movement speed for the reference from the host controller is equal to or lower than the setting of Pn581 (Zero Speed Level)
- When the time required to stop is 10 ms or less
- When the rigidity of the machine is low and vibration occurs when positioning is performed
- When the position integration function is used
- When P control is used
- When mode switching is used
- When the setting of Pn522 (Positioning Completed Width) is too small

Refer to the following sections for details on custom tuning.

**☞** 8.9 Custom Tuning on page 370

## (2) Preparations

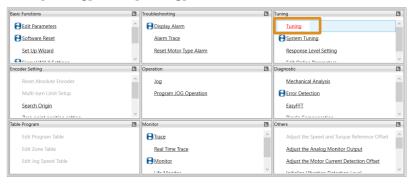
Always check the following before you execute autotuning with a host reference.

- The servo must be in ready status.
- There must be no overtravel.
- The servo must be OFF.
- Position control must be selected if power is supplied to the motor (i.e., when the servo is ON).
- The gain 1 must be selected.
- Pn00C must be set to n. \( \subseteq \subseteq 0 \) (Function Selection for Test without a Motor is disabled).
- Pn170 must be set to n. \(\sigma \sigma 0\) (Tuning-less Selection is disabled).
- Pn173 must be set to n. \( \sigma \sigma 0 \) (a load fluctuation compensation control is disabled).
- There must be no warnings.
- The parameters must not be write prohibited.

## 8.8.3 Applicable Tools

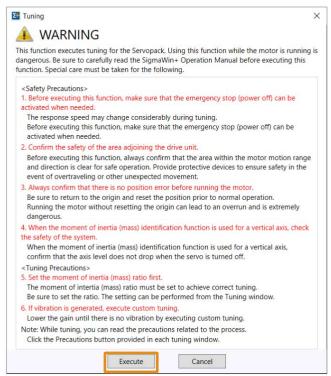
The following table lists the tools that you can use to perform autotuning with a host reference.

| Tool             | Fn No./Function Name | Operating Procedure Reference                                                  |  |
|------------------|----------------------|--------------------------------------------------------------------------------|--|
| Digital Operator | Fn202                | Σ-7/Σ-X-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33) |  |
| SigmaWin+        | [Tuning] - [Tuning]  | ■ 8.8.4 Operating Procedure on page 363                                        |  |


## 8.8.4 Operating Procedure

Use the following procedure to perform autotuning with a host reference.

- $1. \hspace{0.1in}$  Confirm that the value of Pn103 (Moment of Inertia Ratio) is set correctly.
- Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.


The [Menu] window will be displayed.

3. Click [Tuning] in the [Tuning] area.

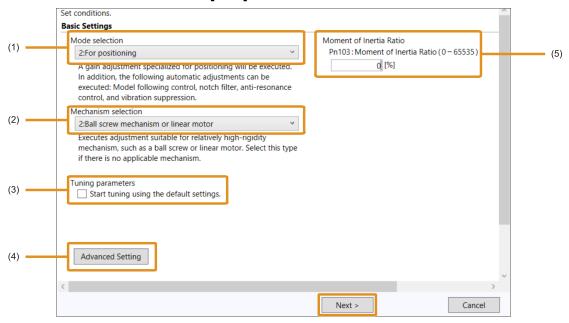


The [Tuning] window will be displayed.

4. Read the warnings and then click the [Execute] button.

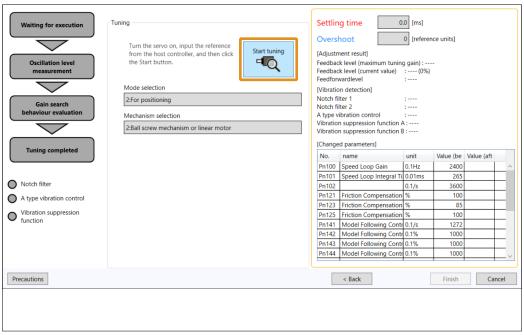


5. Click [Position Reference Input] in [Reference input from host controller] and then click the [Autotuning] button.




When the following message dialog box is displayed, click the [OK] button and then confirm that Pn103 (Moment of Inertia Ratio) is set correctly.



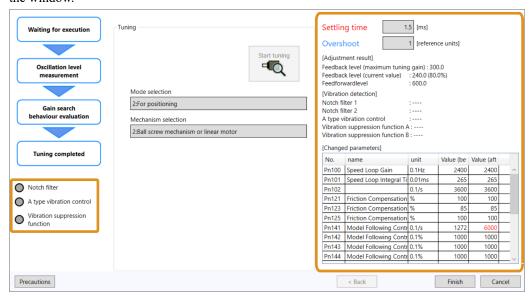

Information

### 6. Set the conditions and click the [Next] button.



| No. | Item                      | Meaning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) | [Mode selection]          | Set the mode.  For details on the options, refer to the explanations on the window.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (2) | [Mechanism selection]     | Select the type according to the machine element to drive.  If there is noise or if the gain does not increase, better results may be obtained by changing the rigidity type. For details on the options, refer to the explanations on the window.                                                                                                                                                                                                                                                                                                                                                                                  |
| (3) | [Tuning parameters]       | Specify the parameters to use for tuning.  If you select [Start tuning using the default settings], the tuning parameters will be returned to the default settings before tuning is started.                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (4) | [Advanced Setting] button | Click this button to display the [Advanced Setting] window on which you can set the details of tuning conditions. Configure detailed tuning conditions in the following cases:  • To tune a higher response than the tuning results  • When tuning fails with a large amount of overshoot  • To tune with speed I-P control  Advanced Setting  Set conditions.  Setting  Gain Upper Limit (Pn540) (1 - 400)  300.0 IHz)  Adjustment margin to Maximum Search Gain (Pn562) (10 - 100)  80 [%]  Overshoot Allowable Width (Pn561) (0 - 1000)  7 [reference units] × 100 [%] = 7 [reference units]  Speed I-P Control  Setting  Cancel |
| (5) | [Moment of Inertia Ratio] | Change the settings as required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

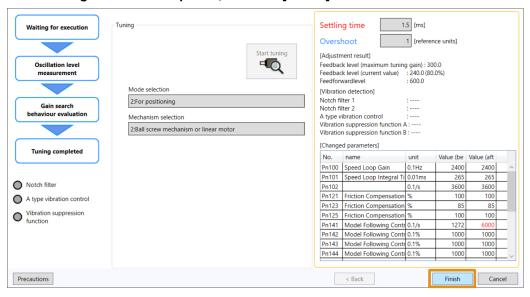
7. Turn ON the servo, enter a reference from the host controller, and then click the [Start tuning] button.




8. Confirm safety around moving parts and click the [Yes] button.



Tuning will be executed.


Vibration that occurs during tuning will be detected automatically and suitable settings will be made for that vibration. The content to set will be displayed on the right side of the window. When the settings have been completed, the indicators for the functions that were used will light at the lower left of the window.



Details on the content to set are shown below.

| Item                                                                  | Meaning                                                                                                                            |  |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|
| [Settling time]                                                       | Displays the settling time by the tuning results.                                                                                  |  |
| [Overshoot]                                                           | Displays the maximum overshoot by the tuning results.                                                                              |  |
| [Feedback level (maximum tuning gain)]                                | Displays the maximum value of Pn100 (Speed Loop Gain) during tuning.                                                               |  |
| [Feedback level (current value)]                                      | Displays the value of Pn100 (Speed Loop Gain) after tuning. The number in parentheses is the percentage of adjusting maximum gain. |  |
| [Feedforward level]                                                   | Displays the value of Pn141 (Model Following Control Gain) after tuning.                                                           |  |
| [Notch filter 1] [Notch filter 2]                                     | Displays the frequencies set by the notch filters. "——" is displayed if not set.                                                   |  |
| [A type vibration control]                                            | Displays the frequency set by anti-resonance control. "——" is displayed if not set.                                                |  |
| [Vibration suppression function A] [Vibration suppression function B] | Displays the frequencies set by vibration suppression. "——" is displayed if not set.                                               |  |

### 9. When tuning has been completed, click the [Finish] button.



The results of tuning will be set in the parameters and you will return to the [Tuning] window.

This concludes the procedure to perform autotuning with a host reference.

## 8.8.5 Troubleshooting Problems in Autotuning with a Host Reference

The following tables give the causes of and corrections for problems that may occur in autotuning with a host reference.

## (1) Autotuning with a Host Reference Was Not Performed

| Possible Cause                                   | Corrective Action                         |
|--------------------------------------------------|-------------------------------------------|
| Main circuit power is OFF.                       | Turn ON the main circuit power.           |
| An alarm or warning occurred.                    | Remove the cause of the alarm or warning. |
| Overtraveling occurred.                          | Remove the cause of overtraveling.        |
| The gain 2 was selected with the gain selection. | Disable automatic gain switching.         |
| The HWBB was activated.                          | Release the HWBB.                         |

## (2) Troubleshooting Errors

| Error                                                                                                  | Possible Cause                                                                                         | Corrective Action                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                        |                                                                                                        | On the [Detailed Setting] window, increase the setting of Pn561 (Overshoot Detection Level).                                                                        |
|                                                                                                        |                                                                                                        | Increase the setting of Pn522 (Positioning Completed Width).                                                                                                        |
| The gain adjustments were not                                                                          | Machine vibration occurs or the positioning completion signal is not stable when the servomotor stops. | On the [Detailed Setting] window, decrease the setting of Pn562 (Setting Gain Ratio).                                                                               |
| successfully completed.                                                                                |                                                                                                        | • Change the mode from 2 to 3.                                                                                                                                      |
|                                                                                                        |                                                                                                        | <ul> <li>If machine vibration occurs, suppress the vibration with the anti-<br/>resonance control adjustment and the vibration suppression<br/>function.</li> </ul> |
| Positioning was not completed within approximately 10 seconds after position adjustment was completed. | The positioning completed width is too narrow or proportional control is being used.                   | Increase the setting of Pn522 (Positioning Completed Width).                                                                                                        |

## (3) Adjustment Results Are Not Satisfactory for Position Control

Configuring parameters as shown below may improve the adjustment results.

- Change Pn522 (Positioning Completed Width) and the Position User Unit (2701h).
- Adjust Pn561 (Overshoot Detection Level).
   You can change these parameters on the [Adjustment Settings] window. Details on the settings of Pn561 are shown below.

| Setting of Pn561 Meaning |                                                                                                                                                                                                                                                                       |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 10% to 90%               | This will allow tuning to be performed without overshooting within the positioning completed width, but the positioning completed width may be extended.                                                                                                              |  |
| 100% (default setting)   | This will allow tuning with overshooting that is equivalent to the positioning completed width.                                                                                                                                                                       |  |
| 101% to 1000%            | The settings that allow overshooting to exceed the positioning completed width. Adjust Pn561 (Overshoot Detection Level) without changing the positioning completed width. Increase this setting when high responsiveness is required even if overshooting increases. |  |

• Increase the upper limits for tuning.

However, the changes in these settings are valid only when the tuning results are Pn100 = 2400 [0.1 Hz] (speed loop gain = 240 Hz) and Pn141 = 6000 [0.1/s] (model following control gain = 600/s). If you increase the upper limits of tuning at this time, you may be able to further decrease the settling time. You can change the upper limits of tuning on the [Detailed Setting] window. Set the parameters as shown below.

- Pn540 = 3000 [0.1 Hz] or higher (maximum search gain = 300 Hz [default setting] or higher)
- Pn562 = 80 [%] or higher (setting gain ratio = 80% [default setting] or higher)

## 8.8.6 Automatically Adjusted Function Setting

These function settings are the same as for autotuning without a host reference. Refer to the following section.

8.7.6 Automatically Adjusted Function Setting on page 358

## 8.8.7 Related Parameters

The following parameters are automatically adjusted or used as reference when you execute autotuning with a host reference.

Do not change the settings while autotuning with a host reference is being executed.

| Parameter                                                            | Name                                                    | Automatic Changes |
|----------------------------------------------------------------------|---------------------------------------------------------|-------------------|
| Pn100 (2100h)                                                        | Speed Loop Gain                                         | Yes               |
| Pn101 (2101h) Speed Loop Integral Time Constant                      |                                                         | Yes               |
| Pn102 (2102h)                                                        | Position Loop Gain                                      | Yes               |
| Pn103 (2103h)                                                        | Moment of Inertia Ratio                                 | No                |
| Pn121 (2121h)                                                        | Friction Compensation Gain                              | Yes               |
| Pn123 (2123h)                                                        | Friction Compensation Coefficient                       | Yes               |
| Pn124 (2124h)                                                        | Friction Compensation Frequency Correction              | No                |
| Pn125 (2125h)                                                        | Friction Compensation Gain Correction                   | Yes               |
| Pn401 (2401h)                                                        | First Stage First Torque Reference Filter Time Constant | Yes               |
| Pn408 (2408h)                                                        | Torque-Related Function Selections                      | Yes               |
| Pn409 (2409h)                                                        | First Stage Notch Filter Frequency                      | Yes               |
| Pn40A (240Ah)                                                        | First Stage Notch Filter Q Value                        | Yes               |
| Pn40C (240Ch)                                                        | Second Stage Notch Filter Frequency                     | Yes               |
| Pn40D (240Dh)                                                        | Second Stage Notch Filter Q Value                       | Yes               |
| Pn140 (2140h) Model Following Control-Related Selections             |                                                         | Yes               |
| Pn141 (2141h) Model Following Control Gain                           |                                                         | Yes               |
| Pn142 (2142h) Model Following Control Gain Correction                |                                                         | Yes               |
| Pn143 (2143h)                                                        | Model Following Control Bias in the Forward Direction   | Yes               |
| Pn144 (2144h)                                                        | Model Following Control Bias in the Reverse Direction   | Yes               |
| Pn145 (2145h)                                                        | Vibration Suppression 1 Frequency A                     | Yes               |
| Pn146 (2146h)                                                        | Vibration Suppression 1 Frequency B                     | Yes               |
| Pn147 (2147h) Model Following Control Speed Feedforward Compensation |                                                         | Yes               |
| Pn14F (214Fh) = n.□□□X Model Following Control Type Selection        |                                                         | Yes               |
| Pn160 (2160h)                                                        | Anti-Resonance Control-Related Selections               | Yes               |
| Pn161 (2161h)                                                        | Anti-Resonance Frequency                                | Yes               |
| Pn163 (2163h) Anti-Resonance Damping Gain                            |                                                         | Yes               |

Yes: The parameter is automatically set.

No: The parameter is not automatically set, but the setting is read during execution.

## 8.9 Custom Tuning

This section describes custom tuning.

### 8.9.1 Outline

You can use custom tuning to manually adjust the servo during operation using a speed or position reference input from the host controller. You can use it to fine-tune adjustments that were made with autotuning.

The following items are adjusted automatically.

- · Gains (e.g., speed loop gain, position loop gain, load fluctuation compensation response level)
- Filters (torque reference filter and notch filters)
- Friction compensation
- Anti-resonance control

Refer to the following section for details on the parameters that are adjusted.

■ 8.9.7 Related Parameters on page 377

There are three adjustment methods that you can use for custom tuning.

|     | Tuning Mode                                                                        | Adjusting Method                                                                                                                                                                                               |
|-----|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0   | Set servo gains with priority given to stability.                                  | These modes allow you to set stable control conditions for multiple servo gains by manipulating only one tuning level.                                                                                         |
| 1   | 1 Set servo gains with priority given to response.                                 | Automatic setting of notch filters and anti-resonance control is provided if vibration is detected.                                                                                                            |
|     |                                                                                    | Manual anti-resonance control adjustment is also possible during custom tuning.                                                                                                                                |
| 2   | Set servo gains for positioning application.                                       | Two tuning levels are manipulated to reduce positioning time even further and set multiple servo gains.                                                                                                        |
| 3   | Set servo gains especially to prevent overshooting during positioning application. | Model following control is used to reduce the positioning time. If vibration is detected, notch filters and anti-resonance control are automatically adjusted, and friction compensation is automatically set. |
|     |                                                                                    | Manual anti-resonance control adjustment and vibration suppression are also possible during custom tuning.                                                                                                     |
| 6   | Set servo gains for application with large load                                    | Load fluctuation compensation control is performed to suppress the variations in settling time that occur when the load fluctuates.                                                                            |
| flu | fluctuations.                                                                      | In addition to gain adjustment, automatic setting of notch filters and anti-resonance control is provided.                                                                                                     |

## **A** CAUTION

Vibration or overshooting may occur during custom tuning. To ensure safety, make sure that you can perform an emergency stop at any time when you execute this function.

## 8.9.2 Preparations

Always check the following before you execute custom tuning.

- Pn00C must be set to n. \( \pi \) (Function Selection for Test without a Motor is disabled).
- Pn170 must be set to n. \( \subseteq \subseteq 0 \) (Tuning-less Selection is disabled).
- If speed control is used, tuning mode 0 or 1 must be set.
- The parameters must not be write prohibited.

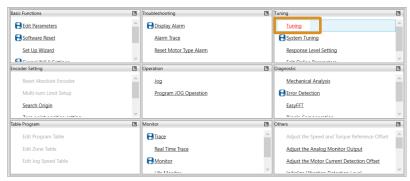
## 8.9.3 Applicable Tools

The following table lists the tools that you can use to perform custom tuning.

| Tool             | Fn No./Function Name | Operating Procedure Reference                                                  |  |
|------------------|----------------------|--------------------------------------------------------------------------------|--|
| Digital Operator | Fn203                | Σ-7/Σ-X-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33) |  |
| SigmaWin+        | [Tuning] - [Tuning]  | 8.9.4 Operating Procedure on page 371                                          |  |

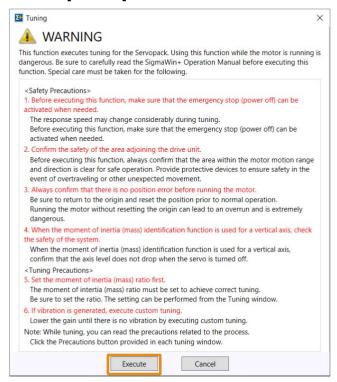
## 8.9.4 Operating Procedure

Use the following procedure to perform custom tuning.

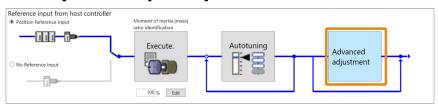



Before you execute custom tuning, check the information provided in the SigmaWin+ operating manual. Observe the following precautions.

- Make sure that you can perform an emergency stop at any time when you execute this
  function. When custom tuning is started, several parameters will be overwritten with the
  recommended settings, which may greatly affect the response before and after execution. Make sure that you can perform an emergency stop at any time.
- Set the moment of inertia correctly before you execute this function. If the setting greatly differs from the actual moment of inertia, vibration may occur.
- If you change the feedforward level, the new setting will not be used immediately. It will be used after positioning is completed.
- 1. Confirm that the value of Pn103 (Moment of Inertia Ratio) is set correctly.
- 2. Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.


The [Menu] window will be displayed.

3. Click [Tuning] in the [Tuning] area.




The [Tuning] window will be displayed.

### 4. Click the [Execute] button.



### 5. Click the [Advanced adjustment] button.



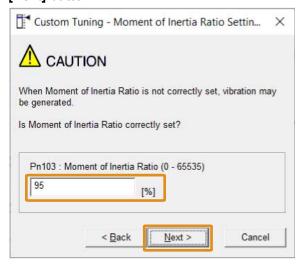
Information When the following message dialog box is displayed, click the [OK] button and then confirm that Pn103 (Moment of Inertia Ratio) is set correctly.



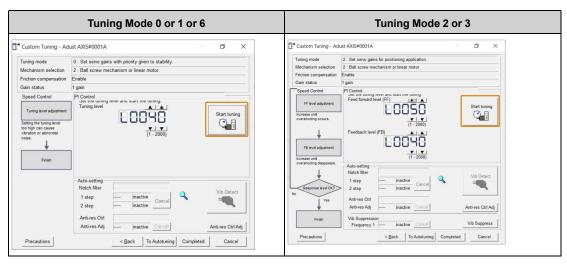
### 6. Click the [Custom tuning] button.



The [Custom Tuning] window will be displayed.

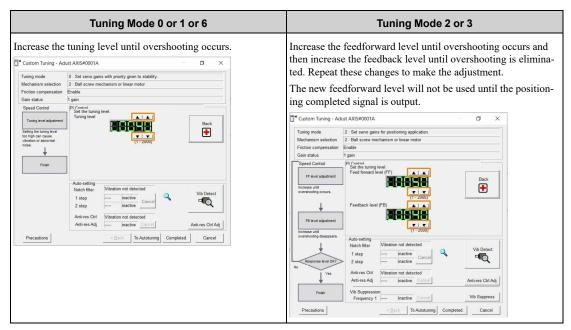

7. Select [Tuning mode], [Mechanism selection], and [Option], and then click the [Next] button.




For details on [Tuning mode] and [Mechanism selection], refer to the explanations on the above window.

The content displayed in [Option] changes according the selection of [Tuning mode].

8. If the moment of inertia ratio is not set correctly, correct the setting and then click the [Next] button.

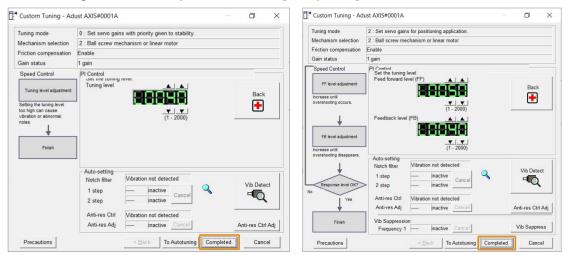



9. Turn ON the servo, enter a reference from the host controller, and then click the [Start tuning] button.



10. Use the [▲] and [▼] buttons to change the tuning level.

Click the [Back] button during tuning to restore the setting to its original value. The tuning level will return to the value from before when custom tuning was started.




11. You can set the functions to suppress vibration (notch filters, automatic anti-resonance control setting, anti-resonance control adjustment, and autotuning with a host reference) as required.

Refer to the following section for details.

**☞** (1) Vibration Suppression Functions on page 375

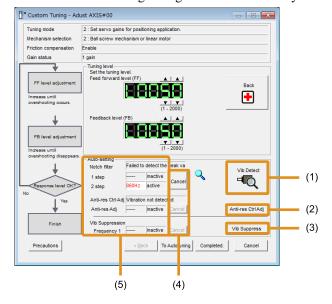
### 12. When tuning has been completed, click the [Completed] button.



The values that were changed will be saved in the SERVOPACK and you will return to the [Tuning] window.

This concludes the procedure to set up custom tuning.

## (1) Vibration Suppression Functions


## (a) Notch Filters and Automatic Anti-resonance Control Setting

If the vibration frequency that occurs when you increase the servo gains is at 1000 Hz or higher, notch filters are effective to suppress vibration. If the vibration is between 100 Hz and 1000 Hz, anti-resonance control is effective.

### (b) Automatic Setting

To set vibration suppression automatically, use the parameters to enable notch filters and automatic anti-resonance control setting.

The notch filter frequency (stage 1 or 2) or anti-resonance control frequency that is effective for the vibration that was detected during tuning will be automatically set.



| No. | Item                       | Meaning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) | [Vib Detect] button        | While the notch filter or automatic anti-resonance control setting function is enabled, you can click the [Vib Detect] button to manually detect vibration. When you click the [Vib Detect] button, the SERVOPACK will detect vibration at that time, and set the notch filter frequency (stage 1 or 2) or anti-resonance control frequency that is effective for the detected vibration. You can also perform manual vibration detection even when the SERVOPACK does not detect vibration. |
| (2) | [Anti-res Ctrl Adj] button | You can use the [Anti-res Ctrl Adj] button to execute the anti-resonance control adjustment if fine-tuning is required. Refer to the following section.  8 8.10 Anti-Resonance Control Adjustment on page 379                                                                                                                                                                                                                                                                                |
| (3) | [Vib Suppress] button      | Click the [Vib Suppress] button to suppress low and transient vibration (oscillation) of approximately 1 Hz to 100 Hz that occurs during positioning. Refer to the following section.  8.11 Vibration Suppression on page 386                                                                                                                                                                                                                                                                |
| (4) | [Cancel] buttons           | The automatically set notch filter frequencies or the anti-resonance control frequencies may not always suppress vibration. Click the [Cancel] button to reset the notch filter frequencies or the anti-resonance control frequencies to the values from just before these frequencies were set automatically. When they are reset, vibration detection will start again.                                                                                                                    |
| (5) | [Auto-setting]             | The usage status and frequencies of the automatically set notch filter, anti-resonance control, and vibration suppression are displayed here.                                                                                                                                                                                                                                                                                                                                                |

## (c) Autotuning with a Host Reference

You can perform autotuning with a host reference. Refer to the following section for details.

■ 8.8 Autotuning with a Host Reference on page 362

## 8.9.5 Automatically Adjusted Function Setting

You cannot use vibration suppression functions at the same time. Other automatic function settings are the same as for autotuning without a host reference. Refer to the following section.

8.7.6 Automatically Adjusted Function Setting on page 358

## 8.9.6 Tuning Example for Tuning Mode 2 or 3

| Step | Measurement Display Examples                                              | Operation                                                                                                                                                                                                                                                    |
|------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Position deviation  Reference speed  Positioning completion output signal | The positioning time is measured after Pn103 (Moment of Inertia Ratio) is set correctly.  Tuning is completed if the specifications are met.  The tuning results are saved in the SERVOPACK.                                                                 |
| 2    |                                                                           | The positioning time will be reduced if the feedforward level is increased.  Tuning is completed if the specifications are met. The tuning results are saved in the SERVOPACK.  If overshooting occurs before the specifications are met, proceed to step 3. |

Continued on next page.

Continued from previous page.

| Step | Measurement Display Examples | Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3    |                              | Overshooting will be reduced if the feedback level is increased.  If the overshooting is eliminated, proceed to step 4.                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4    |                              | The graph shows overshooting that occurred when the feedforward level was increased even more after step 3. In this state, overshooting occurs, but the positioning settling time is shorter. Tuning is completed if the specifications are met. The tuning results are saved in the SERVOPACK. If overshooting occurs before the specifications are met, repeat steps 3 and 4.  If vibration occurs before the overshooting is eliminated, the vibration is suppressed with the notch filters and anti-resonance control. |
| 5    | -                            | The tuning results are saved in the SERVOPACK.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

## 8.9.7 Related Parameters

The following parameters are automatically adjusted or used as reference when you execute custom tuning. Do not change the settings while custom tuning is being executed.

| Parameter     | Name                                                    | Automatic Changes |
|---------------|---------------------------------------------------------|-------------------|
| Pn100 (2100h) | Speed Loop Gain                                         | Yes               |
| Pn101 (2101h) | Speed Loop Integral Time Constant                       | Yes               |
| Pn102 (2102h) | Position Loop Gain                                      | Yes               |
| Pn103 (2103h) | Moment of Inertia Ratio                                 | No                |
| Pn121 (2121h) | Friction Compensation Gain                              | Yes               |
| Pn123 (2123h) | Friction Compensation Coefficient                       | Yes               |
| Pn124 (2124h) | Friction Compensation Frequency Correction              | No                |
| Pn125 (2125h) | Friction Compensation Gain Correction                   | Yes               |
| Pn401 (2401h) | First Stage First Torque Reference Filter Time Constant | Yes               |
| Pn408 (2408h) | Torque-Related Function Selections                      | Yes               |
| Pn409 (2409h) | First Stage Notch Filter Frequency                      | Yes               |
| Pn40A (240Ah) | First Stage Notch Filter Q Value                        | Yes               |
| Pn40C (240Ch) | Second Stage Notch Filter Frequency                     | Yes               |
| Pn40D (240Dh) | Second Stage Notch Filter Q Value                       | Yes               |
| Pn140 (2140h) | Model Following Control-Related Selections              | Yes               |
| Pn141 (2141h) | Model Following Control Gain                            | Yes               |
| Pn142 (2142h) | Model Following Control Gain Correction                 | Yes               |
| Pn143 (2143h) | Model Following Control Bias in the Forward Direction   | Yes               |
| Pn144 (2144h) | Model Following Control Bias in the Reverse Direction   | Yes               |
| Pn145 (2145h) | Vibration Suppression 1 Frequency A                     | No                |

Continued on next page.

Continued from previous page.

| Parameter     | Name                                                     | Automatic Changes |
|---------------|----------------------------------------------------------|-------------------|
| Pn146 (2146h) | Vibration Suppression 1 Frequency B                      | No                |
| Pn147 (2147h) | Model Following Control Speed Feedforward Compensation   | Yes               |
| Pn160 (2160h) | Anti-Resonance Control-Related Selections                | Yes               |
| Pn161 (2161h) | Anti-Resonance Frequency                                 | Yes               |
| Pn163 (2163h) | Anti-Resonance Damping Gain                              | Yes               |
| Pn173 (2173h) | Load Fluctuation Compensation Control-Related Selections | Yes               |
| Pn174 (2174h) | Load Fluctuation Compensation Control Response Level     | Yes               |

Yes: The parameter is automatically set.

No: The parameter is not automatically set, but the setting is read during execution.

## 8.10 Anti-Resonance Control Adjustment

This section describes anti-resonance control.

### 8.10.1 **Outline**

Anti-resonance control increases the effectiveness of vibration suppression after custom tuning.

Anti-resonance control is effective for suppression of continuous vibration frequencies from 100 to 1000 Hz that occur when the servo gain is increased. Vibration can be eliminated by setting vibration frequencies through automatic detection or by manually setting them to adjust the damping gain. Input an operation reference and execute this function when there is vibration.

This function is automatically set by autotuning without a host reference or autotuning with a host reference. Use this function only if fine-tuning is required or readjustment is required as a result of a failure to detect vibration.

Perform custom tuning if required to increase the response after executing this function. If the servo gain is increased, e.g., when custom tuning is performed, vibration may occur again. If that occurs, execute this function again to fine-tune the parameters.

## **CAUTION**

Related parameters will be set automatically when this function is executed. This may greatly affect the response before and after execution. Make sure that you can perform an emergency stop at any time.

Before you execute this function, set Pn103 (Moment of Inertia Ratio) correctly. If the setting greatly differs from the actual moment of inertia ratio, normal control of the machine may not be possible, and vibration may result.



- This function detects vibration frequencies between 100 Hz and 1000 Hz. If the vibration frequency is not within this range, use custom tuning with tuning mode 2 selected to automatically set a notch filter or use vibration suppression.
- Vibration reduction can be made more effective by increasing the setting of Pn163 (Anti-Resonance Damping Gain), but the vibration may become larger if the damping gain is too high. Increase the damping gain by approximately 0% to 200% in 10% increments while checking the effect on vibration. If vibration reduction is still insufficient at a gain of 200%, cancel the setting, and lower the servo gain by using a different method, such as custom tuning.

## 8.10.2 Preparations

Always check the following before you execute anti-resonance control adjustment.

- Pn170 must be set to n. \(\sigma \sigma 0\) (Tuning-less Selection is disabled).
- Pn00C must be set to n. \( \sigma \sigma 0 \) (Function Selection for Test without a Motor is disabled).
- The control method must not be set to torque control.
- The parameters must not be write prohibited.

## 8.10.3 Applicable Tools

The following table lists the tools that you can use to perform anti-resonance control adjustment.

| Tool             | Fn No./Function Name | Operating Procedure Reference                                                  |
|------------------|----------------------|--------------------------------------------------------------------------------|
| Digital Operator | Fn204                | Σ-7/Σ-X-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33) |
| SigmaWin+        | [Tuning] - [Tuning]  | 8.10.4 Operating Procedure on page 380                                         |

## 8.10.4 Operating Procedure

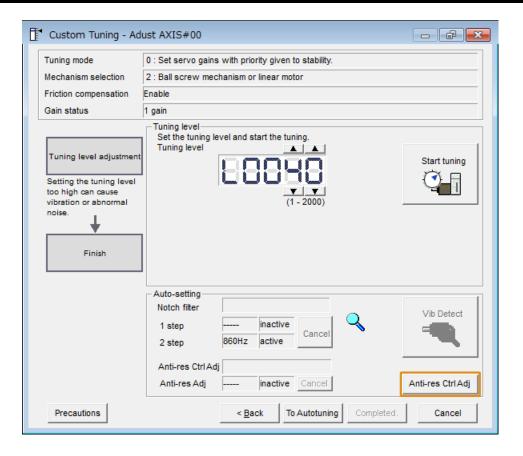
To execute this function, an operation reference is input, and the adjustment is executed while vibration is occurring.

The following methods can be used to execute this function.

- · To automatically detect the vibration frequency
- To manually set the vibration frequency

Use the following procedure to perform anti-resonance control.

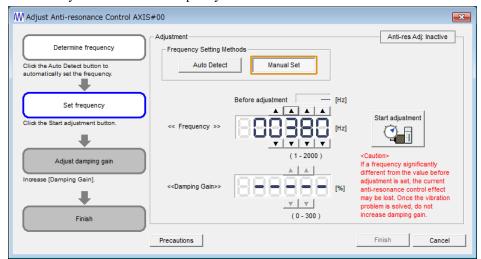
## **A** CAUTION


Before you execute anti-resonance control adjustment, check the information provided in the SigmaWin+ operating manual. Observe the following precautions.

Make sure that you can perform an emergency stop at any time when you execute this
function. Parameters will be set automatically when this function is executed. This may
greatly affect the response before and after execution. Make sure that you can perform
an emergency stop (to turn OFF the power) at any time.



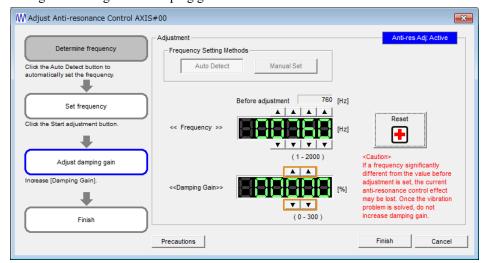
- Set the moment of inertia correctly before you execute this function.
   If the setting greatly differs from the actual moment of inertia, effective vibration reduction may not be possible.
- If you have already performed anti-resonance control adjustment and then you change the vibration frequency, the current anti-resonance control effect may be lost. Caution is particularly required when automatically detecting the vibration frequency.
- If effective vibration reduction is not achieved even after you execute this function, cancel the function and lower the servo gain by using a different method, such as custom tuning.
- Perform custom tuning separately if required to increase the response after executing this function. If the servo gain is increased, e.g., when custom tuning is performed, vibration may occur again. If that occurs, execute this function again to fine-tune the parameters.
- 1. Perform steps 1 to 9 of the procedure for custom tuning. Refer to the following section for details.
  - 8.9.4 Operating Procedure on page 371
- 2. Click the [Anti-res Ctrl Adj] button.


The rest of the procedure depends on whether you know the vibration frequency.

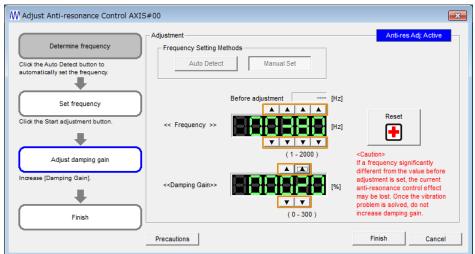


- 3. If you do not know the vibration frequency, click the [Auto Detect] button. If you know the vibration frequency, click the [Manual Set] button.
  - To automatically detect the vibration frequency The frequency will be set.



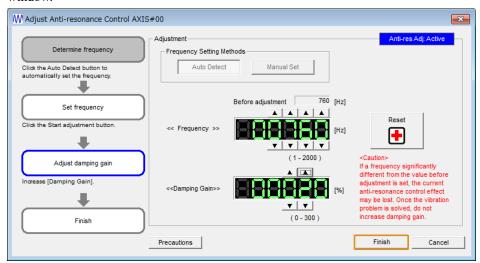

To manually set the vibration frequency




- 4. Click the [Start adjustment] button.
- 5. Use the [▲] and [▼] buttons in [Adjustment] to change the settings.

Click the [Reset] button during tuning to restore the setting to its original value. The status from before when adjustment was started will be restored.

• To automatically detect the vibration frequency Change the setting of the damping gain.




• To manually set the vibration frequency Change the settings of the frequency and damping gain.



6. When tuning has been completed, click the [Finish] button.

The values that were changed will be saved in the SERVOPACK and you will return to the [Tuning] window.



This concludes the procedure to set up anti-resonance control.

### 8.10.5 Related Parameters

The following parameters are automatically adjusted or used as reference when you execute anti-resonance control adjustment.

Do not change the settings while anti-resonance control adjustment is being executed.

| Parameter                                                      | Parameter Name                                        |     |
|----------------------------------------------------------------|-------------------------------------------------------|-----|
| Pn160 (2160h)                                                  | 160 (2160h) Anti-Resonance Control-Related Selections |     |
| Pn161 (2161h)                                                  | Anti-Resonance Frequency                              | Yes |
| Pn162 (2162h)                                                  | Pn162 (2162h) Anti-Resonance Gain Correction          |     |
| Pn163 (2163h) Anti-Resonance Damping Gain                      |                                                       | Yes |
| Pn164 (2164h) Anti-Resonance Filter Time Constant 1 Correction |                                                       | No  |
| Pn165 (2165h)                                                  | Anti-Resonance Filter Time Constant 2 Correction      | Yes |

Yes: The parameter is automatically set.

No: The parameter is not automatically set, but the setting is read during execution.

## 8.10.6 Suppressing Different Vibration Frequencies with Anti-resonance Control

When you use anti-resonance control and increase the servo gain, for some mechanism, vibration can occur at a higher frequency than the frequency for which vibration was suppressed. If this occurs, you can suppress vibration for more than one frequency by adjusting Pn166 (Anti-Resonance Damping Gain 2).

Information

Guidelines for Vibration That Can Be Suppressed

Pn161 (Anti-Resonance Frequency): fa [Hz], another vibration frequency that occurs when the servo gain is increased: fb [Hz]

- Vibration frequencies: 100 Hz to 1000 Hz
- Range of different vibration frequencies:  $1 < (fb/fa) \le 3$  to 4

## (1) Required Parameter Settings

The following parameter settings are required to use anti-resonance control for more than one vibration frequency.

|                  |        | Anti-Reso    | onance Control Selection Speed Pos Trq | When Enabled |
|------------------|--------|--------------|----------------------------------------|--------------|
| Pn160<br>(2160h) | n.□□□X | 0<br>Default | Do not use anti-resonance control.     | Immediately  |
|                  |        | 1            | Use anti-resonance control.            |              |

|                  | Anti-Resonance Frequency   |              |                 | Speed Pos Trq |
|------------------|----------------------------|--------------|-----------------|---------------|
| Pn161<br>(2161h) | Setting Range              | Setting Unit | Default Setting | When Enabled  |
| (210111)         | 10 to 20000                | 0.1 Hz       | 1000            | Immediately   |
|                  | Anti-Resonance Gain Correc | tion         |                 | Speed Pos Trq |
| Pn162<br>(2162h) | Setting Range              | Setting Unit | Default Setting | When Enabled  |
| (210211)         | 1 to 1000                  | 1%           | 100             | Immediately   |
|                  | Anti-Resonance Damping Ga  | ain          |                 | Speed Pos Trq |
| Pn163<br>(2163h) | Setting Range              | Setting Unit | Default Setting | When Enabled  |
|                  | 0 to 300                   | 1%           | 0               | Immediately   |

Continued on next page.

Continued from previous page.

|                  | Anti-Resonance Filter Time (  | Constant 1 Correction |                 | Speed Pos Trq |
|------------------|-------------------------------|-----------------------|-----------------|---------------|
| Pn164<br>(2164h) | Setting Range                 | Setting Unit          | Default Setting | When Enabled  |
| (= : 0)          | -1000 to 1000                 | 0.01 ms               | 0               | Immediately   |
|                  | Anti-Resonance Filter Time (  | Constant 2 Correction |                 | Speed Pos Trq |
| Pn165<br>(2165h) | Setting Range                 | Setting Unit          | Default Setting | When Enabled  |
| (210011)         | -1000 to 1000                 | 0.01 ms               | 0               | Immediately   |
|                  | Anti-Resonance Damping Gain 2 |                       |                 | Speed Pos Trq |
| Pn166<br>(2166h) | Setting Range                 | Setting Unit          | Default Setting | When Enabled  |
| (210011)         | 0 to 1000                     | 1%                    | 0               | Immediately   |

# (2) Adjustment Procedure for Suppressing Different Vibration Frequencies with Anti-resonance Control

Use the following procedure to make adjustments to suppress different vibration frequencies with anti-resonance control.

| Step | Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Use the gain adjustment and anti-resonance control.  Refer to the following section for details.  \$\textstyle{\mathbb{G}} \text{ 8.10.4 Operating Procedure on page 380}\$                                                                                                                                                                                                                                                                                                       |
| 2    | If there is vibration at a higher frequency than the vibration suppressed with anti-resonance control in step 1, adjust Pn166 (Anti-Resonance Damping Gain 2).  If there is vibration at a lower frequency than the vibration suppressed with anti-resonance control in step 1, return to step 1, set Pn161 (Anti-Resonance Frequency) to the lower vibration frequency, and adjust Pn163 (Anti-Resonance Damping Gain) again. Then adjust Pn166 (Anti-Resonance Damping Gain 2). |
| 3    | Adjust Pn166 (Anti-Resonance Damping Gain 2) while checking to see if vibration reduction is effective.  To adjust Pn166 (Anti-Resonance Damping Gain 2), increase the setting by 10% at a time starting from the value that resulted in Pn163 (Anti-Resonance Damping Gain) from the adjustment in step 1.                                                                                                                                                                       |
| 4    | If the vibration disappears, the adjustment is completed.  However, if the vibration does not disappear even when you adjust Pn166 (Anti-Resonance Damping Gain 2), reduce the tuning level or feedback level until vibration does not occur.                                                                                                                                                                                                                                     |

### **Vibration Suppression** 8.11

This section describes vibration suppression.

#### 8.11.1 **Outline**

You can use vibration suppression to suppress transient vibration at a low frequency from 1 Hz to 100 Hz, which is generated mainly when the machine vibrates during positioning. This is effective for vibration frequencies for which notch filters and anti-resonance control adjustment are not effective.

This function is automatically set by autotuning without a host reference or autotuning with a host reference. Use this function only if fine-tuning is required or readjustment is required as a result of a failure to detect vibration. To execute this function, input an operation reference and execute the function when there is vibration.

Perform custom tuning if required to increase the response after executing this function.

## **⚠** CAUTION

Related parameters will be set automatically when this function is executed. This may greatly affect the response before and after execution. Make sure that you can perform an emergency stop at any time.

Before you execute this function, set Pn103 (Moment of Inertia Ratio) correctly. If the setting greatly differs from the actual moment of inertia ratio, normal control of the machine may not be possible, and vibration may result.



- This function detects vibration frequencies between 1 Hz and 100 Hz.
- Frequency detection will not be performed if there is no vibration in the position deviation or if the vibration frequency is outside the range of detectable frequencies. If that is a problem, use a device such as a displacement meter or vibration sensor to measure the vibration frequency.
- If an automatically detected vibration frequency is not suppressed, the actual frequency and the detected frequency may be different. Fine-tune the detected frequency if necessary.

#### (1) Items That Influence Performance

If continuous vibration occurs while the servomotor is stopping, vibration suppression cannot be used to suppress the vibration effectively. In this case, use anti-resonance control adjustment or custom tuning.

#### **(2) Detection of Vibration Frequencies**

Frequency detection may not be possible if vibration does not appear in the position deviation or the vibration that results from the position deviation is too small. You can adjust the detection sensitivity by changing the setting of Pn560 (Residual Vibration Detection Width), which is set as a percentage of the setting of Pn522 (Positioning Completed Width). Perform the detection of vibration frequencies again after adjusting the setting of Pn560.

|                  | Residual Vibration Detection | Speed Pos Trq |                 |              |
|------------------|------------------------------|---------------|-----------------|--------------|
| Pn560<br>(2560h) | Setting Range                | Setting Unit  | Default Setting | When Enabled |
| (200011)         | 1 to 3000                    | 0.1%          | 400             | Immediately  |

As a guideline, change the setting 10% at a time. If the setting of this parameter is lowered, the detection sensitivity will be increased. Vibration may not be detected accurately if the setting is too small.

Information The vibration frequencies that are automatically detected may vary somewhat with each positioning operation. Perform positioning several times and make adjustments while checking the effect of vibration suppression.

## 8.11.2 Preparations

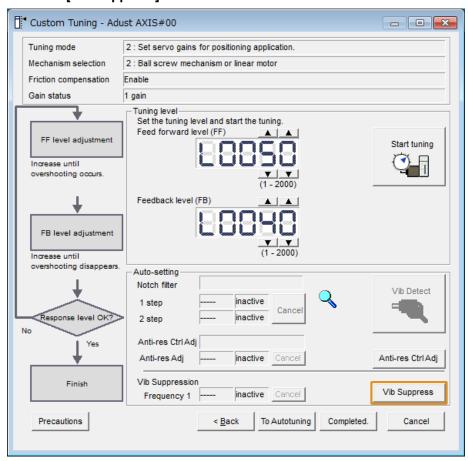
Always check the following before you execute vibration suppression.

- Position control must be used.
- Pn170 must be set to n. \( \sigma \sigma 0 \) (Tuning-less Selection is disabled).
- Pn00C must be set to n.□□□0 (Function Selection for Test without a Motor is disabled).
- The parameters must not be write prohibited.

## 8.11.3 Applicable Tools

The following table lists the tools that you can use to perform vibration suppression.

| Tool             | Fn No./Function Name | Operating Procedure Reference                                                  |
|------------------|----------------------|--------------------------------------------------------------------------------|
| Digital Operator | Fn205                | Σ-7/Σ-X-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33) |
| SigmaWin+        | [Tuning] - [Tuning]  | 8.11.4 Operating Procedure on page 387                                         |

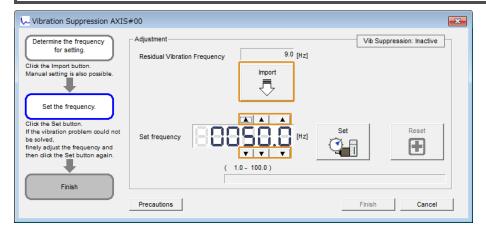

## 8.11.4 Operating Procedure

Use the following procedure to perform vibration suppression.

1. Perform steps 1 to 9 of the procedure for custom tuning. Refer to the following section for details.

■ 8.9.4 Operating Procedure on page 371

2. Click the [Vib Suppress] button.

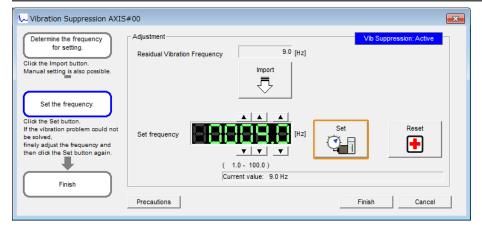



## 3. Click the [Import] button or click the [▲] and [▼] buttons to manually adjust the set frequency.

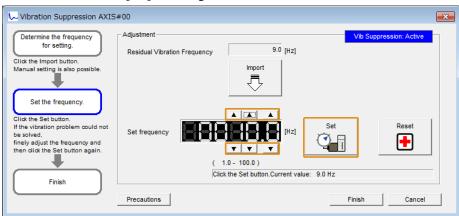
When you click the [Import] button, the residual vibration frequency in the servomotor is read as the set frequency. (The frequency can be read only when the residual vibration frequency is between 1.0 and 100.0.)



Frequency detection will not be performed if there is no vibration or if the vibration frequency is outside the range of detectable frequencies. If a vibration frequency is not detected, provide a means of measuring the vibration frequency.




### 4. Click the [Set] button.




No settings related to vibration suppression are changed during operation.

If the servomotor does not stop within approximately 10 seconds after changing the setting, an update timeout will occur. The setting will be automatically returned to the previous value.



If the vibration is not eliminated, use the  $[ \blacktriangle ]$  and  $[ \blacktriangledown ]$  buttons for the set frequency to fine-tune the value and click the [Set] button again.



Click the [Reset] button during tuning to restore the setting to its original value. The status from before when adjustment was started will be restored.

### 5. When the vibration has been eliminated, click the [Finish] button.

The updated value will be saved in the SERVOPACK.



Vibration suppression will be enabled in step 5. The motor response, however, will change when the servomotor comes to a stop with no reference input.

This concludes the procedure to set up vibration suppression.

## 8.11.5 Setting Combined Functions

You can also use the feedforward function when you execute vibration suppression.

In the default settings, Pn109 (Feedforward), the speed feedforward input, and the torque feedforward input are disabled.

To use the speed feedforward input, the torque feedforward input, and model following control from the host controller in the system, set Pn140 to  $n.1 \square \square \square$  (use model following control and speed/torque feedforward together).

|                  |        | Speed Feedforward (VFF)/Torque Feedforward (TFF) Selection |                                                                           | When Enabled |
|------------------|--------|------------------------------------------------------------|---------------------------------------------------------------------------|--------------|
| Pn140<br>(2140h) | n.X□□□ | 0<br>Default                                               | Do not use model following control and speed/torque feedforward together. | Immediately  |
|                  |        | 1                                                          | Use model following control and speed/torque feedforward together.        | ,            |



When model following control is used with this function, it is used to make optimum feedforward settings in the SERVO-PACK. Therefore, model following control is not normally used together with either the speed feedforward input or torque feedforward input from the host controller. However, model following control can be used with the speed feedforward input or torque feedforward input if required. An unsuitable feedforward input may result in overshooting.

### 8.11.6 Related Parameters

The following parameters are automatically adjusted or used as reference when you execute vibration suppression.

Do not change the settings while vibration suppression is being executed.

| Parameter                                         | Parameter Name                                                       |     |
|---------------------------------------------------|----------------------------------------------------------------------|-----|
| Pn140 (2140h)                                     | Model Following Control-Related Selections                           | Yes |
| Pn141 (2141h)                                     | Model Following Control Gain                                         | Yes |
| Pn142 (2142h)                                     | Model Following Control Gain Correction                              | No  |
| Pn143 (2143h)                                     | Model Following Control Bias in the Forward Direction                | No  |
| Pn144 (2144h)                                     | Model Following Control Bias in the Reverse Direction                | No  |
| Pn145 (2145h)                                     | Pn145 (2145h) Vibration Suppression 1 Frequency A                    |     |
| Pn146 (2146h) Vibration Suppression 1 Frequency B |                                                                      | Yes |
| Pn147 (2147h)                                     | Pn147 (2147h) Model Following Control Speed Feedforward Compensation |     |
| Pn14A (214Ah)                                     | Pn14A (214Ah) Vibration Suppression 2 Frequency                      |     |
| Pn14B (214Bh)                                     | Vibration Suppression 2 Correction                                   | No  |

Yes: The parameter is automatically set.

No: The parameter is not automatically set, but the setting is read during execution.

## 8.12 Speed Ripple Compensation

This section describes speed ripple compensation.

### 8.12.1 Outline

Speed ripple compensation reduces the amount of ripple in the motor speed due to torque ripple or cogging torque. You can enable speed ripple compensation to achieve smoother operation. You do not need to perform any setup procedures to enable this function when a  $\Sigma$ -X-series rotary servomotor is connected to the SERVOPACK. If any other servomotor is connected to the SERVOPACK, perform the setup procedure with [Ripple Compensation] in the SigmaWin+.

## **⚠ WARNING**

Speed ripple compensation setup is a tuning function that actually drives the machine and therefore presents hazards. Observe the following precautions.

- · Confirm safety around moving parts.
- This function involves automatic operation. Make sure that you can perform an emergency stop (to turn OFF the power supply) at any time.



Execute this function only after adjusting the gains.

- If the servomotor or SERVOPACK is replaced after this function is set up in the SigmaWin+, set up this function again.
- Execute speed ripple compensation after jogging to a position that ensures a suitable range of motion.

# 8.12.2 Speed Ripple Compensation when a Rotary Servomotor Is Connected

The following two methods are available to enable speed ripple compensation when a rotary servomotor is connected.

- Using the default adjustment value saved to the servomotor
- Using the user adjustment value set up with the SigmaWin+

## (1) Using the Default Adjustment Value

This function enables speed ripple compensation by using the default adjustment value that is saved to the servomotor when shipped from the factory.

When a servomotor that supports the default adjustment value is connected to the SERVOPACK, this function can be enabled without performing any setup procedures with the SigmaWin+.

| Pn423<br>(2423h) | n.□□□X | Speed R      | pple Compensation Function Selection Speed Pos Trq                      | When Enabled |  |
|------------------|--------|--------------|-------------------------------------------------------------------------|--------------|--|
|                  |        | 0            | Do not execute speed ripple compensation.                               |              |  |
|                  |        | 1            | Execute speed ripple compensation using the value adjusted by the user. | Immediately  |  |
|                  |        | 2<br>Default | Execute speed ripple compensation using the default adjustment value.   |              |  |

Information

When a servomotor that does not support the default adjustment value is connected to the SERVOPACK, this function will not be enabled even if Pn423 is set to n.  $\square$  (execute speed ripple compensation using the default adjustment value).

If the servomotor is replaced when Pn423 is set to n.  $\square$  (execute speed ripple compensation using the default adjustment value), the SERVOPACK will execute this function using the default adjustment value of the servomotor that was newly connected. As a result, A.942 (Speed Ripple Compensation Information Disagreement) will not occur.

### (a) Restrictions

Only  $\Sigma$ -X-series rotary servomotors support the default adjustment value.

### (b) Operating Procedure

Speed ripple compensation is enabled simply by connecting a servomotor that supports the default adjustment value.

This is because the default setting of the SERVOPACK is Pn423 = n.□□□2 (execute speed ripple compensation using the default adjustment value).

## (2) Using the User Adjustment Value Set Up with the SigmaWin+

Speed ripple information analyzed in the SigmaWin+ can be saved to the SERVOPACK as the user adjustment value and used for speed ripple compensation.

Set up this function in the SigmaWin+ when you connect a servomotor that does not support the default adjustment value.

Information The default adjustment value saved to the servomotor and the user adjustment value set up in the SigmaWin+ are saved to separate locations in memory.

> This allows you to switch between the default adjustment value and user adjustment value. The previous adjustment value will not disappear.

### (a) Restrictions

The following restrictions apply to the setup for speed ripple compensation when a rotary servomotor is connected.

### Systems for which Execution Cannot Be Performed

There are no restrictions.

### Systems for Which Adjustments Cannot Be Made Accurately

- Systems for which there is not a suitable range of motion
- Equipment that is affected by other axes (e.g., gantry equipment)

### **Preparations**

Always check the following before you set up speed ripple compensation.

- The main circuit power must be ON.
- The servo must be OFF.
- There must be no alarms or warnings.
- There must be no hard wire base block (HWBB).
- The parameters must not be write prohibited.
- There must be no impact from other axes.

### (b) Applicable Tools

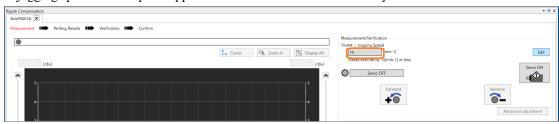
The following table lists the tools that you can set up speed ripple compensation.

| Tool             | Fn No./Function Name                                                   | Reference                           |
|------------------|------------------------------------------------------------------------|-------------------------------------|
| Digital Operator | You cannot set up speed ripple compensation from the Digital Operator. |                                     |
| SigmaWin+        | [Diagnostic] - [Ripple Compensation]                                   | (c) Operating Procedure on page 391 |

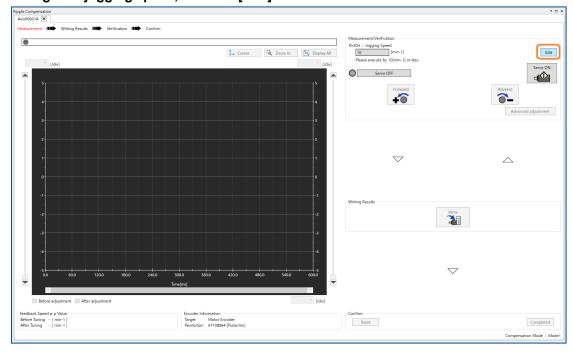
### (c) Operating Procedure

Use the following procedure to set up speed ripple compensation.

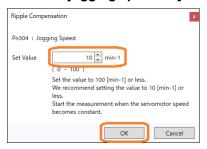
Click the [\_ button for the servo drive in the workspace of the Main Window of the SigmaWin+.


### 2. Select [Ripple Compensation] in the [Menu] dialog box.

The [Ripple Compensation] dialog box will be displayed.

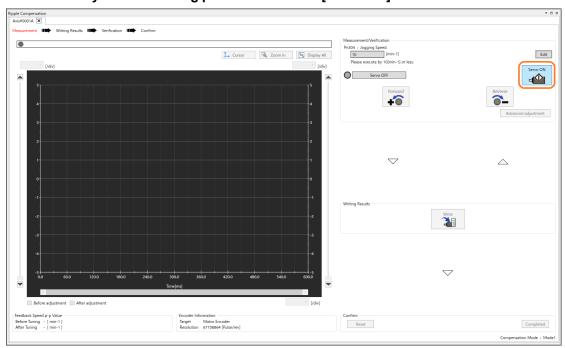

3. Read the warnings and then click the [OK] button.



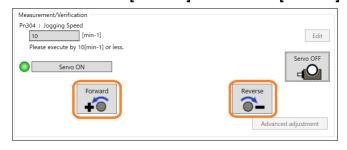

A jogging speed for the speed ripple measurement will be automatically set.



4. Check the jogging speed. If the jogging speed that was set is OK, proceed to step 6. To change the jogging speed, click the [Edit] button.




5. Enter the jogging speed in [Set Value] and click the [OK] button.




The Main Window will return.

6. Confirm safety around moving parts and click the [Servo ON] button.

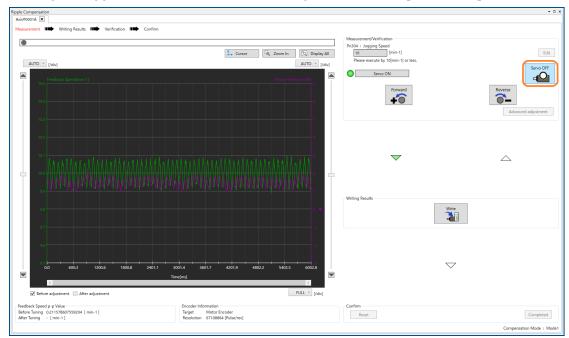


7. Click and hold the [Forward] button or the [Reverse] button.

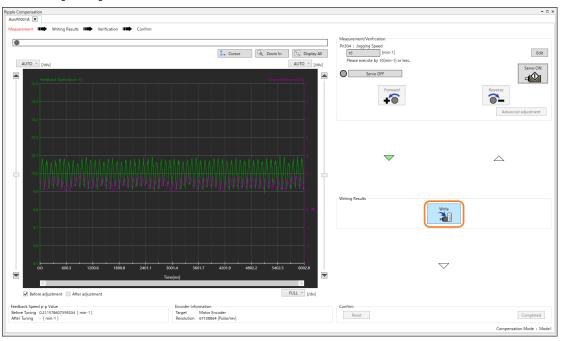


The servomotor shaft will rotate at the preset jogging speed while you hold down the [Forward] or [Reverse] button and the speed ripple will be measured.

After the speed ripple measurement has completed, the feedback speed and torque reference waveform during jogging will be displayed in the graph area.


Information

If you stop pressing the [Forward] button or the [Reverse] button before the measurement has completed, the following message dialog box will be displayed.

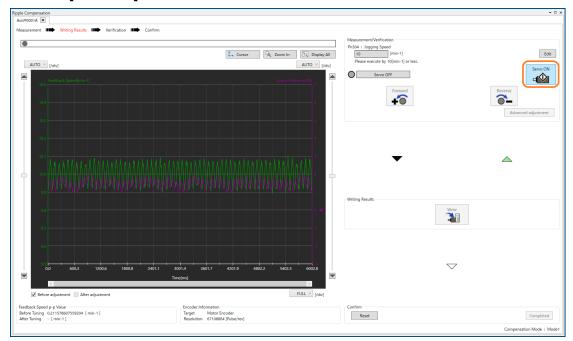

Click the [OK] button and repeat the measurement.



8. After speed ripple measurement has been completed, click the [Servo OFF] button.



9. Click the [Write] button.




The ripple compensation value will be written to the SERVOPACK.

10. After writing has been completed, click the [OK] button.



### 11. Click the [Servo ON] button.



12. Click and hold the [Forward] button or the [Reverse] button.

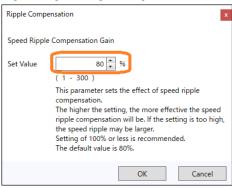


The servomotor shaft will rotate at the preset jogging speed while you hold down the [Forward] or [Reverse] button and the speed ripple will be measured.

The waveform during verification operation with speed ripple compensation applied to it will be displayed overlapping in the graph area.

13. If you obtained satisfactory results in the verification of speed ripple compensation, first click the [Servo OFF] button, and then click the [Completed] button.




The tuning results will be set for the parameters and the [Ripple Compensation] window will close.

Information

• To increase the effect of the speed ripple compensation, click the [Advanced adjustment] button. You can change the speed ripple compensation gain.



We recommend setting the speed ripple compensation gain to 100% or less because speed ripple may grow larger if the gain setting is too high.



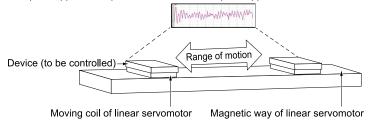
• To discard the setup results and perform setup again, click the [Reset] button and redo the measurement from step 3.

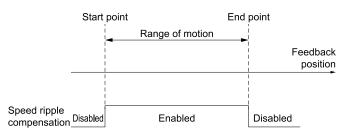
This concludes the setup for speed ripple compensation.

# 8.12.3 Speed Ripple Compensation when a Linear Servomotor Is Connected

When a linear servomotor is connected to the SERVOPACK, you must complete the setup procedure in the SigmaWin+ to enable speed ripple compensation.

Set the range of motion (start point and end point) with the setup procedure in the SigmaWin+. Speed ripple compensation is enabled in this range of motion.





- This function is enabled in the range of motion set during the setup procedure. Speed ripple may increase outside the range of motion.
- If the speed ripple measurement range exceeds 2.5 m, the compensation effect may diminish. If the effect is insufficient, make the speed ripple measurement range narrower.

The timing at which speed ripple compensation is enabled depends on your encoder.

|                            | Type of Encoder                                                                                                                       | When Speed Ripple Compensation Is Enabled                |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Absolute linear encode     | er                                                                                                                                    | After power ON                                           |
| Incremental linear encoder | One of the following:  • Multiple Origin Signal (Ref) outputs in range of motion  • No Origin Signal (Ref) outputs in range of motion | After power ON                                           |
|                            | Only one Origin Signal (Ref) outputs in range of motion                                                                               | After power ON and after Origin Signal (Ref) is detected |

The speed ripple is compensated based on the speed ripple information in the set range of motion.





### (1) Restrictions

The following restrictions apply to the setup for speed ripple compensation when a linear servomotor is connected.

#### (a) Systems for Which Adjustments Cannot Be Made Accurately

- Systems for which there is not a suitable range of motion
- Equipment that is affected by other axes (e.g., gantry equipment)

#### (b) Preparations

Always check the following before you set up speed ripple compensation.

- The main circuit power must be ON.
- The servo must be OFF.
- There must be no alarms or warnings.
- There must be no hard wire base block (HWBB).
- The parameters must not be write prohibited.
- There must be no impact from other axes.

In addition, if you are using an incremental encoder that has one output position for the Origin Signal (Ref), check the following items.

• Speed ripple compensation must not be executed between when the power is turned ON and when the Origin Signal (Ref) is detected.

When the power is turned ON, execute the origin return operation and confirm that the Speed Ripple Compensation in Progress monitor is ON before starting normal operation.

## (2) Applicable Tools

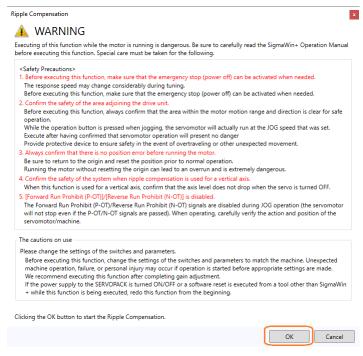
The following table lists the tools that you can set up speed ripple compensation.

| Tool                                           | Fn No./Function Name                                                                    | Reference                           |
|------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------|
| Digital Operator                               | Digital Operator You cannot set up speed ripple compensation from the Digital Operator. |                                     |
| SigmaWin+ [Diagnostic] - [Ripple Compensation] |                                                                                         | (3) Operating Procedure on page 397 |

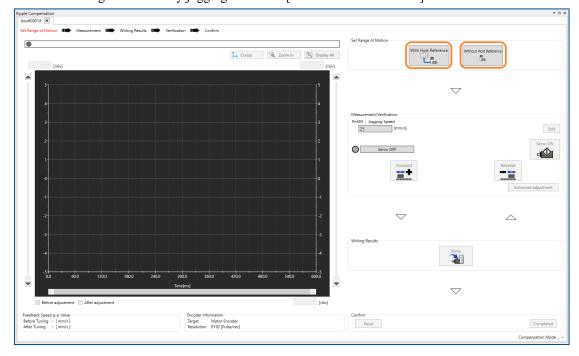
## (3) Operating Procedure

Use the following procedure to set up speed ripple compensation when a linear servomotor is connected.

- 1. Set the range of motion and check operation.
- 2. Perform measurement operation.
- 3. Perform verification operation.

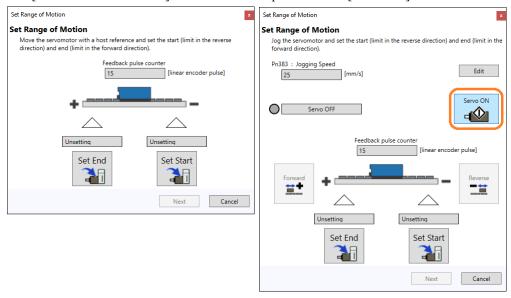

#### (a) Setting the Range of Motion/Checking Operation

Use the following procedure to set the range of motion and check operation.


- 1. Click the [\_\_\_\_] button for the servo drive in the workspace of the Main Window of the SigmaWin+.
- 2. Select [Ripple Compensation] in the [Menu] dialog box.

The [Ripple Compensation] dialog box will be displayed.

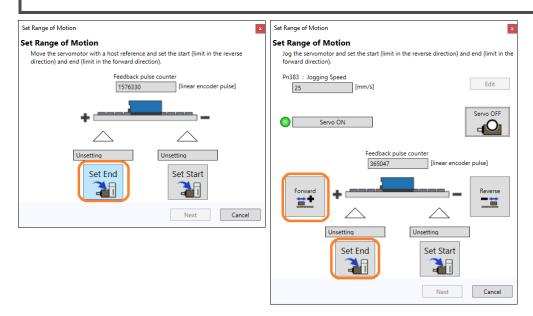
3. Read the warnings and then click the [OK] button.




- 4. Click one of the following buttons according to the reference method to use when setting the range of motion.
  - To set the range of motion with a reference from the host controller: Click the [With Host Reference] button.
  - To set the range of motion by jogging: Click the [Without Host Reference] button.



The [Set Range of Motion] window will be displayed.


- 5. Confirm safety around moving parts and turn ON the servo with one of the following methods according to the reference method.
  - If [With Host Reference] was selected in step 4: Turn ON the servo from the host controller.
  - If [Without Host Reference] was selected in step 4: Click the [Servo ON] button.

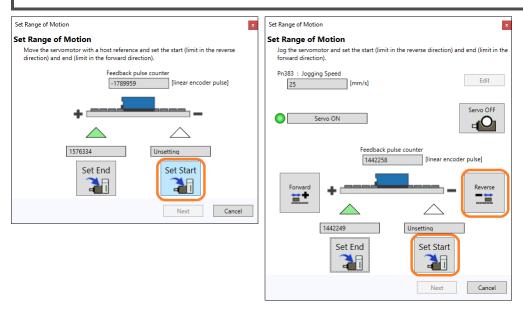


- 6. Move the linear servomotor in the forward direction with one of the following methods according to the reference method. Click the [Set End] button when the linear servomotor has moved to the position to set as the end of the range of motion in the forward direction.
  - If [With Host Reference] was selected in step 4: Move the linear servomotor from the host controller.
  - If [Without Host Reference] was selected in step 4: Click and hold the [Forward] button.



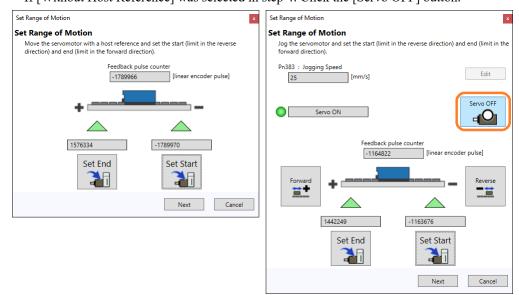
- Speed ripple may worsen outside the range of motion set during setup.
- If you are using an incremental encoder that has one output position for the Origin Signal (Ref), set the range of motion so that it includes that output position.
- Speed ripple may worse if you are using an incremental encoder that has multiple output positions for the Origin Signal (Ref) and the set range of motion includes only one of those output positions. Set the range of motion so that it includes multiple output positions for the Origin Signal (Ref).
- Set the end point at a sufficient distance from the limit switch to prevent overtravel for occurring.



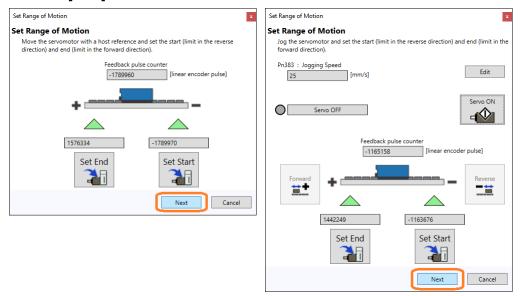

7. Move the linear servomotor in the reverse direction with one of the following methods according to the reference method. Click the [Set Start] button when the linear

## servomotor has moved to the position to set as the end of the range of motion in the reverse direction.

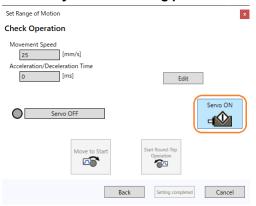
- If [With Host Reference] was selected in step 4: Move the linear servomotor from the host controller.
- If [Without Host Reference] was selected in step 4: Click and hold the [Reverse] button.




- Speed ripple may worsen outside the range of motion set during setup.
- If you are using an incremental encoder that has one output position for the Origin Signal (Ref), set the range of motion so that it includes that output position.
- Speed ripple may worse if you are using an incremental encoder that has multiple output positions for the Origin Signal (Ref) and the set range of motion includes only one of those output positions. Set the range of motion so that it includes multiple output positions for the Origin Signal (Ref).
- Set the end point at a sufficient distance from the limit switch to prevent overtravel for occurring.




## 8. Turn OFF the servo with one of the following methods according to the reference method


- If [With Host Reference] was selected in step 4: Turn OFF the servo from the host controller.
- If [Without Host Reference] was selected in step 4: Click the [Servo OFF] button.





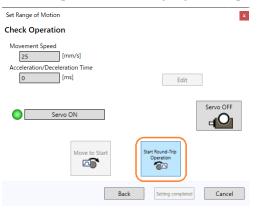


10. Perform trial operation to check for problems in the range of motion that was set. Confirm safety around moving parts and click the [Servo ON] button.



11. Click the [Move to Start] button.




The message dialog box will be displayed.

12. Confirm the contents of the message and click the [OK] button.



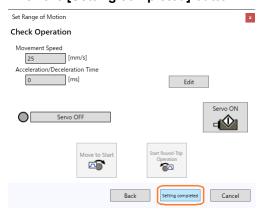
The linear servomotor will move to the start point that was set.

#### 13. Click the [Start Round-Trip Operation] button.




The message dialog box will be displayed.

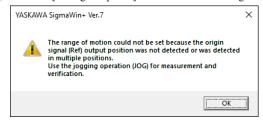
#### 14. Confirm the contents of the message and click the [OK] button.




The linear servomotor will perform round-trip operation in the range of motion that was set.

#### 15. Click the [Servo OFF] button.




#### 16. Click the [Setting completed] button.



The [Ripple Compensation] window will return.



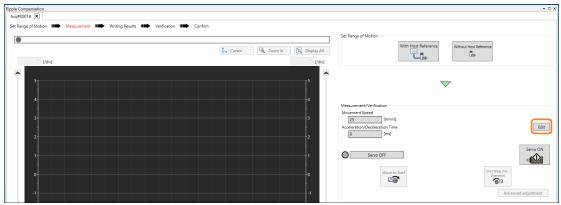
Click the [Setting completed] button and the following message dialog box may be displayed.



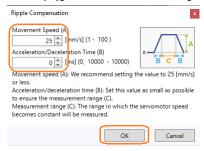
This dialog box will be displayed in the following cases.

- Output of the Origin Signal (Ref) cannot be confirmed when using an increment encoder
- Multiple output positions of Origin Signal (Ref) were confirmed

When this dialog box is displayed, you must measure and verify the range of motion by jogging the servomotor. The operating procedure is the same as starting from step 4 in the operating procedure for speed ripple compensation when a rotary servomotor is connected. Refer to the following section and complete the procedure.


(c) Operating Procedure on page 391

This concludes the procedure to set the range of motion and check operation.


#### (b) Measurement Operation

Use the following procedure to perform measurement operation.

1. Check the values for travel speed and acceleration/deceleration time. If you will not change the values, proceed to step 3. To change the travel speed and acceleration/deceleration time, click the [Edit] button.



Enter the operating conditions in [Movement Speed (A)] and [Acceleration/Deceleration Time (B)], and then click the [OK] button.




The Main Window will return.

 $3.\,\,$  Confirm safety around moving parts and click the [Servo ON] button.



4. Click the [Move to Start] button.



The message dialog box will be displayed.

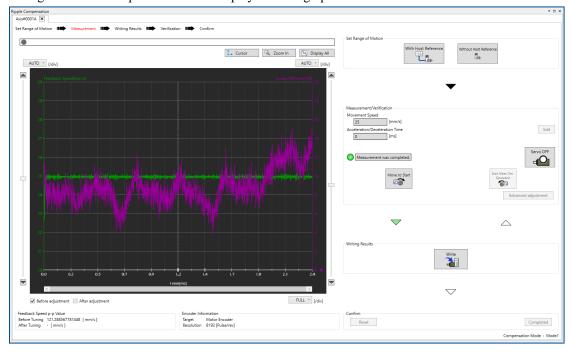
5. Confirm the contents of the message and click the [OK] button.



The linear servomotor will move to the start point that was set.

6. Click the [Start Meas./Ver. Operation] button.




The message dialog box will be displayed.

7. Confirm the contents of the message and click the [OK] button.



The linear servomotor will move to the end point that was set and speed ripple will be measured.


After the speed ripple measurement has completed, the feedback speed and torque reference waveform during measurement operation will be displayed in the graph area.



8. After speed ripple measurement has been completed, click the [Servo OFF] button.

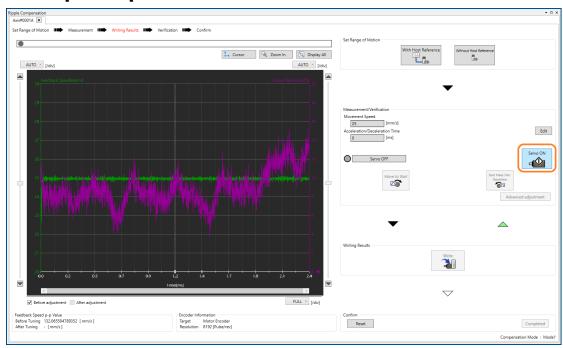


9. Click the [Write] button.

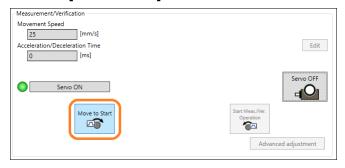


The ripple compensation value will be written to the SERVOPACK.

#### 10. Click the [OK] button.




This concludes the measurement operation procedure.


#### (c) Verification Operation

Use the following procedure to perform verification operation.

#### 1. Click the [Servo ON] button.



#### 2. Click the [Move to Start] button.



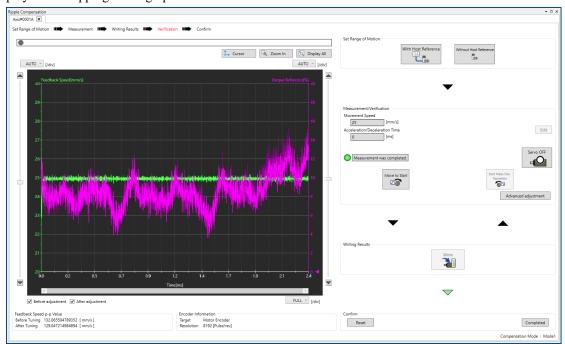
The message dialog box will be displayed.

#### 3. Confirm the contents of the message and click the [OK] button.

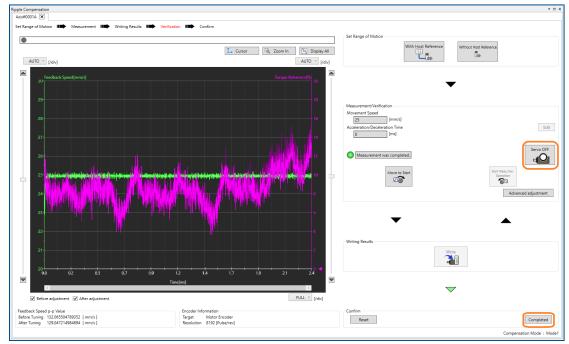


The linear servomotor will move to the start point that was set.




The message dialog box will be displayed.

5. Confirm the contents of the message and click the [OK] button.

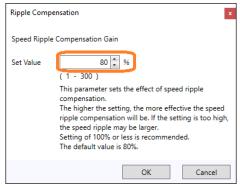



The linear servomotor will move to the end point that was set.

The waveform during verification operation with speed ripple compensation applied to it will be displayed overlapping in the graph area.



6. If you obtained satisfactory results in the verification of speed ripple compensation, first click the [Servo OFF] button, and then click the [Completed] button.




Information

• To increase the effect of the speed ripple compensation, click the [Advanced adjustment] button. You can change the speed ripple compensation gain.



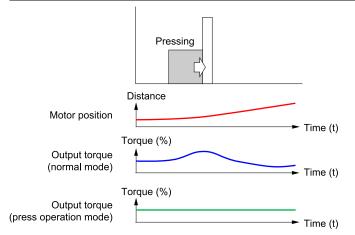
We recommend setting the speed ripple compensation gain to 100% or less because speed ripple may grow larger if the gain setting is too high.



• If there was a problem, click the [Reset] button and redo the settings from "(a) Setting the Range of Motion/Checking Operation on page 398".

This concludes the setup for speed ripple compensation.

# 8.12.4 Speed Ripple Compensation during Torque Control Mode and during Torque Limits


Speed ripple compensation during torque control mode and speed ripple compensation during torque limits are disabled by default.

To enable speed ripple compensation during torque control mode and speed ripple compensation during torque limits, use the following procedure to enable press operation mode.

Information During press operation mode, the torque reference monitor and trace waveform may change depending on the speed ripple compensation value, even if a constant torque reference is input.

> Even when press operation mode is set, speed ripple will not be compensated in such a way as to exceed the maximum torque that can be output by the servomotor and SERVOPACK.

|         |        | Speed Ri<br>Selection | pple Compensation Function Operation Mode  Speed Pos Trq   | When Enabled  |
|---------|--------|-----------------------|------------------------------------------------------------|---------------|
| Pn423   | n.X000 | 0<br>Default          | Execute speed ripple compensation in normal mode.          |               |
| (2423h) |        |                       | Execute speed ripple compensation in press operation mode. | After restart |
|         |        |                       |                                                            |               |
|         |        | 3                     | Reserved (Do not use.)                                     |               |



Tiny variations in motor position from pressing → Output torque changes due to cogging torque

During press operation mode, speed ripple compensation is enabled during torque control

and during torque limits → Compensation applied to make output torque constant

## **Operating Procedure**

Use the following procedure to execute speed ripple compensation in press operation mode.

Perform setup for speed ripple compensation.

Refer to the following sections for details.

- (c) Operating Procedure on page 391
- (3) Operating Procedure on page 397
- Set Pn423 to n.1 un (execute speed ripple compensation in press operation mode).
- Turn the power to the SERVOPACK OFF and ON again.

Press operation mode will be enabled.

This concludes the procedure to execute speed ripple compensation in press operation mode.

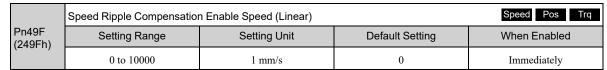
#### 8.12.5 **Parameter Settings**

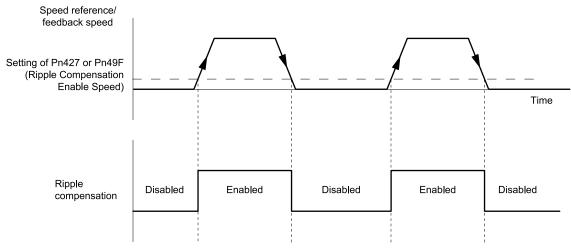
The default setting for speed ripple compensation is  $Pn423 = n. \square \square \square 2$  (execute speed ripple compensation using the default adjustment value). If you set up the function using the SigmaWin+, Pn423 will be set to n.□□□1 (execute speed ripple compensation using the user adjustment value). To disable speed ripple compensation, set Pn423 to  $n.\Box\Box\Box0$  (disable speed ripple compensation) to disable the function.

#### Note:

If Easy FFT is enabled, speed ripple compensation will be forcibly disabled.

|                         |   | Speed R                                                                 | pple Compensation Function Selection Speed Pos Trq                    | When Enabled |
|-------------------------|---|-------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------|
| D= 400                  |   | 0                                                                       | Do not execute speed ripple compensation.                             |              |
| Pn423<br>(2423h) n.□□□X | 1 | Execute speed ripple compensation using the value adjusted by the user. | Immediately                                                           |              |
|                         |   | 2<br>Default                                                            | Execute speed ripple compensation using the default adjustment value. |              |


If you enable speed ripple compensation, a compensation reference will be applied to reduce ripple even when stopped at a 0 speed reference. In speed control mode, this may result in the servomotor moving slightly. To prevent this, set Pn423 to  $n.\Box X\Box\Box$  (Speed Ripple Compensation Enable Condition Selection) and Pn427 or Pn49F (Speed Ripple Compensation Enable Speed).


|                  |        |              | pple Compensation Enable Condition Selection | Speed Pos Trq | When Enabled  |
|------------------|--------|--------------|----------------------------------------------|---------------|---------------|
| Pn423<br>(2423h) | n.□X□□ | 0<br>Default | Speed Reference                              |               | After restart |
|                  |        | 1            | Motor Speed                                  |               |               |

#### · Rotary Servomotors

|                  | Speed Ripple Compensation | n Enable Speed      |                 | Speed Pos Trq |
|------------------|---------------------------|---------------------|-----------------|---------------|
| Pn427<br>(2427h) | Setting Range             | Setting Unit        | Default Setting | When Enabled  |
| (212111)         | 0 to 10000                | 1 min <sup>-1</sup> | 0               | Immediately   |

#### • Linear Servomotors





## (1) Speed Ripple Compensation Warnings

The speed ripple compensation value is specific to each servomotor. If you replace the servomotor while speed ripple compensation using the user adjustment value is enabled, A.942 (Speed Ripple Compensation Information Disagreement) will occur to warn you.

You can use any of the following methods to clear A.942.

8

- Reset the speed ripple compensation value on the SigmaWin+.
- Set Pn423 to n.□□□0 (disable speed ripple compensation).
- Set Pn423 to n.□□□2 (execute speed ripple compensation using the default adjustment value).
- Set Pn423 to n.□□1□ (disable detection of A.942).

#### Information Information on A.942 When a Linear Servomotor Is Replaced

A.942 may not occur when a linear servomotor or a linear encoder is replaced. When these devices are replaced, be sure to set up this function again in the SigmaWin+.

|                  |        | Speed R      | pple Compensation Function Selection Speed Pos Trq                       | When Enabled  |
|------------------|--------|--------------|--------------------------------------------------------------------------|---------------|
| D:: 400          |        | 0            | Do not execute speed ripple compensation.                                |               |
| Pn423<br>(2423h) | n.□□□X | 1            | Execute speed ripple compensation using the value adjusted by the user.  | Immediately   |
|                  |        | 2<br>Default | Execute speed ripple compensation using the default adjustment value.    |               |
|                  |        |              | pple Compensation Information Disagreement  Detection Selection  Pos Trq | When Enabled  |
| Pn423<br>(2423h) | n.□□X□ | 0<br>Default | Detect A.942 alarms.                                                     | After restart |
|                  |        | 1            | Do not detect A.942 alarms.                                              |               |

## (2) Press Operation Mode for Speed Ripple Compensation

To enable speed ripple compensation during torque control mode and during torque limits, set Pn423 to n.1 \( \pi \).

|         |         | Speed R<br>Selection | pple Compensation Function Operation Mode Speed Pos Trq    | When Enabled  |
|---------|---------|----------------------|------------------------------------------------------------|---------------|
| Pn423   | n.XDDD  | 0<br>Default         | Execute speed ripple compensation in normal mode.          |               |
| (2423h) | (2423h) | 1                    | Execute speed ripple compensation in press operation mode. | After restart |
|         |         | 2                    | Reserved (Do not use.)                                     |               |
|         |         | 3                    | Reserved (Do not use.)                                     |               |

## 8.13 Load Fluctuation Compensation Control

This section describes load fluctuation compensation control.

#### 8.13.1 Outline

Load fluctuation compensation control is used to control fluctuations in response for applications where the load (moment of inertia) fluctuates greatly due to the operating status and posture of the machine, such as robots and transfer equipment.

Load fluctuation compensation control implements operation that suppresses variations in settling time when the load fluctuates  $\pm 500\%$  in relation to the set moment of inertia ratio (Pn103) (e.g., if Pn103 is 2000%, between 1500% and 2500%).

This function can be combined with notch filters, anti-resonance control, and model following control.

To use this function, set Pn173 to  $n.\Box\Box\Box$ 1 (enable load fluctuation compensation control).



- For a machine with low rigidity, such as a machine that vibrates at 100 Hz or less, the variation in settling time may not fall to within 10 ms or less.
- If combined with model following control, overshooting may increase.

## 8.13.2 Application Restrictions

The restrictions for load fluctuation compensation control are given below.

- Load fluctuation compensation control cannot be used during torque control.
- This function cannot be combined with I-P control or friction compensation.
- Load fluctuation compensation control cannot be used if the encoder resolution is 13 bits or less.

## 8.13.3 Preparations

Always check the following before you execute load fluctuation compensation control.

- The test without a motor function must be disabled ( $Pn00C = n.\Box\Box\Box0$ ).
- The tuning-less function must be disabled (Pn170 =  $n.\Box\Box\Box$ 0).
- The parameters must not be write prohibited.

## 8.13.4 Required Parameter Settings

The following parameter settings are required to use load fluctuation compensation control.

|                  |        |              | ctuation Compensation Control Selection Speed Pos Trq | When Enabled |
|------------------|--------|--------------|-------------------------------------------------------|--------------|
| Pn173<br>(2173h) | n.□□□X | 0<br>Default | Do not use load fluctuation compensation control.     | Immediately  |
|                  |        | 1            | Use load fluctuation compensation control.            | j            |

|                  | Moment of Inertia Ratio |              |                 | Speed Pos Trq |
|------------------|-------------------------|--------------|-----------------|---------------|
| Pn103<br>(2103h) | Setting Range           | Setting Unit | Default Setting | When Enabled  |
| (210011)         | 0 to 65535              | 1%           | 100             | Immediately   |

|                  | Load Fluctuation Compensat |              | Speed Pos Trq   |              |
|------------------|----------------------------|--------------|-----------------|--------------|
| Pn174<br>(2174h) | Setting Range              | Setting Unit | Default Setting | When Enabled |
| (217411)         | 10 to 20000                | 0.1          | 400             | Immediately  |

## 8.13.5 Operating Procedure

Use the following procedure to perform load fluctuation compensation control.

- 1. If Pn170 is set to n. \( \subseteq \subseteq 1 \) (enable tuning-less function), change Pn170 to n. \( \subseteq \subseteq 0 \) (disable tuning-less function), and then turn the SERVOPACK power OFF and ON again.
- 2. Set Pn173 to n. == 1 (use load fluctuation compensation control).
- 3. Execute various operations so the load increases to the maximum and decreases to the minimum and monitor the moment of inertia ratio.

You can use the [Operation] monitor in the SigmaWin+ to check the identified moment of inertia ratio. Refer to the following section for details.

\$\mathbb{G}\$ 9.2.2 Operation Monitor, Status Monitor, and I/O Monitor on page 454

4. Identify the minimum and maximum of the moment of inertia ratio, and set the median value of those two to Pn103 (Moment of Inertia Ratio).

Note:

The fluctuation range of the moment of inertia that can be compensated by this function is  $\pm 500\%$ .

- Input the references for normal operation from the host controller and operate the servomotor.
- 6. While checking the response with the tracing function, increase Pn174 (Load Fluctuation Compensation Control Response Level). If vibration or residual vibration when stopped increases, set and adjust vibration suppression, such as anti-resonance control and the notch filters. If vibration cannot be sufficiently suppressed with the vibration suppression adjustments, lower Pn174 to a level at which vibration can be tolerated, and then end the adjustments.

This concludes the procedure to set up load fluctuation compensation control.

# 8.13.6 Parameters Disabled by a Load Fluctuation Compensation Control

When Pn173 is set to n. \( \pi \pi \) 1 (when load fluctuation compensation control is enabled), the parameters in the following table are disabled.

| Parameter Name                           | Parameter Number               |
|------------------------------------------|--------------------------------|
| Speed Loop Gain                          | Pn100 (2100h)                  |
| Second Speed Loop Gain                   | Pn104 (2104h)                  |
| Speed Loop Integral Time Constant        | Pn101 (2101h)                  |
| Second Speed Loop Integral Time Constant | Pn105 (2105h)                  |
| Position Loop Gain                       | Pn102 (2102h)                  |
| Second Position Loop Gain                | Pn106 (2106h)                  |
| Speed Loop Control Method                | Pn10B (210Bh) = n.□□X□         |
| Friction Compensation Function Selection | Pn408 (2408h) = n.X□□□         |
| Gain Switching Selection                 | $Pn139 (2139h) = n.\Box\Box X$ |

Load fluctuation compensation control is disabled during torque control, EasyFFT, and mechanical analysis for a vertical axis. In addition, Pn100, Pn104, Pn101, Pn105, Pn102, and Pn106 in the above table are enabled for

torque control, EasyFFT, and mechanical analysis for a vertical axis. Of these, only Pn100 and Pn104 are enabled for torque control.

## 8.14 Additional Adjustment Functions

This section describes the functions that you can use to make adjustments after you perform autotuning without a host reference, autotuning with a host reference, and custom tuning.

| Function                         | Applicable Control Methods                            | Reference                                           |
|----------------------------------|-------------------------------------------------------|-----------------------------------------------------|
| Gain Switching                   | Position control, speed control, or torque control *1 | 8.14.1 Gain Switching on page 415                   |
| Friction Compensation            | Position control or speed control                     | 8.14.2 Friction Compensation on page 418            |
| Gravity Compensation             | Position control, speed control, or torque control    | 8.14.3 Gravity Compensation on page 420             |
| Output Torque Compensation       | Position control, speed control, or torque control    | 8.14.4 Output Torque Compensation on page 421       |
| Current Control Mode Selection   | Position control, speed control, or torque control    | 8.14.5 Current Control Mode Selection on page 422   |
| Current Gain Level Setting       | Position control or speed control                     | 8.14.6 Current Gain Level Setting on page 422       |
| Speed Detection Method Selection | Position control, speed control, or torque control    | 8.14.7 Speed Detection Method Selection on page 422 |
| Speed Feedback Filter            | Position control or speed control                     | 8.14.8 Speed Feedback Filter on page 423            |
| Backlash Compensation            | Position control                                      | 8.14.9 Backlash Compensation on page 423            |

<sup>\*1</sup> Automatic gain switching is enabled only for position control.

## 8.14.1 Gain Switching

You can use gain switching to shorten the positioning time by increasing the gains during positioning and suppressing vibration by decreasing the gains while stopping.

|         | Gain Swi | tching Selection Speed Pos Trq | When Enabled                                                                                                                                                                                                                |             |
|---------|----------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|         |          | 0<br>Default                   | Disable automatic gain switching.                                                                                                                                                                                           |             |
| Pn139   | n.□□□X   | 1                              | Reserved (Do not use.)                                                                                                                                                                                                      |             |
| (2139h) | 11.000   | 2                              | Use automatic gain switching pattern 1.  The gain settings 1 switch automatically to 2 when switching condition A is satisfied.  The gain settings 2 switch automatically to 1 when switching condition A is not satisfied. | Immediately |

#### Note:

 $n.\Box\Box\Box 1$  is a reserved setting. Do not use this setting.

Refer to the following section for gain switching combinations.

(1) Gain Switching Combinations on page 416

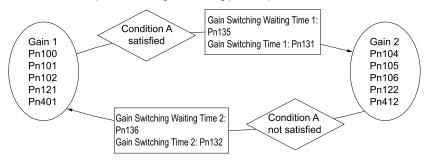
## (1) Gain Switching Combinations

| Selected Gains | Speed Loop Gain                   | Speed Loop Integral Time<br>Constant                   | Position Loop<br>Gain             | Torque Reference<br>Filter                                             | Friction Compensation Gain                |
|----------------|-----------------------------------|--------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------|-------------------------------------------|
| Gain 1         | Pn100 (Speed Loop<br>Gain)        | Pn101 (Speed Loop<br>Integral Time<br>Constant)        | Pn102 (Position Loop<br>Gain)     | Pn401 (First Stage<br>First Torque Reference Filter Time<br>Constant)  | Pn121 (Friction Compensation Gain)        |
| Gain 2         | Pn104 (Second Speed<br>Loop Gain) | Pn105 (Second Speed<br>Loop Integral Time<br>Constant) | Pn106 (Second Position Loop Gain) | Pn412 (First Stage<br>Second Torque Reference Filter Time<br>Constant) | Pn122 (Second Friction Compensation Gain) |

#### Note:

Model following control gain and model following control gain correction are not applicable to automatic gain switching.

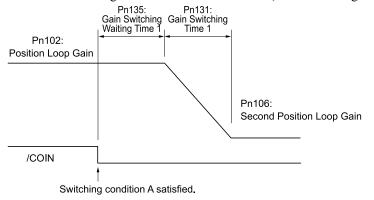
## (2) Automatic Gain Switching


Automatic gain switching is enabled only for position control. The switching conditions are specified by using the following settings.

| Parameter |        | Switching<br>Condition    | Selected Gains   | Switching Waiting<br>Time           | Switching Time                 |
|-----------|--------|---------------------------|------------------|-------------------------------------|--------------------------------|
| Pn139     |        | Condition A satisfied     | Gain 1 to gain 2 | Gain Switching Waiting Time 1 Pn135 | Gain Switching Time 1<br>Pn131 |
| (2139h)   | n.0002 | Condition A not satisfied | Gain 2 to gain 1 | Gain Switching Waiting Time 2 Pn136 | Gain Switching Time 2<br>Pn132 |

Select one of the following settings for switching condition A.

| Pa               | rameter                     | Position Control Gain Switching Condition A                                | For Control Methods Other Than Position Control (No Switching) | When<br>Enabled |
|------------------|-----------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------|-----------------|
|                  | n.□□0□<br>(default setting) | /COIN (Positioning Completion) signal ON                                   | Gain 1 used.                                                   |                 |
|                  | n.0010                      | /COIN (Positioning Completion) signal OFF                                  | Gain 2 used.                                                   |                 |
| Pn139<br>(2139h) | n.□□2□                      | /NEAR (Near) signal ON                                                     | Gain 1 used.                                                   | Immediately     |
| (213911)         | n.□□3□                      | /NEAR (Near) signal OFF                                                    | Gain 2 used.                                                   |                 |
|                  | n.0040                      | Position reference filter output is 0 and position reference input is OFF. | Gain 1 used.                                                   |                 |
|                  | n.==5=                      | Position reference input is ON.                                            | Gain 2 used.                                                   |                 |


Pn139 = n.□□□2 (use automatic gain switching pattern 1)



#### (a) Relationship between the Waiting Times and Switching Times for Gain Switching

In this example, an ON /COIN (Positioning Completion Input) signal is set as condition A for automatic gain switching. The position loop gain is changed from the value in Pn102 (Position Loop Gain) to the value in Pn106 (Second Position Loop Gain). When the /COIN signal turns ON, the switching operation begins after Pn135

(Gain Switching Waiting Time 1). The switching operation changes the position loop gain linearly from the gain set in Pn102 to the gain set in Pn106 over Pn131 (Gain Switching Time 1).



### (3) Related Parameters

|                  | Speed Loop Gain               |                            |                 | Speed Pos Trq |
|------------------|-------------------------------|----------------------------|-----------------|---------------|
| Pn100<br>(2100h) | Setting Range                 | Setting Unit               | Default Setting | When Enabled  |
| (=:00)           | 10 to 20000                   | 0.1 Hz                     | 400             | Immediately   |
|                  | Speed Loop Integral Time Co   | onstant                    |                 | Speed Pos Trq |
| Pn101<br>(2101h) | Setting Range                 | Setting Unit               | Default Setting | When Enabled  |
| , ,              | 15 to 51200                   | 0.01 ms                    | 2000            | Immediately   |
|                  | Position Loop Gain            |                            |                 | Speed Pos Trq |
| Pn102<br>(2102h) | Setting Range                 | Setting Unit               | Default Setting | When Enabled  |
| ( - /            | 10 to 20000                   | 0.1/s                      | 400             | Immediately   |
|                  | First Stage First Torque Refe | rence Filter Time Constant |                 | Speed Pos Trq |
| Pn401<br>(2401h) | Setting Range                 | Setting Unit               | Default Setting | When Enabled  |
| ,                | 0 to 65535                    | 0.01 ms                    | 100             | Immediately   |
|                  | Model Following Control Gair  | Speed Pos Trq              |                 |               |
| Pn141<br>(2141h) | Setting Range                 | Setting Unit               | Default Setting | When Enabled  |
| ,                | 10 to 20000                   | 0.1/s                      | 500             | Immediately   |
|                  | Model Following Control Gair  |                            | Speed Pos Trq   |               |
| Pn142<br>(2142h) | Setting Range                 | Setting Unit               | Default Setting | When Enabled  |
| ,                | 500 to 2000                   | 0.1%                       | 1000            | Immediately   |
|                  | Friction Compensation Gain    |                            |                 | Speed Pos Trq |
| Pn121<br>(2121h) | Setting Range                 | Setting Unit               | Default Setting | When Enabled  |
| ,                | 10 to 1000                    | 1%                         | 100             | Immediately   |
|                  | Second Speed Loop Gain        |                            | Speed Pos Trq   |               |
| Pn104<br>(2104h) | Setting Range                 | Setting Unit               | Default Setting | When Enabled  |
| ,                | 10 to 20000                   | 0.1 Hz                     | 400             | Immediately   |
|                  | Second Speed Loop Integral    | Time Constant              |                 | Speed Pos Trq |
| Pn105<br>(2105h) | Setting Range                 | Setting Unit               | Default Setting | When Enabled  |
| ()               | 15 to 51200                   | 0.01 ms                    | 2000            | Immediately   |

Continued on next page.

Continued from previous page.

|                  |                              |                       |                 | 1 1 5         |
|------------------|------------------------------|-----------------------|-----------------|---------------|
|                  | Second Position Loop Gain    |                       |                 | Speed Pos Trq |
| Pn106<br>(2106h) | Setting Range                | Setting Unit          | Default Setting | When Enabled  |
| (210011)         | 10 to 20000                  | 0.1/s                 | 400             | Immediately   |
|                  | First Stage Second Torque R  | t                     | Speed Pos Trq   |               |
| Pn412<br>(2412h) | Setting Range                | Setting Unit          | Default Setting | When Enabled  |
| (= : :=::)       | 0 to 65535                   | 0.01 ms               | 100             | Immediately   |
|                  | Second Model Following Cor   | Speed Pos Trq         |                 |               |
| Pn148<br>(2148h) | Setting Range                | Setting Unit          | Default Setting | When Enabled  |
| (211011)         | 10 to 20000                  | 0.1/s                 | 500             | Immediately   |
|                  | Second Model Following Cor   | ntrol Gain Correction |                 | Speed Pos Trq |
| Pn149<br>(2149h) | Setting Range                | Setting Unit          | Default Setting | When Enabled  |
| (= : : : : : )   | 500 to 2000                  | 0.1%                  | 1000            | Immediately   |
|                  | Second Friction Compensation | Speed Pos Trq         |                 |               |
| Pn122<br>(2122h) | Setting Range                | Setting Unit          | Default Setting | When Enabled  |
| (= := <b>=</b> ) | 10 to 1000                   | 1%                    | 100             | Immediately   |

## (4) Parameters Related to Automatic Gain Switching

|                  | Gain Switching Time 1                       | Speed Pos Trq |                 |               |  |  |
|------------------|---------------------------------------------|---------------|-----------------|---------------|--|--|
| Pn131<br>(2131h) | Setting Range                               | Setting Unit  | Default Setting | When Enabled  |  |  |
|                  | 0 to 65535                                  | 1 ms          | 0               | Immediately   |  |  |
|                  | Gain Switching Time 2                       | Speed Pos Trq |                 |               |  |  |
| Pn132<br>(2132h) | Setting Range                               | Setting Unit  | Default Setting | When Enabled  |  |  |
| (= : - : )       | 0 to 65535                                  | 1 ms          | 0               | Immediately   |  |  |
|                  | Gain Switching Waiting Time 1 Speed Pos Trq |               |                 |               |  |  |
| Pn135<br>(2135h) | Setting Range                               | Setting Unit  | Default Setting | When Enabled  |  |  |
| (= 133)          | 0 to 65535                                  | 1 ms          | 0               | Immediately   |  |  |
|                  | Gain Switching Waiting Time                 | 2             |                 | Speed Pos Trq |  |  |
| Pn136<br>(2136h) | Setting Range                               | Setting Unit  | Default Setting | When Enabled  |  |  |
| ( 2011)          | 0 to 65535                                  | 1 ms          | 0               | Immediately   |  |  |

## (5) Related Monitoring

• SigmaWin+ You can monitor gain switching with the status monitor or with tracing.

· Analog Monitor

| Parameter     | Analog Monitor | Monitor Name        | Output Value | Meaning            |
|---------------|----------------|---------------------|--------------|--------------------|
| Pn006 (2006h) | O.D.           | A.C. C. M. A        | 1 V          | Gain 1 is enabled. |
| Pn007 (2007h) | n.□□0B         | Active Gain Monitor | 2 V          | Gain 2 is enabled. |

## 8.14.2 Friction Compensation

Friction compensation is used to compensate for viscous friction fluctuations and regular load fluctuations. You can automatically adjust friction compensation with autotuning without a host reference, autotuning with a host reference, or custom tuning, or you can manually adjust it with the following procedure.

## (1) Required Parameter Settings

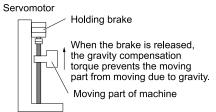
The following parameter settings are required to use friction compensation.

|                  |        | Friction C   | Compensation Function Selection Speed Pos Trq | When Enabled |
|------------------|--------|--------------|-----------------------------------------------|--------------|
| Pn408<br>(2408h) | n.X□□□ | 0<br>Default | Disable friction compensation.                | Immediately  |
|                  |        | 1            | Enable friction compensation.                 | •            |

|                  | Friction Compensation Gain   |                 | Speed Pos Trq   |               |
|------------------|------------------------------|-----------------|-----------------|---------------|
| Pn121<br>(2121h) | Setting Range                | Setting Unit    | Default Setting | When Enabled  |
| (212111)         | 10 to 1000                   | 1%              | 100             | Immediately   |
|                  | Second Friction Compensation | on Gain         |                 | Speed Pos Trq |
| Pn122<br>(2122h) | Setting Range                | Setting Unit    | Default Setting | When Enabled  |
| (= :==::)        | 10 to 1000                   | 1%              | 100             | Immediately   |
|                  | Friction Compensation Coeff  | Speed Pos Trq   |                 |               |
| Pn123<br>(2123h) | Setting Range                | Setting Unit    | Default Setting | When Enabled  |
| ,                | 0 to 100                     | 1%              | 0               | Immediately   |
|                  | Friction Compensation Frequ  | ency Correction |                 | Speed Pos Trq |
| Pn124<br>(2124h) | Setting Range                | Setting Unit    | Default Setting | When Enabled  |
| ,                | -10000 to 10000              | 0.1 Hz          | 0               | Immediately   |
|                  | Friction Compensation Gain   | Speed Pos Trq   |                 |               |
| Pn125<br>(2125h) | Setting Range                | Setting Unit    | Default Setting | When Enabled  |
| ( ====,          | 1 to 1000                    | 1%              | 100             | Immediately   |

## (2) Operating Procedure for Friction Compensation

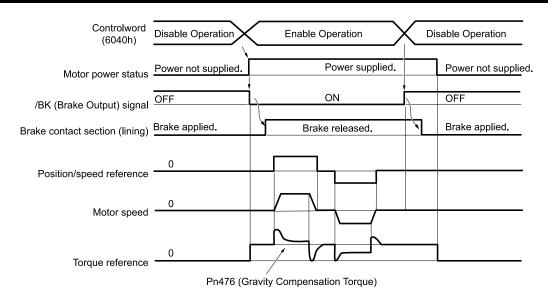
Use the following procedure to perform friction compensation.


## **A** CAUTION

Before you execute this function, set Pn103 (Moment of Inertia Ratio) correctly. If the setting greatly differs from the actual moment of inertia ratio, normal control of the machine may not be possible, and vibration may result.

| Set the following parameters related to friction compensation to their default settings.  Pn121 (Friction Compensation Gain) → default setting: 100  Pn122 (Second Friction Compensation Gain) → default setting: 100  Pn123 (Friction Compensation Coefficient) → default setting: 0 |                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Pn122 (Second Friction Compensation Gain) → default setting: 100 Pn123 (Friction Compensation Coefficient) → default setting: 0                                                                                                                                                       |                 |
| Pn123 (Friction Compensation Coefficient) → default setting: 0                                                                                                                                                                                                                        |                 |
|                                                                                                                                                                                                                                                                                       |                 |
|                                                                                                                                                                                                                                                                                       |                 |
| 1 Pn124 (Friction Compensation Frequency Correction) → default setting: 0                                                                                                                                                                                                             |                 |
| Pn125 (Friction Compensation Gain Correction) → default setting: 100                                                                                                                                                                                                                  |                 |
| Note:                                                                                                                                                                                                                                                                                 |                 |
| Always use the default settings for Pn124 (Friction Compensation Frequency Correction) and Pn125 (Friction Gain Correction).                                                                                                                                                          | n Compensation  |
| Gradually increase the setting of Pn123 (Friction Compensation Coefficient) to check the effect of friction co                                                                                                                                                                        | mpensation.     |
| Note:                                                                                                                                                                                                                                                                                 |                 |
| Usually, set Pn123 (Friction Compensation Coefficient) to 95% or less.                                                                                                                                                                                                                |                 |
| If the effect is insufficient, increase the setting of Pn121 (Friction Compensation Gain) by 10% increments un                                                                                                                                                                        | til vibration   |
| stops.  Effect of Adjusted Parameters                                                                                                                                                                                                                                                 |                 |
| 2 Pn121: Friction Compensation Gain and Pn122: Second Friction Compensation Gain                                                                                                                                                                                                      |                 |
| These parameters set the response to external disturbances. The higher the setting is, the better the response we machine has a resonance frequency, however, vibration may occur if the setting is too high.                                                                         | vill be. If the |
| Pn123: Friction Compensation Coefficient                                                                                                                                                                                                                                              |                 |
| This parameter sets the effect of friction compensation. The higher the setting is, the more effective friction could be. If the setting is too high, however, vibration will occur more easily. Usually, set the value to 95% or least the setting is too high.                      |                 |
| Effect of Adjustments                                                                                                                                                                                                                                                                 |                 |
| The following graphs show the response with and without adjustment.                                                                                                                                                                                                                   |                 |
| Poor response because of friction                                                                                                                                                                                                                                                     |                 |
| Response improved by friction compensation  Position deviation  Position deviation                                                                                                                                                                                                    |                 |
| High friction Position reference speed Position reference speed                                                                                                                                                                                                                       |                 |
| Before Friction Compensation After Friction Compensation                                                                                                                                                                                                                              |                 |

## 8.14.3 Gravity Compensation


When the servomotor is used with a vertical axis, gravity compensation prevents the moving part from falling due to the machine's own weight when the brake is released.



A timing chart for when the moving part is raised then lowered is provided below.

Refer to the following section for details on brake operation timing.

■ 5.11.1 Brake Operating Sequence on page 184



## (1) Required Parameter Settings

The following parameter settings are required to use gravity compensation.

|                  |        | Gravity C    | compensation Selection Speed Pos Trq | When Enabled  |
|------------------|--------|--------------|--------------------------------------|---------------|
| Pn475<br>(2475h) | n.□□□X | 0<br>Default | Disable gravity compensation.        | After restart |
|                  |        | 1            | Enable gravity compensation.         |               |

|                  | Gravity Compensation Torque Speed Pos Tro |              |                 |              |  |
|------------------|-------------------------------------------|--------------|-----------------|--------------|--|
| Pn476<br>(2476h) | Setting Range                             | Setting Unit | Default Setting | When Enabled |  |
| (247 011)        | -1000 to 1000                             | 0.1%         | 0               | Immediately  |  |

## (2) Operating Procedure for Gravity Compensation

Use the following procedure to perform gravity compensation.

- 1. Set Pn475 to n.  $\Box\Box\Box$ 1 (enable gravity compensation).
- 2. To enable changes to the settings, turn the power to the SERVOPACK OFF and ON again.
- 3. Use SigmaWin+ or an analog monitor to find the torque reference value when the motor is stopped with the servo ON.
- 4. Set the torque reference value found in step 3 in Pn476 (Gravity Compensation Torque).
- 5. Turn the servo ON and OFF a few times and fine-tune Pn476 so that the moving part of the machine does not fall.

## 8.14.4 Output Torque Compensation

Output torque compensation is used to compensate the offset from the torque reference for output torque.

Output torque may become offset from the reference value due to motor temperature and load status, and this offset can be reduced with compensation.

This function is enabled by default. To disable this function, set Pn428 to  $n.\Box\Box\Box 0$  (disable output torque compensation).

|         |        | Output To    | orque Compensation Function Selection Speed Pos Trq | When Enabled  |
|---------|--------|--------------|-----------------------------------------------------|---------------|
| Pn428   | n.□□□X | 0            | Disable output torque compensation.                 |               |
| (2428h) |        | 1<br>Default | Enable output torque compensation.                  | After restart |

#### 8.14.5 Current Control Mode Selection

Current control mode selection reduces noise while the servomotor is being stopped and during high-speed rotation.

To use this function, set Pn009 to  $n.\Box\Box\Box\Box$  (current control mode 2), Pn009 to  $n.\Box\Box\exists\Box$  (current control mode 3), or Pn009 to  $n.\Box\Box\Box\Box$  (current control mode 4).

|                  |        | Current (    | Control Mode Selection Speed Pos Trq                                                                    | When Enabled                                                                                                                                                                                                                                                                               |               |
|------------------|--------|--------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                  | n.□□X□ | 0            | Use current control mode 1.                                                                             |                                                                                                                                                                                                                                                                                            |               |
| Pn009<br>(2009h) |        | n.□□X□       | 1                                                                                                       | <ul> <li>SERVOPACK Models SGDXS-R70A, -R90A, -1R6A, -2R8A, - 3R8A, -5R5A, -7R6A: Use current control mode 1.</li> <li>SERVOPACK Models SGDXS-120A, -180A, -200A, -330A, -470A, -550A, -590A, -780A: Use current control mode 2. (For noise reduction when the motor is stopped)</li> </ul> | After restart |
|                  |        | 2            | Use current control mode 2. (For noise reduction when the motor is stopped)                             | After restart                                                                                                                                                                                                                                                                              |               |
|                  |        | 3            | Use current control mode 3. (For noise reduction when the motor is operating at high speed)             |                                                                                                                                                                                                                                                                                            |               |
|                  |        | 4<br>Default | Use current control mode 4. (For noise reduction when the motor is stopped and operating at high speed) |                                                                                                                                                                                                                                                                                            |               |

## 8.14.6 Current Gain Level Setting

You can set the current gain level to reduce noise by adjusting the parameter for current control inside the SER-VOPACK according to the setting of Pn100 (Speed Loop Gain). The noise level can be reduced by decreasing the setting of Pn13D (Current Gain Level) from its default setting of 2000% (disabled). However, if the setting is decreased, the level of noise will be lowered, but the response characteristic of the SERVOPACK will also be reduced. Adjust the current gain level within the range that maintains the SERVOPACK response characteristic.

|                  | Current Gain Level Speed Pos Tro |              |                 |              |  |
|------------------|----------------------------------|--------------|-----------------|--------------|--|
| Pn13D<br>(213Dh) | Setting Range                    | Setting Unit | Default Setting | When Enabled |  |
| (210211)         | 100 to 2000                      | 1%           | 2000            | Immediately  |  |



If the current gain level is changed, the response characteristic of the speed loop will also change. Servo tuning must therefore be performed again.

## 8.14.7 Speed Detection Method Selection

You can use the speed detection method selection to ensure smooth servomotor speed changes during operation. To ensure smooth motor speed changes during operation, set Pn009 to  $n.\Box 1\Box \Box$  (use speed detection 2).

With a linear servomotor, you can reduce the noise level of the running motor when the linear encoder scale pitch is large.

|                  |        | Speed Do     | etection Method Selection Speed Pos Trq | When Enabled  |
|------------------|--------|--------------|-----------------------------------------|---------------|
| Pn009<br>(2009h) | n.□X□□ | 0<br>Default | Use speed detection 1.                  | After restart |
|                  |        | 1            | Use speed detection 2.                  |               |

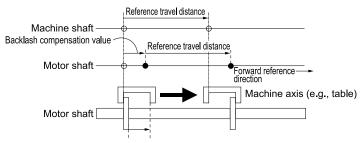


If the speed detection method is changed, the response characteristic of the speed loop will also change. Servo tuning must therefore be performed again.

## 8.14.8 Speed Feedback Filter

You can set a first order lag filter for the speed feedback in the speed loop. This ensures smooth changes in the feedback speed to reduce vibration. If a large value is set, it will increase the delay and make response slower.

|               | Speed Feedback Filter Time Constant Speed Pos |              |                 |              |
|---------------|-----------------------------------------------|--------------|-----------------|--------------|
| Pn308 (2308h) | Setting Range                                 | Setting Unit | Default Setting | When Enabled |
| (200011)      | 0 to 65535                                    | 0.01 ms      | 0               | Immediately  |


## 8.14.9 Backlash Compensation

### (1) Outline

If you drive a machine that has backlash, there will be deviation between the travel distance in the position reference that is managed by the host controller and the travel distance of the actual machine. Use backlash compensation to add the backlash compensation value to the position reference and use the result to drive the servomotor. This will ensure that the travel distance of the actual machine will be the same as the travel distance in the host controller.

#### Note:

- This function can be used only with a rotary servomotor.
- This function can be used only for position control.
- This function is disabled while a utility function is executing. However, this function is always enabled while autotuning with a host reference is executing.



Backlash (play due to mechanical tolerance)

## (2) Related Parameters

Set the following parameters to use backlash compensation.

#### (a) Backlash Compensation Direction

Set the direction in which to apply backlash compensation.

| Backlash Con     |        | Backlash     | Compensation Direction Speed Pos Trq | When Enabled  |
|------------------|--------|--------------|--------------------------------------|---------------|
| Pn230<br>(2230h) | n.□□□X | 0<br>Default | Compensate forward references.       | After restart |
|                  |        | 1            | Compensate reverse references.       |               |

#### (b) Backlash Compensation Value

Set the amount of backlash compensation to add to the position reference.

The amount is set in increments of 0.1 reference units. However, when the amount is converted to encoder pulses, it is rounded off at the decimal point.

Information

When Pn231 = 6553.6 [reference units] and position reference unit = 1/1: ((Position User Unit: Numerator (2701h: 1)/ Position User Unit: Denominator (2701h: 2)) = 1/1)

 $6553.6 \times 1 = 6553.6$  [pulses]

⇒ The backlash compensation will be 6553 encoder pulses.

|               | Backlash Compensation Value Speed Pos |                    |                 | Speed Pos Trq |
|---------------|---------------------------------------|--------------------|-----------------|---------------|
| Pn231 (2231h) | Setting Range                         | Setting Unit       | Default Setting | When Enabled  |
| (220111)      | -500000 to 500000                     | 0.1 reference unit | 0               | Immediately   |



The backlash compensation value is restricted by the following formula. Backlash compensation is not performed if this
condition is not met.

 $Pn231 \leq \frac{Denominator}{Numerator} \times \frac{Maximum\ motor\ speed\ [min^{-1}]}{60} \times Encoder\ resolution^{*_1} \times 0.00025$ 

\*1 Refer to the following section for the encoder resolution.

\*\* 5.14 Setting Unit Systems on page 193

Example 1:

Denominator = 1, Numerator = 4, Maximum motor speed =  $7000 \text{ [min}^{-1}\text{]}$ , and Encoder resolution = 67108864 (26 bits):  $1/4 \times 7000/60 \times 67108864 \times 0.00025 = 489335.4 \text{ [reference units]}$ 

⇒ The backlash compensation will be limited to 489335.4 reference units.

Example 2:

Denominator = 1, Numerator = 1, Maximum motor speed = 7000 [min-1], Pn20A (Number of External Encoder Scale Pitches) = 500, and Use of the JZDP-H00 $\square$ -000 (signal resolution: 1/256):

 $1/1 \times 7000/60 \times (500 \times 256) \times 0.00025 = 3733.3$  [reference units]

- ⇒ The backlash compensation will be limited to 3733.3 reference units.
- Do not exceed the upper limit of the backlash compensation value. You can check the upper limit on the operation monitor of the SigmaWin+.
- The sign for backlash compensation depends on the setting of Pn230 (Backlash Compensation Direction). Specifically, if Pn231 is set to a positive value when Pn230 is set to n. \( \pi \pi \pi \) (compensate reverse references), then backlash is compensated in the reverse direction. The relationship between each setting and the direction of backlash compensation is shown below.

| Setting of Pn230                       | Setting of Pn231 | Backlash Compensation<br>Direction |
|----------------------------------------|------------------|------------------------------------|
|                                        | Positive value   | Reverse                            |
| n.□□□1 (compensate reverse references) | Negative value   | Forward                            |
|                                        | Positive value   | Forward                            |
| n.□□□0 (compensate forward references) | Negative value   | Reverse                            |

#### (c) Backlash Compensation Time Constant

You can set a time constant for a first order lag filter for the setting of Pn231 (Backlash Compensation) that is added to the position reference.

If you set Pn233 (Backlash Compensation Time Constant) to 0, the first order lag filter is disabled.

|               | Backlash Compensation Time Constant Speed |              |                 | Speed Pos Trq |
|---------------|-------------------------------------------|--------------|-----------------|---------------|
| Pn233 (2233h) | Setting Range                             | Setting Unit | Default Setting | When Enabled  |
| (220011)      | 0 to 65535                                | 0.01 ms      | 0               | Immediately   |

#### Note:

Changes to the settings are applied when there is no reference pulse input and the servomotor is stopped. The current operation is not affected if the setting is changed during servomotor operation.

### (3) Related Monitoring

You can monitor the following values on the operation monitor of the SigmaWin+.

| Displayed Value                           | Unit                |  |
|-------------------------------------------|---------------------|--|
| Current Backlash Compensation Value       | 0.1 reference units |  |
| Backlash Compensation Value Setting Limit | 0.1 reference units |  |

## (4) Compensation Operation

This section describes the operation that is performed for backlash compensation.

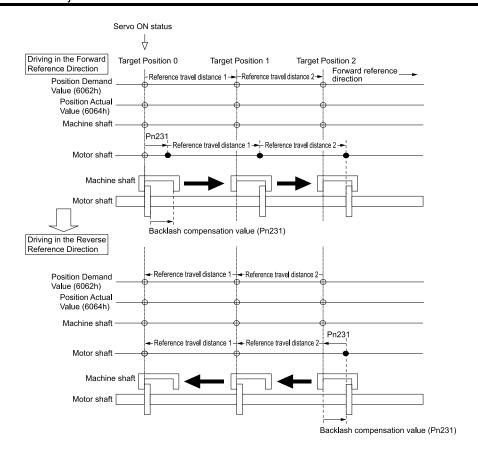
#### Note:

The following figures are for when backlash compensation direction is set to  $Pn230 = n.\Box\Box\Box0$  (compensate forward references). The following monitor information is provided in the figures: Target Position (607Ah) (target position in the reference coordinate system), Position Demand Value (6062h) (reference position in the reference coordinate system), and Position Actual Value (6064h) (feedback position in the machine coordinate system). The monitor information includes the feedback position in machine coordinate system (Position Actual Value) and other feedback information. The backlash compensation value is subtracted from the feedback positions in the monitor information, so it is not necessary for the host controller to consider the backlash compensation value.



The encoder divided pulse output will output the number of encoder pulses for which driving was actually performed, including the backlash compensation value. If you use the encoder divided pulse output for position feedback at the host controller, you must consider the backlash compensation value.

#### (a) Operation When the Servo Is ON


Pn231 (Backlash Compensation Value) is added in the backlash compensation direction when the servo is ON (i. e., while power is supplied to the motor) and a reference is input in the same direction as  $Pn230 = n.\Box\Box\Box X$  (backlash compensation direction). When there is a reference input in the direction opposite to the backlash compensation direction, the backlash compensation value is not added (i.e., backlash compensation is not performed).

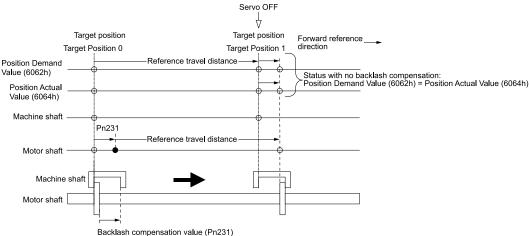
The relationship between Position Actual Value (6064h) and the motor shaft position is as follows:

- If a reference is input in the compensation direction: Position Actual Value (6064h) = motor shaft position -Pn231
- If a reference is input in the direction opposite to the compensation direction: Position Actual Value (6064h) = motor shaft position

The following figure shows driving the servomotor in the forward direction from Target Position (607Ah) to Target Position 1 and then to Target Position 2, and then returning from Target Position 2 to Target Position 1 and then to Target Position 0.

Backlash compensation is applied when moving from Target Position 0 to Target Position 1, but not when moving from Target Position 2 to Target Position 1.




#### (b) Operation When the Servo Is OFF

Backlash compensation is not applied when the servo is OFF (i.e., when power is not supplied to motor). Therefore, the reference position (Position Demand Value (6062h)) is moved by only the backlash compensation value.

The relationship between Position Actual Value (6064h) and the motor shaft position is as follows:

• When servo is OFF: Position Actual Value (6064h) = servomotor shaft position

The following figure shows what happens when the servo is turned OFF after driving the servomotor in the forward direction from Target Position 0 to Target Position 1. Backlash compensation is not applied when the servo is OFF. (The SERVOPACK manages the position data so that Position Actual Value (6064h) and Position Demand Value (6062h) are the same.)



#### (c) Operation When There Is Overtravel

When there is overtravel (i.e., when driving is prohibited due to an overtravel signal), the operation is the same as for when the servo is OFF, i.e., backlash compensation is not applied.

Refer to the following section for information when the servo is OFF.

(b) Operation When the Servo Is OFF on page 426

#### (d) Operation When Control Is Changed

Backlash compensation is performed only for position control.

Backlash compensation is not applied when position control is changed to any other control method.

Backlash compensation is applied in the same way as when the servo is ON if any other control method is changed to position control.

Refer to the following section for information on the same compensation as when the servo is ON.

(a) Operation When the Servo Is ON on page 425

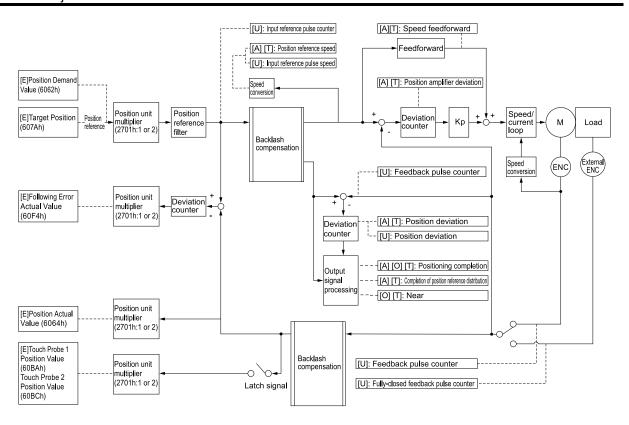
## (5) Related Monitoring

You can monitor the following values on the operation monitor of the SigmaWin+.

| Displayed Value                     | Unit                        | Specification                                                                           |
|-------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------|
| Input Reference Pulse Speed         | min-1                       | Displays the input reference pulse speed after backlash compensation.                   |
| Position Deviation                  | Reference units             | Displays the position deviation for the position reference after backlash compensation. |
| Input Reference Pulse Counter       | Reference units             | Displays the input reference pulse counter after backlash compensation.                 |
| Feedback Pulse Counter              | Encoder pulses              | Displays the number of pulses from the actually driven motor encoder.                   |
| Fully-Closed Feedback Pulse Counter | External encoder resolution | Displays the number of pulses of the actually driven external encoder.                  |
| Feedback Pulse Counter              | Reference units             | Displays the number of pulses from the actually driven encoder in reference units.      |

### (a) Related Monitoring Diagrams

The following symbols are used in the related monitoring diagrams.

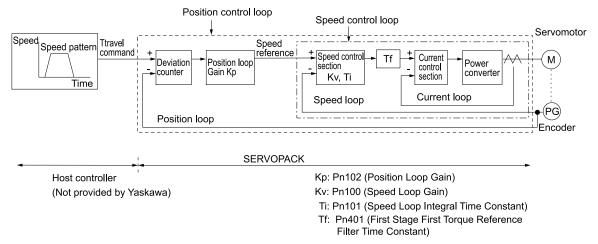

[A]: Analog monitor

[U]: Monitor mode (Un monitor)

[E]: EtherCAT monitor information

[O]: Output signal

[T]: Trace data




## 8.15 Manual Tuning

This section describes manual tuning.

## 8.15.1 Tuning the Servo Gains

### (1) Servo Gains



In order to manually tune the servo gains, you must understand the configuration and characteristic of the SER-VOPACK and adjust the servo gains individually. In most cases, if you greatly change any one parameter, you must adjust the other parameters again. To check the response characteristic, you must prepare a measuring instrument to monitor the output waveforms from the analog monitor.

The SERVOPACK has three feedback systems (the position loop, speed loop, and current loop), and the response characteristic must be increased more with the inner loops. If this relationship is not maintained, the response characteristic will suffer and vibration will occur more easily.

A sufficient response characteristic is ensured for the current loop. There is never a need for it to be adjusted by the user.

## (2) Outline

You can use manual tuning to set the servo gains in the SERVOPACK to increase the response characteristic of the SERVOPACK. For example, you can reduce the positioning time for position control.

Use manual tuning in the following cases.

- When tuning with autotuning without a host reference or autotuning with a host reference does not achieve the desired results
- When you want to increase the servo gains higher than the gains that resulted from autotuning without a host reference or autotuning with a host reference
- When you want to determine the servo gains and moment of inertia ratio yourself

You start manual tuning either from the default parameter settings or from the gain settings that resulted from autotuning without a host reference or autotuning with a host reference.

## (3) Applicable Tools

You can monitor the servo gains with the SigmaWin+ or with the analog monitor.

## (4) Precautions

Vibration may occur while you are tuning the servo gains. We recommend that you set Pn310 to  $n.\Box\Box\Box$ 2 (output an alarm (A.520) if vibration is detected). Refer to the following section for information on vibration detection.

6.11 Vibration Detection Level Initialization on page 261

Vibration alarms are not detected for all vibration. Also, an emergency stop method is necessary to stop the machine safely when an alarm occurs. You must provide an emergency stop device and activate it immediately whenever vibration occurs.

## (5) Tuning Procedure Example (for Position Control or Speed Control)

| Step | Description                                                                                                                                                                                    |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Adjust the setting of Pn401 (First Stage First Torque Reference Filter Time Constant) so that vibration does not occur.                                                                        |
| 2    | Increase the setting of Pn100 (Speed Loop Gain) and reduce the setting of Pn101 (Speed Loop Integral Time Constant) as far as possible within the range that does not cause machine vibration. |
| 3    | Repeat steps 1 and 2 and return the settings about 10% to 20% from the values that you set.                                                                                                    |
| 4    | For position control, increase the setting of Pn102 (Position Loop Gain) within the range that does not cause vibration.                                                                       |

#### Information

If you greatly change any one servo gain parameter, you must adjust the other parameters again. Do not increase the setting of just one parameter. As a guideline, adjust the settings of the servo gains by approximately 5% each. As a rule, change the servo parameters in the following order.

- To Increase the Response Speed
- 1. Reduce the torque reference filter time constant.
- Increase the speed loop gain.
- 3. Decrease the speed loop integral time constant.
- 4. Increase the position loop gain.
- To Reduce Response Speed and to Stop Vibration and Overshooting
- 1. Reduce the position loop gain.
- 2. Increase the speed loop integral time constant.
- 3. Decrease the speed loop gain.
- 4. Increase the torque filter time constant.

## (6) Adjusted Servo Gains

You can set the following gains to adjust the response characteristic of the SERVOPACK.

| Parameter<br>No. | Name                                                    | Reference                                         |
|------------------|---------------------------------------------------------|---------------------------------------------------|
| Pn100            | Speed Loop Gain                                         | (b) Speed Loop Gain on page 431                   |
| Pn101            | Speed Loop Integral Time Constant                       | (c) Speed Loop Integral Time Constant on page 431 |
| Pn102            | Position Loop Gain                                      | (a) Position Loop Gain on page 430                |
| Pn401            | First Stage First Torque Reference Filter Time Constant | (d) Torque Reference Filter on page 431           |

#### (a) Position Loop Gain

The position loop gain determines the response characteristic of the position loop in the SERVOPACK. If you can increase the setting of the position loop gain, the response characteristic will improve and the positioning time will be shortened. However, you normally cannot increase the position loop gain higher than the inherit vibration frequency of the machine system. Therefore, to increase the setting of the position loop gain, you must increase the rigidity of the machine to increase the inherit vibration frequency of the machine.

| Pn102<br>(2102h) | Position Loop Gain Speed |              |                 | Speed Pos Trq |
|------------------|--------------------------|--------------|-----------------|---------------|
|                  | Setting Range            | Setting Unit | Default Setting | When Enabled  |
| (210211)         | 10 to 20000              | 0.1/s        | 400             | Immediately   |

Information For machines for which Pn102 (Position Loop Gain) cannot be set to a high value, the A.d00 alarm (Position Deviation Overflow) may occur during high-speed operation. If that is the case, you can increase the setting of the following parameter to increase the level for alarm detection.

Use the following condition as a guideline for determining the setting.

$$Pn520 \ge \frac{\text{Maximum feed speed [reference units/s]}}{Pn102 \div 10 \text{ (1/s)}} \times 2.0$$

If you use a position reference filter, transient deviation will increase due to the filter time constant. When you make the setting, consider deviation accumulation that may result from the filter.

|                  | Position Deviation Overflow Alarm Level Speed Pos 1 |                  |                 | Speed Pos Trq |
|------------------|-----------------------------------------------------|------------------|-----------------|---------------|
| Pn520<br>(2520h) | Setting Range                                       | Setting Unit     | Default Setting | When Enabled  |
| (232011)         | 1 to 1073741823                                     | 1 reference unit | 6116694         | Immediately   |

#### (b) Speed Loop Gain

This parameter determines the response characteristic of the speed loop. If the response characteristic of the speed loop is low, it becomes a delay factor for the position loop located outside of the speed loop. This will result in overshooting and vibration in the speed reference. Therefore, setting the speed loop gain as high as possible within the range that will not cause the machine system to vibrate will produce a stable servo system with a good response characteristic.

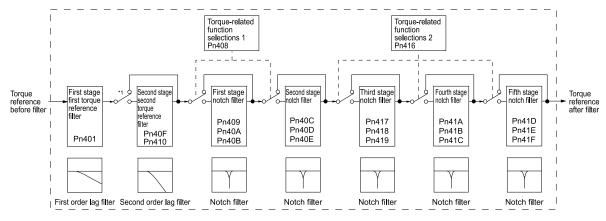
|               | Speed Loop Gain |              |                 | Speed Pos Trq |
|---------------|-----------------|--------------|-----------------|---------------|
| Pn100 (2100h) | Setting Range   | Setting Unit | Default Setting | When Enabled  |
| (210011)      | 10 to 20000     | 0.1 Hz       | 400             | Immediately   |

Setting of Pn103 = 
$$\frac{\text{Load moment of inertia at motor shaft (J_L)}}{\text{Servomotor moment of inertia (L_M)}} \times 100 (\%)$$

The default setting of Pn103 (Moment of Inertia Ratio) is 100. Before you tune the servo, calculate the moment of inertia ratio with the above formula and set Pn103 to the calculation result.

|                  | Moment of Inertia Ratio Speed Pos |              |                 | Speed Pos Trq |
|------------------|-----------------------------------|--------------|-----------------|---------------|
| Pn103<br>(2103h) | Setting Range                     | Setting Unit | Default Setting | When Enabled  |
| (210011)         | 0 to 65535                        | 1%           | 100             | Immediately   |

#### (c) Speed Loop Integral Time Constant


To enable response to even small inputs, the speed loop has an integral element. The integral element becomes a delay factor in the servo system. If the time constant is set too high, overshooting will occur, positioning settling time will increase, and the response characteristic will suffer.

|               | Speed Loop Integral Time Constant |              |                 | Speed Pos Trq |
|---------------|-----------------------------------|--------------|-----------------|---------------|
| Pn101 (2101h) | Setting Range                     | Setting Unit | Default Setting | When Enabled  |
| (210111)      | 15 to 51200                       | 0.01 ms      | 2000            | Immediately   |

#### (d) Torque Reference Filter

As shown in the following diagram, the torque reference filter contains a first order lag filter and notch filters arranged in series, and each filter operates independently.

The notch filters can be enabled and disabled with  $Pn408 = n.\Box X\Box X$  and  $Pn416 = n.\Box XXX$ .



<sup>\*1</sup> The second stage second torque reference filter is disabled when Pn40F is set to 5000 (default setting) and it is enabled when Pn40F is set to a value lower than 5000.

#### Torque Reference Filter

If you suspect that machine vibration is being caused by the servo drive, try adjusting the torque reference filter time constant. This may stop the vibration. The lower the value, the better the control response characteristic will be, but there may be a limit depending on the machine conditions.

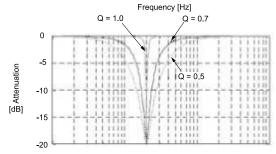
| Pn401<br>(2401h) | First Stage First Torque Reference Filter Time Constant            |                              |                 | Speed Pos Trq |
|------------------|--------------------------------------------------------------------|------------------------------|-----------------|---------------|
|                  | Setting Range                                                      | Setting Unit                 | Default Setting | When Enabled  |
|                  | 0 to 65535                                                         | 0.01 ms                      | 100             | Immediately   |
|                  | Second Stage Second Torqu                                          | e Reference Filter Frequency | ,               | Speed Pos Trq |
| Pn40F<br>(240Fh) | Setting Range                                                      | Setting Unit                 | Default Setting | When Enabled  |
|                  | 100 to 5000                                                        | 1 Hz                         | 5000            | Immediately   |
|                  | Second Stage Second Torque Reference Filter Q Value  Speed Pos Trq |                              |                 |               |
| Pn410<br>(2410h) | Setting Range                                                      | Setting Unit                 | Default Setting | When Enabled  |
|                  | 50 to 100                                                          | 0.01                         | 50              | Immediately   |

#### Note:

The filter is disabled if you set Pn40F to 5000.

#### Notch Filters

The notch filter can eliminate specific frequency elements generated by the vibration of sources such as resonance of the shaft of a ball screw.


The notch filter puts a notch in the gain curve at the specific vibration frequency (called the notch frequency). The frequency components near the notch frequency can be reduced or removed with a notch filter.

Notch filters are set with three parameters for the notch filter frequency, notch filter Q value, and notch filter depth. This section describes the notch filter Q value and notch filter depth.

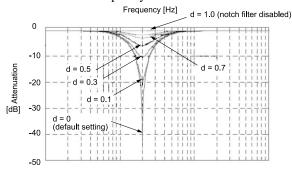
#### ◆ Notch filter Q Value

The setting of the notch filter Q value determines the width of the frequencies that are filtered for the notch filter frequency. The width of frequencies (width of the notch) changes with the notch filter Q value. The larger the notch filter Q value is, the narrower the width of frequencies that are filtered is (the steeper the notch is).

The notch filter frequency characteristics for different notch filter Q values are shown below.



#### Note:


The above notch filter frequency characteristics are based on calculated values and may be different from actual characteristics.

#### ◆ Notch Filter Depth

The setting of the notch filter depth determines the depth of the frequencies that are filtered for the notch filter frequency. The depth of the notch changes with the notch filter depth. The smaller the notch filter depth is, the deeper the notch is, increasing the effect of vibration suppression. However, if the value is too small, vibration can actually increase.

The notch filter is disabled if the notch filter depth, d, is set to 1.0 (i.e., if Pn419 is set to 1000).

The notch filter frequency characteristics for different notch filter depths are shown below.



#### Note:

The above notch filter frequency characteristics are based on calculated values and may be different from actual characteristics.

You can enable or disable the notch filter with Pn408 and Pn416.

|                  |        | Notch Fil     | ter Selection 1 Speed Pos Trq      | When Enabled |
|------------------|--------|---------------|------------------------------------|--------------|
| Pn408<br>(2408h) | n.□□□X | 0<br>Default  | Disable first stage notch filter.  | Immediately  |
|                  |        | 1             | Enable first stage notch filter.   | J            |
|                  |        | Notch Fil     | ter Selection 2 Speed Pos Trq      | When Enabled |
| Pn408<br>(2408h) | n.□X□□ | ()<br>Default | Disable second stage notch filter. | Immediately  |
|                  |        | 1             | Enable second stage notch filter.  | ,            |
|                  |        | Notch Fil     | ter Selection 3 Speed Pos Trq      | When Enabled |
| Pn416<br>(2416h) | n.□□□X | 0<br>Default  | Disable third stage notch filter.  | Immediately  |
|                  |        | 1             | Enable third stage notch filter.   | ,            |
|                  |        | Notch Fil     | ter Selection 4 Speed Pos Trq      | When Enabled |
| Pn416<br>(2416h) | n.□□X□ | 0<br>Default  | Disable fourth stage notch filter. | Immediately  |
|                  |        | 1             | Enable fourth stage notch filter.  | •            |
|                  |        | Notch Fil     | ter Selection 5 Speed Pos Trq      | When Enabled |
| Pn416<br>(2416h) | n.□X□□ | 0<br>Default  | Disable fifth stage notch filter.  | Immediately  |
|                  |        | 1             | Enable fifth stage notch filter.   | •            |

Set the machine vibration frequencies in the notch filter parameters.

| 0 to 1000   0.001   0   Immediately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | First Stage Notch Filter Freq | uency        |                 | Speed Pos Trq |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------|--------------|-----------------|---------------|
| First Stage Notch Filter Q Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | Setting Range                 | Setting Unit | Default Setting | When Enabled  |
| Principal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (240311)         | 10 to 5000                    | 1 Hz         | 5000            | Immediately   |
| Second Stage Notch Filter Depth   Second Stage Notch Filter Ovalue   Second Stage Notch Filter Ovalue   Second Stage Notch Filter Depth   Second Stage Notch Filter Prequency   Second Stage Notch Filter Depth   Seco   |                  | First Stage Notch Filter Q Va | lue          |                 | Speed Pos Trq |
| First Stage Notch Filter Depth   Seed   Fost   Fo   |                  | Setting Range                 | Setting Unit | Default Setting | When Enabled  |
| Photo   Phot   | (240/41)         | 50 to 1000                    | 0.01         | 70              | Immediately   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | First Stage Notch Filter Dept | h            |                 | Speed Pos Trq |
| Second Stage Notch Filter Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                | Setting Range                 | Setting Unit | Default Setting | When Enabled  |
| Principle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (Z40DII)         | 0 to 1000                     | 0.001        | 0               | Immediately   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Second Stage Notch Filter F   | requency     |                 | Speed Pos Trq |
| Second Stage Notch Filter Q Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | Setting Range                 | Setting Unit | Default Setting | When Enabled  |
| Setting Range   Setting Unit   Default Setting   When Enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (240011)         | 10 to 5000                    | 1 Hz         | 5000            | Immediately   |
| Setting Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | Second Stage Notch Filter Q   | Value        |                 | Speed Pos Trq |
| Second Stage Notch Filter Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Setting Range                 | Setting Unit | Default Setting | When Enabled  |
| Priduce (240Eh)  Setting Range   Setting Unit   Default Setting   When Enabled    1 to 1000   0.001   0   Immediately    Third Stage Notch Filter Frequency   Speed   Pos   Trq    Setting Range   Setting Unit   Default Setting   When Enabled    10 to 5000   1 Hz   5000   Immediately    Third Stage Notch Filter Q Value   Speed   Pos   Trq    Priduce   Setting Range   Setting Unit   Default Setting   When Enabled    So to 1000   0.01   70   Immediately    Third Stage Notch Filter Depth   Speed   Pos   Trq    Priduce   Setting Range   Setting Unit   Default Setting   When Enabled    Third Stage Notch Filter Depth   Speed   Pos   Trq    Priduce   Setting Range   Setting Unit   Default Setting   When Enabled    Fourth Stage Notch Filter Frequency   Speed   Pos   Trq    Priduce   Setting Range   Setting Unit   Default Setting   When Enabled    Fourth Stage Notch Filter Q Value   Speed   Pos   Trq    Priduce   Setting Range   Setting Unit   Default Setting   When Enabled    Fourth Stage Notch Filter Depth   Speed   Pos   Trq    Priduce   Setting Range   Setting Unit   Default Setting   When Enabled    Fourth Stage Notch Filter Depth   Speed   Pos   Trq    Fourth Stage Notch Filter Depth   Speed   Pos   Trq    Fourth Stage Notch Filter Prequency   Speed   Pos   Trq    Fourth Stage Notch Filter Frequency   Speed   Pos   Trq    Fifth Stage Notch Filter Frequency   Speed   Pos   Trq    Fifth Stage Notch Filter Q Value   Speed   Pos   Trq    Fifth Stage Notch Filter Q Value   Speed   Pos   Trq    Fifth Stage Notch Filter Q Value   Speed   Pos   Trq    Fifth Stage Notch Filter Q Value   Speed   Pos   Trq    Fifth Stage Notch Filter Q Value   Speed   Pos   Trq    Fifth Stage Notch Filter Q Value   Speed   Pos   Trq    Fifth Stage Notch Filter Q Value   Speed   Pos   Trq    Fifth Stage Notch Fil | (240511)         | 50 to 1000                    | 0.01         | 70              | Immediately   |
| 240Eh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | Second Stage Notch Filter D   | epth         |                 | Speed Pos Trq |
| Third Stage Notch Filter Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | Setting Range                 | Setting Unit | Default Setting | When Enabled  |
| Pn417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Z40LII)         | 0 to 1000                     | 0.001        | 0               | Immediately   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Third Stage Notch Filter Fred | quency       |                 | Speed Pos Trq |
| Third Stage Notch Filter Q Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | Setting Range                 | Setting Unit | Default Setting | When Enabled  |
| Pn418 (2418h)   Setting Range   Setting Unit   Default Setting   When Enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (211111)         | 10 to 5000                    | 1 Hz         | 5000            | Immediately   |
| Setting Range   Setting Unit   Default Setting   When Enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | Third Stage Notch Filter Q Va | alue         |                 | Speed Pos Trq |
| Third Stage Notch Filter Depth   Speed   Pos   Trq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | Setting Range                 | Setting Unit | Default Setting | When Enabled  |
| Pn419 (2419h)  Setting Range Setting Unit Default Setting When Enabled  0 to 1000 0.001 0 Immediately  Fourth Stage Notch Filter Frequency Speed Pos Trq  Setting Range Setting Unit Default Setting When Enabled  10 to 5000 1 Hz 5000 Immediately  Fourth Stage Notch Filter Q Value Speed Pos Trq  Pn41B (2418h)  Fourth Stage Notch Filter Q Value Speed Pos Trq  Setting Range Setting Unit Default Setting When Enabled  50 to 1000 0.01 70 Immediately  Fourth Stage Notch Filter Depth Speed Pos Trq  Pn41C (241Ch)  Fifth Stage Notch Filter Frequency Speed Pos Trq  Fifth Stage Notch Filter Frequency Speed Pos Trq  Fifth Stage Notch Filter Frequency Speed Pos Trq  Pn41D Setting Range Setting Unit Default Setting When Enabled  10 to 5000 1 Hz 5000 Immediately  Fifth Stage Notch Filter Frequency Speed Pos Trq  Fifth Stage Notch Filter Q Value Speed Pos Trq  Fifth Stage Notch Filter Q Value Speed Pos Trq  Fifth Stage Notch Filter Q Value Speed Pos Trq  Fifth Stage Notch Filter Q Value Speed Pos Trq  Fifth Stage Notch Filter Q Value Speed Pos Trq  Fifth Stage Notch Filter Q Value Speed Pos Trq  Fifth Stage Notch Filter Q Value Speed Pos Trq  Fifth Stage Notch Filter Q Value Speed Pos Trq  Fifth Stage Notch Filter Q Value Speed Pos Trq  Fifth Stage Notch Filter Q Value Speed Pos Trq  Fifth Stage Notch Filter Q Value Speed Pos Trq  Fifth Stage Notch Filter Q Value Speed Pos Trq  Fifth Stage Notch Filter Q Value Speed Pos Trq  Fifth Stage Notch Filter Q Value Speed Pos Trq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (= : : : : )     | 50 to 1000                    | 0.01         | 70              | Immediately   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Third Stage Notch Filter Dep  | th           |                 | Speed Pos Trq |
| Pn41A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                | Setting Range                 | Setting Unit | Default Setting | When Enabled  |
| Pn41A (241Ah)  Setting Range Setting Unit Default Setting When Enabled  10 to 5000 1 Hz 5000 Immediately  Fourth Stage Notch Filter Q Value Speed Pos Trq  Pn41B (241Bh)  Setting Range Setting Unit Default Setting When Enabled  50 to 1000 0.01 70 Immediately  Fourth Stage Notch Filter Depth Speed Pos Trq  Pn41C (241Ch)  Setting Range Setting Unit Default Setting When Enabled  0 to 1000 0.001 0 Immediately  Fifth Stage Notch Filter Frequency  Pn41D (241Dh)  Fifth Stage Notch Filter Frequency  Speed Pos Trq  Fifth Stage Notch Filter Frequency  Fifth Stage Notch Filter Frequency  Fifth Stage Notch Filter Q Value  Fifth Stage Notch Filter Q Value  Speed Pos Trq  Fifth Stage Notch Filter Q Value  Speed Pos Trq  Fifth Stage Notch Filter Q Value  Speed Pos Trq  When Enabled  Fifth Stage Notch Filter Q Value  Speed Pos Trq  When Enabled  Pn41E (241Eh)  Fifth Stage Notch Filter Q Value  Speed Pos Trq  When Enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (= : : : : )     | 0 to 1000                     | 0.001        | 0               | Immediately   |
| Setting Nating   Setting Unit   Default Setting   When Enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | Fourth Stage Notch Filter Fre | equency      |                 | Speed Pos Trq |
| 10 to 5000   1 Hz   5000   Immediately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | Setting Range                 | Setting Unit | Default Setting | When Enabled  |
| Pn41B (241Bh)  Setting Range Setting Unit Default Setting When Enabled  To to 1000  Default Setting  Fourth Stage Notch Filter Depth  Speed Fos Trq  Pn41C (241Ch)  Pn41D (241Dh)  Fifth Stage Notch Filter Frequency  Pn41D (241Dh)  Fifth Stage Notch Filter Frequency  Speed Fos Trq  Pn41D (241Dh)  Fifth Stage Notch Filter Frequency  Fifth Stage Notch Filter Frequency  Fifth Stage Notch Filter Frequency  Fifth Stage Notch Filter Q Value  Fifth Stage Notch Filter Q Value  Speed Fos Trq  Pn41E (241Eh)  Fifth Stage Notch Filter Q Value  Speed Fos Trq  Pn41E (241Eh)  Fifth Stage Notch Filter Q Value  Speed Fos Trq  Pn41E (241Eh)  Default Setting When Enabled  When Enabled  Speed Fos Trq  Pn41E (241Eh)  Fifth Stage Notch Filter Q Value  Speed Fos Trq  Pn41E (241Eh)  Default Setting When Enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (= : :: :: )     | 10 to 5000                    | 1 Hz         | 5000            | Immediately   |
| Setting Range   Setting Onit   Default Setting   When Enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | Fourth Stage Notch Filter Q   | Value        |                 | Speed Pos Trq |
| Fourth Stage Notch Filter Depth  Pn41C (241Ch)  Setting Range  Setting Unit  Default Setting  When Enabled  Trq  Pn41D (241Dh)  Fifth Stage Notch Filter Frequency  Speed  Pos  Trq  Pn41D (241Dh)  Fifth Stage Notch Filter Frequency  Speed  Fifth Stage Notch Filter Frequency  Speed  Fifth Stage Notch Filter Frequency  Speed  Fifth Stage Notch Filter Frequency  Fifth Stage Notch Filter Q Value  Fifth Stage Notch Filter Q Value  Speed  Fos  Trq  Pn41E (241Eh)  Speed  Fos  Trq  Pos  Trq  Pos  Fifth Stage Notch Filter Q Value  Speed  Fos  Trq  Pos  Trq  Pos  Pos  Trq  Pos  Fifth Stage Notch Filter Q Value  Speed  Fos  Trq  Pos  Pos  Trq  Pos  Pos  Trq  Pos  Pos  Pos  Trq  Pos  Pos  Pos  Pos  Trq  Pos  Pos  Pos  Pos  Pos  Pos  Pos  Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | Setting Range                 | Setting Unit | Default Setting | When Enabled  |
| Pn41C (241Ch)  Setting Range  Setting Unit  Default Setting  When Enabled  Immediately  Fifth Stage Notch Filter Frequency  Speed  Pos Trq  Pn41D (241Dh)  Setting Range  Setting Unit  Default Setting  When Enabled  When Enabled  Trq  Pn41E (241Eh)  Setting Range  Setting Unit  Default Setting  When Enabled  When Enabled  Pos Trq  Pn41E (241Eh)  Speed  Pos Trq  Pn41E (241Eh)  Default Setting  When Enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (= : : = : : )   | 50 to 1000                    | 0.01         | 70              | Immediately   |
| (241Ch)  Setting Range  O to 1000  O to 1000  Fifth Stage Notch Filter Frequency  Pn41D (241Dh)  Setting Range  Setting Unit  Default Setting  When Enabled  Inmediately  When Enabled  Inmediately  Fifth Stage Notch Filter Q Value  Fifth Stage Notch Filter Q Value  Speed  Pos Trq  Pn41E (241Eh)  Setting Range  Setting Unit  Default Setting  When Enabled  When Enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | Fourth Stage Notch Filter De  | pth          |                 | Speed Pos Trq |
| 0 to 1000   0.001   0   Immediately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pn41C<br>(241Ch) | Setting Range                 | Setting Unit | Default Setting | When Enabled  |
| Pn41D (241Dh)  Setting Range Setting Unit Default Setting When Enabled  10 to 5000 1 Hz 5000 Immediately  Fifth Stage Notch Filter Q Value Speed Pos Trq  Pn41E (241Eh)  Setting Range Setting Unit Default Setting When Enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | 0 to 1000                     | 0.001        | 0               | Immediately   |
| (241Dh)  10 to 5000  1 Hz  5000  1 Hz  5000  Immediately  Fifth Stage Notch Filter Q Value  Pn41E (241Eh)  Setting Range  Setting Unit  Default Setting  When Enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pn41D<br>(241Dh) | Fifth Stage Notch Filter Freq | uency        |                 | Speed Pos Trq |
| 10 to 5000   1 Hz   5000   Immediately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | Setting Range                 | Setting Unit | Default Setting | When Enabled  |
| Pn41E (241Eh) Setting Range Setting Unit Default Setting When Enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | 10 to 5000                    | 1 Hz         | 5000            | Immediately   |
| (241Eh) Setting Kange Setting Onit Default Setting When Enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Fifth Stage Notch Filter Q Va | lue          |                 | Speed Pos Trq |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Setting Range                 | Setting Unit | Default Setting | When Enabled  |
| 50 to 1000 0.01 /0 Immediately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,                | 50 to 1000                    | 0.01         | 70              | Immediately   |

| Pn41F            | Fifth Stage Notch Filter Dept | Speed Pos Trq |                 |              |
|------------------|-------------------------------|---------------|-----------------|--------------|
| Pn41F<br>(241Fh) | Setting Range                 | Setting Unit  | Default Setting | When Enabled |
| (241111)         | 0 to 1000                     | 0.001         | 0               | Immediately  |



- Do not set Pn409, Pn40C, Pn417, Pn41A, and Pn41D (notch filter frequencies) that are close to the speed loop's response frequency. Set a frequency that is at least four times the setting of Pn100 (Speed Loop Gain). (However, Pn103 (Moment of Inertia Ratio) must be set correctly.) If the setting is not correct, vibration may occur and the machine may be damaged.
- Change the settings of Pn409, Pn407, Pn417, Pn41A, and Pn41D (notch filter frequencies) only while the servomotor is stopped. Vibration may occur if a notch filter frequency is changed during operation.

#### (7) Guidelines for Manually Tuning Servo Gains

When you manually adjust the parameters, make sure that you completely understand the information in the product manual and use the following conditional expressions as guidelines. The appropriate values of the parameter settings are influenced by the machine specifications, so they cannot be determined universally. When you adjust the parameters, actually operate the machine and use the SigmaWin+ or analog monitor to monitor operating conditions. Even if the status is stable while the motor is stopped, an unstable condition may occur when an operation reference is input. Therefore, input operation references and adjust the servo gains as you operate the servomotor.

| Adjustment Value for<br>Manual Tuning | Description Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Stable Value                          | Settings that provide a good balance between parameters.  However, if the load moment of inertia is large and the machine system contains elements prone to vibration, you must sometimes use a setting that is somewhat higher to prevent the machine from vibrating.                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Critical Value                        | Settings for which the parameters affect each other  Depending on the machine conditions, overshooting and vibration may occur and operation may not be stable. If the critical gain condition expressions are not met, operation will become more unstable, and there is a risk of abnormal motor shaft vibration and round-trip operation with a large amplitude. Always stay within the critical gain conditions.  If you use the torque reference filter, second torque reference filter, and notch filters together, the interference between the filters and the speed loop gain will be superimposed. Allow leeway in the adjustments. |  |  |



The following adjusted value guidelines require that the setting of Pn103 (Moment of Inertia Ratio) is correctly set for the actual machine.



#### P control :

Proportional control.

Term

#### PI control:

Proportional - integral control.

#### I-P control:

Proportional - integral control in which the proportional operation works for the controlled variable only and the integral operation works for the control deviation only.

Information

Selecting the Speed Loop Control Method (PI Control or I-P Control)

Usually, I-P control is effective for high-speed positioning and high-speed, high-precision processing applications. With I-P control, you can use a lower position loop gain than for PI control to reduce the positioning time and reduce are radius reduction. However, if you can use mode switching to change to proportional control to achieve the desired application, then using PI control would be the normal choice.

#### (a) When Pn10B = n.□□0□ (PI Control)

Guidelines are given below for gain 1.

The same guidelines apply to gain 2 (Pn104, Pn105, Pn106, and Pn412).

- Pn100 (Speed Loop Gain) [Hz] and Pn102 (Position Loop Gain) [/s] Stable gain: Pn102 [/s]  $\leq 2\pi \times \text{Pn}100/4$  [Hz] Critical gain: Pn102 [/s]  $\leq 2\pi \times \text{Pn}100$  [Hz]
- Pn100 (Speed Loop Gain) [Hz] and Pn101 (Speed Loop Integral Time Constant) [ms] Stable gain: Pn101 [ms]  $\geq$  4000/( $2\pi \times$  Pn100 [Hz]) Critical gain: Pn101 [ms]  $\geq$  1000/( $2\pi \times$  Pn100 [Hz])
- Pn100 (Speed Loop Gain) [Hz] and Pn401 (First Stage First Torque Reference Filter Time Constant) [ms] Stable gain: Pn401 [ms]  $\leq 1000/(2\pi \times \text{Pn}100 \text{ [Hz]} \times 4)$  Critical gain: Pn401 [ms]  $\leq 1000/(2\pi \times \text{Pn}100 \text{ [Hz]} \times 1)$
- Pn100 (Speed Loop Gain) [Hz] and Pn40F (Second Stage Second Torque Reference Filter Frequency) [Hz]
   Critical gain: Pn40F [Hz] > 4 × Pn100 [Hz]

#### Note:

Set Pn410 (Second Stage Second Torque Reference Filter Q Value) to 0.70.

- Pn100 (Speed Loop Gain) [Hz] and Pn409 (First Stage Notch Filter Frequency) [Hz] (or Pn40C (Second Stage Notch Filter Frequency) [Hz])
   Critical gain: Pn409 [Hz] > 4 × Pn100 [Hz]
- Pn100 (Speed Loop Gain) [Hz] and Pn308 (Speed Feedback Filter Time Constant) [ms] Stable gain: Pn308 [ms]  $\leq 1000/(2\pi \times \text{Pn}100 \text{ [Hz]} \times 4)$  Critical gain: Pn308 [ms]  $\leq 1000/(2\pi \times \text{Pn}100 \text{ [Hz]} \times 1)$

#### (b) When Pn10B = n.□□1□ (I-P Control)

Guidelines are given below for gain 1.

The same guidelines apply to gain 2 (Pn104, Pn105, Pn106, and Pn412).

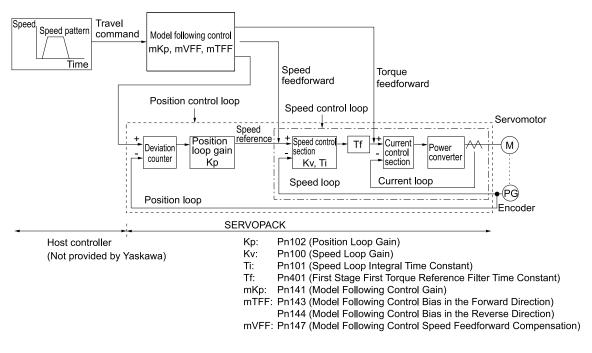
For I-P control, the relationships between the speed loop integral time constant, speed loop gain, and position loop gain are different from the relationships for PI control. The relationship between other servo gains is the same as for PI control.

- Pn102 (Position Loop Gain) [/s] and Pn101 (Speed Loop Integral Time Constant) [ms]
   Stable gain: Pn102 [/s] ≤ 320/Pn101 [ms]

#### (c) Decimal Points in Parameter Settings

For the SERVOPACKs, decimal places are given for the settings of parameters on the digital operator, panel operator, and in the manual. For example with Pn100 (Speed Loop Gain), Pn100 = 40.0 is used to indicate a setting of 40.0 Hz. In the following adjusted value guidelines, the decimal places are also given.

```
Information Pn100 (Speed Loop Gain) [Hz] and Pn101 (Speed Loop Integral Time Constant) [ms] Stable gain: Pn101 [ms] \geq 4000/(2\pi \times \text{Pn}100 \text{ [Hz]}) If Pn100 = 40.0 [Hz], then Pn101 = 4000/(2\pi \times 40.0) \approx 15.92 \text{ [ms]}.
```


### (8) Model Following Control

You can use model following control to improve response characteristic and shorten positioning time. You can use model following control only with position control.

Normally, the parameters that are used for model following control are automatically set along with the servo gains by executing autotuning or custom tuning. However, you must adjust them manually in the following cases.

- When the tuning results for autotuning or custom tuning are not acceptable
- When you want to increase the response characteristic higher than that achieved by the tuning results for autotuning or custom tuning
- · When you want to determine the servo gains and model following control parameters yourself

The block diagram for model following control is provided below.



#### (a) Manual Tuning Procedure

Use the following tuning procedure for using model following control.

| Step | Description                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Friction compensation must also be used. Set the friction compensation parameters. Refer to the following section for the setting procedure.  8.14.2 Friction Compensation on page 418                                                                                                                                                                                                                                         |
| 2    | Adjust the servo gains. Refer to the following section for an example procedure.  (5) Tuning Procedure Example (for Position Control or Speed Control) on page 430  Note:  1. Set Pn103 (Moment of Inertia Ratio) as accurately as possible.  2. Refer to the guidelines for manually tuning the servo gains and set a stable value to Pn102 (Position Loop Gain).  (7) Guidelines for Manually Tuning Servo Gains on page 435 |
| 3    | Increase the setting of Pn141 (Model Following Control Gain) as much as possible within the range in which overshooting and vibration do not occur.                                                                                                                                                                                                                                                                            |
| 4    | If overshooting occurs or if the response is different for forward and reverse operation, fine-tune model following control with the following settings: Pn143 (Model Following Control Bias in the Forward Direction), Pn144 (Model Following Control Bias in the Reverse Direction), and Pn147 (Model Following Control Speed Feedforward Compensation).                                                                     |

#### (b) Related Parameters

Next we will describe the following parameters that are used for model following control.

- Pn140 (Model Following Control-Related Selections)
- Pn141 (Model Following Control Gain)
- Pn143 (Model Following Control Bias in the Forward Direction)
- Pn144 (Model Following Control Bias in the Reverse Direction)
- Pn147 (Model Following Control Speed Feedforward Compensation)

#### **♦** Model Following Control-Related Selections

Set  $Pn140 = n. \square \square \square X$  to specify whether to use model following control.

If you use model following control with vibration suppression, set Pn140 to  $n.\Box\Box1\Box$  or  $Pn140 = n.\Box\Box2\Box$ . When you also perform vibration suppression, adjust vibration suppression with custom tuning in advance.

#### Note:

If you set Pn140 to n.□□□□ or n.□□□□ (use vibration suppression), always set Pn140 to n.□□□□ (use model following control).

|                         |        |              | Illowing Control Selection Speed Pos Trq                    | When Enabled |
|-------------------------|--------|--------------|-------------------------------------------------------------|--------------|
| Pn140<br>(2140h) n.□□□X |        | 0<br>Default | Do not use model following control.                         | Immediately  |
|                         |        | 1            | Use model following control.                                | -            |
|                         |        | Vibration    | Suppression Selection Speed Pos Trq                         | When Enabled |
|                         | n.□□X□ | 0<br>Default | Do not perform vibration suppression.                       |              |
| (2140h)                 |        | 1            | Perform vibration suppression for a specific frequency.     | Immediately  |
|                         |        | 2            | Perform vibration suppression for two specific frequencies. |              |

#### ♦ Model Following Control Gain

The model following control gain determines the response characteristic of the servo system. If you increase the setting of the model following control gain, the response characteristic will improve and the positioning time will be shortened. The response characteristic of the servo system is determined by this parameter, and not by Pn102 (Position Loop Gain).

|                  | Model Following Control Gain |              |                 |              |  |
|------------------|------------------------------|--------------|-----------------|--------------|--|
| Pn141<br>(2141h) | Setting Range                | Setting Unit | Default Setting | When Enabled |  |
| (= : : : : : )   | 10 to 20000                  | 0.1/s        | 500             | Immediately  |  |

Information

For machines for which a high model following control gain cannot be set, the size of the position deviation in model following control will be determined by the setting of the model following control gain. For a machine with low rigidity, in which a high model following control gain cannot be set, position deviation overflow alarms may occur during high-speed operation. If that is the case, you can increase the setting of the following parameter to increase the level for alarm detection.

Use the following conditional expression for reference in determining the setting.

$$Pn520 \geq \frac{Maximum \ feed \ speed \ [reference \ units/s]}{Pn141/10 \ [1/s]} \ \times \ 2.0$$

|                  | Position Deviation Over | Speed Pos Trq    |                 |              |
|------------------|-------------------------|------------------|-----------------|--------------|
| Pn520<br>(2520h) | Setting Range           | Setting Unit     | Default Setting | When Enabled |
| (202011)         | 1 to 1073741823         | 1 reference unit | 6116694         | Immediately  |

#### Model Following Control Bias in the Forward Direction and Model Following Control Bias in the Reverse Direction

If the response is different for forward and reverse operation, use the following parameters for fine-tuning. If you decrease the settings, the response characteristic will be lowered but overshooting will be less likely to occur.

| Pn143<br>(2143h) | Model Following Control Bias                          | Speed Pos Trq |                 |              |  |
|------------------|-------------------------------------------------------|---------------|-----------------|--------------|--|
|                  | Setting Range                                         | Setting Unit  | Default Setting | When Enabled |  |
| (= 1 1311)       | 0 to 10000                                            | 0.1%          | 1000            | Immediately  |  |
|                  | Model Following Control Bias in the Reverse Direction |               |                 |              |  |
| Pn144<br>(2144h) | Setting Range                                         | Setting Unit  | Default Setting | When Enabled |  |
|                  | 0 to 10000                                            | 0.1%          | 1000            | Immediately  |  |

#### Model Following Control Speed Feedforward Compensation

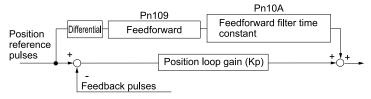
If overshooting occurs even after you adjust the model following control gain, model following control bias in the forward direction, and model following control bias in the reverse direction, you may be able to improve performance by setting the following parameter.

If you decrease the settings, the response characteristic will be lowered but overshooting will be less likely to occur.

|                  | Model Following Control Spe | Speed Pos Trq |                 |              |
|------------------|-----------------------------|---------------|-----------------|--------------|
| Pn147<br>(2147h) | Setting Range               | Setting Unit  | Default Setting | When Enabled |
| (214711)         | 0 to 10000                  | 0.1%          | 1000            | Immediately  |

#### ◆ Model Following Control Type Selection

When you enable model following control, you can select the model following control type. Normally, set Pn14F to  $n.\Box\Box\Box$ 0 (use overshoot control type for model following control.model) (default setting). To further increase responsiveness, set Pn14F to  $n.\Box\Box\Box$ 1 (response emphasis type for model following control).


|                  |        | Model Fo     | llowing Control Type Selection Speed Pos                |  | When Enabled  |
|------------------|--------|--------------|---------------------------------------------------------|--|---------------|
| Pn14F<br>(214Fh) | n.□□□X | 0<br>Default | Use overshoot control type for model following control. |  | After restart |
|                  |        | 1            | Use response emphasis type for model following control. |  |               |

### 8.15.2 Compatible Adjustment Functions

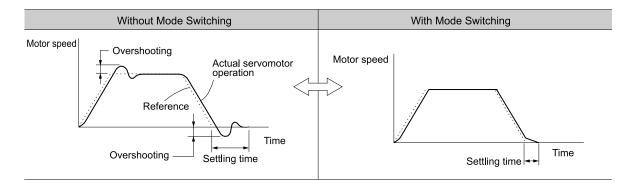
The compatible adjustment functions are used together with manual tuning. You can use these functions to improve adjustment results. These functions allow you to use the same functions as for  $\Sigma$ -III-series SERVO-PACKs to adjust  $\Sigma$ -X-series SERVOPACKs.

#### (1) Feedforward

The feedforward function applies feedforward compensation to position control to shorten the positioning time.



|                  | Feedforward                 |               |                 | Speed Pos Trq |
|------------------|-----------------------------|---------------|-----------------|---------------|
| Pn109<br>(2109h) | Setting Range               | Setting Unit  | Default Setting | When Enabled  |
| (=:55)           | 0 to 100                    | 1%            | 0               | Immediately   |
|                  | Feedforward Filter Time Con | Speed Pos Trq |                 |               |
| Pn10A<br>(210Ah) | Setting Range               | Setting Unit  | Default Setting | When Enabled  |
| (= : 37 (11)     | 0 to 6400                   | 0.01 ms       | 0               | Immediately   |


#### Note:

If you set the feedforward value too high, the machine may vibrate. As a guideline, use a setting of 80% or less.

### (2) Mode Switching (Changing between P and PI Control)

You can use mode switching to automatically change between P control and PI control.

Overshooting caused by acceleration and deceleration can be suppressed and the settling time can be reduced by setting the switching condition and switching levels.



### (a) Related Parameters

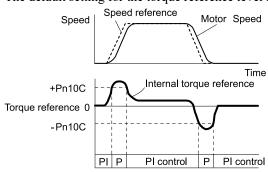
Select the switching condition for mode switching with  $Pn10B = n.\Box\Box\Box X$ .

| Parameter        |                          | Mode Switching Selection                            | Parameter That Sets the<br>Level |                      | When Enabled    |
|------------------|--------------------------|-----------------------------------------------------|----------------------------------|----------------------|-----------------|
|                  |                          |                                                     | Rotary<br>Servomotor             | Linear<br>Servomotor | Wileli Eliableu |
|                  | n.□□□0 (default setting) | Use the internal torque reference as the condition. | Pn10C                            | (210Ch)              | Immediately     |
| Pn10B<br>(210Bh) | n.0001                   | Use the speed reference as the condition.           | Pn10D<br>(210Dh)                 | Pn181 (2181h)        |                 |
|                  | n.0002                   | Use the acceleration as the condition.              | Pn10E<br>(210Eh)                 | Pn182 (2182h)        |                 |
|                  | n.□□□3                   | Use the position deviation as the condition.        | Pn10F                            | (210Fh)              |                 |
|                  | n.004                    | Do not use mode switching.                          | -                                | _                    |                 |

#### **♦** Parameters That Set the Switching Levels

• Rotary Servomotors

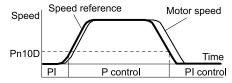
|                  | Mode Switching Level for Torque Reference   |                        |                 | Speed Pos Trq |
|------------------|---------------------------------------------|------------------------|-----------------|---------------|
| Pn10C<br>(210Ch) | Setting Range                               | Setting Unit           | Default Setting | When Enabled  |
| (210011)         | 0 to 800                                    | 1%                     | 200             | Immediately   |
|                  | Mode Switching Level for Sp                 | peed Reference         |                 | Speed Pos Trq |
| Pn10D<br>(210Dh) | Setting Range                               | Setting Unit           | Default Setting | When Enabled  |
| (= : - : : )     | 0 to 10000                                  | 1 min <sup>-1</sup>    | 0               | Immediately   |
|                  | Mode Switching Level for Acceleration Speed |                        |                 | Speed Pos Trq |
| Pn10E<br>(210Eh) | Setting Range                               | Setting Unit           | Default Setting | When Enabled  |
| (210211)         | 0 to 30000                                  | 1 min <sup>-1</sup> /s | 0               | Immediately   |
|                  | Mode Switching Level for Po                 | osition Deviation      |                 | Speed Pos Trq |
| Pn10F<br>(210Fh) | Setting Range                               | Setting Unit           | Default Setting | When Enabled  |
|                  | 0 to 10000                                  | 1 reference unit       | 0               | Immediately   |


#### • Linear Servomotors

|                  | Mode Switching Level for To           | rque Reference      |                 | Speed Pos Trq |
|------------------|---------------------------------------|---------------------|-----------------|---------------|
| Pn10C<br>(210Ch) | Setting Range                         | Setting Unit        | Default Setting | When Enabled  |
| (=:00)           | 0 to 800                              | 1%                  | 200             | Immediately   |
|                  | Mode Switching Level for Sp           | peed Reference      |                 | Speed Pos Trq |
| Pn181 (2181h)    | Setting Range                         | Setting Unit        | Default Setting | When Enabled  |
| (210111)         | 0 to 10000                            | 1 mm/s              | 0               | Immediately   |
|                  | Mode Switching Level for Acceleration |                     |                 | Speed Pos Trq |
| Pn182<br>(2182h) | Setting Range                         | Setting Unit        | Default Setting | When Enabled  |
| (= : = : :)      | 0 to 30000                            | 1 mm/s <sup>2</sup> | 0               | Immediately   |
|                  | Mode Switching Level for Po           | osition Deviation   |                 | Speed Pos Trq |
| Pn10F<br>(210Fh) | Setting Range                         | Setting Unit        | Default Setting | When Enabled  |
|                  | 0 to 10000                            | 1 reference unit    | 0               | Immediately   |

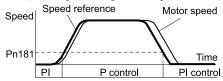
#### Using the Internal Torque Reference as the Mode Switching Condition (Default Setting)

When the internal torque reference equals or exceeds the torque set for Pn10C (Mode Switching Level for Torque Reference), the speed loop is changed to P control.


The default setting for the torque reference level is 200%.



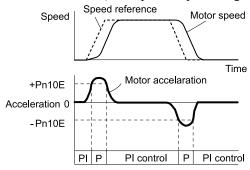
#### Using the Speed Reference as the Mode Switching Condition


#### · Rotary Servomotors

When the speed reference equals or exceeds the speed set for Pn10D (Mode Switching Level for Speed Reference), the speed loop is changed to P control.

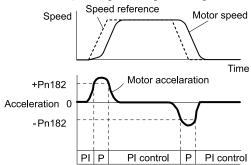


#### Linear Servomotors


When the speed reference equals or exceeds the speed set for Pn181 (Mode Switching Level for Speed Reference), the speed loop is changed to P control.



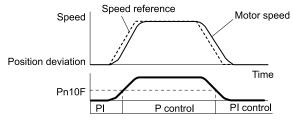
#### ♦ Using the Acceleration as the Mode Switching Condition


#### Rotary Servomotors

When the speed reference equals or exceeds the acceleration rate set for Pn10E (Mode Switching Level for Position Deviation), the speed loop is changed to P control.



#### • Linear Servomotors


When the speed reference equals or exceeds the acceleration rate set for Pn182 (Mode Switching Level for Acceleration), the speed loop is changed to P control.



#### ◆ Using the Position Deviation as the Mode Switching Condition

When the position deviation equals or exceeds the value set for Pn10F (Mode Switching Level for Position Deviation), the speed loop is changed to P control.

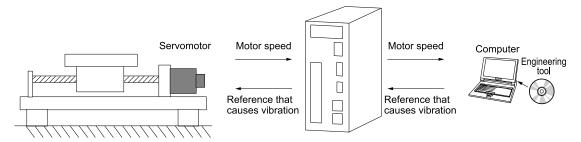
This setting is enabled only for position control.



### (3) Position Integral

The position integral is the integral function of the position loop. This parameter is effective for electronic cams and electronic shafts.

|                  | Position Integral Time Constant |              |                 | Speed Pos Trq |
|------------------|---------------------------------|--------------|-----------------|---------------|
| Pn11F<br>(211Fh) | Setting Range                   | Setting Unit | Default Setting | When Enabled  |
| (211711)         | 0 to 50000                      | 0.1 ms       | 0               | Immediately   |


### 8.16 Diagnostic Tool

### 8.16.1 Mechanical Analysis

### (1) Overview

You can connect the SERVOPACK to a computer to measure the frequency characteristics of the machine. This allows you to measure the frequency characteristics of the machine without using a measuring instrument.

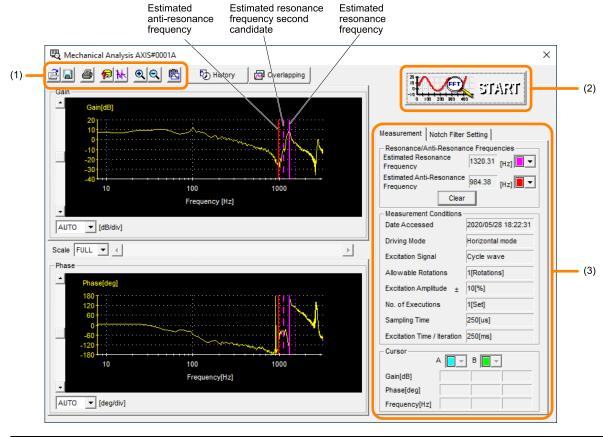
SERVOPACK



The servomotor is used to cause machine vibration and then the speed frequency characteristics for the motor torque are measured. The measured frequency characteristics can be used to determine the machine resonance.

You determine the machine resonance for use in servo tuning and as reference for considering changes to the machine. The performance of the servo cannot be completely utilized depending on the rigidity of the machine. You may need to consider making changes to the machine. The information can also be used as reference for servo tuning to help you adjust parameters, such as the servo rigidity and torque filter time constant.

You can also use the information to set parameters, such as the notch filters.


### **WARNING**

Mechanical analysis is a measurement function that actually drives the machine and therefore presents hazards. Before you execute mechanical analysis, check the information provided in the SigmaWin+ operating manual.

### (2) Frequency Characteristics

The motor is used to cause the machine to vibrate and the frequency characteristics from the torque to the motor speed are measured to determine the machine characteristics. For a normal machine, the resonance frequencies are clear when the frequency characteristics are plotted on graphs with the gain and phase (Bode plots). The Bode plots show the size (gain) of the response of the machine to which the torque is applied, and the phase delay (phase) in the response for each frequency. Also, the machine resonance frequency can be determined from the maximum frequency of the valleys (anti-resonance) and peaks (resonance) of the gain and the phase delay.

For a servomotor without a load or for a rigid mechanism, the gain and phase change gradually in the Bode plots.



| No. | Item                                                | Meaning                                                                                                                                                                                     |
|-----|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) | Toolbar                                             | -                                                                                                                                                                                           |
| (2) | [START] button                                      | Click the [START] button to start analysis.                                                                                                                                                 |
| (3) | [Measurement] tab and [Notch Filter<br>Setting] tab | [Measurement] tab: Displays detailed information on the results of analysis. [Notch Filter Setting] tab: Displays the notch filter frequencies. You can set these values in the parameters. |

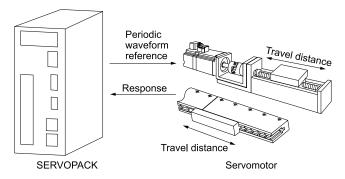
### 8.16.2 Easy FFT

The machine is made to vibrate and a resonance frequency is detected from the generated vibration to set notch filters according to the detected resonance frequencies. This is used to eliminate high-frequency vibration and noise.

During execution of Easy FFT, a frequency waveform reference is sent from the SERVOPACK to the servomotor to automatically cause the shaft to rotate multiple times within 1/4th of a rotation, thus causing the machine to vibrate.

Execute this function after the servo is turned OFF if operation of the SERVOPACK results in high frequency noise and vibration.

### **MARNING**


Never touch the servomotor or machine during execution of Easy FFT.

There is a risk of injury.

### **A** CAUTION

#### Use Easy FFT when the servo gain is low, such as in the initial stage of servo tuning.

If you execute Easy FFT after you increase the gain, the machine may vibrate depending on the machine characteristics or gain balance.



This function is built into the SERVOPACK for compatibility with previous products. Normally use autotuning without a host reference for tuning.

### (1) Preparations

Always check the following before you execute Easy FFT.

- The parameters must not be write prohibited.
- The main circuit power must be ON.
- Pn00C must be set to n.  $\Box\Box\Box$ 0 (Function Selection for Test without a Motor is disabled).
- There must be no alarms.
- There must be no hard wire base block (HWBB).
- The servo must be OFF.
- There must be no overtravel.
- An external reference must not be input.

### (2) Applicable Tools

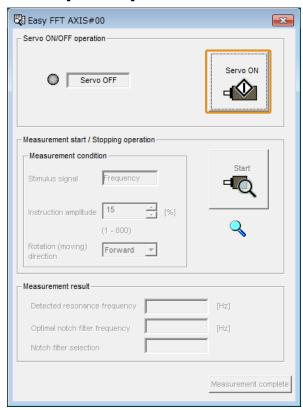
The following table lists the tools that you can use to perform EasyFFT.

| Tool             | Fn No./Function Name      | Operating Procedure Reference                                                  |
|------------------|---------------------------|--------------------------------------------------------------------------------|
| Digital Operator | Fn206                     | Σ-7/Σ-X-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33) |
| SigmaWin+        | [Diagnostic] – [Easy FFT] | (3) Operating Procedure on page 446                                            |

### (3) Operating Procedure

Use the following procedure for Easy FFT.

- 1. Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.
- 2. Click [Easy FFT] in the [Menu] window.


The [Easy FFT] window will be displayed.

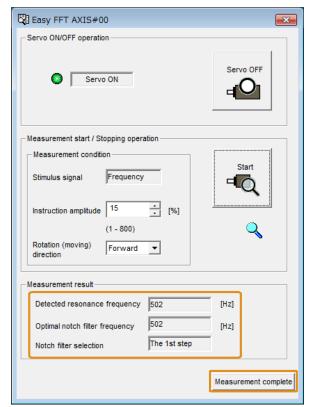
Click the [Cancel] button to cancel Easy FFT. The Main Window will return.

#### 3. Click the [OK] button.



4. Click the [Servo ON] button.




5. Select [instruction amplitude] and [Rotation (moving) direction] in [Measurement condition], and then click the [Start] button.

The servomotor shaft will rotate and measurements will start.




When measurements have been completed, the measurement results will be displayed.

6. Check the results in [Measurement result] and then click the [Measurement complete] button.



## 7. Click the [Result Writing] button if you want to set the measurement results in the parameters.



This concludes the procedure to set up Easy FFT.

### (4) Related Parameters

The following parameters are automatically adjusted or used as reference when you execute Easy FFT. Do not change the settings of these parameters during execution of Easy FFT.

| Parameter     | Name                                | Automatic Changes |
|---------------|-------------------------------------|-------------------|
| Pn408 (2408h) | Torque-Related Function Selections  | Yes               |
| Pn409 (2409h) | First Stage Notch Filter Frequency  | Yes               |
| Pn40A (240Ah) | First Stage Notch Filter Q Value    | No                |
| Pn40C (240Ch) | Second Stage Notch Filter Frequency | Yes               |
| Pn40D (240Dh) | Second Stage Notch Filter Q Value   | No                |
| Pn456 (2456h) | Sweep Torque Reference Amplitude    | No                |

Yes: The parameter is automatically set.

No: The parameter is not automatically set, but the setting is read during execution.

# **Monitoring**

This chapter provides information on monitoring SERVOPACK product information and SERVOPACK status.

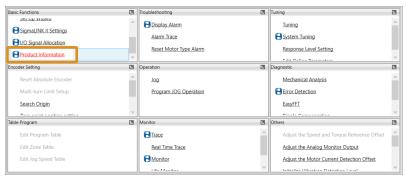
| 9.1 | Moni  | toring Product Information                                   | 452 |
|-----|-------|--------------------------------------------------------------|-----|
|     | 9.1.1 | Items That You Can Monitor                                   | 452 |
|     | 9.1.2 | Operating Procedure                                          | 452 |
| 9.2 | Moni  | toring SERVOPACK Status                                      | 454 |
|     | 9.2.1 | Servo Drive Information                                      | 454 |
|     | 9.2.2 | Operation Monitor, Status Monitor, and I/O Monitor           | 454 |
|     | 9.2.3 | I/O Signals Status Monitor                                   | 459 |
| 9.3 | Moni  | toring Machine Operation Status and Signal Waveforms         | 462 |
|     | 9.3.1 | Items That You Can Monitor                                   | 462 |
|     | 9.3.2 | Using the SigmaWin+                                          | 462 |
|     | 9.3.3 | Using the Analog Monitors                                    | 464 |
| 9.4 | Moni  | toring Product Life                                          | 469 |
|     | 9.4.1 | Items That You Can Monitor                                   | 469 |
|     | 9.4.2 | Operating Procedure                                          | 469 |
|     | 9.4.3 | Preventative Maintenance                                     | 470 |
| 9.5 | Alarn | n Tracing                                                    | 472 |
|     | 9.5.1 | Data for Which Alarm Tracing Is Performed                    | 472 |
|     | 9.5.2 | Applicable Tools                                             | 472 |
| 9.6 | Error | Detection Setting                                            | 473 |
|     | 9.6.1 | Outline                                                      | 473 |
|     | 9.6.2 | Preparing Trace Data to Create Sample Data                   | 473 |
|     | 9.6.3 | Creating Sample Data and Setting the Error Judgment Baseline | 474 |
|     | 9.6.4 | Executing Error Detection                                    | 478 |

## 9.1 Monitoring Product Information

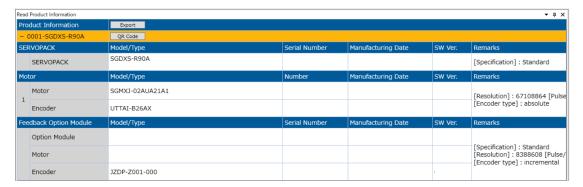
#### 9.1.1 Items That You Can Monitor

The items that you can monitor in the [Product Information] window of the SigmaWin+ are listed below.

|                               | Monitor Items                                                                                                                          |  |  |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Information on SERVOPACKs     | <ul> <li>Model/Type</li> <li>Serial Number</li> <li>Manufacturing Date</li> <li>Software version (SW Ver.)</li> <li>Remarks</li> </ul> |  |  |
| Information on Servomotors    | <ul> <li>Model/Type</li> <li>Serial Number</li> <li>Manufacturing Date</li> <li>Remarks</li> </ul>                                     |  |  |
| Information on Encoders       | <ul> <li>Model/Type</li> <li>Serial Number</li> <li>Manufacturing Date</li> <li>Software version (SW Ver.)</li> <li>Remarks</li> </ul> |  |  |
| Information on Option Modules | <ul> <li>Model/Type</li> <li>Serial Number</li> <li>Manufacturing Date</li> <li>Software version (SW Ver.)</li> <li>Remarks</li> </ul> |  |  |


### 9.1.2 Operating Procedure

Use the following procedure to display the servo drive information.


1. Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.

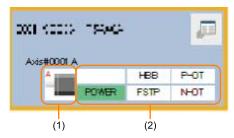
The [Menu] window will be displayed.

2. Click [Product Information] in the [Basic Functions] area.



The [Read Product Information] window will be displayed.




Information With the digital operator, you can use Fn011, Fn012, and Fn01E to monitor this information. Refer to the following manual for the differences in the monitor items compared with the SigmaWin+.

### 9.2 Monitoring SERVOPACK Status

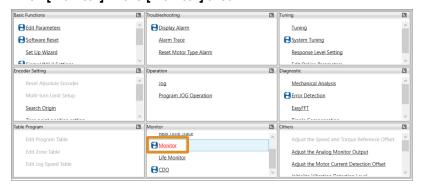
#### 9.2.1 Servo Drive Information

Use the following procedure to display the servo drive Information.

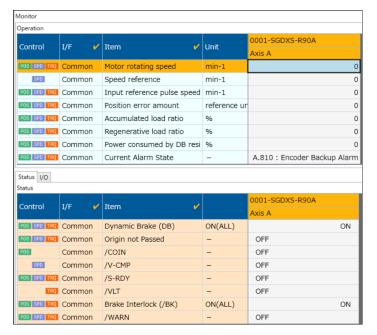
• Start the SigmaWin+. The servo drive status will be automatically displayed when you go online with a SERVOPACK.



| Symbol | Description                          |
|--------|--------------------------------------|
| (1)    | The servomotor type is displayed.    |
| (2)    | The servo drive status is displayed. |


### 9.2.2 Operation Monitor, Status Monitor, and I/O Monitor

### (1) Operating Procedure


1. Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.

The [Menu] window will be displayed.

2. Click [Monitor] in the [Monitor] area.



[Operation], [Status], and [I/O] will be displayed in the [Monitor] window.



Information

You can flexibly change the contents that are displayed in the [Monitor] window. Refer to the following manual for details

Engineering Tool SigmaWin+ Operation Manual (Manual No.: SIET S800001 34)

### (2) Items That You Can Monitor

The items that you can monitor in the [Operation] window, [Status] window, and [I/O] window are listed below.

#### (a) [Operation] Window



The margins that can be monitored are the margins for the operating limits of the SERVOPACK and servomotor. However, these margins provide no guarantees about the long-term reliability of the product.

| Monitor Items                                                                          | Description                                                                                                         | Setting<br>Unit   |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------|
| Motor Speed                                                                            | Displays the current motor speed.                                                                                   | min-1             |
| Speed Reference                                                                        | Displays the current speed reference value.                                                                         | min-1             |
| Torque Reference                                                                       | Displays the current torque reference value.                                                                        | %                 |
| Angle of Rotation 1 (number of encoder pulses from origin within one encoder rotation) | Displays the number of pulses that the encoder has rotated (moved) from the origin.                                 | pulse             |
| Angle of Rotation 2 (electrical angle from origin within one encoder rotation)         | Displays the angle that the encoder has rotated (moved) from the origin.                                            | deg               |
| Input Reference Pulse<br>Speed                                                         | Displays the speed reference value by pulse reference input.                                                        | min-1             |
| Deviation Counter (Position Deviation)                                                 | Displays the position deviation during position control.                                                            | reference<br>unit |
| Cumulative Load                                                                        | Displays the effective value in a 10-second cycle with rated torque as 100%.                                        | %                 |
| Regenerative Load                                                                      | Displays the effective value in a 10-second cycle with the processable power in the regenerative resistor as 100%.  | %                 |
| DB Resistor Consumption<br>Power                                                       | Displays the effective value in a 10-second cycle with the processable power in the dynamic brake resistor as 100%. | %                 |

| Monitor Items                                                                                            | Description                                                                                                                    | Setting<br>Unit             |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Input Reference Pulse<br>Counter                                                                         | Displays the counter value of the pulse reference input.                                                                       | reference<br>unit           |
| Feedback Pulse Counter                                                                                   | Displays the number of pulses that were fed back to the SERVOPACK from the encoder.                                            | pulse                       |
| Fully Closed Feedback<br>Pulse Counter                                                                   | Displays the number of pulses that were fed back to the SERVOPACK from the external encoder used in fully-closed loop control. | External encoder resolution |
| Upper Limit Setting of<br>Motor Maximum Speed/<br>Upper Limit Setting of<br>Encoder Output<br>Resolution | Displays the upper limit value of the maximum motor speed setting or the encoder resolution setting.                           | _                           |
| Total Operating Time                                                                                     | Displays the cumulative time that the control and main circuit power supplies of the SERVO-PACK were turned ON.                | 100 ms                      |
| Overheat Protection Input                                                                                | Displays the voltage input by the Overheat Protection Input (TH) signal.                                                       | 0.01 V                      |
| Current Backlash Compensation Value                                                                      | Displays the backlash compensation value.                                                                                      | 0.1 reference unit          |
| Backlash Compensation<br>Value Setting Limit                                                             | Displays the upper limit of the backlash compensation value setting.                                                           | 0.1 reference unit          |
| Power Consumption                                                                                        | Displays the power consumption of the SERVOPACK.                                                                               | W                           |
| Consumed Power                                                                                           | Displays the power consumption of the SERVOPACK.                                                                               | 0.001 Wh                    |
| Cumulative Power<br>Consumption                                                                          | Displays the cumulative power consumption of the SERVOPACK from power ON.                                                      | Wh                          |
| Absolute Encoder Multi-<br>turn Data                                                                     | Displays the current multiturn data of the absolute encoder.                                                                   | _                           |
| Absolute Encoder Position within One Rotation                                                            | Displays the position information within one rotation of the absolute encoder.                                                 | Pulse                       |
| Lower Bits of Absolute<br>Encoder Position                                                               | Displays the current position information (lower bits) of the absolute encoder.                                                | pulse                       |
| Upper Bits of Absolute<br>Encoder Position                                                               | Displays the current position information (upper bits) of the absolute encoder.                                                | pulse                       |
| Estimated Vibration                                                                                      | Displays the estimated value of vibration by analyzing the vibration component from servomotor response.                       | min-1                       |
| Maximum Value of<br>Amplitude of Estimated<br>Vibration                                                  | Displays the maximum value of estimated vibration from power ON.                                                               | min <sup>-1</sup>           |
| Estimated External Disturbance Torque                                                                    | Displays the estimated value of disturbance by analyzing the disturbance component from motor response.                        | %                           |
| Maximum Value of Esti-<br>mated External Disturb-<br>ance Torque                                         | Displays the maximum value of estimated external disturbance torque from power ON.                                             | %                           |
| Minimum Value of Esti-<br>mated External Disturb-<br>ance Torque                                         | Displays the minimum value of estimated external disturbance torque from power ON.                                             | %                           |
| Identified Moment of<br>Inertia Ratio                                                                    | Displays the result of estimating the load moment of inertia during SERVOPACK operation.                                       | %                           |
| Maximum Identified<br>Moment of Inertia Ratio                                                            | Displays the maximum value of the identified moment of inertia ratio from power ON.                                            | %                           |
| Minimum Identified<br>Moment of Inertia Ratio                                                            | Displays the minimum value of the identified moment of inertia ratio from power ON.                                            | %                           |
| Number of Serial Encoder<br>Communications Errors                                                        | Displays the total number of serial encoder communications errors from when the power was turned ON.                           | Time                        |

| Monitor Items                                                                                                                                                 | Description                                                                                                                                                                                                                                                                                                                                  | Setting<br>Unit   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Settling Time                                                                                                                                                 | Displays the time from the position reference distribution completed (DEN) signal to the rise in the positioning completion (/COIN or PSET) signal.                                                                                                                                                                                          |                   |
| Maximum Settling Time                                                                                                                                         | Displays the maximum value of the settling time from power ON.                                                                                                                                                                                                                                                                               |                   |
| Amount of Overshoot                                                                                                                                           | Displays the maximum value of position deviation overshooting by analyzing the positioning status in the servo.                                                                                                                                                                                                                              | reference<br>unit |
| Maximum Amount of<br>Overshoot                                                                                                                                | Displays the maximum value of the amount of overshoot from power ON.                                                                                                                                                                                                                                                                         | reference<br>unit |
| Residual Vibration<br>Frequency                                                                                                                               | Displays the residual vibration (shaking in a short cycle by machine stand vibration) frequency by analyzing the positioning status in the servo.                                                                                                                                                                                            | 0.1 Hz            |
| Maximum Value of Accumulated Load Ratio                                                                                                                       | Displays the maximum value of Un009 (Accumulated Load Ratio).                                                                                                                                                                                                                                                                                | %                 |
| Margin until Overload                                                                                                                                         | Displays the margin until A.710 (Instantaneous Overload) or A.720 (Continuous Overload) is detected.  If the margin until overload drops below 0%, A.710 (Instantaneous Overload) or A.720 (Continuous Overload) is detected.                                                                                                                | 0.01%             |
| Margin until Regenerative<br>Overload                                                                                                                         | Displays the margin until A.320 (Regenerative Overload) is detected.  If the margin until regenerative overload drops below 0%, A.320 (Regenerative Overload) is detected.                                                                                                                                                                   | 0.01%             |
| Margin until Overvoltage                                                                                                                                      | Displays the margin until A.400 (Overvoltage) is detected.  If the margin until overvoltage drops below 0 V, A.400 (Overvoltage) is detected.                                                                                                                                                                                                |                   |
| Margin until Undervoltage                                                                                                                                     | Displays the margin until A.410 (Undervoltage) is detected.  If the margin until undervoltage drops below 0 V, A.410 (Undervoltage) is detected.                                                                                                                                                                                             | v                 |
| Temperature Margin until SERVOPACK Overheats                                                                                                                  |                                                                                                                                                                                                                                                                                                                                              |                   |
| Temperature Margin until<br>Servomotor Overheats                                                                                                              | Displays the margin until A.860 (Encoder Overheated) is detected.  If the temperature margin drops below 0°C, A.860 (Encoder Overheated) is detected.                                                                                                                                                                                        | °C                |
| Encoder Power Supplied<br>Time                                                                                                                                | Displays the cumulative time that power was supplied to the encoder.                                                                                                                                                                                                                                                                         | 100 ms            |
| Encoder Power Supply<br>Voltage                                                                                                                               | Displays the power supply voltage supplied to the encoder.  A guildeline for the normal value is given next.  Standard specification servomotor: 3.9 V or higher  Σ-7-compatible specification servomotor: 4.5 V to 5.5 V                                                                                                                    | 0.1 V             |
| Encoder Battery Voltage  Displays the voltage of the battery for the absolute encoder.  If the voltage drops below 2.7 V, A.930 (Low Battery Voltage) occurs. |                                                                                                                                                                                                                                                                                                                                              | 0.1 V             |
| Motor Total Number of<br>Rotations                                                                                                                            | lactory.                                                                                                                                                                                                                                                                                                                                     |                   |
| Maintenance Prediction<br>Monitor - Bearings                                                                                                                  | Displays the prediction value for when to perform maintenance on the servomotor bearings.  The prediction value is displayed with the unused status of the servomotor treated as 100%, and the value decreases according to the total number of rotations of the motor. Use a monitor value of 0% as a guideline for the maintenance period. | %                 |
| Maintenance Prediction<br>Monitor - Oil Seal                                                                                                                  | Displays the prediction value for when to perform maintenance on the servomotor oil seal.  The prediction value is displayed with the unused status of the servomotor treated as 100%, and the value decreases according to the total number of rotations of the motor. Use a monitor value of 0% as a guideline for the maintenance period. | %                 |

| Monitor Items                              | Description                                                                                                                |                                                                                                        | Setting<br>Unit                       |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------|
| Motor Vibration in X-<br>Axis Direction    | Displays the vibration in the X-axis direction of the accelerometer built into the servomotor.  The refresh cycle is 1 ms. | and Z-axis directions of vibration in the motor.<br>Vibration in the direction of the arrow is a posi- | 0.0001 G<br>(Resolution:<br>0.0625 G) |
| Motor Vibration in Y-Axis<br>Direction     | Displays the vibration in the Y-axis direction of the accelerometer built into the servomotor.  The refresh cycle is 1 ms. | tive value, and the opposite direction is a negative value.                                            | 0.0001 G<br>(Resolution:<br>0.0625 G) |
| Motor Vibration in Z-Axis<br>Direction     | Displays the vibration in the Z-axis direction of the accelerometer built into the servomotor.  The refresh cycle is 1 ms. | z                                                                                                      | 0.0001 G<br>(Resolution:<br>0.0625 G) |
| Motor Vibration XYZ<br>Composite Value     | Displays the composite value of vibration in the motor.  The refresh cycle is 1 ms.                                        | X-axis, Y-axis, and Z-axis directions of the                                                           | 0.0001 G<br>(Resolution:<br>0.0625 G) |
| Maximum Motor<br>Vibration                 | Displays the maximum value of the motor vibrat                                                                             | ion XYZ composite value from power ON.                                                                 | 0.0001 G<br>(Resolution:<br>0.0625 G) |
| Σ-LINK II Response Data<br>1 to 8          | Displays the values of input signals for devices of                                                                        | connected over Σ-LINK II.                                                                              | _                                     |
| Σ-LINK II Command<br>Data 1 to 4           | Displays the values of output signals for devices                                                                          | connected over Σ-LINK II.                                                                              | _                                     |
| Σ-LINK II Sequence Input<br>Signal Monitor | Displays the status of a signal when a $\Sigma$ -LINK II input signal is allocated to a SERVOPACK function.                |                                                                                                        |                                       |
| Σ-LINK II Sequence Output Signal Monitor   | Displays the status of a signal when a Σ-LINK II output signal is allocated to a SERVOPACK function.                       |                                                                                                        |                                       |
| Σ-LINK II Data Status                      | Displays the status related to Σ-LINK II data.                                                                             |                                                                                                        |                                       |
| Position Amplifier<br>Deviation            | Displays the position deviation during position control in pulses.                                                         |                                                                                                        |                                       |
| 6041h: Statusword                          | Displays the value of the Statusword (6041h) object in EtherCAT communications.                                            |                                                                                                        |                                       |
| 6061h: Modes of<br>Operation               | Displays the value of the Mode of Operation Display (6061h) object in EtherCAT communications.                             |                                                                                                        |                                       |
| 6062h: Current Reference<br>Position       | Displays the value of the Position Demand Value (6062h) object in EtherCAT communications.                                 |                                                                                                        | Pos. unit                             |
| 6063h: Feedback Position<br>Pulse          | Displays the value of the Position Actual Internal Value (6063h) object in EtherCAT communications.                        |                                                                                                        | Inc                                   |
| 6064h:Feedback Position                    | Displays the value of the Position Actual Value (6064h) object in EtherCAT communications.                                 |                                                                                                        | Pos. unit                             |
| 606Bh: Speed Reference                     | Displays the value of the Velocity Demand Value (606Bh) object in EtherCAT communications.                                 |                                                                                                        | Vel. unit                             |
| 606Ch: Feedback Speed                      | Displays the value of the Velocity Actual Value (606Ch) object in EtherCAT communications.                                 |                                                                                                        | Vel. unit                             |
| 6074h: Torque Reference                    | Displays the value of the Torque Demand Value (6074h) object in EtherCAT communications.                                   |                                                                                                        | Trq. unit                             |
| 60B9h: Touch Probe<br>Status               | Displays the value of the Touch Probe Status (60B9h) object in EtherCAT communications.                                    |                                                                                                        | _                                     |
| 60BAh: Touch Probe 1<br>Latched Position   | Displays the value of the Touch Probe 1 Positive Edge (60BAh) object in EtherCAT communications.                           |                                                                                                        | Pos. unit                             |
| 60BCh: Touch Probe 2<br>Latched Position   | Displays the value of the Touch Probe 2 Positive Edge (60BCh) object in EtherCAT communications.                           |                                                                                                        | Pos. unit                             |
| 60F4h: Position Deviation                  | Displays the value of the Following Error Actual Value (60F4h) object in EtherCAT communications.                          |                                                                                                        |                                       |
| 60FCh: Reference Position Pulse            | Displays the value of the Position Demand Internal Value (60FCh) object in EtherCAT communications.                        |                                                                                                        |                                       |

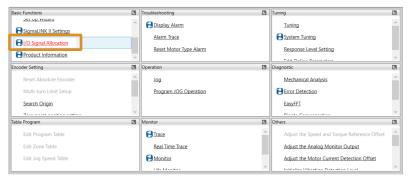
| Monitor Items                                                   | Description                                                                                                                                      | Setting<br>Unit |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 1C32h: 1: EtherCAT<br>Communications Type                       | Displays the value of the synchronization type (subindex 1) of the Sync Manager 2 Synchronization (1C32h) object in EtherCAT communications.     | _               |
| 1C32h: 2: EtherCAT<br>Communications Synchro-<br>nization Cycle | Displays the value of the cycle time (subindex 2) of the Sync Manager 2 Synchronization (1C32h) object in EtherCAT communications.               | ns              |
| 1C32h: 11: EtherCAT<br>Receive Event Miss Count                 | Displays the value of the SM event missed counter (subindex 11) of the Sync Manager 2 Synchronization (1C32h) object in EtherCAT communications. | _               |

### (b) [Status] Window

| Monitor Items               |                                             |  |
|-----------------------------|---------------------------------------------|--|
| Active Gain Monitor         | Position Reference Direction                |  |
| Main Circuit                | AC Power ON                                 |  |
| • Encoder (PGRDY)           | Surge Current Limiting Resistor Short Relay |  |
| Motor Power (Request)       | Regenerative Transistor                     |  |
| Motor Power ON              | Regenerative Error Detection                |  |
| Dynamic Brake (DB)          | Overcurrent                                 |  |
| Rotation Direction          | Origin Not Passed                           |  |
| Mode Switch                 | Moment of Inertia Estimation                |  |
| Speed Reference             | Polarity being Detected                     |  |
| Torque Reference            | Polarity Identification Completed           |  |
| • Position Reference (PULS) | Speed Ripple Compensation in Progress       |  |

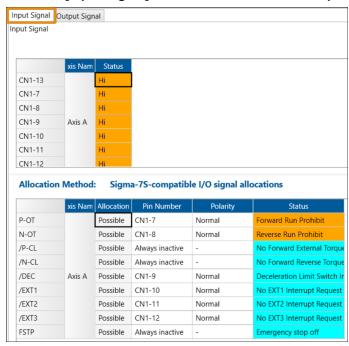
### (c) [I/O] Window

| Monitor Items                                         |                                                              |  |  |
|-------------------------------------------------------|--------------------------------------------------------------|--|--|
| Input Signal Status                                   | Output Signal Status                                         |  |  |
| P-OT (Forward Drive Prohibit Input) Signal            | ALM (Servo Alarm Output) Signal                              |  |  |
| N-OT (Reverse Drive Prohibit Input) Signal            | • /COIN (Positioning Completion Output) Signal               |  |  |
| /P-CL (Forward External Torque Limit Input) Signal    | /V-CMP (Speed Coincidence Detection Output) Signal           |  |  |
| /N-CL (Reverse External Torque Limit Input) Signal    | • /TGON (Rotation Detection Output) Signal                   |  |  |
| /G-SEL (Gain Selection Input) Signal                  | /S-RDY (Servo Ready Output) Signal                           |  |  |
| /P-DET (Polarity Detection Input) Signal              | • /CLT (Torque Limit Detection Output) Signal                |  |  |
| /DEC (Origin Return Deceleration Switch Input) Signal | • /VLT (Speed Limit Detection Output) Signal                 |  |  |
| Probel (Probe 1 Latch Input) Signal                   | /BK (Brake Output) Signal                                    |  |  |
| Probe2 (Probe 2 Latch Input) Signal                   | /WARN (Warning Output) Signal                                |  |  |
| /Home (Home Switch Input) Signal                      | • /NEAR (Near Output) Signal                                 |  |  |
| FSTP (Forced Stop Input) Signal                       | • PAO (Encoder Divided Pulse Output Phase A) Signal          |  |  |
| Σ-LINK II Sequence Input Signal Monitor               | PBO (Encoder Divided Pulse Output Phase B) Signal            |  |  |
|                                                       | PCO (Encoder Divided Pulse Output Phase C) Signal            |  |  |
|                                                       | • /PM (Preventative Maintenance Output) Signal               |  |  |
|                                                       | <ul> <li>Σ-LINK II Sequence Output Signal Monitor</li> </ul> |  |  |

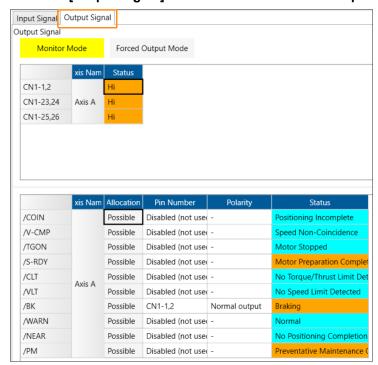

### 9.2.3 I/O Signals Status Monitor

Use the following procedure to check the status of the I/O signals.

1. Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.


The [Menu] window will be displayed.

2. Click [I/O Signal Allocation] in the [Basic Functions] area.




The [I/O Signal Allocation] window will be displayed.

3. Click the [Input Signal] tab to check the status of input signals.



4. Click the [Output Signal] tab to check the status of output signals.

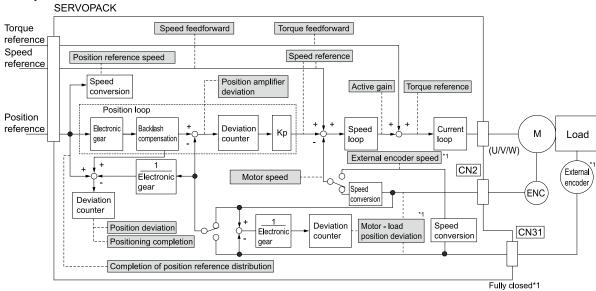


Information You can also use the above window to check wiring.

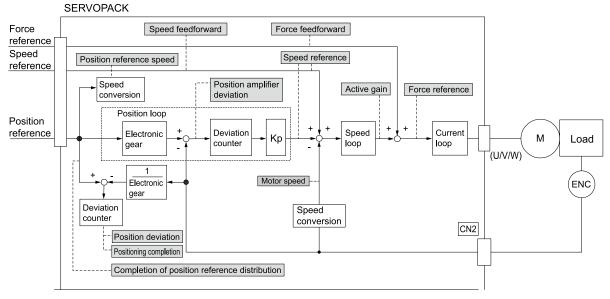
- Checking Input Signal Wiring
  Change the signal status at the host controller. If the input signal status on the window changes accordingly, then the wiring is correct.
- Checking Output Signal Wiring Click the [Forced Output Mode] button. This will force the output signal status to change. If the signal status at the host controller changes accordingly, then the wiring is correct.
  You cannot use the [Forced Output Mode] button while the servo is ON.

Refer to the following manual for details.

C Engineering Tool SigmaWin+ Operation Manual (Manual No.: SIET S800001 34)


# 9.3 Monitoring Machine Operation Status and Signal Waveforms

To monitor waveforms, use the SigmaWin+ trace function or a measuring instrument.


#### 9.3.1 Items That You Can Monitor

You can use the SigmaWin+ or a measuring instrument to monitor the shaded items in the following block diagram.

Rotary Servomotors



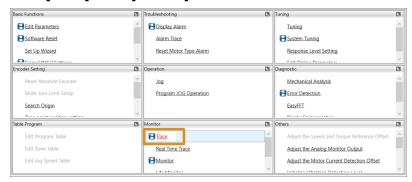
- \*1 Enabled when fully-closed loop control is being used.
- Linear Servomotors



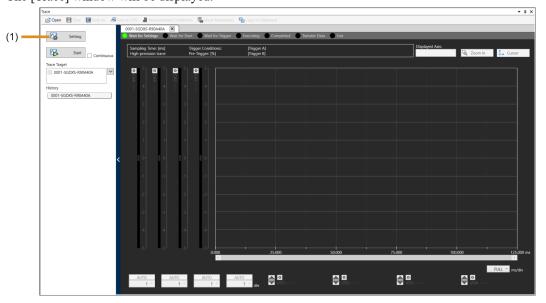
### 9.3.2 Using the SigmaWin+

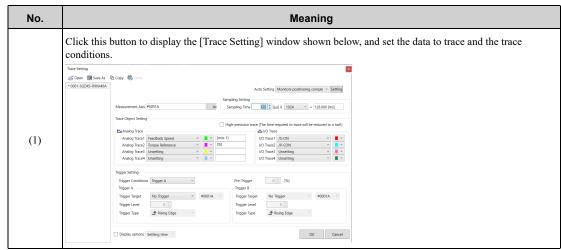
This section describes how to trace data and I/O with the SigmaWin+.

Refer to the following manual for detailed operating procedures for the SigmaWin+.


Comparing Tool SigmaWin+ Operation Manual (Manual No.: SIET S800001 34)

### (1) Operating Procedure


Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.


The [Menu] window will be displayed.

2. Click [Trace] in the [Monitor] area.



The [Trace] window will be displayed.





### (2) Trace Objects

You can trace the following items.

#### (a) Data Tracing

| Trace Objects                        |                                               |  |
|--------------------------------------|-----------------------------------------------|--|
| Feedback Speed                       | • Σ-LINK II Response Data 1 to 8              |  |
| Torque Reference                     | • Σ-LINK II Command Data 1 to 4               |  |
| Reference Speed                      | Margin until Regenerative Overload            |  |
| Position Reference Speed             | Margin until Overload                         |  |
| Position Error (Deviation)           | Temperature Margin until SERVOPACK Overheats  |  |
| Position Amplifier Error (Deviation) | Temperature Margin until Servomotor Overheats |  |
| Motor - Load Position Deviation      | Margin until Undervoltage                     |  |
| Speed Feedforward                    | Margin until Overvoltage                      |  |
| Torque Feedforward                   | Identified Moment of Inertia Ratio            |  |
| Effective (Active) Gain              | Motor Vibration in X-Axis Direction           |  |
| Main Circuit DC Voltage              | • Motor Vibration in Y-Axis Direction         |  |
| External Encoder Speed               | • Motor Vibration in Z-Axis Direction         |  |
|                                      | Motor Vibration XYZ Composite Value           |  |
|                                      | Current Reference                             |  |

#### (b) I/O Tracing

| Trace Objects                                         |                                                                             |  |  |
|-------------------------------------------------------|-----------------------------------------------------------------------------|--|--|
| Input Signals                                         | Output Signals                                                              |  |  |
| P-OT (Forward Drive Prohibit Input) Signal            | ALM (Servo Alarm Output) Signal                                             |  |  |
| N-OT (Reverse Drive Prohibit Input) Signal            | /COIN (Positioning Completion Output) Signal                                |  |  |
| /P-CL (Forward External Torque Limit Input) Signal    | /V-CMP (Speed Coincidence Detection Output) Signal                          |  |  |
| /N-CL (Reverse External Torque Limit Input) Signal    | /TGON (Rotation Detection Output) Signal                                    |  |  |
| /G-SEL (Gain Selection Input) Signal                  | /S-RDY (Servo Ready Output) Signal                                          |  |  |
| /P-DET (Polarity Detection Input) Signal              | /CLT (Torque Limit Detection Output) Signal                                 |  |  |
| /DEC (Origin Return Deceleration Switch Input) Signal | /VLT (Speed Limit Detection Output) Signal                                  |  |  |
| Probe1 (Probe 1 Latch Input) Signal                   | /BK (Brake Output) Signal                                                   |  |  |
| • /Probe2 (Probe 2 Latch Input) Signal                | /WARN (Warning Output) Signal                                               |  |  |
| /Home (Home Switch Input) Signal                      | /NEAR (Near Output) Signal                                                  |  |  |
| FSTP (Forced Stop Input) Signal                       | ALO1 (Alarm Code Output) Signal                                             |  |  |
| /HWBB1 (Hard Wire Base Block Input 1) Signal          | ALO2 (Alarm Code Output) Signal                                             |  |  |
| /HWBB2 (Hard Wire Base Block Input 2) Signal          | ALO3 (Alarm Code Output) Signal                                             |  |  |
| • Σ-LINK II Sequence Input 0 to 7                     | PAO (Encoder Divided Pulse Output Phase A) Signal                           |  |  |
|                                                       | PBO (Encoder Divided Pulse Output Phase B) Signal                           |  |  |
|                                                       | PCO (Encoder Divided Pulse Output Phase C) Signal                           |  |  |
|                                                       | ACON (Main Circuit ON) Signal                                               |  |  |
|                                                       | PDETCMP (Polarity Detection Completed) Signal                               |  |  |
|                                                       | DEN (Position Reference Distribution Completed) Signal                      |  |  |
|                                                       | • Σ-LINK II Sequence Output 1 to 4                                          |  |  |
|                                                       | High-Speed Output Signal for Trigger at Preset Position 1 to 3 (/HSO1 to 3) |  |  |
|                                                       | Normal Output Signal for Trigger at Preset Position 1 to 3 (/NSO1 to 3)     |  |  |

### 9.3.3 Using the Analog Monitors

Connect a measuring instrument to the analog monitor connector (CN5) on the SERVOPACK to monitor analog signal waveforms. The measuring instrument is not provided by Yaskawa.

Refer to the following section for details on the connection.

3 4.10 Using the Analog Monitors on page 149

### (1) Setting the Monitor Object

Use  $Pn006 = n.\Box\Box XX$  and  $Pn007 = n.\Box\Box XX$  (Analog Monitor 1 and 2 Signal Selections) to set the items to monitor.

| Line Color      | Signal           | Parameter Setting               |
|-----------------|------------------|---------------------------------|
| White           | Analog monitor 1 | Pn006 (2006h) = n.□□XX          |
| Red             | Analog monitor 2 | $Pn007 (2007h) = n.\Box\Box XX$ |
| Black (2 lines) | GND              | -                               |

|                                      | Analog Monitor 1 Signal Selection  Analog Monitor 2 Signal Selection  Speed Pos Trq |                              |                                                                                        |                                                             | When        |
|--------------------------------------|-------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------|
|                                      | Description                                                                         | Monitor Signal               | Output Unit                                                                            | Remarks                                                     | Enabled     |
|                                      | n.□□00<br>[Default setting of Pn007                                                 | Motor Speed                  | Rotary servomotor: 1 V/<br>1000 min <sup>-1</sup> Linear servomotor: 1 V/              | _                                                           |             |
|                                      | (2007h)]<br>n.□□01                                                                  | Speed Reference              | Rotary servomotor: 1 V/ 1000 min <sup>-1</sup> Linear servomotor: 1 V/ 1000 mm/s       | _                                                           |             |
|                                      | n.□□02<br>[Default setting of Pn006<br>(2006h)]                                     | Torque Reference             | 1 V/100% rated torque                                                                  | -                                                           |             |
|                                      | n.□□03                                                                              | Position Deviation           | 0.05 V/reference unit                                                                  | 0 V for speed or torque control                             |             |
|                                      | n.□□04                                                                              | Position Amplifier Deviation | 0.05 V/encoder pulse unit                                                              | Position deviation after electronic gear conversion         |             |
| Pn006<br>(2006h)<br>Pn007<br>(2007h) | n.□□05                                                                              | Position Command Speed       | Rotary servomotor: 1 V/<br>1000 min <sup>-1</sup> Linear servomotor: 1 V/<br>1000 mm/s | -                                                           |             |
|                                      | n.□□06                                                                              | Reserved (Do not use.)       | _                                                                                      | _                                                           | Immediately |
|                                      | n.□□07 Motor - Load Position<br>Deviation                                           |                              | 0.01 V/reference unit                                                                  | _                                                           |             |
|                                      | n.□□08                                                                              | Positioning Completion       | Positioning completed: 5 V<br>Positioning not completed: 0<br>V                        | Completion is indicated by the output voltage.              |             |
|                                      | n.□□09                                                                              | Speed Feedforward            | Rotary servomotor: 1 V/<br>1000 min <sup>-1</sup> Linear servomotor: 1 V/<br>1000 mm/s | -                                                           |             |
|                                      | n.□□0A                                                                              | Torque Feedforward           | 1 V/100% rated torque                                                                  | _                                                           |             |
|                                      | n.□□0B                                                                              | Active Gain *!               | 1st gain: 1 V<br>2nd gain: 2 V                                                         | The gain that is active is indicated by the output voltage. |             |
|                                      | n.□□0C Completion of Position Reference Distribution  n.□□0D External Encoder Spee  |                              | Distribution completed: 5 V<br>Distribution not completed: 0<br>V                      | Completion is indicated by the output voltage.              |             |
|                                      |                                                                                     |                              | 1 V/1000 min <sup>-1</sup>                                                             | Value calculated at the motor shaft                         |             |
|                                      | n.□□10                                                                              | Main Circuit DC Voltage      | 1 V/100 V (main circuit DC voltage)                                                    | _                                                           |             |

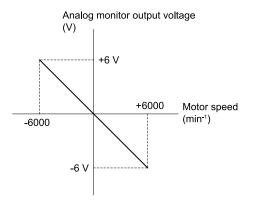
<sup>\*1</sup> Refer to the following section for details. 

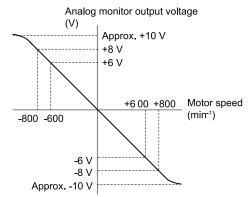
8.14.1 Gain Switching on page 415

### (2) Changing the Monitor Factor and Offset

You can change the monitor factors and offsets for the output voltages for analog monitor 1 and analog monitor 2. The relationships to the output voltages are as follows:

Analog monitor 1 = (-1) × 
$$\begin{cases} Pn006 = n.\Box\Box XX \\ (Analog Monitor 1 Signal Selection) \end{cases} \times Pn552 \\ (Analog Monitor 1 Magnification) \end{cases} + Pn550 \\ (Analog Monitor 1 Offset Voltage) \end{cases}$$
Analog monitor 2 = (-1) × 
$$\begin{cases} Pn007 = n.\Box\Box XX \\ (Analog Monitor 2 Signal Selection) \end{cases} \times Pn553 \\ (Analog Monitor 2 Magnification) \end{cases} + Pn551 \\ (Analog Monitor 2 Offset Voltage) \end{cases}$$


The following parameters are set.


|                  | Analog Monitor 1 Offset Volta            | Speed Pos Trq                          |                 |               |
|------------------|------------------------------------------|----------------------------------------|-----------------|---------------|
| Pn550<br>(2550h) | Setting Range                            | Setting Unit                           | Default Setting | When Enabled  |
| (2000)           | -10000 to 10000                          | 0.1 V                                  | 0               | Immediately   |
|                  | Analog Monitor 2 Offset Volta            | log Monitor 2 Offset Voltage Speed Pos |                 |               |
| Pn551<br>(2551h) | Setting Range                            | Setting Unit                           | Default Setting | When Enabled  |
| (233111)         | -10000 to 10000                          | 0.1 V                                  | 0               | Immediately   |
|                  | Analog Monitor 1 Magnification Speed Pos |                                        |                 | Speed Pos Trq |
| Pn552 (2552h)    | Setting Range                            | Setting Unit                           | Default Setting | When Enabled  |
| (2002)           | -10000 to 10000                          | × 0.01                                 | 100             | Immediately   |
|                  | Analog Monitor 2 Magnification           | on                                     |                 | Speed Pos Trq |
| Pn553<br>(2553h) | Setting Range                            | Setting Unit                           | Default Setting | When Enabled  |
|                  | -10000 to 10000                          | × 0.01                                 | 100             | Immediately   |

Example: To set the monitor item to  $Pn006 = n.\Box\Box 00$  (Motor Speed)

When Pn552 = 100 (Setting unit: ×0.01)

When Pn552 = 1000 (Setting unit: ×0.01)



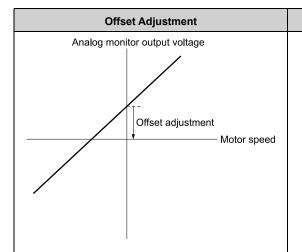


Note: The valid linearity range is ±8 V. The resolution is 16 bits.

### (3) Adjusting the Analog Monitor Output

You can manually adjust the offset and gain for the analog monitor outputs for the torque reference monitor and motor speed monitor.

The offset is adjusted to compensate for offset in the zero point caused by output voltage drift or noise in the monitoring system.


The gain is adjusted to match the sensitivity of the measuring system.

The offset and gain are adjusted at the factory. You normally do not need to adjust them.

### (4) Adjustment Example

An example of adjusting the output of the motor speed monitor is provided below.

**Gain Adjustment** 



|            | •                                     |
|------------|---------------------------------------|
| Analog mon | itor output voltage                   |
| 1 [V]      | Gain tuning                           |
|            | 1000 [min <sup>-1</sup> ] Motor speed |
|            |                                       |

| Item                       | Specification   |
|----------------------------|-----------------|
| Offset Adjustment<br>Range | -2.4 V to 2.4 V |
| Adjustment Unit            | 18.9 mV/LSB     |

| Item                  | Specification |
|-----------------------|---------------|
| Gain Adjustment Range | 100 ±50%      |
| Adjustment Unit       | 0.4%/LSB      |

The gain adjustment range is made using a 100% output value (gain adjustment of 0) as the reference value with an adjustment range of 50% to 150%. A setting example is given below.

- Setting the Adjustment Value to -125  $100 + (-125 \times 0.4) = 50 \, [\%]$ 
  - Therefore, the monitor output voltage goes to 50% of the original value.
- Setting the Adjustment Value to 125  $100 + (125 \times 0.4) = 150$  [%] Therefore, the monitor output voltage goes to 150% of the original

- Information The adjustment values do not use parameters, so they will not change even if the parameter settings are initialized.
  - · Adjust the offset with the measuring instrument connected so that the analog monitor output value goes to zero. The following setting example achieves a zero output.
  - While power is not supplied to the servomotor, set the monitor signal to the torque reference.
  - In speed control, set the monitor signal to the position deviation.

#### **Preparations** (5)

Always check the following before you adjust the analog monitor output.

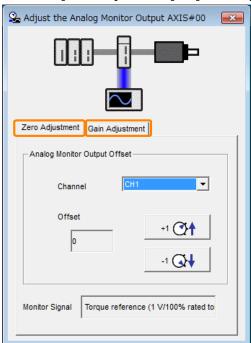
• The parameters must not be write prohibited.

### (6) Applicable Tools

The following table lists the tools that you can use to perform analog monitor output tuning.

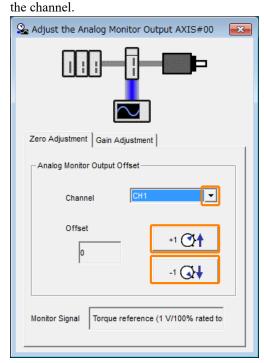
· Offset Adjustment

| Tool             | Fn No./Function Name                             | Reference                                                                       |
|------------------|--------------------------------------------------|---------------------------------------------------------------------------------|
| Digital Operator | Fn00C                                            | Σ-7-/Σ-X-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33) |
| SigmaWin+        | [Others] - [Adjusting the Analog Monitor Output] | (7) Operating Procedure on page 467                                             |


· Gain Adjustment

| Tool             | Fn No./Function Name                             | Reference                                                                       |
|------------------|--------------------------------------------------|---------------------------------------------------------------------------------|
| Digital Operator | Fn00D                                            | Σ-7-/Σ-X-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33) |
| SigmaWin+        | [Others] - [Adjusting the Analog Monitor Output] | (7) Operating Procedure on page 467                                             |

### **Operating Procedure**


Use the following procedure to adjust the analog monitor output.

- 1. Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.
- 2. Click [Adjust the Analog Monitor Output] in the [Menu] window. The [Adjust the Analog Monitor Output] window will be displayed.
- 3. Click the [Zero Adjustment] or [Gain Adjustment] tab.



4. While watching the analog monitor, use the [+1] and [-1] buttons to adjust the offset.

There are two channels: CH1 and CH2. If necessary, click the down arrow on the [Channel] and select

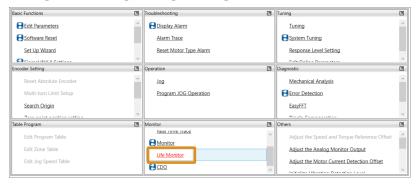


This concludes adjusting the analog monitor output.

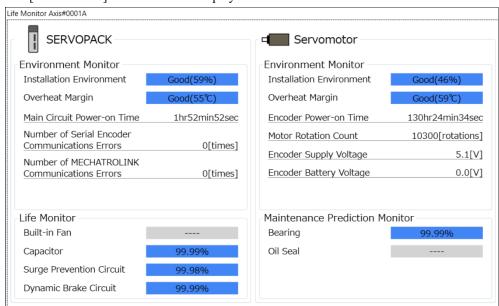
# 9.4 Monitoring Product Life

## 9.4.1 Items That You Can Monitor

| Monitor Items                                                | Description                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SERVOPACK Installation<br>Environment                        | The operating status of the SERVOPACK in terms of the installation environment is displayed.  Implement one or more of the following actions if the monitor value exceeds 100%.                                                                                                                                                  |
| Servomotor Installation<br>Environment                       | <ul><li>Lower the surrounding temperature.</li><li>Decrease the load.</li></ul>                                                                                                                                                                                                                                                  |
| Built-in Fan Service Life<br>Prediction                      | The unused status of the SERVOPACK is treated as the 100% value. The value decreases each time the main circuit power supply is turned ON and each time the servo is turned OFF. Use a monitor value of                                                                                                                          |
| Capacitor Service Life Prediction                            | 0% as a guideline for the replacement period. Refer to the following section for part replacement guidelines.  16.1.2 Guidelines for Part Replacement on page 649                                                                                                                                                                |
| Inrush Current Prevention Circuit<br>Service Life Prediction | The unused status of the SERVOPACK is treated as the 100% value. The value decreases each time the main circuit power supply is turned ON and each time the servo is turned OFF. Use a monitor value of                                                                                                                          |
| Dynamic Brake Circuit Service<br>Life Prediction             | 0% as a guideline for the replacement period. Refer to the following section for part replacement guidelines.  16.1.2 Guidelines for Part Replacement on page 649                                                                                                                                                                |
|                                                              | The prediction value is displayed with the unused status of the servomotor treated as 100%, and the value decreases according to the total number of rotations of the motor. Use a monitor value of 0% as a guideline for the maintenance period.                                                                                |
| Maintenance Prediction of                                    | The prediction value is calculated from the standard service life time for motor parts and the motor total number of rotations when the motor has rotated continuously at the rated speed. (The standard service life of the bearings is 20,000 hours. The service life depends on the actual usage conditions and environment.) |
| Bearings                                                     | Example: Servomotor with a rated speed of 3000 min <sup>-1</sup>                                                                                                                                                                                                                                                                 |
|                                                              | Rated speed 3000 [min <sup>-1</sup> ] $\times$ 60 [min] $\times$ 20000 [hours] = 3600 $\times$ 106 [revolutions]                                                                                                                                                                                                                 |
|                                                              | Maintenance prediction monitor: bearings [%] = $(1 - (Current total number of rotations / 3600 \times 10^6)) \times 100$                                                                                                                                                                                                         |
|                                                              | Refer to the following manual for details on the service life of motor parts.                                                                                                                                                                                                                                                    |
|                                                              | Σ-X-Series Rotary Servomotor Product Manual (Manual No.: SIEP C230210 00)                                                                                                                                                                                                                                                        |
|                                                              | The prediction value is displayed with the unused status of the servomotor treated as 100%, and the value decreases according to the total number of rotations of the motor. Use a monitor value of 0% as a guideline for the maintenance period.                                                                                |
| Maintenance Prediction of Oil                                | The prediction value is calculated from the standard service life time for motor parts and the motor total number of rotations when the motor has rotated continuously at the rated speed. (The standard service life of the oil seal is 5,000 hours. The service life depends on the actual usage conditions and environment.)  |
| Seal                                                         | Example: Servomotor with a rated speed of 3000 min <sup>-1</sup>                                                                                                                                                                                                                                                                 |
|                                                              | Rated speed 3000 [min <sup>-1</sup> ] $\times$ 60 [min] $\times$ 5000 [hours] = 900 $\times$ 10 <sup>6</sup> [revolutions]                                                                                                                                                                                                       |
|                                                              | Maintenance prediction monitor: oil seal [%] = $(1 - (Current total number of rotations / 900 \times 10^6)) \times 100$                                                                                                                                                                                                          |
|                                                              | Refer to the following manual for details on the service life of motor parts.                                                                                                                                                                                                                                                    |
|                                                              | Σ-X-Series Rotary Servomotor Product Manual (Manual No.: SIEP C230210 00)                                                                                                                                                                                                                                                        |


# 9.4.2 Operating Procedure

Use the following procedure to monitor the installation environment, service life predictions, and maintenance predictions.


1. Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.

The [Menu] window will be displayed.

#### Click [Life Monitor] in the [Monitor] area.



The [Life Monitor] window will be displayed.



Information With the digital operator, you can use Un025 to Un02A, Un183 to Un188 to monitor this information.

## 9.4.3 Preventative Maintenance

You can use the following functions for preventative maintenance.

- Preventative maintenance warnings
- /PM (Preventative Maintenance Output) Signal

The SERVOPACK can notify the host controller when it is time to replace any of the main parts and when the service life of bearings and oil seals are reached.

# (1) Preventative Maintenance Warning

## (a) SERVOPACK Preventative Maintenance Warning

An A.9b0 warning (SERVOPACK Preventative Maintenance Warning) is detected when any of the following service life prediction values drops to 10% or less: SERVOPACK built-in fan life, capacitor life, inrush current prevention circuit life, and dynamic brake circuit life. You can change the setting of  $Pn00F = n.\Box\Box\Box X$  to enable or disable the SERVOPACK preventative maintenance warning.

|                  | SERVO  | ACK Preventative Maintenance Warning Selection Speed Pos Trq | When Enabled                                               |               |
|------------------|--------|--------------------------------------------------------------|------------------------------------------------------------|---------------|
| Pn00F<br>(200Fh) | n.□□□X | 0<br>Default                                                 | Do not detect SERVOPACK preventative maintenance warnings. | After restart |
|                  |        | 1                                                            | Detect SERVOPACK preventative maintenance warnings.        |               |

## (b) Servomotor Preventative Maintenance Warning

For bearings and oil seals, which are consumable parts in the servomotor, an A.9b1 (Servomotor Preventative Maintenance Warning) is detected when one of the maintenance prediction values becomes 10% or lower. Use this warning as a guideline for when to perform maintenance.

You can change the setting of  $Pn00F = n.\Box\Box X\Box$  to enable or disable the servomotor preventative maintenance warning.

| Pn00F n.□□X□ |  | Servomo      | tor Preventative Maintenance Warning Selection Speed Pos Trq | When Enabled  |
|--------------|--|--------------|--------------------------------------------------------------|---------------|
|              |  | 0<br>Default | Do not detect servomotor preventative maintenance warnings.  | After restart |
|              |  | 1            | Detect servomotor preventative maintenance warnings.         |               |

## (2) /PM (Preventative Maintenance Output) Signal

The /PM (Preventative Maintenance Output) signal is output when any of the following service life prediction items reaches 10% or less.

- · SERVOPACK fan service life prediction
- SERVOPACK capacitor service life prediction
- SERVOPACK inrush current prevention circuit service life prediction
- · SERVOPACK dynamic brake circuit service life prediction
- · Servomotor maintenance prediction of bearings
- Servomotor maintenance prediction of oil seal

Even if Pn00F is set to  $n.\Box\Box\Box$ 0 (do not detect SERVOPACK preventative maintenance warnings) or Pn00F is set to  $n.\Box\Box\Box$ 0 (do not detect servomotor preventative maintenance warnings), the /PM signal will still be output as long as it is allocated.

| Classifica-<br>tion | Signal | Connector Pin No.  | Signal<br>Status | Description                                             |
|---------------------|--------|--------------------|------------------|---------------------------------------------------------|
|                     | /P) (  |                    | ON (closed)      | A service life prediction item has reached 10% or less. |
| Output /PM          |        | Must be allocated. | OFF (open)       | All service life prediction items are greater than 10%. |

### Note:

You must allocate the /PM signal to use it. The parameters that you use depend on the allocation method.

| Allocation Method                     | Parameter to Use                                                                                                                                              |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Σ-7S-compatible I/O Signal Allocation | <ul> <li>Pn50A = n.□□□1 (Σ-7S-compatible I/O Signal Allocations)</li> <li>Pn514 = n.□X□□ (/PM (Preventative Maintenance Output) Signal Allocation)</li> </ul> |
| Σ-LINK II Input Signal Allocation     | • Pn50A = n.□□□2 (use Σ-LINK II input signal allocations) • Pn5BC (/PM (Preventative Maintenance Output) Signal Allocation)                                   |

Refer to the following section for details.

**☑** 6.1.4 Output Signal Allocations on page 218

#### **Alarm Tracing** 9.5

Alarm tracing records data in the SERVOPACK from before and after an alarm occurs. This data helps you to isolate the cause of the alarm.

You can display the data recorded in the SERVOPACK as a trace waveform on the SigmaWin+.

- Information Alarms that occur when the power supply is turned ON are not recorded.
  - · Alarms that occur during the recording of alarm trace data are not recorded.
  - Alarms that occur while utility functions are being executed are not recorded.

#### 9.5.1 **Data for Which Alarm Tracing Is Performed**

Two types of data are recorded for alarm tracing: numeric data and I/O signal ON/OFF data.

| Numeric Data                  | ON/OFF Data                           |
|-------------------------------|---------------------------------------|
| Torque reference              | • ALM                                 |
| Feedback speed                | Servo ON command (/S-ON)              |
| Reference speed               | Proportional control command (/P-CON) |
| Position command speed        | Forward torque command (/P-CL)        |
| Position deviation            | Reverse torque command (/N-CL)        |
| Motor-load position deviation | • G-SEL1 signal (/G-SEL1)             |
| Main circuit DC voltage       | • ACON                                |

#### 9.5.2 **Applicable Tools**

The following table lists the tools that you can use to perform alarm tracing.

| Tool             | Fn No./Function Name Reference                                                                              |  |  |
|------------------|-------------------------------------------------------------------------------------------------------------|--|--|
| Digital Operator | You cannot display alarm tracing data from the digital operator.                                            |  |  |
| SigmaWin+        | [Troubleshooting] - [Alarm Trace] Engineering Tool SigmaWin+ Operation Manual (Manual No.: SIET S800001 34) |  |  |

# 9.6 Error Detection Setting

## 9.6.1 Outline

Error detection is a function that compares the values of normal operating characteristics saved to the SERVO-PACK in advance with the actual values during operation to judge errors. You can use this function to detect deterioration and failures in machines and equipment and to detect defective products. The detected results can be checked from the host controller.

The following table gives the steps to execute error detection and references for each step.

| Step | ltem                                                         | Reference                                                                      |
|------|--------------------------------------------------------------|--------------------------------------------------------------------------------|
| 1    | Preparing Trace Data for Sample Data                         | ■ 9.6.2 Preparing Trace Data to Create Sample Data on page 473                 |
| 2    | Creating Sample Data and Setting the Error Judgment Baseline | 9.6.3 Creating Sample Data and Setting the Error Judgment Baseline on page 474 |
| 3    | Executing Error Detection                                    | ■ 9.6.4 Executing Error Detection on page 478                                  |

Information

Error detection is performed by calculating the Mahalanobis distance of each sampling point from sample data saved to the SERVOPACK in advance and trace data obtained during operation. For the Mahalanobis distance of each sampling point, A.905 (Error Detection Warning) will occur when the number of points that exceed the judgment level registered in advance is greater than or equal to the number of error detection points. You can select up to two trace targets for calculating the Mahalanobis distance.

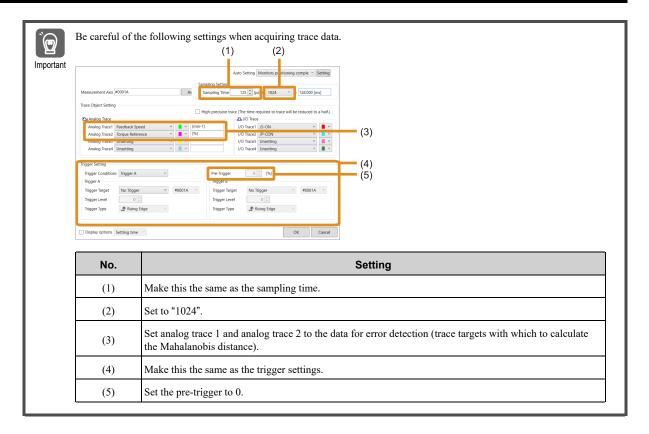


#### Sample Data

Sample data is the data set saved to the SERVOPACK in advance for error detection processing. The sample data is created by calculating the mean value and distribution value in waveform sample points from multiple waveforms when the SER-VOPACK performed the same operation.

#### Mahalanobis Distance:

The Mahalanobis distance is an index that expresses the degree to which the operating values deviate from the sample data. The greater the Mahalanobis distance, the more the operating values are deviating from the sample data.


# 9.6.2 Preparing Trace Data to Create Sample Data

Prepare the trace data to create sample data.

Perform tracing using the same procedure as normal tracing and obtain multiple items of trace data (std file).

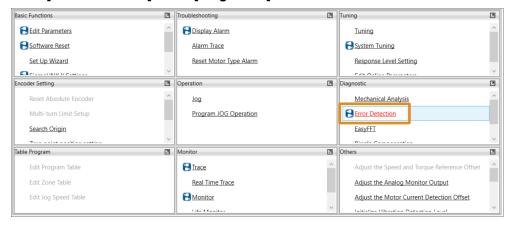


If the SERVOPACK software version is 0007 or later, use the SigmaWin+ Ver. 7.42 or later to use error detection.



## 9.6.3 Creating Sample Data and Setting the Error Judgment Baseline

1. Check if the trace data is finished being prepared, and check if the trace data (std file) is saved to the same computer.


Refer to the following section for details on preparing the trace data.

3 9.6.2 Preparing Trace Data to Create Sample Data on page 473

 Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.

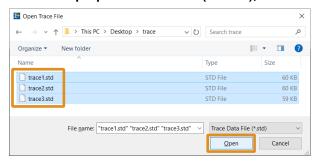
The [Menu] window will be displayed.

3. Click [Error Detection] in the [Diagnostic] area.



The [Error Detection] window will be displayed.

4. Click the [Edit Settings] button.




#### 5. Click the [Select File] button.



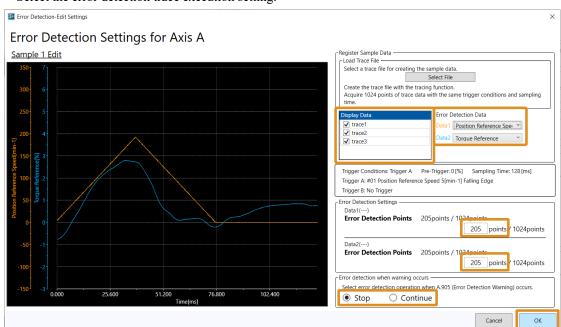
The [Open Trace File] window will be displayed.

6. Select the prepared trace data (std file), and then click the [Open] button.



Information You can select multiple files by using the [Shift] key and [Ctrl] key while selecting files.

The selected files will be displayed on the [Error Detection-Edit Settings] window.


#### 7. Configure the following settings, and then click the [OK] button.

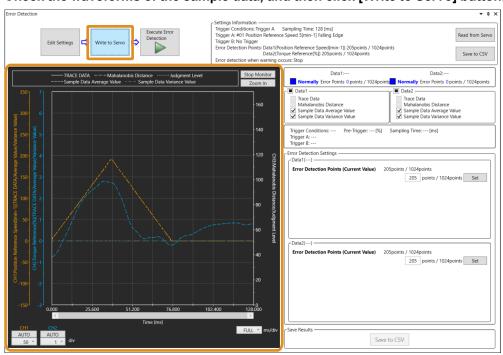
- Select the check boxes for the data to use to create the sample data.
- Set the data to use for error detection in [Data 1] and [Data 2].
- Set the number of error detection points.

  Set whether to trigger A.905 when a difference of the number of points is detected for the sample data. If the setting is low, the odds of A.905 being triggered will increase. If the setting is 1024, A.905 will no longer be triggered.

The number of error detection points can be changed when using error detection. The appropriate setting will depend on the device and usage conditions, so adjust the setting while actually using error detection.

Select the error detection trace execution setting.




The average and dispersion values of the sample data will be displayed on the [Error Detection] window.

Information

You can also set the error detection trace execution setting with the parameter. The following table gives details on the parameter to set.

|                  |        |              | n Selection when speed Pos Trq ection Warning                            | When Enabled  |
|------------------|--------|--------------|--------------------------------------------------------------------------|---------------|
| Pn5C3<br>(25C3h) | n.□□X□ | 0<br>Default | Stop error detection when A.905 (Error Detection Warning) occurs.        |               |
|                  |        | 1            | Do not stop error detection when A.905 (Error Detection Warning) occurs. | After restart |

Check the waveforms of the sample data, and then click [Write to Servo] button.



The message dialog box will be displayed.

### Click the [OK] button.



The displayed sample data will be written to the SERVOPACK.

## 10. To enable the sample data saved to the SERVOPACK, turn the power to the SERVO-PACK OFF and ON again.

To edit the sample data, click the [Edit Settings] button. The [Edit Error Detection Settings] window will be displayed, and you can change the settings.

This concludes the procedure to create sample data. Next, use error detection. Refer to the following section for details.

■ 9.6.4 Executing Error Detection on page 478

## (1) Related Parameters

The following section describes the setting procedure using the SigmaWin+.

■ 9.6.3 Creating Sample Data and Setting the Error Judgment Baseline on page 474

You can also configure these settings with SERVOPACK parameters. The parameters related to the settings are shown next.

Information The number of error detection points and the error judgment levels can be set with parameters.

The error detection data cannot be set with parameters. Use the SigmaWin+ to set the error detection data.

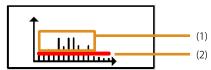
You cannot use the SigmaWin+ to set the error judgment levels. You can use only the parameters to set the error judgment levels.

## (a) Number of Error Detection Points

|                  | Error Detection Sample Data | Set 1 Warning Level 1 |                 | Speed Pos Trq |
|------------------|-----------------------------|-----------------------|-----------------|---------------|
| Pn5C4<br>(25C4h) | Setting Range               | Setting Unit          | Default Setting | When Enabled  |
| (200)            | 0 to 10000                  | 0.01%                 | 2000            | Immediately   |
|                  | Error Detection Sample Data | Set 1 Warning Level 2 |                 | Speed Pos Trq |
| Pn5C6 (25C6h)    | Setting Range               | Setting Unit          | Default Setting | When Enabled  |
| (2000)           | 0 to 10000                  | 0.01%                 | 2000            | Immediately   |
|                  | Error Detection Sample Data | Set 2 Warning Level 1 |                 | Speed Pos Trq |
| Pn5C8<br>(25C8h) | Setting Range               | Setting Unit          | Default Setting | When Enabled  |
| (2000)           | 0 to 10000                  | 0.01%                 | 2000            | Immediately   |
|                  | Error Detection Sample Data | Set 2 Warning Level 2 |                 | Speed Pos Trq |
| Pn5CA<br>(25CAh) | Setting Range               | Setting Unit          | Default Setting | When Enabled  |
|                  | 0 to 10000                  | 0.01%                 | 2000            | Immediately   |

In the SigmaWin+, set error detection points, but with parameters, set error rate (level).

For example, to set the level for the torque reference data of sample data 1, configure the settings as shown below.


- 1. For [Error Detection Data: Data 1] in the SigmaWin+, set the torque reference data.
- 2. In Pn5C4 (Error Detection Sample Data Set 1 Warning Level 1), set the error rate for reference data. For example, to trigger A.905 when the error rate is 30%, set Pn5C4 to 3000. Or to no longer trigger A.905, set Pn5C4 to 10000.

## (b) Error Judgment Level

It is normally not necessary to change the error judgment level, but it can be changed with parameters. The error judgment level cannot be changed in the SigmaWin+. The following table lists the related parameters for changing the error judgment level.

|                  | Error Detection Sample Data | Set 1 Judgment Level 1 |                 | Speed Pos Trq |
|------------------|-----------------------------|------------------------|-----------------|---------------|
| Pn5C5 (25C5h)    | Setting Range               | Setting Unit           | Default Setting | When Enabled  |
| (2000)           | 0 to 10000                  | -                      | 1520            | Immediately   |
|                  | Error Detection Sample Data | Set 1 Judgment Level 2 |                 | Speed Pos Trq |
| Pn5C7 (25C7h)    | Setting Range               | Setting Unit           | Default Setting | When Enabled  |
| (200111)         | 0 to 10000                  | -                      | 1520            | Immediately   |
|                  | Error Detection Sample Data | Set 2 Judgment Level 1 |                 | Speed Pos Trq |
| Pn5C9 (25C9h)    | Setting Range               | Setting Unit           | Default Setting | When Enabled  |
| (2000)           | 0 to 10000                  | -                      | 1520            | Immediately   |
|                  | Error Detection Sample Data | Set 2 Judgment Level 2 |                 | Speed Pos Trq |
| Pn5CB<br>(25CBh) | Setting Range               | Setting Unit           | Default Setting | When Enabled  |
|                  | 0 to 10000                  | _                      | 1520            | Immediately   |

The following table shows the relationship between the Mahalanobis distance and the parameters to set.

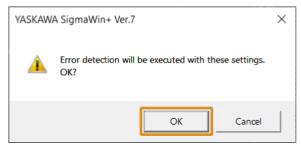


| No. | Description                                                                                                                                                                                                                                                                                              | Parameter to Set                 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| (1) | Set what percentage the judgment level should be exceeded in order to trigger A.905. This percentage is called the error rate, which can be calculated with the following equation.  Error rate [%] = Number of samples that exceed the judgment level [count] / Number of samples of trace data [count] | Pn5C4<br>Pn5C6<br>Pn5C8<br>Pn5CA |
| (2) | Set the judgment level at which an error is judged.  It is normally not necessary to change these settings from the default values.                                                                                                                                                                      | Pn5C5<br>Pn5C7<br>Pn5C9<br>Pn5CB |

# 9.6.4 Executing Error Detection

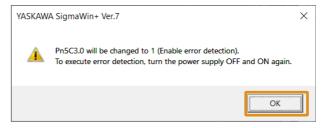
This section describes how to use error detection.

Information Refer to the following section for the preparations to use error detection.


9.6.3 Creating Sample Data and Setting the Error Judgment Baseline on page 474

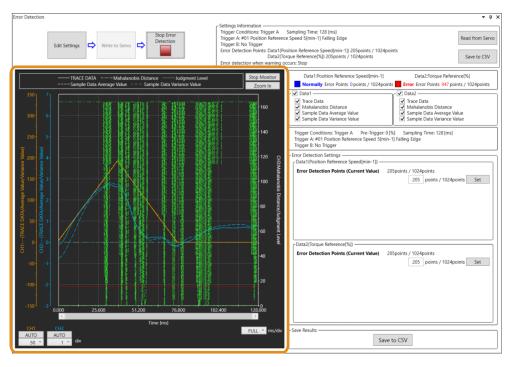
 $1. \hspace{0.1in}$  Click the [Execute Error Detection] button in the SigmaWin+.




The message dialog box will be displayed.

2. Click the [OK] button.




Another message dialog box will be displayed.

3. Click the [OK] button.



- 4. Turn the power to the SERVOPACK OFF and ON again.
- 5. Run the machine and equipment as you would normally.

The sample data and running trace data will be displayed.



When an error is detected according to the set conditions and content, A.905 (Error Detection Warning) will occur.

Click the [Save to CSV] button to save the on-screen data to a CSV file.



## (1) Restrictions

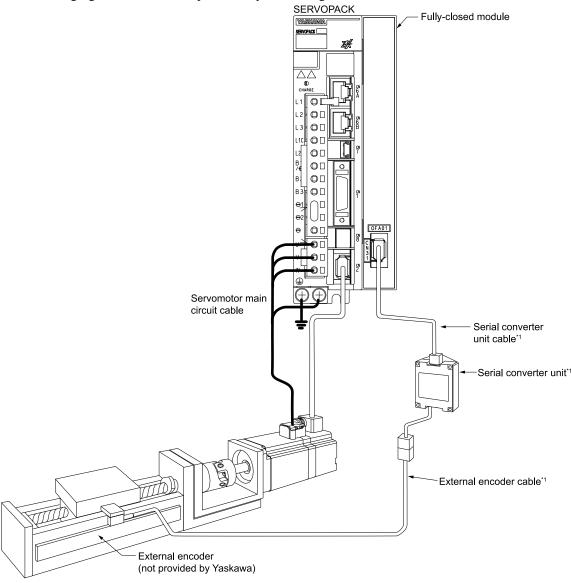
- If the SERVOPACK software version is 0007 or later, use the SigmaWin+ Ver. 7.42 or later to use error detection.
- You cannot execute utility functions at the same time as error detection. Error detection will stop if you execute
  the following utility functions.

|                               | SigmaWin+                                              |        | Digital Operator      |                                                                          |  |
|-------------------------------|--------------------------------------------------------|--------|-----------------------|--------------------------------------------------------------------------|--|
| Button in<br>[Menu]<br>Window | SigmaWin+ Function<br>Name                             | Fn No. | Utility Function Name | Reference                                                                |  |
| Monitor                       | Trace                                                  | -      | -                     | 9.3 Monitoring Machine Operation Status and Signal Waveforms on page 462 |  |
| Tuning                        | Tuning - Moment of Inertia<br>Ratio Settings - Execute | -      | _                     | 8.5 Moment of Inertia Estimation without a Host Reference on page 329    |  |
| Diagnostic                    | Mechanical Analysis                                    | -      | -                     | 8.16.1 Mechanical Analysis on page 444                                   |  |

# **Fully-Closed Loop Control**

Provides detailed information on performing fully-closed loop control with the SERVOPACK.

| 10.1 | Fully-Closed System                                                                  | 482 |
|------|--------------------------------------------------------------------------------------|-----|
| 10.2 | SERVOPACK Commissioning Procedure                                                    | 483 |
| 10.3 | Parameter Settings for Fully-Closed Loop Control                                     | 485 |
|      | 10.3.1 Parameters to Set and Reference Information                                   | 485 |
|      | 10.3.2 Control Block Diagram for Fully-Closed Loop Control                           | 485 |
|      | 10.3.3 Setting the Motor Rotation Direction and the Machine Movement Direction       | 486 |
|      | 10.3.4 Setting the Number of External Encoder Scale Pitches                          | 487 |
|      | 10.3.5 Setting the PAO, PBO, and PCO (Encoder Divided Pulse Output) Signals          | 487 |
|      | 10.3.6 External Absolute Encoder Data Reception Sequence                             | 488 |
|      | 10.3.7 Setting Unit Systems                                                          | 488 |
|      | 10.3.8 Alarm Detection Settings                                                      | 489 |
|      | 10.3.9 Analog Monitor Signal Settings                                                | 489 |
|      | 10.3.10Setting to Use an External Encoder for Speed Feedback                         | 491 |
| 10.4 | Monitoring an External Encoder                                                       | 492 |
|      | 10.4.1 Option Module Required for Monitoring                                         | 492 |
|      | 10.4.2 Related Parameters                                                            | 492 |
|      | 10.4.3 Monitoring the Current Value of the External Encoder from the Host Controller |     |
|      | 10.4.4 Block Diagrams                                                                | 492 |


# 10.1 Fully-Closed System

With a fully-closed system, an externally installed encoder is used to detect the position of the controlled machine and the machine's position information is fed back to the SERVOPACK. High-precision positioning is possible because the actual machine position is fed back directly. With a fully-closed system, looseness or twisting of mechanical parts may cause vibration or oscillation, resulting in unstable positioning.

Refer to the following manual for details on fully-closed modules.

 $\square$   $\Sigma$ -X-Series Peripheral Device Selection Manual (Manual No.: SIEP C710812 12)

The following figure shows an example of the system configuration.



\*1 The connected devices and cables depend on the type of external linear encoder that is used.

#### Note:

Refer to the following section for details on connections that are not shown above, such as connections to power supplies and peripheral devices.

■ 2.4 Examples of Standard Connections between SERVOPACKs and Peripheral Devices on page 92

# 10.2 SERVOPACK Commissioning Procedure

First, confirm that the SERVOPACK operates correctly with semi-closed loop control, and then confirm that it operates correctly with fully-closed loop control.

The commissioning procedure for the SERVOPACK for fully-closed loop control is given below.

| Step | Description                                                                                                                                                                                                                                                                                                                                                                             | Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Required Parameter and Object<br>Settings                                                                                                                                                                                                                                                                                                                                                                 | Controlling<br>Device              |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 1    | Check operation of the entire sequence with semi-closed loop control and without a load.  Items to Check  Power supply circuit wiring  Servomotor wiring  Encoder wiring  Wiring of I/O signal lines from the host controller  Servomotor rotation direction, motor speed, and multiturn data  Operation of safety mechanisms, such as the holding brakes and the overtravel mechanisms | Set the parameters so that the SER-VOPACK operates correctly in semi-closed loop control without a load and check the following points. Set Pn002 to n.0□□□ (do not use an external encoder) to specify semi-closed loop control.  • Are there any errors in the SERVOPACK?  • Does jogging operation function correctly when you operate the SERVOPACK without a load?  • Do the I/O signals turn ON and OFF correctly?  • Is power supplied to the servomotor when the Servo ON command (Enable Operation command) is sent from the host controller?  • Does the servomotor operate correctly when a position reference is input by the host controller? | <ul> <li>Pn000 (Basic Function Selections 0)</li> <li>Pn001 (Application Function Selections 1)</li> <li>Pn002 = n.X□□□ (External Encoder Usage)</li> <li>Position User Unit (2701h) (position reference unit)</li> <li>Pn50A to Pn516 or Pn50A, Pn590 to Pn5BC (Input Signal Selections)</li> </ul>                                                                                                      | SERVOPACK<br>or host<br>controller |
| 2    | Check operation with the servomotor connected to the machine with semi-closed loop control.  Items to Check  Initial response of the system connected to the machine  Movement direction, travel distance, and movement speed as specified by the references from the host controller                                                                                                   | Connect the servomotor to the machine. Set the moment of inertia ratio in Pn103 using autotuning without a host reference. Check that the machine's movement direction, travel distance, and movement speed agree with the references from the host controller.                                                                                                                                                                                                                                                                                                                                                                                            | Pn103 (Moment of Inertia Ratio)                                                                                                                                                                                                                                                                                                                                                                           | Host controller                    |
| 3    | Check the external encoder.  Items to Check  Is the signal from the external encoder received correctly?                                                                                                                                                                                                                                                                                | Set the parameters related to fully-closed loop control and move the machine with your hand without turning ON the power to the servo-motor. Check the following status with the digital operator or Sigma-Win+.  • Does the fully-closed feedback pulse counter count up when the servomotor moves in the forward direction?  • Is the travel distance of the machine visually about the same as the amount counted by the fully-closed feedback pulse counter?  Note:  The unit for the fully-closed feedback pulse counter is pulses, which is equivalent to the external encoder sine wave pitch.                                                      | <ul> <li>Pn002 = n.X□□□ (External Encoder Usage)</li> <li>Pn20A (Number of External Encoder Scale Pitches)</li> <li>Position User Unit (2701h) (position reference unit)</li> <li>Pn281 (Encoder Output Resolution)</li> <li>Pn51B (Motor-Load Position Deviation Overflow Detection Level)</li> <li>Pn522 (Positioning Completed Width)</li> <li>Pn52A (Multiplier per Fully-closed Rotation)</li> </ul> | _                                  |

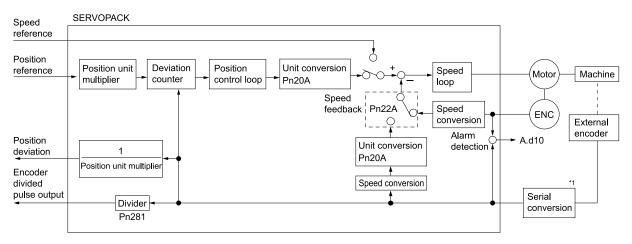
Continued on next page.

Continued from previous page.

| Step | Description                                                                                                                  | Operation                                                                                                                                                                                                                                 | Required Parameter and Object<br>Settings           | Controlling<br>Device |
|------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------|
| 4    | Perform a program jogging. Items to Check Does the fully-closed system operate correctly for the SER- VOPACK without a load? | Perform a program jogging and confirm that the travel distance is the same as the reference value in Pn531 (Program Jogging Travel Distance).  When you perform program jogging, start from a low speed and gradually increase the speed. | Pn530 to Pn536 (program jogging-related parameters) | SERVOPACK             |
| 5    | Operate the SERVOPACK. Items to Check Does the fully-closed system operate correctly, including the host controller?         | Input a position reference and confirm that the SERVOPACK operates correctly. Start from a low speed and gradually increase the speed.                                                                                                    | _                                                   | Host controller       |

#### 10.3 **Parameter Settings for Fully-Closed Loop Control**

#### 10.3.1 **Parameters to Set and Reference Information**


This section describes the parameter and object settings that are related to fully-closed loop control.

|                                                  |                                                                             | Av                  | ailability            | <b>!</b> *!            |                                                                                                     |
|--------------------------------------------------|-----------------------------------------------------------------------------|---------------------|-----------------------|------------------------|-----------------------------------------------------------------------------------------------------|
| Parameter and<br>Object to Set                   | Setting                                                                     | Position<br>Control | Speed<br>Con-<br>trol | Torque<br>Con-<br>trol | Reference                                                                                           |
| $Pn000 (2000h) = n.\Box\Box X$                   | Motor rotation direction                                                    | 0                   | 0                     | 0                      | 3 10.3.3 Setting the Motor Rotation Direc-                                                          |
| $Pn002 (2002h) = n.$ $X \square \square \square$ | External encoder usage method                                               | 0                   | 0                     | 0                      | tion and the Machine<br>Movement Direction on<br>page 486                                           |
| Pn20A (220Ah)                                    | Number of external encoder scale pitches                                    | 0                   | 0                     | 0                      | Number of External Encoder Scale Pitches on page 487                                                |
| Pn281 (2281h)                                    | PAO, PBO, and PCO (Encoder Divided Pulse Output) signals from the SERVOPACK | 0                   | 0                     | 0                      | 10.3.5 Setting the PAO,<br>PBO, and PCO<br>(Encoder Divided Pulse<br>Output) Signals on page<br>487 |
| -                                                | External absolute encoder data reception sequence                           | 0                   | 0                     | 0                      | 6.9.4 Reading the Position Data from the Absolute Linear Encoder on page 256                        |
| Position User Unit (2701h)                       | Position reference unit                                                     | 0                   | _                     | -                      | 5.14 Setting Unit Systems on page 193                                                               |
| Pn51B (251Bh)                                    | Motor-load position deviation overflow detection level                      | 0                   | _                     | _                      | ■ 10.3.8 Alarm Detection                                                                            |
| Pn52A (252Ah)                                    | Multiplier per fully-closed rotation                                        | 0                   | _                     | _                      | Settings on page 489                                                                                |
| Pn006 (2006h)/Pn007<br>(2007h)                   | Analog monitor signal                                                       | 0                   | 0                     | 0                      | 10.3.9 Analog Monitor<br>Signal Settings on page<br>489                                             |
| Pn22A (222Ah) = n.<br>X                          | Speed feedback method during fully-closed loop control                      | 0                   | _                     | -                      | 10.3.10 Setting to Use<br>an External Encoder for<br>Speed Feedback on<br>page 491                  |

o: Can be set, -: Cannot be set

#### 10.3.2 **Control Block Diagram for Fully-Closed Loop Control**

The control block diagram for fully-closed loop control is provided below.



\*1 The connected device depends on the type of external encoder.

#### Note:

You can use either an incremental or an absolute encoder. If you use an absolute encoder, set Pn002 to  $n.\Box 1 \Box \Box$  (use the absolute encoder as an incremental encoder).

# 10.3.3 Setting the Motor Rotation Direction and the Machine Movement Direction

You must set the motor rotation direction and the machine movement direction. To perform fully-closed loop control, you must set the motor rotation direction with both  $Pn000 = n.\Box\Box\Box X$  (Rotation Direction Selection) and  $Pn002 = n.X\Box\Box\Box$  (External Encoder Usage).

|                             | Downwooder |                          |                     | Pn002 (2002h)= n.X□□□ (External Encoder Usage) |                     |                     |  |
|-----------------------------|------------|--------------------------|---------------------|------------------------------------------------|---------------------|---------------------|--|
| Parameter                   |            |                          | n.1                 | 100                                            | n.3                 | JDD                 |  |
|                             | n.aaa0     | Reference<br>direction   | Forward reference   | Reverse reference                              | Forward reference   | Reverse reference   |  |
|                             |            | Motor rotation direction | CCW                 | CW                                             | CCW                 | CW                  |  |
| Pn000 (2000h)<br>= n.□□□X   |            | External encoder         | Forward movement    | Reverse<br>movement                            | Reverse<br>movement | Forward<br>movement |  |
| (Motor Direction Selection) | n.aaa1     | Reference<br>direction   | Forward reference   | Reverse reference                              | Forward reference   | Reverse reference   |  |
|                             |            | Motor rotation direction | CW                  | CCW                                            | CW                  | CCW                 |  |
|                             |            | External encoder         | Reverse<br>movement | Forward movement                               | Forward movement    | Reverse<br>movement |  |

- Phase B leads in the divided pulses for a forward reference regardless of the setting of  $Pn000 = n.\Box\Box\Box X$ .
- Forward direction: The direction in which the pulses are counted up.
- Reverse direction: The direction in which the pulses are counted down.

## (1) Related Parameters

•  $Pn000 = n.\Box\Box\Box X$ 

Refer to the following section for details.

■ 5.4 Motor Direction Setting on page 165

•  $Pn002 = n.X \square \square \square$ 

When you perform fully-closed loop control, set Pn002 to  $n.1 \square \square \square$  or  $n.3 \square \square \square$ .

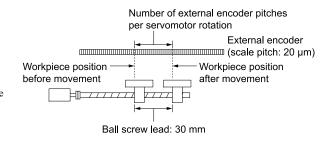
|         |        | External                                  | Encoder Usage Speed Pos Trq                                                 | When Enabled  |
|---------|--------|-------------------------------------------|-----------------------------------------------------------------------------|---------------|
|         |        | 0 Default Do not use an external encoder. |                                                                             |               |
| Pn002   | n.X□□□ | 1                                         | The external encoder moves in the forward direction for CCW motor rotation. |               |
| (2002h) | _      | 2                                         | Reserved (Do not use.)                                                      | After restart |
|         |        | 3                                         | The external encoder moves in the reverse direction for CCW motor rotation. |               |
|         |        | 4                                         | Reserved (Do not use.)                                                      |               |

nformation

Determine the setting of  $Pn002 = n.X \square \square \square$  as described below.

- 1. Set Pn000 to n.□□□0 (use the direction in which the linear encoder counts up as the forward direction) and set Pn002 to n.□□□□ (the external encoder moves in the forward direction for CCW motor rotation).
- 2. Manually rotate the motor shaft counterclockwise.
- 3. If the fully-closed feedback pulse counter counts up, do not change the setting of Pn002 (Pn002 = n.1 \( \pi \) \( \pi \) . If the fully-closed feedback pulse counter counts down, set Pn002 to n.3 \( \pi \) \( \pi \) .

## 10.3.4 Setting the Number of External Encoder Scale Pitches


Set the number of external encoder scale pitches per servomotor rotation in Pn20A.

## (1) Setting Example

## **Specifications**

- External encoder scale pitch: 20 µm
- · Ball screw lead: 30 mm

If the external encoder is connected directly to the servomotor, the setting will be 1500 (30 mm/0.02 mm = 1500).



#### Note:

- 1. If there is a fraction, round off the digits below the decimal point.
- 2. If the number of external encoder scale pitches per servomotor rotation is not an integer, there will be deviation in the position loop gain (Kp), feedforward, and position reference speed monitor. This is not relevant for the position loop and it therefore does not interfere with the position accuracy.

## (2) Related Parameters

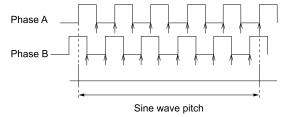
|                  | Number of External Encoder Scale Pitches |                          |                 | Speed Pos Trq |
|------------------|------------------------------------------|--------------------------|-----------------|---------------|
| Pn20A<br>(220Ah) | Setting Range                            | Setting Unit             | Default Setting | When Enabled  |
| (2207 111)       | 4 to 1048576                             | 1 scale pitch/revolution | 32768           | After restart |

# 10.3.5 Setting the PAO, PBO, and PCO (Encoder Divided Pulse Output) Signals

Set the position resolution in Pn281 (Encoder Output Resolution).

Enter the number of phase A and phase B edges for the setting.

## (1) Setting Example


### **Specifications**

- External encoder scale pitch: 20 μm
- Ball screw lead: 30 mm
- Speed:1600 mm/s

If a single pulse (multiplied by 4) is output for 1  $\mu$ m, the setting would be 20.

If a single pulse (multiplied by 4) is output for  $0.5 \mu m$ , the setting would be 40.

The encoder divided pulse output would have the following waveform if the setting is 20.



"\" indicates the edge positions. In this example, the set value is 20 and therefore the number of edges is 20.

#### Note:

The upper limit of the encoder signal output frequency (multiplied by 4) is 6.4 Mpps. Do not set a value that would cause the output to exceed 6.4 Mpps. If the output exceeds the upper limit, an A.511 alarm (Encoder Output Pulse Overspeed) will be output.

Information

If the setting is 20 and the speed is 1600 mm/s, the output frequency would be 1600 mm/s / 0.001 mm = 1600000 = 1.6 Mpps.

Because 1.6 Mpps is less than 6.4 Mpps, this setting can be used.

## (2) Related Parameters

|                  | Encoder Output Resolution Speed Pos 1 |              |                 |               |  |
|------------------|---------------------------------------|--------------|-----------------|---------------|--|
| Pn281<br>(2281h) | Setting Range                         | Setting Unit | Default Setting | When Enabled  |  |
|                  | 1 to 4096                             | 1 edge/pitch | 20              | After restart |  |

#### Note:

- The maximum setting for the encoder output resolution is 4096. If the resolution of the external encoder exceeds 4096, pulse output will no longer be possible at the resolution given in the following section.
- Feedback Resolution of Linear Encoder: Incremental Linear Encoder on page 195
- Feedback Resolution of Linear Encoder: Absolute Linear Encoder on page 196
- If the setting of Pn281 exceeds the resolution of the external encoder, an A.041 alarm (Encoder Output Pulse Setting Error) will be output.

## 10.3.6 External Absolute Encoder Data Reception Sequence

Refer to the following sections for details.

■ 6.9.4 Reading the Position Data from the Absolute Linear Encoder on page 256

With fully-closed loop control, the same sequence as for a linear servomotor is used.

## 10.3.7 Setting Unit Systems

Refer to the following section for details.

■ 5.14 Setting Unit Systems on page 193

With fully-closed loop control, the same setting as for a linear servomotor is used.

## 10.3.8 Alarm Detection Settings

This section describes the parameters related to alarm detection settings (Pn51B and Pn52A).

## (1) Pn51B (Motor-Load Position Deviation Overflow Detection Level)

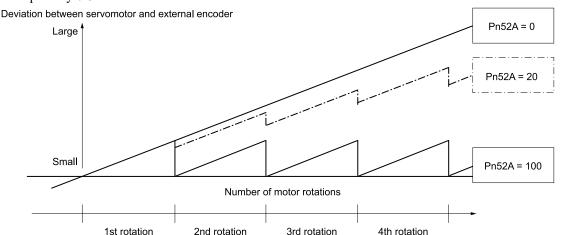
This setting is used to detect the difference between the feedback position of the servomotor encoder and the feedback load position of the external encoder for fully-closed loop control. If the detected difference exceeds the setting, an A.d10 alarm (Motor-Load Position Deviation Overflow) will be output.

|                  | Motor-Load Position Deviation Overflow Detection Level |                  |                 | Speed Pos Trq |
|------------------|--------------------------------------------------------|------------------|-----------------|---------------|
| Pn51B<br>(251Bh) | Setting Range                                          | Setting Unit     | Default Setting | When Enabled  |
| (251611)         | 0 to 1073741824                                        | 1 reference unit | 1000            | Immediately   |

#### Note:

If you set this parameter to 0, A.d10 alarms will not be output and the machine may be damaged.

## (2) Pn52A (Multiplier per Fully-closed Rotation)


Set the coefficient of the deviation between the servomotor and the external encoder per servomotor rotation. This setting can be used to prevent the servomotor from running out of control due to damage to the external encoder or to detect belt slippage.

## (a) Setting Example

Increase the value if the belt slips or is twisted excessively.

If this parameter is set to 0, the external encoder value will be read as it is.

If you use the default setting of 20, the second rotation will start with the deviation for the first motor rotation multiplied by 0.8.



#### (b) Related Parameters

| Pn52A<br>(252Ah) | Multiplier per Fully-closed Rotation Speed Pos Trq |              |                 |              |  |
|------------------|----------------------------------------------------|--------------|-----------------|--------------|--|
|                  | Setting Range                                      | Setting Unit | Default Setting | When Enabled |  |
|                  | 0 to 100                                           | 1%           | 20              | Immediately  |  |

# 10.3.9 Analog Monitor Signal Settings

You can monitor the position deviation between the servomotor and load with an analog monitor.

|                  |        | Analog M      | Ionitor 1 Signal Selection Speed Pos Trq                                                                                                                                 | When Enabled |
|------------------|--------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                  |        | 00            | Motor speed (1 V/1000 min <sup>-1</sup> ) Motor speed (1 V/1000 mm/s)                                                                                                    |              |
|                  |        | 01            | Speed reference (1 V/1000 min <sup>-1</sup> ) Speed reference (1 V/1000 mm/s)                                                                                            |              |
|                  |        | 02<br>Default | Torque reference (1 V/100% rated torque) Force reference (1 V/100% rated force)                                                                                          |              |
|                  |        | 03            | Position deviation (0.05 V/reference unit)                                                                                                                               |              |
|                  |        | 04            | Position amplifier deviation (after electronic gear) (0.05 V/encoder pulse unit) Position amplifier deviation (after electronic gear) (0.05 V/linear encoder pulse unit) |              |
|                  |        | 05            | Position reference speed (1 V/1000 min <sup>-1</sup> ) Position reference speed (1 V/1000 mm/s)                                                                          |              |
|                  |        | 06            | Reserved (Do not use.)                                                                                                                                                   |              |
| Pn006<br>(2006h) | n.□□XX | 07            | Position deviation between motor and load (0.01 V/reference unit)                                                                                                        |              |
| (200011)         |        | 08            | Positioning completion (positioning completed: 5 V, positioning not completed: 0 V)                                                                                      | Immediately  |
|                  |        | 09            | Speed feedforward (1 V/1000 min <sup>-1</sup> ) Speed feedforward (1 V/1000 mm/s)                                                                                        |              |
|                  |        | 0A            | Torque feedforward (1 V/100% rated torque) Force feedforward (1 V/100% rated force)                                                                                      |              |
|                  |        | 0B            | Active gain (gain 1: 1 V, gain 2: 2 V) 2 V)                                                                                                                              |              |
|                  |        | 0C            | Completion of position reference distribution (completed: 5 V, not completed: 0 V)                                                                                       |              |
|                  |        | 0D            | External encoder speed (1 V/1000 min <sup>-1</sup> : value at the motor shaft)                                                                                           |              |
|                  |        | 0E            | Reserved (Do not use.)                                                                                                                                                   |              |
|                  |        | 0F            | Reserved (Do not use.)                                                                                                                                                   |              |
|                  |        | 10            | Main circuit DC voltage                                                                                                                                                  |              |
|                  |        | 11 to 5F      | Reserved (Do not use.)                                                                                                                                                   |              |

|         |  | Analog M      | Monitor 2 Signal Selection Speed Pos Trq                                                                                                                                 | When Enabled |
|---------|--|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|         |  | 00<br>Default | Motor speed (1 V/1000 min <sup>-1</sup> ) Motor speed (1 V/1000 mm/s)                                                                                                    |              |
|         |  | 01            | Speed reference (1 V/1000 min <sup>-1</sup> ) Speed reference (1 V/1000 mm/s)                                                                                            |              |
|         |  | 02            | Torque reference (1 V/100% rated torque) Force reference (1 V/100% rated force)                                                                                          |              |
|         |  | 03            | Position deviation (0.05 V/reference unit)                                                                                                                               |              |
|         |  | 04            | Position amplifier deviation (after electronic gear) (0.05 V/encoder pulse unit) Position amplifier deviation (after electronic gear) (0.05 V/linear encoder pulse unit) |              |
|         |  | 05            | - · · · · · · · · · · · · · · · · · · ·                                                                                                                                  |              |
|         |  | ]             |                                                                                                                                                                          |              |
| Pn007   |  | 07            | Position deviation between motor and load (0.01 V/reference unit)                                                                                                        |              |
| (2007h) |  | 08            |                                                                                                                                                                          | Immediately  |
|         |  | 09            |                                                                                                                                                                          |              |
|         |  |               | 0A                                                                                                                                                                       | ` ' '        |
|         |  | 0B            | Active gain (gain 1: 1 V, gain 2: 2 V) 2 V)                                                                                                                              |              |
|         |  | 0C            | Completion of position reference distribution (completed: 5 V, not completed: 0 V)                                                                                       |              |
|         |  | 0D            | External encoder speed (1 V/1000 min <sup>-1</sup> : value at the motor shaft)                                                                                           |              |
|         |  | 0E            | Reserved (Do not use.)                                                                                                                                                   |              |
|         |  | 0F            | Reserved (Do not use.)                                                                                                                                                   |              |
|         |  | 10            | Main circuit DC voltage                                                                                                                                                  |              |
|         |  | 11 to 5F      | Reserved (Do not use.)                                                                                                                                                   |              |

# 10.3.10 Setting to Use an External Encoder for Speed Feedback

For fully-closed loop control, you normally set Pn22A to  $n.0 \square \square \square$  (use motor encoder speed). If you will use a direct drive servomotor and a high-resolution external encoder, set Pn22A to  $n.1 \square \square \square$  (use external encoder speed).

|                  |        | Fully-clos   | Fully-closed Control Speed Feedback Selection Speed Pos Trq |               |
|------------------|--------|--------------|-------------------------------------------------------------|---------------|
| Pn22A<br>(222Ah) | n.X□□□ | 0<br>Default | Use motor encoder speed.                                    | After restart |
|                  |        | 1            | Use external encoder speed.                                 |               |

#### Note:

This parameter cannot be used if Pn002 is set to n.0 \( \sigma \square \) (do not use external encoder).

# 10.4 Monitoring an External Encoder

You can monitor the current value of an external encoder attached to a machine without creating a fully-closed loop.

A dual encoder system with an encoder in the rotary servomotor and an external encoder attached to the machine is used, but only the encoder in the rotary servomotor is used in the control loop.

The external encoder is used only to monitor the current position of the machine.

You can also use a touch probe to latch the current position of an external encoder.

# 10.4.1 Option Module Required for Monitoring

A fully-closed module (SGDV-OFA01A) is required to use this function. Refer to the following manual for detailed information on installation.

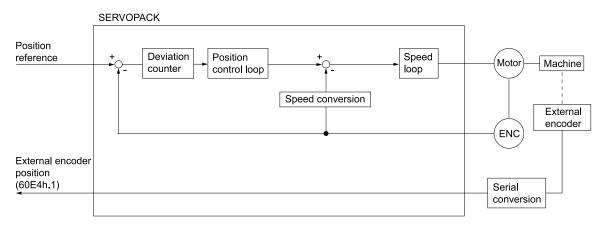
Σ-V-Series/Σ-V-Series for Large-Capacity Models/Σ-7-Series/Σ-X-Series Installation Guide Fully-closed Module (Manual No.: TOBP C720829 03)

## 10.4.2 Related Parameters

The parameter for using the external encoder as the current value monitor of the machine is shown below.

|         | n.X□□□ | External Encoder Monitor Usage Speed Pos Trq |                                         | When Enabled |                        |               |  |
|---------|--------|----------------------------------------------|-----------------------------------------|--------------|------------------------|---------------|--|
|         |        | 0<br>Default                                 | Do not use an external encoder monitor. |              |                        |               |  |
| Pn00E   |        | 1                                            | Use CCW as the forward direction.       |              |                        |               |  |
| (200Eh) |        |                                              |                                         | 2            | Reserved (Do not use.) | After restart |  |
|         |        |                                              |                                         |              |                        |               |  |
|         |        | 4                                            | Reserved (Do not use.)                  |              |                        |               |  |

Fully-closed loop control is not used, so set Pn002 to n.0□□□ (do not use external encoder).


# 10.4.3 Monitoring the Current Value of the External Encoder from the Host Controller

To check the current value of the external encoder from the host controller, set the following object.


| Index | Subindex | Name                      | Data Type | Access | PDO<br>Mapping | Value         | Saving to<br>EEPROM |
|-------|----------|---------------------------|-----------|--------|----------------|---------------|---------------------|
| 00545 | 0        | Number of entries         | USINT     | RO     | No             | 1             | No                  |
| 60E4h | 1        | External encoder position | DINT      | RO     | Yes            | 0 [Pos. unit] | Yes                 |

# 10.4.4 Block Diagrams

A simple block diagram is given below to provide an overall image of monitoring an external encoder.



The following block diagram shows monitoring an external encoder in the Profile Position Mode.



# $\Sigma$ -LINK II Function

Provides detailed information on the  $\Sigma$ -LINK II functions of the SERVOPACK.

| 11.1 | Outline                                                                                             | 496   |
|------|-----------------------------------------------------------------------------------------------------|-------|
| 11.2 | Devices That Support Σ-LINK II                                                                      | 497   |
| 11.3 | Procedure to Use Σ-LINK II                                                                          | 498   |
| 11.4 | Connecting Devices to the SERVOPACK                                                                 | 500   |
|      | 11.4.1 Using a Direct Connection between the SERVOPACK and Servomotor                               | 500   |
|      | 11.4.2 Connecting Multiple Devices to the SERVOPACK                                                 |       |
| 11.5 | Performing Self-Configuration                                                                       | 501   |
|      | 11.5.1 Preparations                                                                                 | 501   |
|      | 11.5.2 Applicable Tools                                                                             | 501   |
|      | 11.5.3 Operating Procedure                                                                          | 501   |
|      | 11.5.4 Troubleshooting If an Error Code Is Displayed                                                | 503   |
| 11.6 | Specifying the Servomotor (Semi-Closed Encoder) to Drive                                            | 506   |
|      | 11.6.1 Operating Procedure                                                                          | 506   |
| 11.7 | Configuring the $\Sigma$ -LINK II Data Settings                                                     | 508   |
|      | 11.7.1 Monitoring the Input Signals of Connected Devices with the Sigma-Win+                        | 508   |
|      | 11.7.2 Monitoring the Input Signals of Connected Devices from the Host Controller                   | 511   |
|      | 11.7.3 Allocating Input Signals of Connected Devices to SERVOPACK Functions and Using those Signals | 511   |
|      | 11.7.4 Configuring Settings to Output Signals from Connected Devices                                | . 516 |
| 11.8 | Changing Detection Conditions of Alarms Related to $\Sigma$ -LINK II                                | .521  |
|      | 11.8.1 Connected Node Change Detection Condition                                                    |       |
|      | 11.8.2 Σ-LINK II I/O Device Error Detection Selection                                               |       |
|      |                                                                                                     |       |

# 11.1 Outline

Σ-LINK II is a protocol used for communications between the SERVOPACK and encoder.

The  $\Sigma$ -X Series now allows you to connect multiple devices to the SERVOPACK.

In addition to the encoder, you can also connected sensors and I/O devices installed on the machine end. You can also use a Yaskawa sensor hub (model number: JUSP-SL2H $\square$ ) to connect devices that do not support  $\Sigma$ -LINK II to the SERVOPACK.

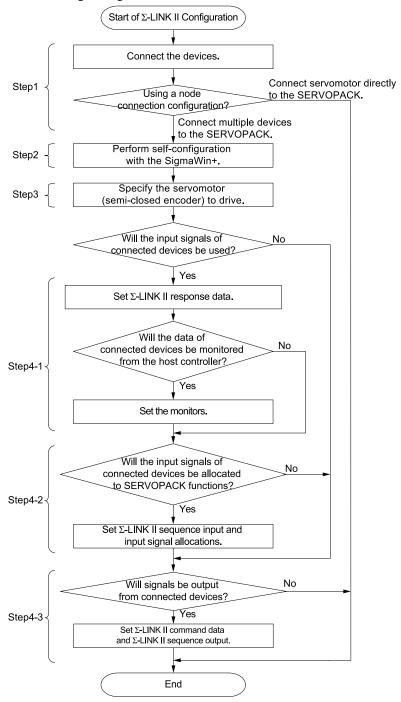
The SERVOPACK collects data from the devices. This collected data can be monitored by the host controller and allocated to signals and used for SERVOPACK functions.

You may need to perform configuration using the SigmaWin+ to enable  $\Sigma$ -LINK II. You may also need to configure settings to monitor the data of connected devices and to configure settings to allocate signals to SERVO-PACK functions.

# 11.2 Devices That Support $\Sigma$ -LINK II

The following table lists devices that support  $\Sigma$ -LINK II.

| Classifica-<br>tion | Product                                    | Product Name                                                    | Model         |  |
|---------------------|--------------------------------------------|-----------------------------------------------------------------|---------------|--|
|                     | Servomotor<br>(Semi-closed encoder)        | Σ-X-series rotary servomotors Ancillary specification: Standard | SGMXn-nnnnnn1 |  |
| Encoder             | External Encoder */ (Fully-closed encoder) | _                                                               | -             |  |
| I/O Device          | Sensor hub                                 | Σ-LINK II sensor hub                                            | JUSP-SL2H□    |  |


<sup>\*1</sup> Currently in development



 $\Sigma\text{-X-series rotary servomotors (model: SGMX$\square$-\square\square\square\square\square\square\square\square$2) with $\Sigma$-7 compatibility cannot use $\Sigma$-LINK II.}$ 

# 11.3 Procedure to Use $\Sigma$ -LINK II

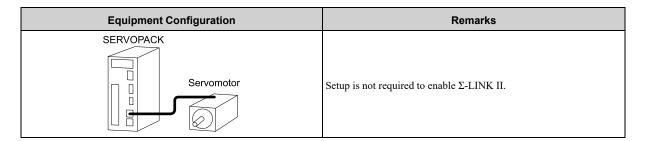
The following table gives the flow and references to use  $\Sigma$ -LINK II.



| 屲                                     |   |
|---------------------------------------|---|
| =                                     |   |
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |   |
|                                       | _ |

|     | Step | ltem                                                                                                                                                                                       | Reference                                                                                                                                                                                                          |
|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | 1    | Connecting Devices to the SERVOPACK                                                                                                                                                        | <ul> <li>11.2 Devices That Support Σ-LINK II on page 497</li> <li>11.4 Connecting Devices to the SERVOPACK on page 500</li> </ul>                                                                                  |
|     | 2    | Performing Self-Configuration with the SigmaWin+                                                                                                                                           | 3 11.5 Performing Self-Configuration on page 501                                                                                                                                                                   |
|     | 3    | Specifying the Servomotor (Semi-Closed Encoder) to Drive                                                                                                                                   | 11.6 Specifying the Servomotor (Semi-Closed Encoder) to Drive on page 506                                                                                                                                          |
|     | 4    | Configuring the Σ-LINK II Data Settings                                                                                                                                                    | _                                                                                                                                                                                                                  |
|     | 4-1  | Monitoring the Input Signals of Connected Devices                                                                                                                                          | <ul> <li>11.7.1 Monitoring the Input Signals of Connected Devices with the SigmaWin+ on page 508</li> <li>11.7.2 Monitoring the Input Signals of Connected Devices from the Host Controller on page 511</li> </ul> |
|     | 4-2  | Allocating Input Signals of Connected Devices to SERVO-PACK Functions and Using those Signals  Information This function can be used only when a digital I/O type sensor hub is connected. | 11.7.3 Allocating Input Signals of Connected Devices to SERVOPACK Functions and Using those Signals on page 511                                                                                                    |
| 4-3 |      | Outputting Signals from Connected Devices                                                                                                                                                  | 11.7.4 Configuring Settings to Output Signals from Connected Devices on page 516                                                                                                                                   |




### Self-configuration:

Self-configuration is a function that automatically identifies the devices connected over  $\Sigma$ -LINK II. Perform self-configuration from the SigmaWin+. You must perform self-configuration only when you connect multiple devices to the SERVOPACK.

#### 11.4 **Connecting Devices to the SERVOPACK**

This section describes about when using a direction connection between the SERVOPACK and servomotor and when connecting multiple devices to the SERVOPACK.

#### Using a Direct Connection between the SERVOPACK and 11.4.1 Servomotor



#### **Connecting Multiple Devices to the SERVOPACK** 11.4.2

You can connect a maximum of three Σ-LINK-II-compatible devices to the SERVOPACK, but only two of those connections can be devices that detect position (e.g., a servomotor and external encoder).



There are limitations on the maximum cable length when connecting multiple devices to the SERVOPACK. Refer to the following manual for details.

Important  $\bigcap$   $\Sigma$ -X-Series Peripheral Device Selection Manual (Manual No.: SIEP C710812 12)

| Equipment Configuration                          | Remarks                                                                                                                                                                                                                        |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SERVOPACK Servomotor Sensor hub External encoder | <ul> <li>Setup is required to enable Σ-LINK II. Refer to the following section for details on the settings.</li> <li>II.5 Performing Self-Configuration on page 501</li> <li>Devices can be connected in any order.</li> </ul> |

# 11.5 Performing Self-Configuration

Perform self-configuration to identify the devices connected over  $\Sigma$ -LINK II. Use the SigmaWin+ to perform self-configuration. When you perform self-configuration, the connected devices will be automatically identified and those results will be saved in the SERVOPACK.

If a node or connection configuration is detected after restart that differs from the saved results, A.Cd4 (Sigma-LINK II Node Change Detected) will occur.

Information

- If you change the configuration of devices connected over Σ-LINK II after the self-configuration results are saved, execute self-configuration again or discard the self-configuration data. To discard the self-configuration data, click the [Discard Settings] button on the [SigmaLINK II Settings] window.
  - If you use a direct connection between the SERVOPACK and servomotor, self-configuration is not required. However, if you switch to a direct connection between the SERVOPACK and servomotor after the self-configuration results are saved, execute self-configuration again or discard the self-configuration results data.
  - When you connect a sensor hub, additional setup procedures are required. After you configure these settings, perform procedures shown in the following section.
  - 11.7.3 Allocating Input Signals of Connected Devices to SERVOPACK Functions and Using those Signals on page 511
  - 11.7.4 Configuring Settings to Output Signals from Connected Devices on page 516
  - If the node detection time is short, a timeout may occur and the correct results may not be obtained. In this case, increase the setting of Pn589 (SigmaLINK II Node Detection Time).

## 11.5.1 Preparations

Always check the following before you perform  $\Sigma$ -LINK II configuration.

- Utility functions must not be running.
   Refer to the following section for details on utility functions.
   18.3.1 Corresponding SERVOPACK Utility Function Names on page 808
- The servo must not be ON.

## 11.5.2 Applicable Tools

The following table lists the tools that you can use to perform  $\Sigma$ -LINK II configuration.

| Tool             | Fn No./Function Name Reference                                                |                                                                           |
|------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Digital Operator | You cannot perform $\Sigma$ -LINK II configuration from the digital operator. |                                                                           |
| SigmaWin+        | [Σ-LINK II Setting]                                                           | Engineering Tool SigmaWin+ Operation Manual (Manual No.: SIET S800001 34) |

# 11.5.3 Operating Procedure

This section gives the operation procedure for  $\Sigma$ -LINK II self-configuration.

- l . First connect all  $\Sigma$ -LINK II devices, and then start an online connection to the SERVO-PACK with the SigmaWin+.
- 2. Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.

The [Menu] window will be displayed.

### Click [SigmaLINK II Setting] in the [Basic Functions] area.



The [SigmaLINK II Communications Settings] window will be displayed.

#### 4. Click the [Execute] button.

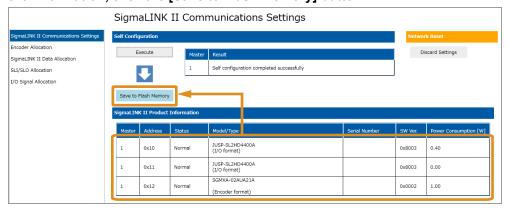


- Information Click the [Discard Settings] button to discard the self-configuration results.
  - If an error code is displayed, refer to the following section. 3 11.5.4 Troubleshooting If an Error Code Is Displayed on page 503

The message dialog box will be displayed.

#### 5. Click the [Yes] button.




Another dialog box will be displayed.

#### 6. Click the [OK] button.



The devices connected to CN2 will be automatically detected, and the connected device information will be displayed at the bottom of the window.

7. Check the information that was automatically detected. If there are no problems with the information, click the [Save to Flash Memory] button.



The message dialog box will be displayed.

8. Click the [Yes] button.



Another dialog box will be displayed.

9. Click the [OK] button.



The self-configuration results will be saved in the SERVOPACK.

This concludes the procedure.

## 11.5.4 Troubleshooting If an Error Code Is Displayed

If an error code is displayed when starting the [SigmaLINK II Communications Settings] window in the Sigma-Win+ or when  $\Sigma$ -LINK II self-configuration was executed, resolve the error based on the following information.

| Error<br>Code | Item                                    | Possible Cause                                                                                           | Confirmation                                                                                                                                                                | Correction                                                                                                                                                                                                                                        |
|---------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x0011        |                                         | The SERVOPACK exceeded the upper limit of $\Sigma$ -LINK II nodes that can be connected.                 | Check the number of nodes that can be connected.  For the number of nodes that can be connected, refer to Peripheral Device Selection Manual (Manual No.: SIEP C710812 12). | Review the device configuration and set it to the number of nodes that can be connected.                                                                                                                                                          |
|               | Node Combination Error                  | The content saved in the configura-<br>tion and the content detected in<br>node detection are different. | Check the content that was saved with self-configuration and the actual device connections.                                                                                 | If the actual device configuration is correct, execute self-configuration again.  If the content that was saved with self-configuration is correct, change the actual device configuration to match the saved content.                            |
|               |                                         | A sensor hub is connected that exceeds the number of connections supported by the SERVOPACK.             | Check the total number of sensor hub connections.                                                                                                                           | Keep the total number of sensor hub connections to within two nodes.                                                                                                                                                                              |
| 0x0013        | Excessive Total<br>Power<br>Consumption | The total power consumption of the nodes connected to one connector exceeded 3.5 W.                      | Check the total power consumption of the nodes connected to one connector.                                                                                                  | Use a booster unit.     Review the connection configuration so that total power consumption does not exceed the specified value.     For the connection configuration, refer to Peripheral Device Selection Manual (Manual No.: SIEP C710812 12). |

Continued on next page.

Continued from previous page.

| Error<br>Code | Item                              | Possible Cause                                                                                                                                                                                                    | Confirmation                                                                                                                                                                        | Correction                                                                                                                                           |                                                                                                                                           |                                                                                                                                                                                                                                                   |
|---------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                                   |                                                                                                                                                                                                                   |                                                                                                                                                                                     | A timeout occurred while detecting nodes.                                                                                                            | Compare the number of detected nodes displayed on the window and the actual number of connected nodes.                                    | If the number of detected nodes displayed on the window is lower than the actual number of connected nodes, make the set value for Pn589 (Σ-LINK II Node Detection Time) larger, turn the power OFF and ON, and execute self-configuration again. |
|               |                                   | There is a faulty contact in the connector or the connector is not wired correctly for the encoder cable.                                                                                                         | Check the condition of the connector for encoder cable.                                                                                                                             | Reconnect the connector for encoder cable and check the encoder wiring.                                                                              |                                                                                                                                           |                                                                                                                                                                                                                                                   |
|               |                                   | There is a cable disconnection or shortcircuit in the encoder. Or, the cable impedance is outside the specified values.                                                                                           | Check the condition of the encoder cable.                                                                                                                                           | Use the encoder cable within the specified specifications.                                                                                           |                                                                                                                                           |                                                                                                                                                                                                                                                   |
| 0x0070        | 0x0070 Slave Communications Error | The power supplied to nodes is insufficient due to the voltage drop from the length of the cable.                                                                                                                 | Check if the length of each cable is within the specified cable length. For the specified cable lengths, refer to Peripheral Device Selection Manual (Manual No.: SIEP C710812 12). | <ul> <li>Use a booster unit.</li> <li>Change the length of each cable to the specified cable length.</li> </ul>                                      |                                                                                                                                           |                                                                                                                                                                                                                                                   |
|               |                                   | One of the following has occurred: corrosion caused by improper temperature, humidity, or gas, a short-circuit caused by entry of water drops or cutting oil, or faulty contact in connector caused by vibration. | Check the operating environment.                                                                                                                                                    | Improve the operating environment, and replace the cable. If the alarm still occurs, replace the SERVOPACK.                                          |                                                                                                                                           |                                                                                                                                                                                                                                                   |
|               |                                   |                                                                                                                                                                                                                   | A malfunction was caused by noise.                                                                                                                                                  | _                                                                                                                                                    | Correct the wiring around the encoder by separating the encoder cable from the servomotor main circuit cable or by grounding the encoder. |                                                                                                                                                                                                                                                   |
|               |                                   | A failure occurred in the SERVOPACK.                                                                                                                                                                              | _                                                                                                                                                                                   | If normal communications are possible after replacing the SERVO-PACK with a different SERVOPACK, the SERVOPACK may be faulty. Replace the SERVOPACK. |                                                                                                                                           |                                                                                                                                                                                                                                                   |
| 0xFFFF        | System Error                      | A system error occurred in the SERVOPACK.                                                                                                                                                                         | -                                                                                                                                                                                   | If normal communications are possible after replacing the SERVO-PACK with a different SERVOPACK, the SERVOPACK may be faulty. Replace the SERVOPACK. |                                                                                                                                           |                                                                                                                                                                                                                                                   |

# 11.6 Specifying the Servomotor (Semi-Closed Encoder) to Drive

The SERVOPACK cannot determine which device at what node address to drive by executing self-configuration only. For this reason, you must specify the node address of the servomotor for the SERVOPACK to drive and save that node address in the SERVOPACK.

You will use the SigmaWin+ to configure these settings.



#### Node Address:

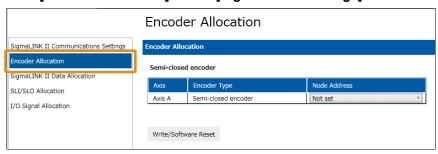
A node address is a unique number that identifies a device connected over  $\Sigma$ -LINK II.



If you do not set the node address of the servomotor (semi-closed encoder) to drive correctly, an A.C90 alarm (Encoder Communications Error) will occur.

Information

You can also use parameters to specify the servomotor (semi-closed encoder) to drive. The following table lists the related parameters.

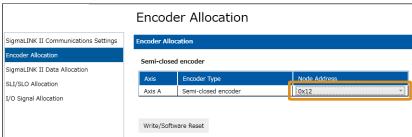

| D 0D 4           |        | Node Ad  | dress Speed Pos Trq                                        | When Enabled  |
|------------------|--------|----------|------------------------------------------------------------|---------------|
| Pn0DA<br>(20DAh) | n.□□XX | 00 to 1E | Select an encoder with a node address between 00h and 1Eh. | After restart |

For example, set Pn0DA to 0012h for Node 3.

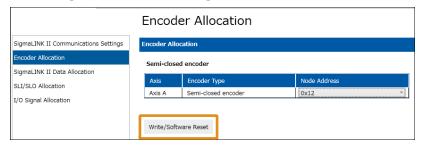
## 11.6.1 Operating Procedure

Use the following procedure to specify the motor (semi-closed encoder) to drive.

1. Click [Encoder Allocation] on the [SigmaLINK II Settings] window.




The display of the [SigmaLINK II Communications Settings] area will be changed.


2. Set the node address of the servomotor to be driven by the SERVOPACK.

Refer to the following section for details on node address.

11.6 Specifying the Servomotor (Semi-Closed Encoder) to Drive on page 506



#### 3. Click the [Write/Software Reset] button.



The message dialog box will be displayed.

#### 4. Click the [Yes] button.



After the software is reset, the node address of the motor to be driven by the SERVOPACK will be saved to the SERVOPACK and another message dialog box will be displayed.

#### 5. Click the [OK] button.



This concludes the procedure.

# 11.7 Configuring the $\Sigma$ -LINK II Data Settings

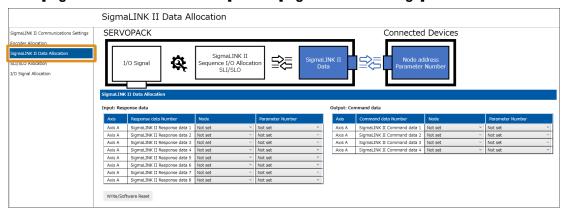
You can accomplish the following by using  $\Sigma$ -LINK II functions.

- Monitoring the Input Signals of Connected Devices
- Allocating Input Signals of Connected Devices to SERVOPACK Functions and Using those Signals
- Outputting Signals from Connected Devices

To accomplish this, the  $\Sigma$ -LINK II data input from  $\Sigma$ -LINK II peripheral devices or output to  $\Sigma$ -LINK II peripheral devices must be associated with data inside the SERVOPACK. You will use the SigmaWin+ to configure these settings.

The following figure shows an image of the content to set.  $_{\mbox{\scriptsize SERVOPACK}}$ 

P-OT Forward Drive Prohibit Input
N-OT Reverse Drive Prohibit Input
N-OT Reverse Drive Prohibit Input
N-OT Reverse External Torque Limit Input
N-OL Reverse Exte


# 11.7.1 Monitoring the Input Signals of Connected Devices with the SigmaWin+

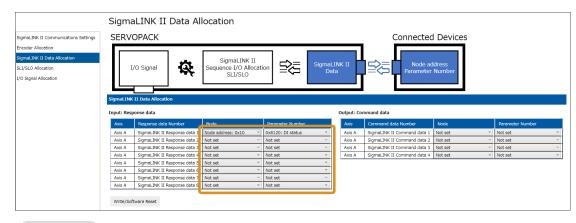
This section describes how to monitor the signals input to devices connected over  $\Sigma$ -LINK II with the SigmaWin +.

You can check the signals input to devices connected over  $\Sigma$ -LINK II as  $\Sigma$ -LINK II Response Data 1 to 8 with the monitor and trace functions in the SigmaWin+.

Use the SigmaWin+ to configure monitor settings for the input signals of devices connected over Σ-LINK II.

1. Click [SigmaLINK II Data Allocation] on the [SigmaLINK II Settings] window.




The display of the [SigmaLINK II Communications Settings] area will be changed.

2. Under [Input: Response Data], set [Node] and [Parameter Number] for the [Response Data Number] to allocate.

Information

For the parameter number, refer to the device documentation. Refer to the following manual if you use a Yas-kawa sensor hub.

Σ-X-Series Σ-LINK II Sensor Hub Instructions (Manual No.: TOMP C710812 06)



Information You can also set [Output: Command Data] at the same time. Refer to the following section for details.

■ 11.7.4 Configuring Settings to Output Signals from Connected Devices on page 516

#### 3. Click the [Write/Software Reset] button.



The message dialog box will be displayed.

#### 4. Click the [Yes] button.



After the software is reset, the content that was set will be saved to the SERVOPACK and another message dialog box will be displayed.

#### 5. Click the [OK] button.



This concludes the procedure.

Information

- Refer to the following section for details on checking input signals with the SigmaWin+ monitors.
  - \$\overline{\Pi}\$ 9.2.2 Operation Monitor, Status Monitor, and I/O Monitor on page 454
- The input signals of connected devices can also be checked from the host controller. To check input signals from the host controller, configure the settings described here, and then configure the settings shown in the following section.

  11.7.2 Monitoring the Input Signals of Connected Devices from the Host Controller on page 511

## (1) Related Parameters

You can also use parameters to configure the settings to monitor the signals input to devices connected over  $\Sigma$ -LINK II with the SigmaWin+. The related parameters are shown next.

Information If you use the SigmaWin+ to configure the settings, these parameters will be automatically set.

To use parameters, set Pn050 to Pn05E. The settings of Pn050 to Pn05E are shown below.

| Digit     | Description                       | Remarks                                                                                                         |
|-----------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------|
| n.oooXXXX | Parameter number (0000h to FFFFh) | This setting determines the breakdown of the response data (32 bits). The values are determined by each device. |
| n. XXXX   |                                   | A unique number assigned to each connected device. This value is automatically set during self-configuration.   |

#### **Example: To Check the Input Signals of the Yaskawa Sensor Hub DI Signals (Parameter Number:** 8120) in $\Sigma$ -LINK II Response Data 1

- In Pn050 = n. \upprox \upprox XXXX (SigmaLINK II Response Data Selections 1 = Parameter Number), set the parameter ter number of the sensor hub DI signals to 8120.
- In Pn050 = n.XXXX□□□□ (SigmaLINK II Response Data Selections 1 = Node Address), set the node address of the sensor hub that was assigned in self-configuration.

Information For the parameter number, refer to the device documentation. Refer to the following manual if you use a Yaskawa sensor

Σ-X-Series Σ-LINK II Sensor Hub Instructions (Manual No.: TOMP C710812 06)

When you configure the above settings, you can check the input signals of the sensor hub with bit 8 to 11 in  $\Sigma$ -LINK II Response Data 1.

| Bit             | Bit 31<br>to Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8                               | Bit 7<br>to Bit 0 |
|-----------------|---------------------|--------|--------|-------|-------------------------------------|-------------------|
| Bit Information | Reserved            |        |        |       | Information of sensor hub channel 1 | Reserved          |

The following table gives details on the related parameters.

|                  | SigmaLINK II Response Data                           | Speed Pos Trq |                 |               |  |  |  |
|------------------|------------------------------------------------------|---------------|-----------------|---------------|--|--|--|
| Pn050 (2050h)    | Setting Range                                        | Setting Unit  | Default Setting | When Enabled  |  |  |  |
| (200011)         | 00000000h to FF7EFFFh                                | -             | 00000000h       | After restart |  |  |  |
| Pn052<br>(2052h) | SigmaLINK II Response Data                           | Speed Pos Trq |                 |               |  |  |  |
|                  | Setting Range                                        | Setting Unit  | Default Setting | When Enabled  |  |  |  |
| (2002)           | 00000000h to FF7EFFFFh                               | -             | 00000000h       | After restart |  |  |  |
|                  | SigmaLINK II Response Data                           | a Selection 3 |                 | Speed Pos Trq |  |  |  |
| Pn054<br>(2054h) | Setting Range                                        | Setting Unit  | Default Setting | When Enabled  |  |  |  |
|                  | 00000000h to FF7EFFFh                                | -             | 00000000h       | After restart |  |  |  |
|                  | SigmaLINK II Response Data                           | Speed Pos Trq |                 |               |  |  |  |
| Pn056<br>(2056h) | Setting Range                                        | Setting Unit  | Default Setting | When Enabled  |  |  |  |
| (2000)           | 00000000h to FF7EFFFFh                               | -             | 00000000h       | After restart |  |  |  |
|                  | SigmaLINK II Response Data Selection 5 Speed Pos Trq |               |                 |               |  |  |  |
| Pn058<br>(2058h) | Setting Range                                        | Setting Unit  | Default Setting | When Enabled  |  |  |  |
| (====:,          | 00000000h to FF7EFFFFh                               | -             | 00000000h       | After restart |  |  |  |
|                  | SigmaLINK II Response Data Selection 6 Speed Pos Tro |               |                 |               |  |  |  |
| Pn05A<br>(205Ah) | Setting Range                                        | Setting Unit  | Default Setting | When Enabled  |  |  |  |
| (,               | 00000000h to FF7EFFFFh                               | -             | 00000000h       | After restart |  |  |  |
|                  | SigmaLINK II Response Data                           | a Selection 7 |                 | Speed Pos Trq |  |  |  |
| Pn05C<br>(205Ch) | Setting Range                                        | Setting Unit  | Default Setting | When Enabled  |  |  |  |
| (====,           | 00000000h to FF7EFFFh                                | -             | 00000000h       | After restart |  |  |  |
|                  | SigmaLINK II Response Data                           | a Selection 8 |                 | Speed Pos Trq |  |  |  |
| Pn05E<br>(205Eh) | Setting Range                                        | Setting Unit  | Default Setting | When Enabled  |  |  |  |
| ( ")             | 00000000h to FF7EFFFFh                               | -             | 00000000h       | After restart |  |  |  |

# 11.7.2 Monitoring the Input Signals of Connected Devices from the Host Controller

To check input signals from the host controller, configure the settings shown in "11.7.2 Monitoring the Input Signals of Connected Devices from the Host Controller on page 511", and then set the following objects.

| Index  | Subindex | Name                              | Data Type | Access | PDO<br>Mapping | Value                          | Saving to EEPROM |
|--------|----------|-----------------------------------|-----------|--------|----------------|--------------------------------|------------------|
|        | 0        | Number of entries                 | USINT     | RO     | No             | 3                              | No               |
| 2710h  | 1        | Command                           | STRING    | RW     | No             | 0 to 0xFF<br>(default: 0)      | No               |
| 2710n  | 2        | Status                            | USINT     | RO     | No             | _                              | No               |
|        | 3        | Reply                             | STRING    | RO     | No             | _                              | No               |
|        | 0        | Number of entries                 | USINT     | RO     | No             | 11                             | No               |
|        | 1        | Σ-LINK II response data 1         | UDINT     | RO     | Yes            | _                              | No               |
|        | 2        | Σ-LINK II response data 2         | UDINT     | RO     | Yes            | _                              | No               |
|        | 3        | Σ-LINK II response data 3         | UDINT     | RO     | Yes            | _                              | No               |
|        | 4        | Σ-LINK II response data 4         | UDINT     | RO     | Yes            | _                              | No               |
|        | 5        | Σ-LINK II response data 5         | UDINT     | RO     | Yes            | _                              | No               |
| 2773h  | 6        | Σ-LINK II response data 6         | UDINT     | RO     | Yes            | _                              | No               |
|        | 7        | Σ-LINK II response data 7         | UDINT     | RO     | Yes            | _                              | No               |
|        | 8        | Σ-LINK II response data 8         | UDINT     | RO     | Yes            | _                              | No               |
|        | 9        | Σ-LINK II data status information | UDINT     | RO     | Yes            | -                              | No               |
|        | 10       | Reserved                          | UDINT     | RO     | Yes            | _                              | No               |
|        | 11       | Reserved                          | UDINT     | RO     | Yes            | _                              | No               |
|        | 0        | Number of entries                 | USINT     | RO     | No             | 4                              | No               |
|        | 1        | Σ-LINK II command data 1          | UDINT     | RW     | Yes            | 0h to FFFFFFFh<br>(default: –) | No               |
| 2774h  | 2        | Σ-LINK II command data 2          | UDINT     | RW     | Yes            | 0h to FFFFFFFh<br>(default: –) | No               |
| 211711 | 3        | Σ-LINK II command data 3          | UDINT     | RW     | Yes            | 0h to FFFFFFFh<br>(default: –) | No               |
|        | 4        | Σ-LINK II command data 4          | UDINT     | RW     | Yes            | 0h to FFFFFFFh<br>(default: –) | No               |

Refer to the following section for details on the objects.

3 15.5.7 SERVOPACK Adjusting Command (2710h) on page 604

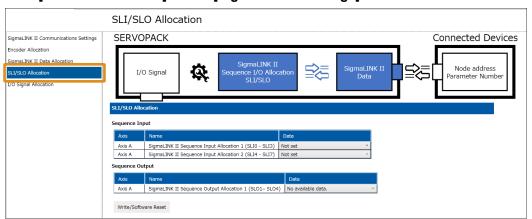
\$\tilde{\pi}\$ 15.5.9 \( \Sigma \)-LINK II Data Monitor (2773h, 2774h) on page 608

# 11.7.3 Allocating Input Signals of Connected Devices to SERVOPACK Functions and Using those Signals

The signals input to devices connected over  $\Sigma$ -LINK II can be used by allocating them to functions related to SERVOPACK input signals. The signals that can be allocated are given in the following table.

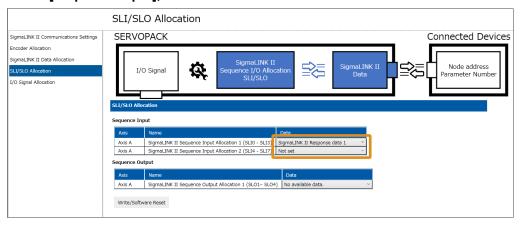
Information This function can be used only when a digital I/O type sensor hub is connected.

| Signal |                                            |  |  |
|--------|--------------------------------------------|--|--|
| P-OT   | Forward Drive Prohibit Input Signal        |  |  |
| N-OT   | Reverse Drive Prohibit iInput Signal       |  |  |
| /Home  | Home Switch Input Signal                   |  |  |
| /P-CL  | Forward External Torque Limit Input Signal |  |  |
| /N-CL  | Reverse External Torque Limit Input Signal |  |  |

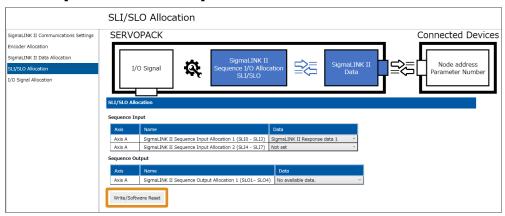

The setting procedure for the SigmaWin+ is shown next.

1. Check if the  $\Sigma$ -LINK II data allocation settings have been completed.

Refer to the following section for details.


3 11.7.1 Monitoring the Input Signals of Connected Devices with the SigmaWin+ on page 508

2. Click [SLI/SLO Allocation] on the [SigmaLINK II Settings] window.




The display of the [SigmaLINK II Communications Settings] area will be changed.

3. Under [Sequence Input], select the  $\Sigma$ -LINK II data to allocate.



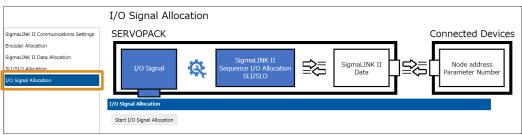
4. Click the [Write/Software Reset] button.



The message dialog box will be displayed.

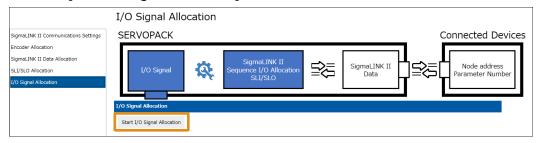
#### 5. Click the [Yes] button.




After the software is reset, the content that was set will be saved to the SERVOPACK and another message dialog box will be displayed.

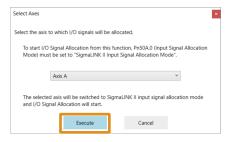
#### 6. Click the [OK] button.




Close the message dialog box. You will return to the [SigmaLINK II Settings] window.

#### 7. Click [I/O Signal Allocation] on the [SigmaLINK II Settings] window.



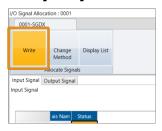

The display of the [SigmaLINK II Communications Settings] area will be changed.

#### 8. Click the [Start I/O Signal Allocation] button.



The [Select Axis] window will be displayed.

#### 9. Click the [Execute] button.




The [I/O Signal Allocation] window will be displayed.

10. Double-click the [Pin Number] cell of the signal to allocate, select sequence input number that was allocated in step 3, and then press the [Enter] key.




- 11. Use the same operation to set [Polarity] as required.
- 12. Click [Write].



The [Write Signal Allocation Information] dialog box will be displayed.

13. Click the [Change/Software Reset] button.



The software will be reset, the content that was set will be applied, and another message dialog box will be displayed.

#### 14. Click the [OK] button.



This concludes the procedure.

# (1) Related Parameters

You can also use parameters to configure the settings to allocate input signals of connected devices to SERVO-PACK functions and to use those signals. The related parameters are shown next.

Information If you use the SigmaWin+ to configure the settings, these parameters will be automatically set.

#### (a) SLI Allocations

To set the SLI allocations using parameters, allocate  $\Sigma$ -LINK II Response Data 1 to 8 to Pn0B1 (SigmaLINK II Sequence Allocation 1) and Pn0B2 (SigmaLINK II Sequence Allocation 2).

Four bits of continuous data from the bit specified by  $Pn0B1 = n.XX \square \square$  are allocated as SLI0 to SLI3. Pn0B2 is also allocated as SLI4 to SLI7 in the same manner.

• Pn0B1: Σ-LINK II Sequence Input Allocation 1

|                  |                      | SigmaLI                                                              | NK II Response Data Selection Speed Pos Trq                               | When Enabled                                                              |  |  |  |    |                                                                           |  |
|------------------|----------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|----|---------------------------------------------------------------------------|--|
|                  |                      | 00<br>Default                                                        | Disable (data is not set to the SigmaLINK II sequence input).             |                                                                           |  |  |  |    |                                                                           |  |
|                  |                      | 01                                                                   | Allocate SigmaLINK II Response Data 1 to the SigmaLINK II sequence input. |                                                                           |  |  |  |    |                                                                           |  |
|                  |                      | 02                                                                   | Allocate SigmaLINK II Response Data 2 to the SigmaLINK II sequence input. |                                                                           |  |  |  |    |                                                                           |  |
| D 004            |                      |                                                                      |                                                                           |                                                                           |  |  |  | 03 | Allocate SigmaLINK II Response Data 3 to the SigmaLINK II sequence input. |  |
| Pn0B1<br>(20B1h) | n.□□XX               | n.□□XX 04                                                            | Allocate SigmaLINK II Response Data 4 to the SigmaLINK II sequence input. | After restart                                                             |  |  |  |    |                                                                           |  |
|                  |                      | 05                                                                   | Allocate SigmaLINK II Response Data 5 to the SigmaLINK II sequence input. |                                                                           |  |  |  |    |                                                                           |  |
|                  |                      |                                                                      | 06                                                                        | Allocate SigmaLINK II Response Data 6 to the SigmaLINK II sequence input. |  |  |  |    |                                                                           |  |
|                  |                      | 07                                                                   | Allocate SigmaLINK II Response Data 7 to the SigmaLINK II sequence input. |                                                                           |  |  |  |    |                                                                           |  |
|                  |                      | 08                                                                   | Allocate SigmaLINK II Response Data 8 to the SigmaLINK II sequence input. |                                                                           |  |  |  |    |                                                                           |  |
| Pn0B1            | DB1 n.XX□□ Selection |                                                                      | NK II Sequence Input Allocation Start Position Speed Pos Trq              | When Enabled                                                              |  |  |  |    |                                                                           |  |
| (20B1h)          | 00 to 20             | Specify the allocation start bit to the SigmaLINK II sequence input. | After restart                                                             |                                                                           |  |  |  |    |                                                                           |  |

• Pn0B2: Σ-LINK II Sequence Input Allocation 2 The setting procedure is the same as Pn0B1.



If you allocated  $\Sigma$ -LINK II response data to  $\Sigma$ -LINK II sequence inputs, A.Cd7 (SigmaLINK II I/O Device Communications Error) and A.Cd8 (SigmaLINK II I/O Device Status Error) will occur regardless of the setting of Pn0DD (SigmaLINK II I/O Device Error Detection Selection).

#### (b) I/O Signal Allocation

To set the I/O signal allocations using parameters, allocate the  $\Sigma$ -LINK II sequence inputs (SLI0 to SLI7) to SERVOPACK functions.

First, set Pn50A to n. \( \pi \) (use Pn590 to Pn5BC (SigmaLINK II input signal allocation mode)).

|                         |  |              | nal Allocation Mode Speed Pos Trq                                    | When Enabled  |
|-------------------------|--|--------------|----------------------------------------------------------------------|---------------|
| D=50A                   |  | 0            | Reserved (Do not use.)                                               |               |
| Pn50A<br>(250Ah) n.□□□X |  | 1<br>Default | Use Pn50A to Pn516 (Sigma-7S-compatible I/O signal allocation mode). | After restart |
|                         |  | 2            | Use Pn590 to Pn5BC (SigmaLINK II input signal allocation mode).      |               |

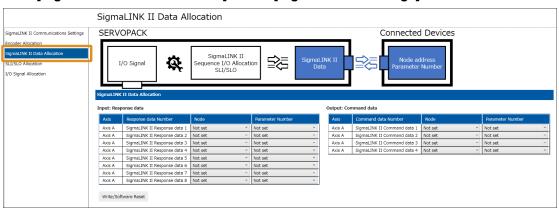
Next, set the settings of the signals to input from the  $\Sigma$ -LINK II connected device to  $\Box 1 \Box \Box \Box$  (allocate the signal to SIgmaLINK II Sequence Input  $\Box$ ).

Set the settings of the signals to input from the I/O signal connector (CN1) to  $\Box 0 \Box \Box$  (allocate signal to CN1- $\Box$ ). Refer to the following section for the parameters and settings used to set the signals.

 $\square$  (2)  $\Sigma$ -LINK II Input Signal Allocations on page 217

Finally, set the signals to output from the I/O signal connector (CN1).

Refer to the following section for the parameters and settings used to set the signals.

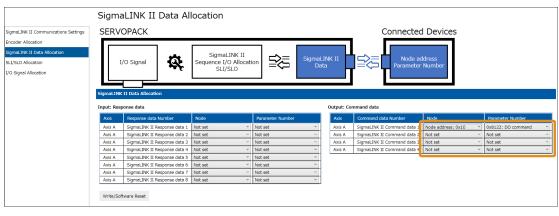

\$\tilde{\pi}\$ (2) \$\sum\_{\text{-LINK II Input Signal Allocations on page 219}\$

## 11.7.4 Configuring Settings to Output Signals from Connected Devices

Use the following setting procedure to output a signal to a device connected over  $\Sigma$ -LINK II. When you configure these settings, you can check the signals to output as  $\Sigma$ -LINK II Command Data 1 to 4 with the monitor and trace functions in the SigmaWin+.

You will use the SigmaWin+ to configure these settings.

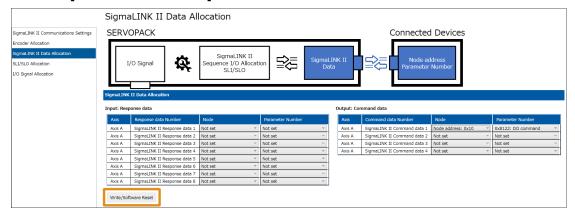
1. Click [SigmaLINK II Data Allocation] on the [SigmaLINK II Settings] window.




The display of the [SigmaLINK II Communications Settings] area will be changed.

2. Under [Output: Command Data], set [Node] and [Parameter Number] for the [Command Data Number] to allocate.

Information For the parameter number, refer to the device documentation. Refer to the following manual if you use a Yaskawa sensor hub.


 $\ \ \, \sum$  X-X-Series  $\Sigma$ -LINK II Sensor Hub Instructions (Manual No.: TOMP C710812 06)



Information You can also set [Input: Response Data] at the same time. Refer to the following section for details.

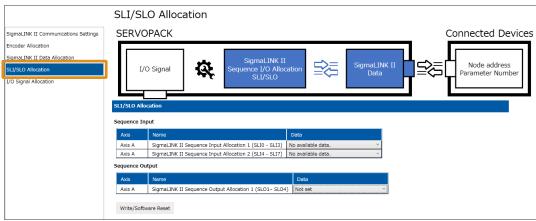

11.7.1 Monitoring the Input Signals of Connected Devices with the SigmaWin+ on page 508

#### 3. Click the [Write/Software Reset] button.



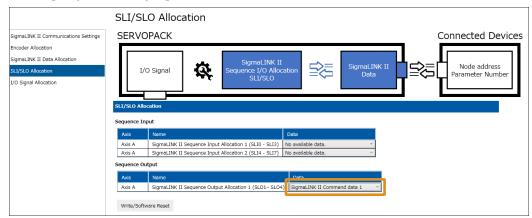
The message dialog box will be displayed.

#### 4. Click the [Yes] button.

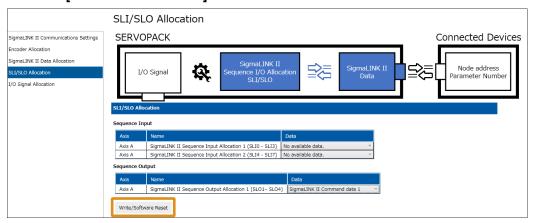



After the software is reset, the content that was set will be saved to the SERVOPACK and another message dialog box will be displayed.

#### 5. Click the [OK] button.




#### 6. Click [SLI/SLO Allocation] on the [SigmaLINK II Settings] window.




The display of the [SigmaLINK II Communications Settings] area will be changed.

#### 7. Under [Sequence Output], select the $\Sigma$ -LINK II data to allocate.



#### 8. Click the [Write/Software Reset] button.



The message dialog box will be displayed.

#### 9. Click the [Yes] button.



After the software is reset, the content that was set will be saved to the SERVOPACK and another message dialog box will be displayed.

#### 10. Click the [OK] button.



This concludes the procedure.

Information

The signals to output from connected devices can also be checked from the host controller. To check input signals from the host controller, configure the settings described here, and then configure the settings shown in the following section.

■ 11.7.2 Monitoring the Input Signals of Connected Devices from the Host Controller on page 511

# (1) Related Parameters

You can also use parameters to configure the settings to output signals from connected devices. The related parameters are shown next.

Information If you use the SigmaWin+ to configure the settings, these parameters will be automatically set.

#### (a) SLO Allocations

Assign the  $\Sigma$ -LINK II command data bits to the  $\Sigma$ -LINK II sequence outputs (SLO1 to SLO3). Four bits of continuous data from the bit specified by Pn0B5 = n.XX $\square$  $\square$  are allocated as SLO1 to SLO3.

|                         |          | SigmaLI                                                                   | NK II Command Data Selection Speed Pos Trq                                | When Enabled  |
|-------------------------|----------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------|
|                         |          | 00<br>Default                                                             | Disable (data is not set to the SigmaLINK II sequence output).            |               |
|                         |          | 01                                                                        | Allocate SigmaLINK II Command Data 1 to the SigmaLINK II sequence output. |               |
| Pn0B5<br>(20B5h) n.□□XX |          | Allocate SigmaLINK II Command Data 2 to the SigmaLINK II sequence output. |                                                                           | After restart |
|                         |          | 03                                                                        | Allocate SigmaLINK II Command Data 3 to the SigmaLINK II sequence output. |               |
|                         |          | 04                                                                        | Allocate SigmaLINK II Command Data 4 to the SigmaLINK II sequence output. |               |
| Pn0B5                   | In.XXLLL |                                                                           | NK II Sequence Output Allocation Start Position Speed Pos Trq             | When Enabled  |
| (20B5h)                 |          | 00 to 20                                                                  | Specify the allocation start bit to the SigmaLINK II sequence output.     | After restart |



If you allocated  $\Sigma$ -LINK II response data to  $\Sigma$ -LINK II sequence inputs, A.Cd7 (SigmaLINK II I/O Device Communications Error) and A.Cd8 (SigmaLINK II I/O Device Status Error) will occur regardless of the setting of Pn0DD (SigmaLINK II I/O Device Error Detection Selection).

Refer to the following sections for details on SO1 to SO3.

3 15.16.2 Digital Outputs (60FEh) on page 642

#### (b) Allocating $\Sigma$ -LINK II Data

To set  $\Sigma$ -LINK II allocations using parameters, use Pn090 to Pn094 to set information about the connected devices from which to output signals. The settings of Pn090 to Pn094 are shown below.

| Digit     | Description                       | Remarks                                                                                                         |
|-----------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------|
| n.oooXXXX | Parameter number (0000h to FFFFh) | This setting determines the breakdown of the response data (32 bits). The values are determined by each device. |
| n.XXXX    |                                   | A unique number assigned to each connected device. This value is automatically set during self-configuration.   |

# Example: To Output the $\Sigma$ -LINK II Command Data 1 Signals to Yaskawa Sensor Hub DO Signals (Parameter Number: 8122)

- In Pn090 = n. \( \subseteq \subseteq 8122 \) (SigmaLINK II Command Data Selections 1 = Parameter Number), set the parameter number of the output destination sensor hub DO signals to 8122.
- In Pn090 = n.XXXXDDDD (SigmaLINK II Command Data Selections 1 = Node Address), set the node address of the sensor hub that was assigned in self-configuration.

Information For

For the parameter number, refer to the device documentation. Refer to the following manual if you use a Yaskawa sensor hub

 $\hfill \Sigma$ -X-Series  $\Sigma$ -LINK II Sensor Hub Instructions (Manual No.: TOMP C710812 06)

When you configure the above settings, you can check the output signals with bit 1 to 4 on the sensor hub.

| Bit             | Bit 31 to Bit 4 | Bit 3                               | Bit 2 | Bit 1 | Bit 0                               |
|-----------------|-----------------|-------------------------------------|-------|-------|-------------------------------------|
| Bit Information | Reserved        | Information of sensor hub channel 4 |       |       | Information of sensor hub channel 1 |

The following table gives details on the related parameters.

|                  | SigmaLINK II Command Dat                            | Speed Pos Trq |                 |               |  |
|------------------|-----------------------------------------------------|---------------|-----------------|---------------|--|
| Pn090<br>(2090h) | Setting Range                                       | Setting Unit  | Default Setting | When Enabled  |  |
| (200011)         | 00000000h to FF7EFFFh                               | -             | 00000000h       | After restart |  |
|                  | SigmaLINK II Command Dat                            | a Selection 2 |                 | Speed Pos Trq |  |
| Pn092<br>(2092h) | Setting Range                                       | Setting Unit  | Default Setting | When Enabled  |  |
| (2002)           | 00000000h to FF7EFFFh                               | -             | 00000000h       | After restart |  |
|                  | SigmaLINK II Command Data Selection 3 Speed Pos Trq |               |                 |               |  |
| Pn094<br>(2094h) | Setting Range                                       | Setting Unit  | Default Setting | When Enabled  |  |
| (====)           | 00000000h to FF7EFFFFh                              | -             | 00000000h       | After restart |  |
| Pn096<br>(2096h) | SigmaLINK II Command Dat                            | a Selection 4 |                 | Speed Pos Trq |  |
|                  | Setting Range                                       | Setting Unit  | Default Setting | When Enabled  |  |
|                  | 00000000h to FF7EFFFh                               | -             | 00000000h       | After restart |  |

# 11.8 Changing Detection Conditions of Alarms Related to $\Sigma$ -LINK II

You can change the detection conditions for certain alarms related to  $\Sigma$ -LINK II by setting the relevant parameters.

## 11.8.1 Connected Node Change Detection Condition

When a node or connection configuration is detected after restart that differs from the saved self-configuration results, A.Cd4 (SigmaLINK II Node Change Detected) will occur.

Set the detection conditions at this time with  $Pn0DC = n.\Box\Box\Box X$ .

| Pn0DC<br>(20DCh) |        | Connecte                                                             | ed Node Change Detection Condition Speed Pos Trq                             | When Enabled                                                |               |  |
|------------------|--------|----------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------|---------------|--|
|                  | n.□□□X | 0<br>Default                                                         | Set yender ID and product ID as conditions                                   |                                                             |               |  |
|                  |        | 20DCh)  1 Set vendor ID, product ID, and serial number as conditions | 1                                                                            | Set vendor ID, product ID, and serial number as conditions. | After restart |  |
|                  |        |                                                                      | Set vendor ID, product ID, and product version as conditions.                |                                                             |               |  |
|                  |        | 3                                                                    | Set vendor ID, product ID, product version, and serial number as conditions. |                                                             |               |  |

#### 11.8.2 Σ-LINK II I/O Device Error Detection Selection

You can select the detection method for  $\Sigma$ -LINK II I/O device errors by setting Pn0DD (SigmaLINK II I/O Device Error Detection Selection).

|                  |                                                                                                                                | SigmaLIN                                                                                                                                 | NK II I/O Device Communications Check Mask Speed Pos Trq                                                                         | When Enabled  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------|
| Pn0DD            | n.□□□X                                                                                                                         | 0<br>Default                                                                                                                             | Set SigmaLINK II slave communications error as an alarm (A.Cd7).                                                                 |               |
| (20DDh)          |                                                                                                                                | 1                                                                                                                                        | Set SigmaLINK II slave communications error as a warning (A.932).                                                                | After restart |
|                  |                                                                                                                                | 2                                                                                                                                        | Do not detect the SigmaLINK II slave communications error.                                                                       |               |
|                  |                                                                                                                                | SigmaLIN                                                                                                                                 | NK II I/O Device Status Check Mask Speed Pos Trq                                                                                 | When Enabled  |
| Pn0DD<br>(20DDh) |                                                                                                                                | 0                                                                                                                                        | A.Cd8 occurs when the alarm or warning signal is received from the Sigma-LINK II slave.                                          |               |
|                  | n.□X□□                                                                                                                         | 1. Default A.Cd8 occurs when the alarm signal is received from the SigmaLINK II sl and A.933 occurs when the warning signal is received. | A.Cd8 occurs when the alarm signal is received from the SigmaLINK II slave and A.933 occurs when the warning signal is received. | After restart |
|                  | A.933 occurs when the alarm or warning signal is received LINK II slave.  3 Do not detect the SigmaLINK II slave status error. | A.933 occurs when the alarm or warning signal is received from the Sigma-LINK II slave.                                                  |                                                                                                                                  |               |
|                  |                                                                                                                                | 3                                                                                                                                        | Do not detect the SigmaLINK II slave status error.                                                                               |               |

#### Note:

If you allocated  $\Sigma$ -LINK II I/O response data to  $\Sigma$ -LINK II sequence inputs, A.Cd7 (SigmaLINK II I/O Device Communications Error) and A.Cd8 (SigmaLINK II I/O Device Status Error) will occur regardless of the setting of Pn0DD.

# **Safety Functions**

This chapter provides detailed information on the Safety Functions of the SERVOPACK.

| 12.1 | Introduction to the Safety Functions       | 524 |
|------|--------------------------------------------|-----|
|      | 12.1.1 Safety Functions                    | 524 |
|      | 12.1.2 Precautions for Safety Functions    | 524 |
| 12.2 | Hard Wire Base Block (HWBB)                | 525 |
|      | 12.2.1 Risk Assessment                     | 525 |
|      | 12.2.2 Hard Wire Base Block (HWBB) State   | 526 |
|      | 12.2.3 Resetting the HWBB State            | 526 |
|      | 12.2.4 Recovery Method                     | 527 |
|      | 12.2.5 Detecting Errors in HWBB Signal     | 528 |
|      | 12.2.6 HWBB Input Signal Specifications    | 528 |
|      | 12.2.7 Operation without a Host Controller | 528 |
|      | 12.2.8 /S-RDY (Servo Ready Output) Signal  | 529 |
|      | 12.2.9 /BK (Brake Output) Signal           | 529 |
|      | 12.2.10Stopping Methods                    | 530 |
|      | 12.2.11ALM (Servo Alarm) Signal            | 530 |
| 12.3 | EDM1 (External Device Monitor)             | 531 |
|      | 12.3.1 EDM1 Output Signal Specifications   | 531 |
| 12.4 | Applications Examples for Safety Functions | 532 |
|      | 12.4.1 Connection Example                  | 532 |
|      | 12.4.2 Failure Detection Method            | 532 |
|      | 12.4.3 Procedure                           | 533 |
| 12.5 | Validating Safety Functions                | 534 |
| 12.6 | Connecting a Safety Function Device        | 535 |

# 12.1 Introduction to the Safety Functions

## 12.1.1 Safety Functions

Safety functions are built into the SERVOPACK to reduce the risks associated with using the machine by protecting workers from the hazards of moving machine parts and otherwise increasing the safety of machine operation. Especially when working in hazardous areas inside guards, such as for machine maintenance, the Safety Function can be used to avoid hazardous moving machine parts.

Refer to the following section for information on the Safety Function and safety parameters.

3 i.8 Compliance with UL Standards, EU Directives, and Other Safety Standards on page 46



Products that display the TÜV mark on the nameplate have met the safety standards.

### 12.1.2 Precautions for Safety Functions

# **MARNING**

To confirm that the HWBB function satisfies the safety requirements of the system, you must conduct a risk assessment of the system.

Incorrect use of the Safety Function may cause injury.

The servomotor will move if there is an external force (e.g., gravity on a vertical axis) even when the HWBB function is operating. Use a separate means, such as a mechanical brake, that satisfies the safety requirements.

Incorrect use of the Safety Function may cause injury.

While the HWBB function is operating, the motor may move within an electric angle of 180° or less as a result of a SERVOPACK failure. Use the HWBB function for an application only after confirming that movement of the motor will not result in a hazardous condition.

Incorrect use of the Safety Function may cause injury.

The dynamic brake and the brake signal are not safety-related elements. You must design the system so that SERVOPACK failures will not cause a hazardous condition while the HWBB function is operating.

Incorrect use of the Safety Function may cause injury.

Connect devices that satisfy the safety standards for the signals for Safety Functions.

Incorrect use of the Safety Function may cause injury.

The HWBB function does not shut OFF the power to the SERVOPACK or electrically isolate it. Implement measures to shut OFF the power to the SERVOPACK before you perform maintenance on it.

There is a risk of electric shock.

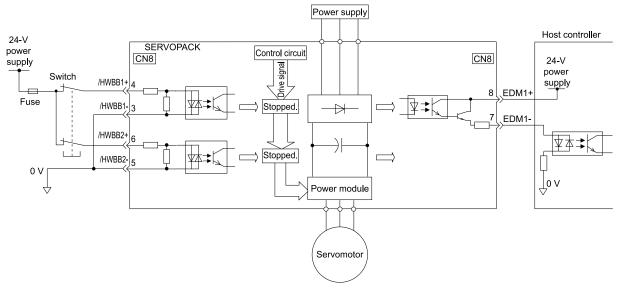
# 12.2 Hard Wire Base Block (HWBB)

A hard wire base block (abbreviated as HWBB) is a Safety Function that is designed to shut OFF the current to the servomotor with a hardwired circuit.

The drive signals to the power module that controls the motor current are controlled by the circuits that are independently connected to the two input signal channels to turn OFF the power module and shut OFF the motor current.

Refer to the following section for connection specification for signals.

3 4.6 Connecting Safety Function Signals on page 144




• Connect the Safety Function input signals (/HWBB1 and /HWBB2) as sink inputs when viewed from the SERVOPACK side. Make the connections this way because a safe failure will occur if the /HWBB1 and /HWBB2 signals are connected to 0 V. This differs from the wiring example for other input signals described in "4.5.3 I/O Signal Wiring Examples on page 140".

The ON and OFF status of signals for the Safety Function are also defined as follows:

- ON: The state in which the relay contacts are closed or the transistor is ON and current flows into the signal line.
- OFF: The state in which the relay contacts are open or the transistor is OFF and no current flows into the signal line.
- For the 24-V power supply, use an SELV power supply.

The following figure shows a connection example.



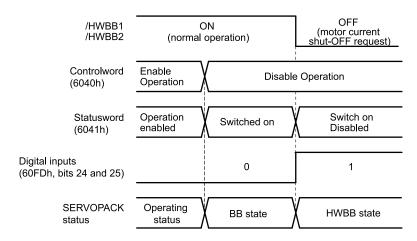
Whether or not you use the EDM1 signal does not affect the performance level of safety parameters.

You can use the EDM1 signal if the system requires it, such as when a  $\Sigma$ -X SERVOPACK is replacing a  $\Sigma$ -7 SERVOPACK in the system.

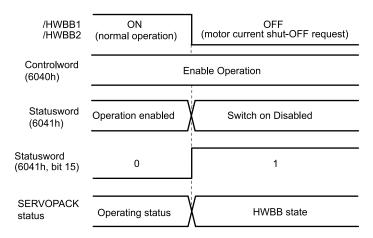
#### 12.2.1 Risk Assessment

When using the HWBB, you must perform a risk assessment of the servo system in advance to confirm that the safety level of the standards is satisfied. Refer to the following section for details on the standards.

i.8 Compliance with UL Standards, EU Directives, and Other Safety Standards on page 46


The following hazards exist even when the HWBB is operating. These hazards must be included in the risk assessment.

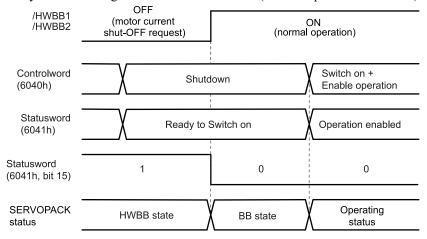
- The servomotor will move if an external force is applied to it (for example, gravity on a vertical axis). Implement measures to hold the servomotor, such as installing a separate mechanical brake.
- If a failure occurs such as a power module failure, the servomotor may move within an electric angle of 180°. Ensure safety even if the servomotor moves.
  - The rotational angle or travel distance depends on the type of servomotor as follows:
  - Rotary servomotor: 1/6 rotation max. (rotational angle calculated at the motor shaft)
  - Direct drive servomotor: 1/20 rotation max. (rotational angle calculated at the motor shaft)
  - Linear servomotor: 50 mm max.
- The HWBB does not shut OFF the power to the SERVOPACK or electrically isolate it. Implement measures to shut OFF the power to the SERVOPACK before you perform maintenance on it.


### 12.2.2 Hard Wire Base Block (HWBB) State

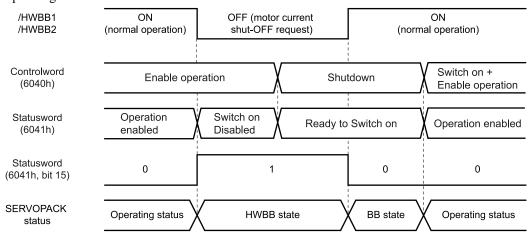
The SERVOPACK will be in the following state if the HWBB operates. If the /HWBB1 or /HWBB2 signal turns OFF, the HWBB will operate and the SERVOPACK will enter a HWBB state.

·When HWBB Operates after Servo OFF (Power Not Supplied to Motor)




·When HWBB Operates While Power Is Supplied to Motor




## 12.2.3 Resetting the HWBB State

Normally, after the Shutdown command is sent and power is no longer supplied to the servomotor, the /HWBB1 and /HWBB2 signals will turn OFF and the SERVOPACK will enter the HWBB state. If you turn ON the

/HWBB1 and /HWBB2 signals in this state, the SERVOPACK will enter a base block (BB) state and will be ready to acknowledge the Servo ON command (Enable Operation command).



If the SERVOPACK enters the HWBB state while power is supplied to the motor, turn ON the /HWBB1 and /HWBB2 signals, and then send the Servo ON command (Enable Operation command) to restore the normal operating status.



If the SERVOPACK enters the HWBB state while the Enable Operation command is being sent, send the Shutdown command. Next, send the Switch ON + Enable Operation command again to restore the normal operating status.

# 12.2.4 Recovery Method

# (1) Recovery Conditions

All of the following conditions must be met.

- All safety request inputs are ON.
- The Servo ON command (Enable Operation command) was not sent.
- None of the following utility functions have been executed. (These functions execute the Servo ON command (Enable Operation command).)

The following utility functions execute the Servo ON command (Enable Operation command).

| Utility Function No. | Function Name                                  |
|----------------------|------------------------------------------------|
| Fn002                | Jog                                            |
| Fn003                | Origin Search                                  |
| Fn004                | Jog Program                                    |
| Fn00E                | Autotune Motor Current Detection Signal Offset |

Continued on next page.

Continued from previous page.

| Utility Function No.                        | Function Name      |
|---------------------------------------------|--------------------|
| Fn080                                       | Polarity Detection |
| Fn201 Advanced Autotuning without Reference |                    |
| Fn206                                       | Easy FFT           |

#### Note:

If any of the above utility functions was executed, the utility function must be ended. Perform the operation to return to the Main Menu for the utility functions on the digital operator. Refer to the following manual for operating procedures.

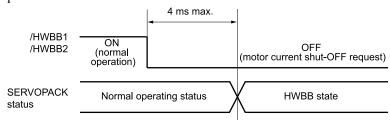
Ω Σ-7-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)

#### (2) Recovery Procedure

- 1. Specify Shutdown in controlword (6040h, bits 0 to 3) to reset the servo drive.
- 2. Specify Switch ON and the Servo ON command (Enable Operation command) in controlword (6040h, bits 0 to 3).

Power is supplied to the servomotor.

## 12.2.5 Detecting Errors in HWBB Signal


If only the /HWBB1 or the /HWBB2 signal is input, an A.Eb1 alarm (Safety Function Signal Input Timing Error) will occur unless the other signal is input within 10 seconds. This makes it possible to detect failures, such as disconnection of an HWBB signal. If the A.Eb1 alarm occurs, check the wiring.

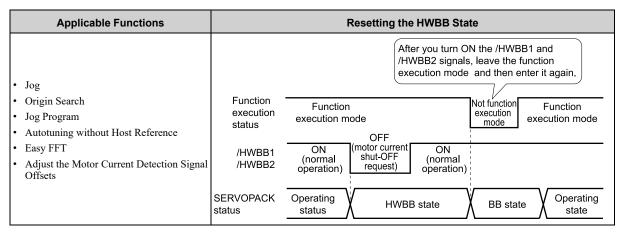
# **CAUTION**

The A.Eb1 alarm (Safety Function Signal Input Timing Error) is not a safety-related element. Keep this in mind when you design the system.

# 12.2.6 HWBB Input Signal Specifications

If an HWBB is requested by turning OFF the two HWBB input signal channels (/HWBB1 and /HWBB2), the power to the servomotor will be turned OFF within 4 ms.

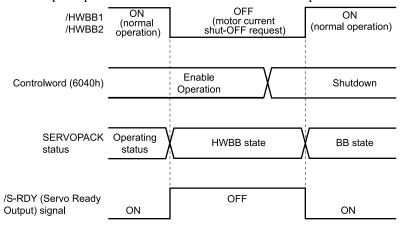



#### Note:

- The OFF status is not recognized if the OFF interval of the /HWBB1 or /HWBB2 signal is 0.5 ms or shorter. However, in certain situations, such as when you input test pulses and you do not want the HWBB function to respond, make the interval between OFF intervals (i.e., the ON interval) 0.5 ms or longer. The reason for this is that the OFF status may be recognized if a signal repeatedly turns OFF even though the OFF interval is 0.5 ms or shorter.
- You can check the status of the input signals by using monitor displays.

# 12.2.7 Operation without a Host Controller

The HWBB will operate even for operation without a host controller.


However, if the HWBB operates during execution of the following functions, leave the execution mode for the function and then enter it again to restart operation. Operation will not be restarted simply by turning ON the /HWBB1 and /HWBB2 signals.



## 12.2.8 /S-RDY (Servo Ready Output) Signal

The Servo ON command (Enable Operation command) will not be acknowledged in the HWBB state. Therefore, the Servo Ready Output Signal will turn OFF. The Servo Ready Output Signal will turn ON if both the /HWBB1 and /HWBB2 signals are ON and the servo is turned OFF (BB state).

An example is provided below for when the main circuit power is ON when there is no servo alarm.



## 12.2.9 /BK (Brake Output) Signal

If the HWBB operates when the /HWBB1 or /HWBB2 signal is OFF, the /BK (Brake) signal will turn OFF. At that time, the setting in Pn506 (Brake Reference - Servo OFF Delay Time) will be disabled. Therefore, the servo-motor may be moved by external force until the actual brake becomes effective after the /BK signal turns OFF.

# **A** CAUTION

The brake signal is not a safety-related element. You must design the system so that a hazardous condition does not occur even if the brake signal fails in the HWBB state. Also, if a servomotor with a brake is used, keep in mind that the brake in the servomotor is used only to prevent the moving part from being moved by gravity or an external force and it cannot be used to stop the servomotor.

#### 12.2.10 Stopping Methods

If the /HWBB1 or /HWBB2 signal turns OFF and the HWBB operates, the servomotor will stop according to the stop mode that is set for  $Pn001 = n.\Box\Box\Box X$  (Motor Stopping Method for Servo OFF). However, if you set  $Pn001 = n.\Box\Box\Box 0$  or  $n.\Box\Box\Box 1$  (stop the motor by applying the dynamic brake), observe the following precautions.

# **CAUTION**

The dynamic brake is not a safety-related element. You must design the system so that a hazardous condition does not occur even if the servomotor coasts to a stop in the HWBB state. Normally, we recommend that you use a sequence that returns to the HWBB state after stopping for a reference.

If the application frequently uses the HWBB, stopping with the dynamic brake may result in the deterioration of elements in the SERVOPACK. To prevent internal elements from deteriorating, use a sequence in which the HWBB state is returned to after the servomotor has come to a stop.

## 12.2.11 ALM (Servo Alarm) Signal

The ALM (Servo Alarm) signal is not output in the HWBB state.

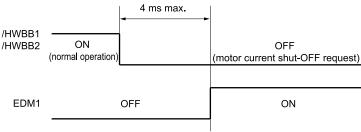
# 12.3 EDM1 (External Device Monitor)

The EDM1 (External Device Monitor) signal is used to monitor failures in the HWBB. Connect the monitor signal as a feedback signal, e.g., to the safety unit.

Whether or not you use the EDM1 signal does not affect the performance level of safety parameters.

You can use the EDM1 signal if the system requires it, such as when a  $\Sigma$ -X SERVOPACK is replacing a  $\Sigma$ -7 SERVOPACK in the system.

• Failure Detection Signal for EDM1 Signal
The relationship between the EDM1, /HWBB1, and /HWBB2 signals is shown below.
Detection of failures in the EDM1 signal circuit can be achieved by using the status of the /HWBB1,
/HWBB2, and EDM1 signals in the following table. A failure can be detected by checking the failure status, e. g., when the power is turned ON.

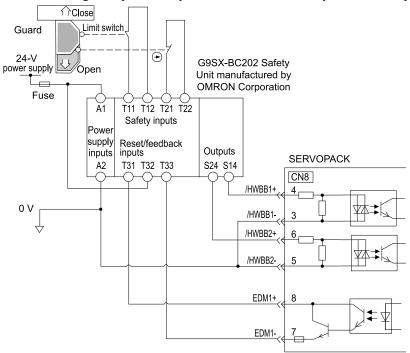

| Signal | Logic |     |     |     |  |
|--------|-------|-----|-----|-----|--|
| /HWBB1 | ON    | ON  | OFF | OFF |  |
| /HWBB2 | ON    | OFF | ON  | OFF |  |
| EDM1   | OFF   | OFF | OFF | ON  |  |

# **MARNING**

The EDM1 signal is not a safety output. Use it only for monitoring for failures.

## 12.3.1 EDM1 Output Signal Specifications

If an HWBB is requested by turning OFF the two HWBB input signal channels (/HWBB1 and /HWBB2) when the Safety Function is operating normally, the EDM1 output signal will be turned ON within 4 ms.




# 12.4 Applications Examples for Safety Functions

This section provides examples of using the Safety Functions.

## 12.4.1 Connection Example

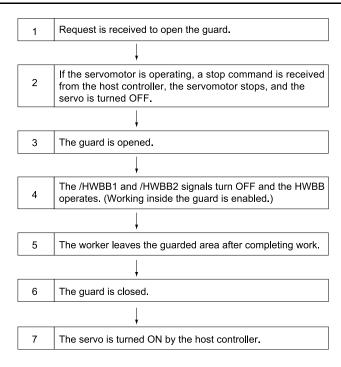
In the following example, a safety unit is used and the Safety Base Block operates when the guard is opened.



When the guard is opened, both the /HWBB1 and /HWBB2 signals turn OFF and the EDM1 signal turns ON, and this turns ON the feedback inputs and resets the safety unit. When the guard is closed from this state, the /HWBB1 and /HWBB2 signals turn ON and the SERVOPACK can be reset from the HWBB state.

#### Note

The EDM1 signal is used as a source output. Refer to the following section for information on making the connection to the host controller.


(2) Diagnostic Output Circuits on page 145

#### 12.4.2 Failure Detection Method

If a failure occurs (e.g., the /HWBB1 or the /HWBB2 signal remains ON), the safety unit is not reset when the guard is closed because the EDM1 signal remains OFF. Therefore starting is not possible and an error is detected.

In this case the following must be considered: an error in the external device, disconnection of the external wiring, short-circuiting in the external wiring, or a failure in the SERVOPACK. Find the cause and correct the problem.

## 12.4.3 Procedure



# 12.5 Validating Safety Functions

When you commission the system or perform maintenance or SERVOPACK replacement, you must always perform the following validation test on the HWBB function after completing the wiring. (It is recommended that you keep the confirmation results as a record.)

- When the /HWBB1 and /HWBB2 signals turn OFF, confirm that the panel display or digital operator displays
  Hbb and that the servomotor does not operate.
  If the display does not show Hbb, check the ON/OFF status of the /HWBB1 and /HWBB2 signals.
- Monitor the ON/OFF status of the /HWBB1 and /HWBB2 signals.
   If the ON/OFF status of the signals do not coincide with the display, the following must be considered: an error in the external device, disconnection of the external wiring, short-circuiting in the external wiring, or a failure in the SERVOPACK. Find the cause and correct the problem.
- If you use the EDM1 signal, confirm that the EDM1 signal is OFF while in normal operation by using the feed-back circuit input display of the connected device.
   (Whether or not you use the EDM1 signal does not affect the performance level of safety parameters.)

Information

You can use the [Status] monitor in the SigmaWin+ to check the ON/OFF status of the /HWBB1 and /HWBB2 signals. Refer to the following section for details.

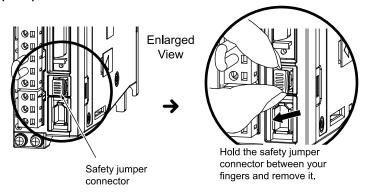
\$\overline{\pi}\$ 9.2.2 Operation Monitor, Status Monitor, and I/O Monitor on page 454

The /HWBB1 and /HWBB2 signals can also be traced using the trace function in the SigmaWin+. Refer to the following section for details.

9.3 Monitoring Machine Operation Status and Signal Waveforms on page 462



If the following states occur, check if the cause is on the SERVOPACK end.


- When the /HWBB1 and /HWBB2 signals are turned OFF, the panel display or digital operator does not display Hbb.
- When the /HWBB1 and /HWBB2 signals are turned OFF, the EDM1 signal does not turn ON.

If the cause is found on the SERVOPACK end, the SERVOPACK may be faulty.

# 12.6 Connecting a Safety Function Device

Use the following procedure to connect a Safety Function device.

1. Remove the safety jumper connector from the connector for the Safety Function device (CN8).



#### Connect the Safety Function device to the connector for the Safety Function device (CN8).

#### Note:

If you do not connect a Safety Function device, leave the safety jumper connector connected to the connector for the Safety Function device (CN8). If the SERVOPACK is used without the safety jumper connector connected to CN8, no current will be supplied to the servomotor and no motor torque will be output.

In this case, Hbb will be displayed on the panel display or digital operator.

# **EtherCAT Communications**

This chapter provides basic information on EtherCAT communications.

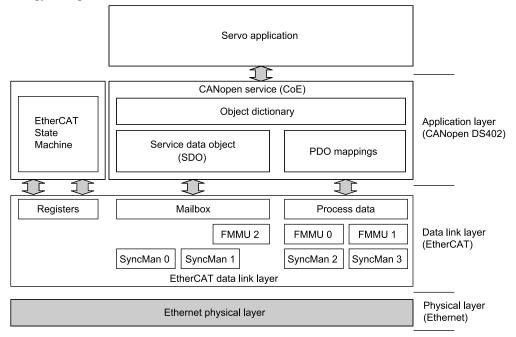
| 13.1 | Introduction to EtherCAT                                     | 538 |
|------|--------------------------------------------------------------|-----|
|      | 13.1.1 Introduction to CANopen                               | 538 |
|      | 13.1.2 CANopen over EtherCAT OSI Model                       | 538 |
|      | 13.1.3 Sending and Receiving Data in EtherCAT Communications |     |
|      | 13.1.4 EtherCAT Terminology                                  |     |
|      | 13.1.5 Data Type                                             |     |
|      | 13.1.6 Data Units                                            | 540 |
|      | 13.1.7 Subindex Number Notation                              | 540 |
| 13.2 | EtherCAT Slave Information                                   | 541 |
| 13.3 | EtherCAT State Machine                                       | 542 |
| 13.4 | EtherCAT Communications Settings                             | 544 |
|      | 13.4.1 Explicit Device Identification                        | 544 |
|      | 13.4.2 Normal Device Recognition Process at Startup          | 544 |
| 13.5 | PDO Mappings                                                 | 545 |
|      | 13.5.1 Setting Procedure for PDO Mappings                    | 545 |
|      | 13.5.2 Default PDO Mappings                                  | 546 |
| 13.6 | Synchronization with Distributed Clocks                      | 547 |
|      | 13.6.1 Example of PDO Data Exchange Timing in DC Mode        | 548 |
| 13.7 | Emergency Messages                                           | 550 |

# 13.1 Introduction to EtherCAT

The CANopen over EtherCAT communications reference SERVOPACKs implement the CiA 402 CANopen drive profile for EtherCAT communications (real-time Ethernet communications).

Basic position, speed, and torque control are supported along with synchronous position, speed, and torque control. You can select the type of control to match your system from basic positioning to high-speed, high-precision path control.

You can also use EtherCAT communications to control the high-level servo control performance, advanced turning functions, and many actuators of the  $\Sigma$ -X series.


### 13.1.1 Introduction to CANopen

The CiA 402 CANopen profile is based on the IEC 61800-7-1, IEC 61800-7-201, and IEC 61800-7-301 standards for international standardization of drive control and operation control.

## 13.1.2 CANopen over EtherCAT OSI Model

The OSI model implemented by the SERVOPACKs consists of three layers: the application layer (CANopen), the data link layer (EtherCAT), and the physical layer (Ethernet). The four layers other than the application layer, data link layer, and physical layer are not used. The data link layer is implemented with EtherCAT communications and the application layer is implemented with the DS402 CANopen drive profile.

This manual describes mainly the specifications of the application layer implemented in the SERVOPACKs. For detailed information on the data link layer (EtherCAT), refer to documentation provided by the EtherCAT Technology Group.



The object dictionary in the application layer includes parameters, application data, and PDO mapping information between the master and slaves.

The process data objects (PDOs) consist of the objects in the object dictionary that can be mapped to PDO mappings. The PDO mappings define the structure and contents of the process data.

## 13.1.3 Sending and Receiving Data in EtherCAT Communications

Objects are used to send and receive data in EtherCAT communications.

Reading and writing object data is performed in process data communications (PDO service), which transfers data cyclically, and in mailbox communications (SDO service), which transfers data non-cyclically.

Process data communications are used to read and write PDOs. Mailbox communications (SDO) are used to read and write object dictionary data entries.

# 13.1.4 EtherCAT Terminology

The EtherCAT and CANopen terms that are used in this manual are described in the following table.

| Term                                                   | Abbreviation | Description                                                                                                                                                                                           |
|--------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAN in Automation                                      | CiA          | A non-profit organization established in 1992 as a joint venture between companies to provide CAN technical information, product information, and marketing information.                              |
| Controller Area Network                                | CAN          | Communications standard for the physical layer and data link layer established for automotive LANs. It was established as an international standard as ISO 11898.                                     |
| CANopen                                                | CANopen      | An upper-layer protocol based on the international CAN standard (EN 50325-4). It consists of profile specifications for the application layer, communications, applications, devices, and interfaces. |
| CANopen over EtherCAT                                  | СоЕ          | A network that uses Ethernet for the physical layer, EtherCAT for the data link layer, and CANopen for the application layer in a seven-layer OSI reference model.                                    |
| Distributed Clocks                                     | DC           | A clock distribution mechanism that is used to synchronize the Ether-CAT slaves with the EtherCAT master.                                                                                             |
| Electrically Erasable Programmable<br>Read Only Memory | EEPROM       | A ROM that can be electrically overwritten.                                                                                                                                                           |
| EtherCAT Slave Controller                              | ESC          | A hardware chip that processes EtherCAT communications (such as loopbacks) and manages the distributed clock.                                                                                         |
| EtherCAT State Machine                                 | ESM          | A state machine in which the state of EtherCAT (the data link layer) changes according to transition conditions.                                                                                      |
| EtherCAT Technology Group                              | ETG          | An international organization established in 2003 to provide support for developing EtherCAT technologies and to promote the spread of EtherCAT technologies.                                         |
| Ethernet for Control Automation<br>Technology          | EtherCAT     | An open network developed by Beckhoff Automation.                                                                                                                                                     |
| Fieldbus Memory Management Unit                        | FMMU         | A unit that manages fieldbus memory.                                                                                                                                                                  |
| INIT                                                   | INIT         | The Init state in the EtherCAT state machine.                                                                                                                                                         |
| OPERATIONAL                                            | OP           | The Operational state in the EtherCAT state machine.                                                                                                                                                  |
| Object Dictionary                                      | OD           | A group of objects and structure supported by an EtherCAT SERVOPACK.                                                                                                                                  |
| Process Data Object                                    | PDO          | Objects that are sent and received in cyclic communications.                                                                                                                                          |
| Process Data Object Mapping                            | PDO mapping  | Definitions of the applications objects that are sent with PDOs.                                                                                                                                      |
| Service Data Object                                    | SDO          | Objects that are sent and received in mailbox communications.                                                                                                                                         |
| PRE-OPERATIONAL                                        | PREOP        | The Pre-operational state in the EtherCAT state machine.                                                                                                                                              |
| Process data                                           | _            | The data contained in application objects that are cyclically transferred for measurements or controls.                                                                                               |
| SyncManager                                            | _            | The ESC unit that coordinates data exchange between the master and slaves.                                                                                                                            |

Continued on next page.

Continued from previous page.

| Term                         | Abbreviation | Description                           |
|------------------------------|--------------|---------------------------------------|
| Receive Process Data Object  | RXPDO        | The process data received by the ESC. |
| Transmit Process Data Object | TXPDO        | The process data sent by the ESC.     |

# 13.1.5 Data Type

The following table lists the data types and ranges that are used in this manual.

| Code   | Data Type               | Range                      |
|--------|-------------------------|----------------------------|
| SINT   | Signed 8-bit integer    | -128 to +127               |
| INT    | Signed 16-bit integer   | -32768 to +32767           |
| DINT   | Signed 32-bit integer   | -2147483648 to +2147483627 |
| USINT  | Unsigned 8-bit integer  | 0 to 255                   |
| UINT   | Unsigned 16-bit integer | 0 to 65,535                |
| UDINT  | Unsigned 32-bit integer | 0 to 4294967295            |
| STRING | Character string        | _                          |

### 13.1.6 Data Units

The following table lists the data units and notations that are used in this manual.

| Notation  | Description                                                                                                                                                             |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Pos. unit | The user-defined position reference unit that is set in Position User Unit (2701h).  1 [Pos. unit] = 2701h: 1/2701h: 2 [inc]                                            |  |
| Vel. unit | The user-defined speed reference unit that is set in Velocity User Unit (2702h).  1 [Vel. unit] = 2702h: 1/2702h: 2 [inc/s]                                             |  |
| Acc. unit | The user-defined acceleration reference unit that is set in Acceleration User Unit (2703h).<br>1 [Acc. unit] = 2703h: $1/2703h$ : $2 \times 10^4$ [inc/s <sup>2</sup> ] |  |
| Trq. unit | The user-defined torque reference unit that is set in Torque User Unit (2704h).  1 [Trq. unit] = 2704h: 1/2704h: 2 [%]                                                  |  |
| inc       | This is the encoder pulse unit. For a 26-bit encoder, the resolution is 67108864 [inc] per rotation.                                                                    |  |

### 13.1.7 Subindex Number Notation

Certain objects have subindexes.

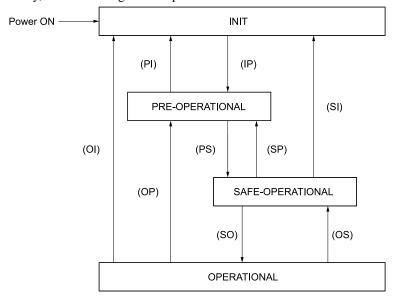
If ":" follows an index number in this manual, the number that comes after ":" is the subindex number.

• Notation Example 2701h: 1

This example means subindex 1 of index number 2701h.

## 13.2 EtherCAT Slave Information

You can use an EtherCAT slave information file (XML) to configure the EtherCAT master.


The XML file contains general information on EtherCAT communications settings that are related to the SERVO-PACK settings.

The following file is provided for the SERVOPACK. Use the most recent file.

| SERVOPACK     | File Name                 |  |  |
|---------------|---------------------------|--|--|
| SGDXS-0000A00 | Yaskawa_SGDXS-xxxxA0x.xml |  |  |

## 13.3 EtherCAT State Machine

The EtherCAT state machine is used to manage the communications states between the master and slave applications when EtherCAT communications are started and during operation, as shown in the following figure. Normally, the state changes for requests from the master.



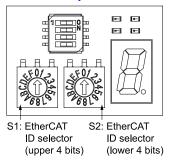
| State                        | Description                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INIT                         | <ul> <li>Mailbox communications are not possible.</li> <li>Process data communications are not possible.</li> </ul>                                                                                                                                                                                                                                                                                                       |
| INIT => PRE-OP               | <ul> <li>The master sets the DL address and Sync Manager channels for mailbox communications.</li> <li>The master initializes DC clock synchronization.</li> <li>The master requests the Pre-Operational state.</li> <li>The master sets the AL control register.</li> <li>The slaves check whether the mailbox was initialized correctly.</li> </ul>                                                                     |
| PRE-OPERATIONAL (PREOP)      | <ul> <li>Mailbox communications are possible.</li> <li>Process data communications are not possible.</li> </ul>                                                                                                                                                                                                                                                                                                           |
| PREOP => SAFEOP              | <ul> <li>The master sets the Sync Manager channels and FMMU channels for process data.</li> <li>The master uses SDOs to set the PDO mappings and the Sync Manager PDO Assignment parameters.</li> <li>The master requests the Pre-Operational state.</li> <li>The slaves check whether the Sync Manager channels for process data communications and, if required, the distributed clock settings are correct.</li> </ul> |
| SAFE-OPERATIONAL<br>(SAFEOP) | <ul> <li>Mailbox communications are possible.</li> <li>Process data communications are possible. However, only the input data is valid. The output data is still not valid.</li> </ul>                                                                                                                                                                                                                                    |
| SAFEOP => OP                 | <ul> <li>The master sends valid output data.</li> <li>The master requests the Operational state.</li> </ul>                                                                                                                                                                                                                                                                                                               |
| OPERATIONAL (OP)             | <ul> <li>Mailbox communications are possible.</li> <li>Process data communications are possible.</li> </ul>                                                                                                                                                                                                                                                                                                               |

Information For SDO and PDO communications through the EtherCAT data link layer, the FMMUs and Sync Managers must be set as follows:

• Sync Manager Settings

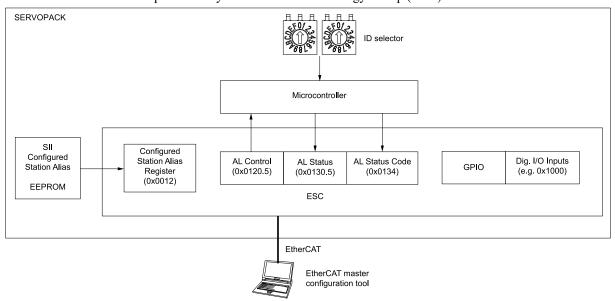
| Sync Manager   | Assignment (Fixed)           | Size              | Start Address (Fixed) |
|----------------|------------------------------|-------------------|-----------------------|
| Sync Manager 0 | Assigned to Receive Mailbox  | 128 bytes (fixed) | 0x1000                |
| Sync Manager 1 | Assigned to Transmit Mailbox | 128 bytes (fixed) | 0x1080                |
| Sync Manager 2 | Assigned to Receive PDOs     | 0 to 64 bytes     | 0x1100                |
| Sync Manager 3 | Assigned to Transmit PDOs    | 0 to 64 bytes     | 0x1400                |

• FMMU Settings


| FMMU   | Setting                              |
|--------|--------------------------------------|
| FMMU 0 | Mapped in receive PDO (RxPDO) area.  |
| FMMU 1 | Mapped in transmit PDO (TxPDO) area. |
| FMMU 2 | Mapped to the mailbox status.        |

## 13.4 EtherCAT Communications Settings

You can use the ID selector (S1 and S2) settings to identify the SERVOPACK.


Refer to the following section for details on identifying the SERVOPACK using the ID selector (S1 and S2).

3.4.1 Explicit Device Identification on page 544



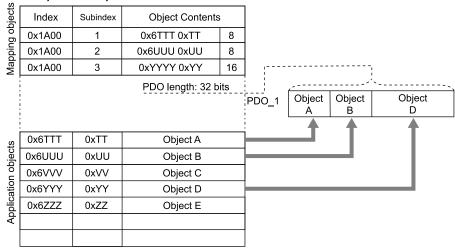
### 13.4.1 Explicit Device Identification

The following figure shows the requesting ID mechanism that performs SERVOPACK identification. Refer to the documentation published by the EtherCAT Technology Group (ETG) for more information.



### 13.4.2 Normal Device Recognition Process at Startup

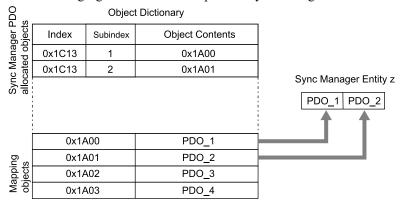
When communications are started, the master uses Auto Increment Addressing to detect the slaves. The Identity objects read from the slaves are compared with the master configuration information (set in advance with an EtherCAT configuration tool). Therefore, the slaves must normally be connected in the network in the same order as they appear in the master configuration. However, different network topologies are permitted if you use Explicit Device Identification.


## 13.5 PDO Mappings

The process data that is used in process data communications is defined in the PDO mappings. PDO mappings are definitions of the applications objects that are sent with PDOs.

The PDO mapping tables are in indexes 1600h to 1603h for the RxPDOs and indexes 1A00h to 1A03h for the TxPDOs in the object dictionary.

The following figure shows an example of PDO mappings.


Object Dictionary



In addition to the above PDO mappings, PDOs have to be assigned to the Sync Managers to exchange EtherCAT process data.

The Sync Manager PDO assignment objects (1C12h and 1C13h) establish the relationship between these PDOs and the Sync Managers.

The following figure shows an example of a Sync Manager and the PDO mappings.



## **M** CAUTION

The PDO mapping objects (indexes 1600h to 1603h and 1A00h to 1A03h) and the Sync Manager PDO assignment objects (index 1C12h and 1C13h) can be written only in Pre-Operational state.

## 13.5.1 Setting Procedure for PDO Mappings

 $1. \hspace{0.1in}$  Disable the assignments between the Sync Manager and PDOs.

(Set subindex 0 of objects 1C12h to 1C13h to 0.)

2. Set all of the mapping entries for the PDO mapping objects.

The objects you must configure as shown below.

1600h to 1603h, 1A00h to 1A03h

- 3. Set the number of mapping entries for all PDO mapping objects (= subindex 0 of the above objects).
- 4. Set the assignments between the Sync Manager and PDOs (= subindexes 1 and 2 of objects 1C12h to 1C13h).
- 5. Enable the assignments between the Sync Manager and PDOs (= set subindex of objects 1C12h to 1C13h to 0).

Note:

Subindex 0 of 1C12h and 1C13h can be set to any value, but the number of mapping entries for each cannot exceed 16 entries (64 bytes).

### 13.5.2 Default PDO Mappings

The following table shows the default PDO mappings for the SERVOPACK.

The defaults are defined in the EtherCAT slave information file (XML).

• 1st PDO Mapping (Position, Velocity, Torque, Torque Limit, Touch Probe)

| RxPDO<br>(1600h) | Control-<br>word<br>(6040h) | Target Position (607Ah)          | Target<br>Velocity<br>(60FFh)        | Target Torque (6071h)                         | Max. Torque (6072h)                        | Mode of<br>Operation<br>(6060h) | Padding (8 bits)                 | Touch<br>Probe Func-<br>tion<br>(60B8h) |
|------------------|-----------------------------|----------------------------------|--------------------------------------|-----------------------------------------------|--------------------------------------------|---------------------------------|----------------------------------|-----------------------------------------|
| TxPDO<br>(1A00h) | Statusword (6041h)          | Position Actual Value<br>(6064h) | Torque<br>Actual<br>Value<br>(6077h) | Following<br>Error Actual<br>Value<br>(60F4h) | Mode of<br>Operation<br>Display<br>(6061h) | Padding (8<br>bits)             | Touch<br>Probe Status<br>(60B9h) | Touch Probe 1 Positive Edge (60BAh)     |

• 2nd PDO Mapping (Cyclic Synchronous Position): Default PDO Assignments

| RxPDO<br>(1601h) | Control-<br>word<br>(6040h) | Target Position (607Ah)          |
|------------------|-----------------------------|----------------------------------|
| TxPDO<br>(1A01h) | Statusword (6041h)          | Position Actual Value<br>(6064h) |

• 3rd PDO Mapping (Cyclic Synchronous Velocity)

| RxPDO<br>(1602h) | Control-<br>word<br>(6040h) | Target Velocity (60FFh)          |
|------------------|-----------------------------|----------------------------------|
| TxPDO<br>(1A02h) | Statusword (6041h)          | Position Actual Value<br>(6064h) |

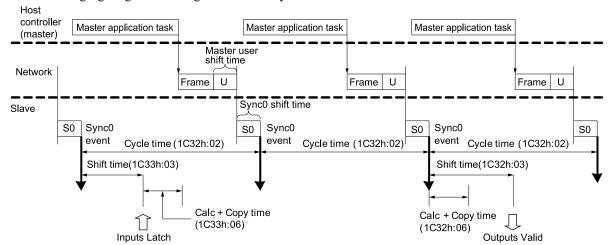
• 4th PDO Mapping (Cyclic Synchronous Torque)

| RxPDO<br>(1603h) | Control-<br>word<br>(6040h) | Target Torque (6071h)            |                                      |
|------------------|-----------------------------|----------------------------------|--------------------------------------|
| TxPDO<br>(1A03h) | Statusword<br>(6041h)       | Position Actual Value<br>(6064h) | Torque<br>Actual<br>Value<br>(6077h) |

## 13.6 Synchronization with Distributed Clocks

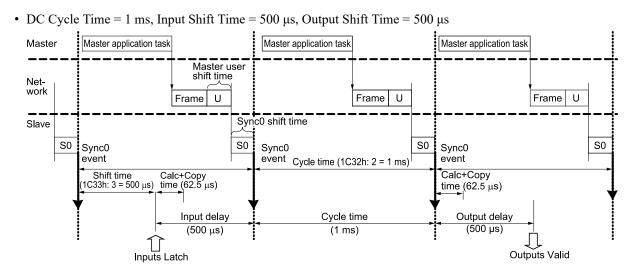
The synchronization of EtherCAT communications is based on a mechanism called a distributed clock.

With the distributed clock, all devices are synchronized with each other by sharing the same reference clock.

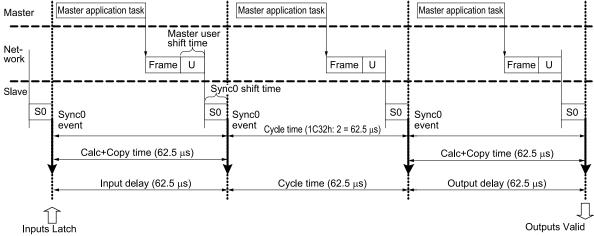

The slave devices synchronize the internal applications to the Sync0 events that are generated according to the reference clock.

You can use the following synchronization modes with EtherCAT.

You can change the synchronization mode in the Sync Control registers (ESC registers 0x980 and 0x981).


- Free-Run (ESC register 0x980 = 0x0000) In free-run mode, the local cycle is independent from the communications cycle and master cycle.
- DC Mode (ESC register 0x980 = 0x0300)
  In this mode, the SERVOPACK is synchronized with the host controller (master) on the Sync0 event.

The following figure gives a timing chart for DC synchronization.




| Index | Subindex           | Name                                                 | Access      | PDO<br>Mapping                                                                                                                                                                                           | Data Type | Setting Value                                                                                                                                                                                                                  |  |  |
|-------|--------------------|------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|       | Sync Manag         | Sync Manager 2 (process data output) Synchronization |             |                                                                                                                                                                                                          |           |                                                                                                                                                                                                                                |  |  |
|       | 1                  | Synchronization type                                 | RO          | No                                                                                                                                                                                                       | UINT      | Current status of DC mode 0: Free-Run (DC not used, no PDO mapping) 1: Free-Run (DC not used, with PDO mapping) 2: DC Sync0 (DC used)                                                                                          |  |  |
| 1C32h | 2                  | Cycle time                                           | RO          | No                                                                                                                                                                                                       | UDINT     | Sync0 event cycle [ns] (The value is set by the master via an ESC register.) Range and setting increment: $62500 \times n \ (n=1 \ to \ 64)$                                                                                   |  |  |
|       | 3                  | Shift time                                           | RW          | No                                                                                                                                                                                                       | UDINT     | The time between the Sync0 event and Outputs Valid (i.e., the time from Sync0 until the output data is input to the SERVOPACK). (unit: ns) Range: 62500 to (Sync0 event cycle - 62500) Setting increment: 62500 × n (n = 1 to) |  |  |
|       | 6                  | Calc and copy time                                   | RO          | No                                                                                                                                                                                                       | UDINT     | The time from the Sync0 event until the output data from Sync Manager 2 is read. (unit: ns) 62500 (fixed)                                                                                                                      |  |  |
|       | Sync Manag         | er 3 (process data inp                               | ut) Synchro | nization                                                                                                                                                                                                 |           |                                                                                                                                                                                                                                |  |  |
| 1C33h | 3 Shift time RW No |                                                      | UDINT       | The time between the Sync0 event and Inputs Latch (i.e., when the input data is obtained from the SERVOPACK). (unit: ns) Range: 0 to (Sync0 event cycle - 62500) Setting increment: 62500 × n (n = 1 to) |           |                                                                                                                                                                                                                                |  |  |
|       | 6                  | Calc and copy time                                   | RO          | No                                                                                                                                                                                                       | UDINT     | The time for copying the input process data to the Sync Manager 3 area. (unit: ns) 62500 (fixed)                                                                                                                               |  |  |

## 13.6.1 Example of PDO Data Exchange Timing in DC Mode







## 13.7 Emergency Messages

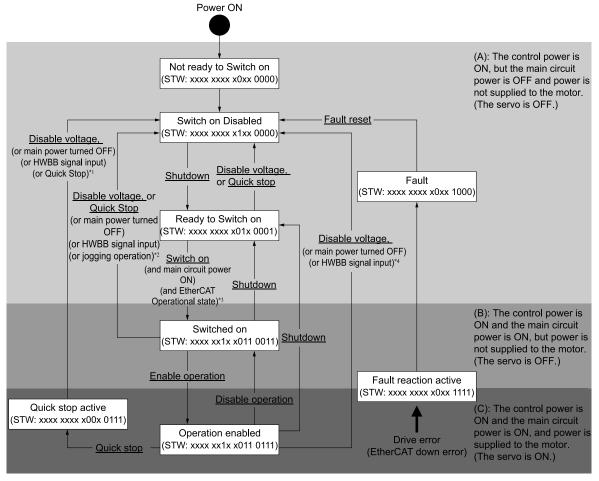
Emergency messages are triggered by alarms and warnings detected within the SERVOPACK. They are sent via the mailbox interface.

An emergency message consists of eight bytes of data as shown in the following table.

| Byte        | 0                    | 1 | 2              | 3         | 4                                 | 5                      | 6         | 7         |
|-------------|----------------------|---|----------------|-----------|-----------------------------------|------------------------|-----------|-----------|
|             |                      |   | Error Register |           | Manufacturer-specific error field |                        |           |           |
| Description | Hmergency Error Code |   | ` '            | Reserved. | SERVOPACK cod                     | alarm/warning<br>le *2 | Reserved. | Reserved. |

<sup>\*1</sup> The manufacturer-specific error code is always FF00h.

■ 16 Maintenance on page 647


<sup>\*2</sup> For details on SERVOPACK alarms and warnings, refer to the following sections.

# **CiA402 Drive Profile**

| 14.1  | Device Control                                          | 552 |
|-------|---------------------------------------------------------|-----|
|       | 14.1.1 State Machine Control Commands                   | 553 |
|       | 14.1.2 Bits in Statusword (6041h)                       | 553 |
|       | 14.1.3 Related Objects                                  | 553 |
| 14.2  | Modes of Operation                                      | 555 |
|       | 14.2.1 Related Objects                                  | 555 |
|       | 14.2.2 Dynamic Mode Changes                             | 555 |
| 14.3  | Position Control Modes                                  | 556 |
|       | 14.3.1 Profile Position Mode                            | 556 |
|       | 14.3.2 Interpolated Position Mode                       | 559 |
|       | 14.3.3 Cyclic Synchronous Position Mode                 | 563 |
| 14.4  | Homing                                                  | 565 |
|       | 14.4.1 Related Objects                                  | 565 |
|       | 14.4.2 Homing Method (6098h)                            | 565 |
| 14.5  | Velocity Control Modes                                  | 568 |
|       | 14.5.1 Profile Velocity Mode                            | 568 |
|       | 14.5.2 Cyclic Synchronous Velocity Mode                 | 569 |
| 14.6  | Torque Control Modes                                    | 570 |
|       | 14.6.1 Profile Torque Mode                              | 570 |
|       | 14.6.2 Cyclic Sync Torque Mode                          | 571 |
| 14.7  | Torque Limits                                           | 572 |
|       | 14.7.1 Related Objects                                  | 572 |
| 14.8  | Digital I/O Signals                                     | 573 |
| 14.9  | Touch Probe                                             | 574 |
|       | 14.9.1 Related Objects                                  | 574 |
|       | 14.9.2 Example of Execution Procedure for a Touch Probe | 575 |
| 14.10 | Fully-Closed Loop Control                               | 576 |

## 14.1 Device Control

You use the Controlword (6040h) to execute device control for the servo drive according to the following state transitions. You can use the Statusword (6041h) to monitor the device status of the servo drive.



- \*1 In the Quick Stop Active state, the SERVOPACK automatically moves to the Switch ON Disabled state in the following cases:
  - The main power was turned OFF.
  - · The HWBB signal was input.
  - · The motor was stopped.
- \*2 In the Switched ON state, the SERVOPACK automatically moves to the Switch ON Disabled state in the following cases:
  - The main power was turned OFF.
  - · The HWBB signal was input.
  - Motor operation was already enabled by the digital operator or the SigmaWin+.
- \*3 In the Ready to Switch ON state, the SERVOPACK moves to the next state in the following cases:
  - The main circuit power is ON.
  - The EtherCAT state machine (ESM) is in the Operational state.
  - The servomotor is not being operated by the digital operator or the SigmaWin+.
- \*4 In the Operation Enabled state, the SERVOPACK automatically moves to the Switch ON Disabled state in the following cases:
  - The main power was turned OFF.
  - · The HWBB signal was input.

#### Note:

- Indicates that the servo is ON.
- STW indicates the Statusword (6041h).
- Underlines indicate control commands in the Controlword (6040h).

## 14.1.1 State Machine Control Commands

| 0                            | Bits in Controlword (6040h) |       |       |       |       |  |  |
|------------------------------|-----------------------------|-------|-------|-------|-------|--|--|
| Command                      | Bit 7                       | Bit 3 | Bit 2 | Bit 1 | Bit 0 |  |  |
| Shutdown                     | 0                           | _     | 1     | 1     | 0     |  |  |
| Switch ON                    | 0                           | 0     | 1     | 1     | 1     |  |  |
| Switch on + Enable operation | 0                           | 1     | 1     | 1     | 1     |  |  |
| Disable Voltage              | 0                           | _     | -     | 0     | _     |  |  |
| Quick Stop                   | 0                           | _     | 0     | 1     | _     |  |  |
| Disable Operation            | 0                           | 0     | 1     | 1     | 1     |  |  |
| Enable Operation             | 0                           | 1     | 1     | 1     | 1     |  |  |
| Fault Reset                  | 0 → 1                       | _     | _     | _     | _     |  |  |

## 14.1.2 Bits in Statusword (6041h)

| Bit | Data Description        | Remarks                                     |
|-----|-------------------------|---------------------------------------------|
| 0   | Ready to Switch ON      |                                             |
| 1   | Switched ON             |                                             |
| 2   | Operation Enabled       |                                             |
| 3   | Fault                   |                                             |
| 4   | Voltage Enabled         |                                             |
| 5   | Quick Stop              |                                             |
| 6   | Switch ON Disabled      |                                             |
| 7   | Warning                 | Refer to the following chapter for details. |
| 8   | Reserved                | 3 15.6 Device Control on page 611           |
| 9   | Remote                  |                                             |
| 10  | Target Reached          |                                             |
| 11  | Internal Limit Active   |                                             |
| 12  | On antian Made Specific |                                             |
| 13  | Operation Mode Specific |                                             |
| 14  | Torque Limit Active     |                                             |
| 15  | Safety Active           |                                             |

## 14.1.3 Related Objects

| Index | Subindex | Name                   | Data Type | Access | PDO<br>Mapping | Value                    | Saving to EEPROM |
|-------|----------|------------------------|-----------|--------|----------------|--------------------------|------------------|
| 6040h | 0        | Controlword            | UINT      | RW     | Yes            | 0 to 0xFFFF (default: 0) | No               |
| 6041h | 0        | Statusword             | UINT      | RO     | Yes            | -                        | No               |
| 605Ah | 0        | Quick Stop Option Code | INT       | RW     | No             | 0 to 4 (default: 2)      | Yes              |

Continued on next page.

Continued from previous page.

| Index | Subindex | Name                          | Data Type | Access | PDO<br>Mapping | Value                   | Saving to EEPROM |
|-------|----------|-------------------------------|-----------|--------|----------------|-------------------------|------------------|
| 605Bh | 0        | Shutdown Option Code          | INT       | RW     | No             | 0 to 1 (default: 0)     | Yes              |
| 605Ch | 0        | Disable Operation Option Code | INT       | RW     | No             | 0 to 1 (default: 1)     | Yes              |
| 605Dh | 0        | Halt Option Code              | INT       | RW     | No             | -3 to 3<br>(default: 1) | Yes              |
| 605Eh | 0        | Fault Reaction Option Code    | INT       | RW     | No             | 0 to 0 (default: 0)     | Yes              |

## 14.2 Modes of Operation

The SERVOPACK supports the following modes of operation.

- Profile Position Mode
- Homing Mode
- Interpolated Position Mode
- Profile Velocity Mode
- Torque Profile Velocity Mode
- Cyclic Sync Position Mode
- Cyclic Sync Velocity Mode
- Cyclic Sync Torque Mode

### 14.2.1 Related Objects

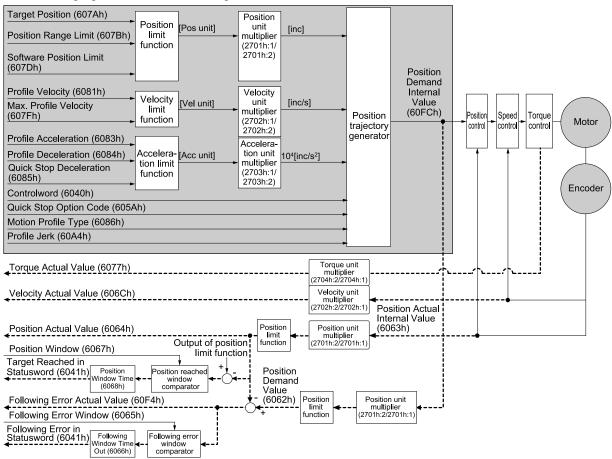
| Index | Subindex | Name                       | Data Type | Access | PDO<br>Mapping | Value                   | Saving to EEPROM |
|-------|----------|----------------------------|-----------|--------|----------------|-------------------------|------------------|
| 6060h | 0        | Modes of Operation         | SINT      | RW     | Yes            | 0 to 10<br>(default: 0) | Yes              |
| 6061h | 0        | Modes of Operation Display | SINT      | RO     | Yes            | 0                       | No               |
| 6502h | 0        | Supported Drive Modes      | UDINT     | RO     | No             | 0x03ED                  | No               |

### 14.2.2 Dynamic Mode Changes

You can change the operation mode with Modes of Operation (6060h). The master must update all operation mode-specific process data objects at the same time when it changes the operation mode during motor operation.

If the master selects a new operation mode, the SERVOPACK will change to the new operation mode immediately.

The following table describes operation when the operation mode is changed to a new mode.


| New Operation Mode           | Operation When Operation Mode Is Changed                                                                                                                      |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Profile Position Mode        | Controlword bit 4 = 0: The motor is stopped in the current position control mode.  Controlword bit 4 = 1: A new positioning operation is started immediately. |
| Homing Mode                  | Controlword bit 4 = 0: The motor is stopped in the current position control mode.  Controlword bit 4 = 1: Homing is started immediately.                      |
| Interpolated Position Mode   | Controlword bit 4 = 0: The motor is stopped in the current position control mode.  Controlword bit 4 = 1: A new positioning operation is started immediately. |
| Profile Velocity Mode        | The new operation mode is started immediately.                                                                                                                |
| Torque Profile Velocity Mode | The new operation mode is started immediately.                                                                                                                |
| Cyclic Sync Position Mode    | The new operation mode is started immediately.                                                                                                                |
| Cyclic Sync Velocity Mode    | The new operation mode is started immediately.                                                                                                                |
| Cyclic Sync Torque Mode      | The new operation mode is started immediately.                                                                                                                |

## 14.3 Position Control Modes

#### 14.3.1 Profile Position Mode

The Profile Position Mode is used to position to the Target Position at the Profile Velocity and the Profile Acceleration.

The following figure shows the block diagram for the Profile Position Mode.

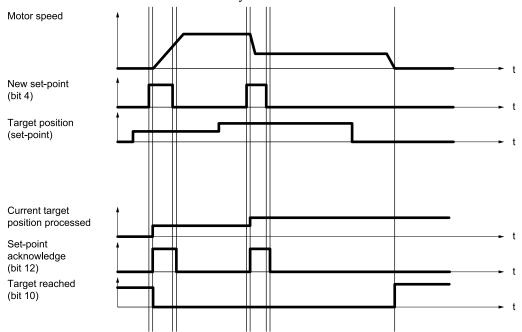


### (1) Related Objects

| Index | Subindex | Name                     | Data Type | Access | PDO<br>Mapping | Value                                                       | Saving to<br>EEPROM |
|-------|----------|--------------------------|-----------|--------|----------------|-------------------------------------------------------------|---------------------|
| 6040h | 0        | Controlword              | UINT      | RW     | Yes            | 0 to 0xFFFF<br>(default: 0)                                 | No                  |
| 6041h | 0        | Statusword               | UINT      | RO     | Yes            | _                                                           | No                  |
| 607Ah | 0        | Target Position          | DINT      | RW     | Yes            | -2147483648 to<br>2147483647<br>(default: 0) [Pos.<br>unit] | No                  |
|       | 0        | Number of entries        | USINT     | RO     | No             | 2                                                           | No                  |
| 607Bh | 1        | Min position range limit | DINT      | RW     | Yes            | -2147483648 to 0<br>(default: 0) [Pos.<br>unit]             | Yes                 |
|       | 2        | Max position range limit | DINT      | RW     | Yes            | 0 to 2147483647<br>(default: 0) [Pos.<br>unit]              | Yes                 |

Continued on next page.

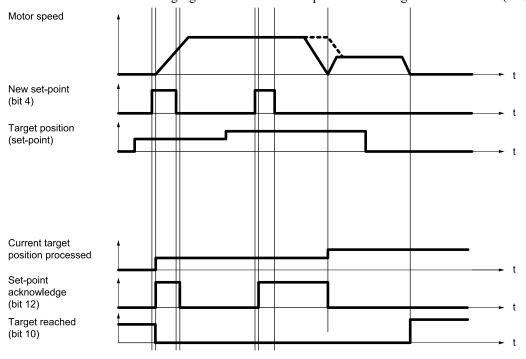
Continued from previous page.


| Index | Subindex | Name                    | Data Type | Access | PDO<br>Mapping | Value                                                      | Saving to EEPROM |
|-------|----------|-------------------------|-----------|--------|----------------|------------------------------------------------------------|------------------|
|       | 0        | Number of entries       | USINT     | RO     | No             | 2                                                          | No               |
| 607Dh | 1        | Min position limit      | DINT      | RW     | No             | -536870912 to<br>536870911<br>(default: 0) [Pos.<br>unit]  | Yes              |
|       | 2        | Max position limit      | DINT      | RW     | No             | -536870912 to<br>536870911<br>(default: 0) [Pos.<br>unit]  | Yes              |
| 607Fh | 0        | Max Profile Velocity    | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default:<br>2147483647) [Vel.<br>unit] | Yes              |
| 6081h | 0        | Profile Velocity        | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default: 0) [Vel.<br>unit]             | Yes              |
| 6083h | 0        | Profile Acceleration    | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default: 1000)<br>[Acc. unit]          | Yes              |
| 6084h | 0        | Profile Deceleration    | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default: 1000)<br>[Acc. unit]          | Yes              |
| 6085h | 0        | Quick Stop Deceleration | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default: 1000)<br>[Acc. unit]          | Yes              |
| 6086h | 0        | Motion Profile Type     | INT       | RW     | Yes            | -32768 to 32767<br>(default: 0)                            | Yes              |
|       | 0        | Number of entries       | USINT     | RO     | No             | 1                                                          | No               |
| 60A4h | 1        | Profile jerk1           | UDINT     | RW     | No             | 0 to 50<br>(default: 25) [%]                               | Yes              |

Set the target position (607Ah: Target Position) so that the travel distance (= travel amount from the position that is input to the position loop) is  $2147483647(=2^{31}-1)$  or less.

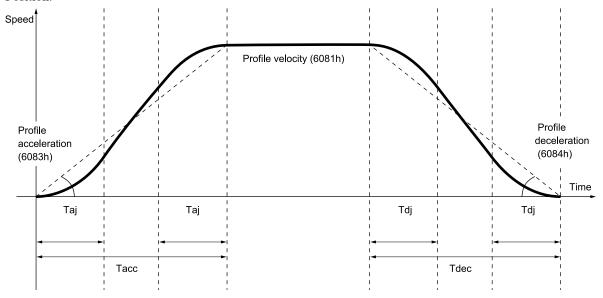
In the Profile Position Mode, the following two methods can be used to start positioning.

#### (a) Single Set Point (When Change Set Immediately Bit (Bit 5) in Controlword Is 1)


When a new command is input to the New Set Point Bit (bit 4) in Controlword during positioning, positioning for the new command is started immediately.



#### (b) Set of Set Points (When Change Set Immediately Bit (Bit 5) in Controlword Is 0)


When a new command is input in the New Set Point Bit (bit 4) in Controlword during positioning, positioning for the new command is started as soon as the current positioning operation is completed.

The dotted line in the following figure shows the actual speed if the Change of Set Point Bit (bit 9) is set to 1.



#### (c) SPOSING (S-curve Acceleration/Deceleration Positioning)

If you set Motion Profile Type to 2, S-curve acceleration/deceleration will be used for positioning to Target Position.



Acceleration time: Tacc = Profile velocity (6081h)

/ Profile acceleration (6083h)

S-curve acceleration time: Taj = Tacc  $\times$  Profile jerk (60A4h)

Deceleration time: Tdec = Profile velocity (6081h)

/ Profile deceleration (6084h)

S-curve deceleration time: Tdj = Tdec × Profile jerk (60A4h)



- If you change the Target Position (607Ah), Profile Velocity (6081h), Profile Acceleration (6083h), or Profile Deceleration (6084h), do so either while positioning is stopped or while positioning at a constant speed.
- Important Set the S-curve acceleration/deceleration time in Profile Jerk (60A4h).

### 14.3.2 Interpolated Position Mode

The Interpolated Position Mode is used to control multiple coordinated axes or to control a single axis that requires time interpolation of the set point data.

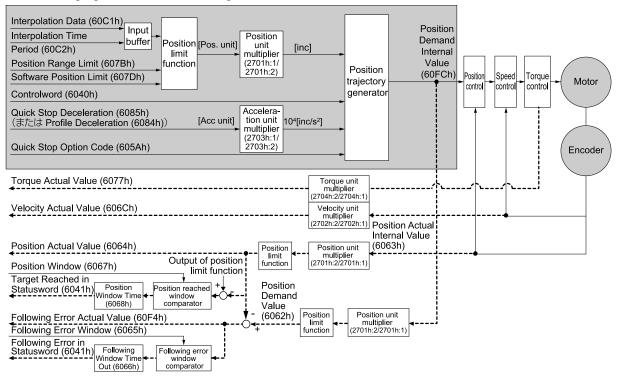
There are the following two submodes for the Interpolated Position Mode.

Interpolation submode select (60C0h) is used to change the submode.

Refer to the following chapter for details.

■ 15.10 Interpolated Position Mode on page 627

| Interpolated I | Position Mode                | Number of Data | Number of Profiles |  |
|----------------|------------------------------|----------------|--------------------|--|
| W 1.1          | No position reference filter |                | 1                  |  |
| Mode1          | Position reference filter    | 1              |                    |  |
| W 12           | No position reference filter | 1 . 254        | 2                  |  |
| Mode2          | Position reference filter    | 1 to 254       | 2                  |  |


### (1) Mode1

This submode normally uses a time (communications) synchronization mechanism to synchronize the servo drives.

The Interpolation Time Period defines the update cycle of the Interpolation Data (i.e., the interpolation position). The interpolation processing in the SERVOPACK is based on this setting.

The Interpolation Data is interpreted as an absolute value.

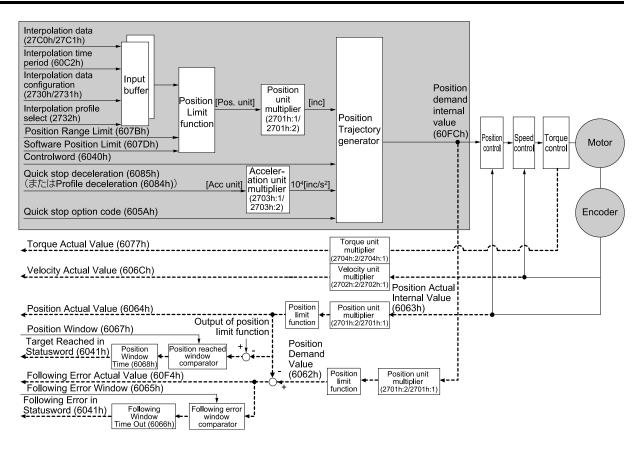
The following figure shows the block diagram for mode 1.



### (a) Related Objects

| Index | Subindex | Name        | Data Type | Access | PDO<br>Mapping | Value                    | Saving to EEPROM |
|-------|----------|-------------|-----------|--------|----------------|--------------------------|------------------|
| 6040h | 0        | Controlword | UINT      | RW     | Yes            | 0 to 0xFFFF (default: 0) | No               |
| 6041h | 0        | Statusword  | UINT      | RO     | Yes            | -                        | No               |

Continued on next page.


Continued from previous page.

| Index | Subindex | Name                            | Data Type | Access | PDO<br>Mapping | Value                                                       | Saving to EEPROM |
|-------|----------|---------------------------------|-----------|--------|----------------|-------------------------------------------------------------|------------------|
|       | 0        | Number of entries               | USINT     | RO     | No             | 1                                                           | No               |
| 60C1h | 1        | Interpolation data record       | DINT      | RW     | Yes            | -2147483648 to<br>2147483647<br>(default: 0) [Pos.<br>unit] | No               |
|       | 0        | Number of entries               | USINT     | RO     | No             | 2                                                           | No               |
| 60C2h | 1        | Interpolation time period value | USINT     | RW     | No             | 1 to 250<br>(default: 125)                                  | No               |
|       | 2        | Interpolation time index        | SINT      | RW     | No             | -6 to -3<br>(default: -6)                                   | No               |
|       | 0        | Number of entries               | USINT     | RO     | No             | 2                                                           | No               |
| 607Bh | 1        | Min position range limit        | DINT      | RW     | Yes            | -2147483648 to 0<br>(default: 0) [Pos.<br>unit]             | Yes              |
|       | 2        | Max position range limit        | DINT      | RW     | Yes            | 0 to 2147483647<br>(default: 0) [Pos.<br>unit]              | Yes              |
|       | 0        | Number of entries               | USINT     | RO     | No             | 2                                                           | No               |
| 607Dh | 1        | Min position limit              | DINT      | RW     | No             | -536870912 to<br>536870911<br>(default: 0) [Pos.<br>unit]   | Yes              |
|       | 2        | Max position limit              | DINT      | RW     | No             | -536870912 to<br>536870911<br>(default: 0) [Pos.<br>unit]   | Yes              |
| 6084h | 0        | Profile Deceleration            | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default: 1000)<br>[Acc. unit]           | Yes              |
| 6085h | 0        | Quick Stop Deceleration         | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default: 1000)<br>[Acc. unit]           | Yes              |

### (2) Mode2

This submode is used to perform interpolation feeding control for an individual axis. Unlike mode 1, mode 2 has reference input buffers (interpolation data record for 1st profile and interpolation data record for 2nd profile) that you can set to different interpolation positions (interpolation data record). The interpolation positions that are set in the reference input buffers are read each Interpolation Time Period to perform interpolation processing.

The following figure shows the block diagram for mode 2.



#### (a) Related Objects

| Index | Subindex | Name                                    | Data Type | Access | PDO<br>Mapping | Value                       | Saving to EEPROM |
|-------|----------|-----------------------------------------|-----------|--------|----------------|-----------------------------|------------------|
| 6040h | 0        | Controlword                             | UINT      | RW     | Yes            | 0 to 0xFFFF<br>(default: 0) | No               |
| 6041h | 0        | Statusword                              | UINT      | RO     | Yes            | _                           | No               |
|       | 0        | Number of entries                       | USINT     | RO     | No             | 2                           | No               |
| 60C2h | 1        | Interpolation time period value         | USINT     | RW     | No             | 1 to 250<br>(default: 125)  | No               |
|       | 2        | Interpolation time index                | SINT      | RW     | No             | -6 to -3<br>(default: -6)   | No               |
|       | 0        | Number of entries                       | USINT     | RO     | No             | 9                           | No               |
|       | 1        | Maximum buffer size                     | UDINT     | RO     | No             | 254                         | No               |
|       | 2        | Actual buffer size                      | UDINT     | RW     | No             | 254                         | No               |
|       | 3        | Buffer organization                     | USINT     | RW     | No             | 0 to 1<br>(default: 0)      | No               |
|       | 4        | Buffer position                         | UINT      | RW     | Yes            | 1 to 254<br>(default: 1)    | No               |
| 2730h | 5        | Size of data record                     | USINT     | WO     | No             | 1 to 1<br>(default: 1)      | No               |
|       | 6        | Buffer clear                            | USINT     | WO     | No             | 0 to 1<br>(default: 0)      | No               |
|       | 7        | Position data definition                | USINT     | RW     | Yes            | 0 to 1<br>(default: 1)      | No               |
|       | 8        | Position data polarity                  | USINT     | RW     | Yes            | 0 to 1<br>(default: 0)      | No               |
|       | 9        | Behavior after reaching buffer position | USINT     | RW     | Yes            | 0 to 1<br>(default: 0)      | No               |

Continued on next page.

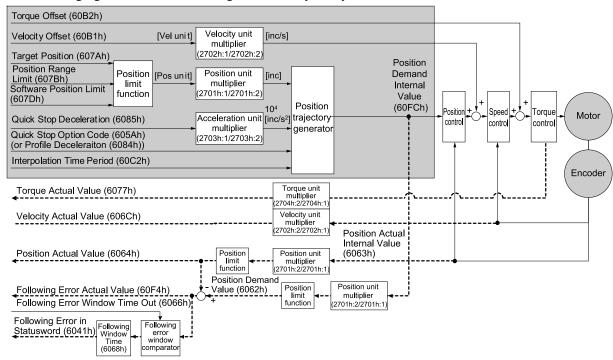
Continued from previous page.

| Index | Subindex | Name                                         | Data Type | Access | PDO<br>Mapping | Value                                                     | Saving to EEPROM |
|-------|----------|----------------------------------------------|-----------|--------|----------------|-----------------------------------------------------------|------------------|
|       | 0        | Number of entries                            | USINT     | RO     | No             | 9                                                         | No               |
|       | 1        | Maximum buffer size                          | UDINT     | RO     | No             | 254                                                       | No               |
|       | 2        | Actual buffer size                           | UDINT     | RW     | No             | 254                                                       | No               |
|       | 3        | Buffer organization                          | USINT     | RW     | No             | 0 to 1 (default: 0)                                       | No               |
|       | 4        | Buffer position                              | UINT      | RW     | Yes            | 1 to 254<br>(default: 1)                                  | No               |
| 2731h | 5        | Size of data record                          | USINT     | WO     | No             | 1 to 1<br>(default: 1)                                    | No               |
|       | 6        | Buffer clear                                 | USINT     | WO     | No             | 0 to 1<br>(default: 0)                                    | No               |
|       | 7        | Position data definition                     | USINT     | RW     | Yes            | 0 to 1<br>(default: 1)                                    | No               |
|       | 8        | Position data polarity                       | USINT     | RW     | Yes            | 0 to 1<br>(default: 0)                                    | No               |
|       | 9        | Behavior after reaching buffer position      | USINT     | RW     | Yes            | 0 to 1<br>(default: 0)                                    | No               |
| 2732h | 0        | Interpolation Profile Select                 | USINT     | RW     | Yes            | 0 to 1<br>(default: 0)                                    | No               |
|       | 0        | Number of entries                            | USINT     | RO     | No             | 254                                                       | No               |
| 27C0h | 1 to 254 | 1st set-point to 254 set-point               | DINT      | RW     | No             | -2147483648 to<br>2147483647<br>(default: 0)              | No               |
|       | 0        | Number of entries                            | USINT     | RO     | No             | 254                                                       | No               |
| 27C1h | 1 to 254 | 1st set-point to 254 set-point               | DINT      | RW     | No             | -2147483648 to<br>2147483647<br>(default: 0)              | No               |
|       | 0        | Number of entries                            | USINT     | RO     | No             | 2                                                         | No               |
| 2741h | 1        | Interpolation data read pointer<br>Position  | UINT      | RO     | Yes            | 1 to 254<br>(default: –)                                  | No               |
|       | 2        | Interpolation data write pointer<br>Position | UINT      | RO     | Yes            | 1 to 254<br>(default: –)                                  | No               |
|       | 0        | Number of entries                            | USINT     | RO     | No             | 2                                                         | No               |
| 607Bh | 1        | Min position range limit                     | DINT      | RW     | Yes            | -2147483648 to 0 (default: 0) [Pos. unit]                 | Yes              |
|       | 2        | Max position range limit                     | DINT      | RW     | Yes            | 0 to 2147483647<br>(default: 0) [Pos.<br>unit]            | Yes              |
|       | 0        | Number of entries                            | USINT     | RO     | No             | 2                                                         | No               |
| 607Dh | 1        | Min position limit                           | DINT      | RW     | No             | -536870912 to<br>536870911<br>(default: 0) [Pos.<br>unit] | Yes              |
|       | 2        | Max position limit                           | DINT      | RW     | No             | -536870912 to<br>536870911<br>(default: 0) [Pos.<br>unit] | Yes              |
| 6084h | 0        | Profile Deceleration                         | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default: 1000)<br>[Acc. unit]         | Yes              |
| 6085h | 0        | Quick Stop Deceleration                      | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default: 1000)<br>[Acc. unit]         | Yes              |

### (b) Object Setting Procedure

The recommended object setting procedure to use mode 2 is given in the following table.

| Step | Description                                                                                                                |
|------|----------------------------------------------------------------------------------------------------------------------------|
| 1    | Set Interpolation Submode Select (60C0h).                                                                                  |
| 2    | Set Interpolation Profile Select (2732h).                                                                                  |
| 3    | Set Interpolation Data Configuration for 1st Profile (2730h) and Interpolation Data Configuration for 2nd Profile (2731h). |
| 4    | Set Interpolation Data Record for 1st Profile (27C0h) and Interpolation Data Record for 2nd Profile (27C1h).               |
| 5    | Set Mode of Operation (6060h).                                                                                             |
| 6    | Set Enable Interpolation (6060h bit 4).                                                                                    |


### 14.3.3 Cyclic Synchronous Position Mode

The Cyclic Synchronous Position Mode is used for the interpolated positioning in the same way as the Interpolated Position Mode. In this mode, speed and torque compensations can be specified by the master to enable speed and torque feedforward.

The Interpolation Time Period defines the interval at which the Target Position is updated. Interpolation is performed in the SERVOPACK according to this setting.

The target position is interpreted as an absolute value.

The following figure shows the block diagram for the Cyclic Synchronous Position Mode.



## (1) Related Objects

| Index | Subindex | Name                            | Data Type | Access | PDO<br>Mapping | Value                                                       | Saving to EEPROM |
|-------|----------|---------------------------------|-----------|--------|----------------|-------------------------------------------------------------|------------------|
| 607Ah | 0        | Target Position                 | DINT      | RW     | Yes            | -2147483648 to<br>2147483647<br>(default: 0) [Pos.<br>unit] | No               |
|       | 0        | Number of entries               | USINT     | RO     | No             | 2                                                           | No               |
| 607Bh | 1        | Min position range limit        | DINT      | RW     | Yes            | -2147483648 to 0<br>(default: 0) [Pos.<br>unit]             | Yes              |
|       | 2        | Max position range limit        | DINT      | RW     | Yes            | 0 to 2147483647<br>(default: 0) [Pos.<br>unit]              | Yes              |
|       | 0        | Number of entries               | USINT     | RO     | No             | 2                                                           | No               |
| 607Dh | 1        | Min position limit              | DINT      | RW     | No             | -536870912 to<br>536870911<br>(default: 0) [Pos.<br>unit]   | Yes              |
|       | 2        | Max position limit              | DINT      | RW     | No             | -536870912 to<br>536870911<br>(default: 0) [Pos.<br>unit]   | Yes              |
| 6084h | 0        | Profile Deceleration            | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default: 1000)<br>[Acc. unit]           | Yes              |
| 6085h | 0        | Quick Stop Deceleration         | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default: 1000)<br>[Acc. unit]           | Yes              |
| 60B1h | 0        | Velocity Offset                 | DINT      | RW     | Yes            | -2147483648 to<br>2147483647<br>(default: 0) [Vel.<br>unit] | No               |
| 60B2h | 0        | Torque Offset                   | INT       | RW     | Yes            | -32768 to 32767<br>(default: 0) [Trq.<br>unit]              | No               |
|       | 0        | Number of entries               | USINT     | RO     | No             | 2                                                           | No               |
| 60C2h | 1        | Interpolation time period value | USINT     | RW     | No             | 1 to 250<br>(default: 125)                                  | No               |
|       | 2        | Interpolation time index        | SINT      | RW     | No             | -6 to -3<br>(default: -6)                                   | No               |

## 14.4 Homing

The following figure shows the relationship between the input objects and the output objects in the Homing Mode.

You can specify the speeds, acceleration rate, and homing method.

You can also use Home Offset to offset zero in the user coordinate system from the home position.



### 14.4.1 Related Objects

| Index | Subindex | Name                           | Data Type | Access | PDO<br>Mapping | Value                                                     | Saving to EEPROM |
|-------|----------|--------------------------------|-----------|--------|----------------|-----------------------------------------------------------|------------------|
| 6040h | 0        | Controlword                    | UINT      | RW     | Yes            | 0 to 0xFFFF<br>(default: 0)                               | No               |
| 6041h | 0        | Statusword                     | UINT      | RO     | Yes            | _                                                         | No               |
| 607Ch | -        | Home Offset                    | DINT      | RW     | No             | -536870912 to<br>536870911<br>(default: 0) [Pos.<br>unit] | Yes              |
| 6098h | 0        | Homing Method                  | SINT      | RW     | Yes            | 0 to 37<br>(default: 37)                                  | No               |
|       | 0        | Number of entries              | USINT     | RO     | No             | 2                                                         | No               |
| 6099h | 1        | Speed during search for switch | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default: 500000)<br>[Vel. unit]       | Yes              |
|       | 2        | Speed during search for zero   | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default: 100000)<br>[Vel. unit]       | Yes              |
| 609Ah | 0        | Homing Acceleration            | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default: 1000)<br>[Acc. unit]         | Yes              |

### 14.4.2 Homing Method (6098h)

| Value | Definition                                            | Description                                                                                                                                                                                                                                                 |
|-------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0     | _                                                     | No homing                                                                                                                                                                                                                                                   |
| 1     | Homing with the negative limit switch and index pulse | With this method, homing starts in the reverse direction if the negative limit switch is inactive. The home position is the first index pulse that is detected after the negative limit switch becomes inactive.  Index pulse  Reverse limit switch  (N-OT) |

Continued on next page.

Continued from previous page.

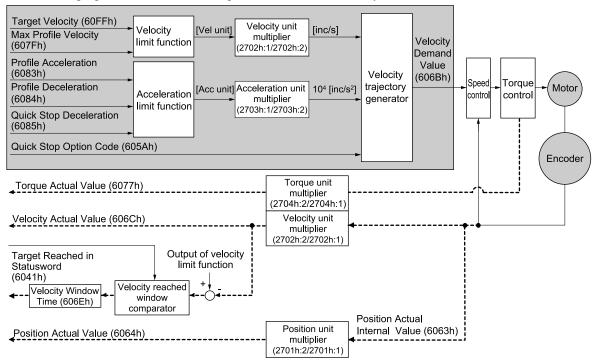
| Value    | Definition                                                                                             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2        | Homing with the positive limit switch and index pulse                                                  | With this method, homing starts in the forward direction if the positive limit switch is inactive. The home position is the first index pulse that is detected after the positive limit switch becomes inactive.  Index pulse  Forward limit switch  (P-OT)                                                                                                                                                                                                            |
| 7 to 10  | Homing with the home switch input (/Home) signal and index pulse and starting in the forward direction | With methods 7 to 10, homing starts in the forward direction. However, if the /Home signal is already active when homing is started, the initial homing direction depends on the required edge.  The home position will be the index pulse on either the rising or falling edge side of the /Home signal.  If the initial movement direction is away from the /Home signal, the motor will reverse direction when the limit switch in the movement direction is input. |
| 11 to 14 | Homing with the home switch input (/Home) signal and index pulse and starting in the reverse direction | These methods are similar to methods 7 to 10 except that homing starts in the reverse direction.  Index pulse  /Home signal  Reverse limit switch (N-OT)                                                                                                                                                                                                                                                                                                               |

Continued on next page.

Continued from previous page.

| Value  | Definition                                                                                      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24     | Homing with the home<br>switch input (/Home) signal<br>and starting in the forward<br>direction | This method is same as method 8 except that the home position does not depend on the index pulse. Here, it depends only on changes in the relevant /Home signal or limit switch.  //Home signal Forward limit switch (P-OT)                                                                                                                                                                                                                                                                             |
| 28     | Homing with the home<br>switch input (/Home) signal<br>and starting in the reverse<br>direction | This method is same as method 12 except that the home position does not depend on the index pulse. Here, it depends only on changes in the relevant /Home signal or limit switch.  /Home signal Reverse limit switch (N-OT)                                                                                                                                                                                                                                                                             |
| 33, 34 | Homing with the index pulse                                                                     | Index pulse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 35, 37 | Homing with the current position                                                                | With this method, the current position is defined as the home position. You can execute this method even if the servo drive is not in the Operation Enabled state. (default setting) If you perform homing with this method when an absolute encoder is connected, the offset value is saved automatically in Absolute Encoder Origin Offset (27E4h) and non-volatile memory.  To perform homing with this method when an absolute encoder is connected, we recommend you set Home Offset (607Ch) to 0. |

#### Note:


The index pulse is the encoder's zero signal (phase C).

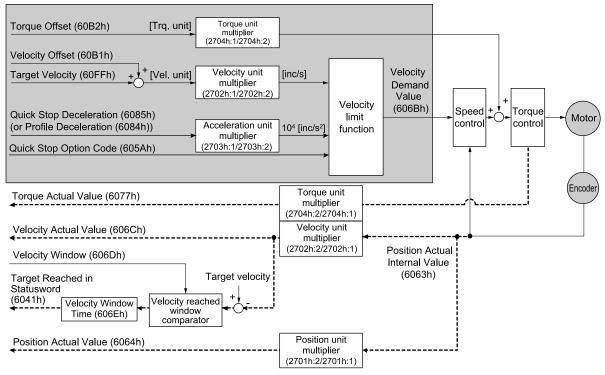
## 14.5 Velocity Control Modes

### 14.5.1 Profile Velocity Mode

In the Profile Velocity Mode, the speed is output according to the profile acceleration and profile deceleration until it reaches the target velocity.

The following figure shows the block diagram for the Profile Velocity Mode.




## (1) Related Objects

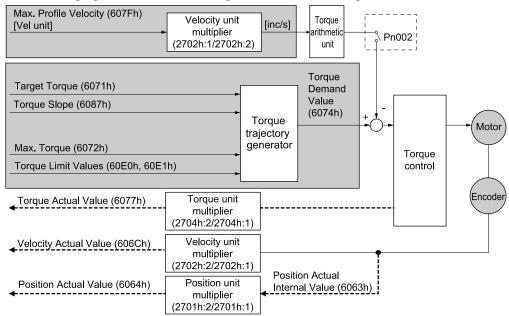
| Index | Subindex | Name                    | Data Type | Access | PDO<br>Mapping | Value                                                       | Saving to<br>EEPROM |
|-------|----------|-------------------------|-----------|--------|----------------|-------------------------------------------------------------|---------------------|
| 60FFh | 0        | Target Velocity         | DINT      | RW     | Yes            | -2147483648 to<br>2147483647<br>(default: 0) [Vel.<br>unit] | No                  |
| 607Fh | 0        | Max Profile Velocity    | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default:<br>2147483647) [Vel.<br>unit]  | Yes                 |
| 6083h | 0        | Profile Acceleration    | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default: 1000)<br>[Acc. unit]           | Yes                 |
| 6084h | 0        | Profile Deceleration    | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default: 1000)<br>[Acc. unit]           | Yes                 |
| 6085h | 0        | Quick Stop Deceleration | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default: 1000)<br>[Acc. unit]           | Yes                 |
| 606Bh | 0        | Velocity Demand Value   | DINT      | RO     | Yes            | – [Vel. unit]                                               | No                  |
| 606Ch | 0        | Velocity Actual Value   | DINT      | RO     | Yes            | – [Vel. unit]                                               | No                  |
| 606Dh | 0        | Velocity Window         | UINT      | RW     | No             | 0 to 65535<br>(default: 20000)<br>[Vel. unit]               | Yes                 |
| 606Eh | 0        | Velocity Window Time    | UINT      | RW     | No             | 0 to 65535<br>(default: 0) [ms]                             | Yes                 |

## 14.5.2 Cyclic Synchronous Velocity Mode

In the Cyclic Synchronous Velocity Mode, the master provides the target speed to the servo drive, which performs speed control. In this mode, a torque compensation can be specified by the master to enable torque feedforward.

The following figure shows the block diagram for the Cyclic Synchronous Velocity Mode.




### (1) Related Objects

| Index | Subindex | Name                    | Data Type | Access | PDO<br>Mapping | Value                                                       | Saving to EEPROM |
|-------|----------|-------------------------|-----------|--------|----------------|-------------------------------------------------------------|------------------|
| 60FFh | 0        | Target Velocity         | DINT      | RW     | Yes            | -2147483648 to<br>2147483647<br>(default: 0) [Vel.<br>unit] | No               |
| 60B1h | 0        | Velocity Offset         | DINT      | RW     | Yes            | -2147483648 to<br>2147483647<br>(default: 0) [Vel.<br>unit] | No               |
| 60B2h | 0        | Torque Offset           | INT       | RW     | Yes            | -32768 to 32767<br>(default: 0) [Trq.<br>unit]              | No               |
| 6084h | 0        | Profile Deceleration    | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default: 1000)<br>[Acc. unit]           | Yes              |
| 6085h | 0        | Quick Stop Deceleration | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default: 1000)<br>[Acc. unit]           | Yes              |
| 606Bh | 0        | Velocity Demand Value   | DINT      | RO     | Yes            | – [Vel. unit]                                               | No               |
| 606Ch | 0        | Velocity Actual Value   | DINT      | RO     | Yes            | – [Vel. unit]                                               | No               |
| 606Dh | 0        | Velocity Window         | UINT      | RW     | No             | 0 to 65535<br>(default: 20000)<br>[Vel. unit]               | Yes              |
| 606Eh | 0        | Velocity Window Time    | UINT      | RW     | No             | 0 to 65535<br>(default: 0) [ms]                             | Yes              |

## 14.6 Torque Control Modes

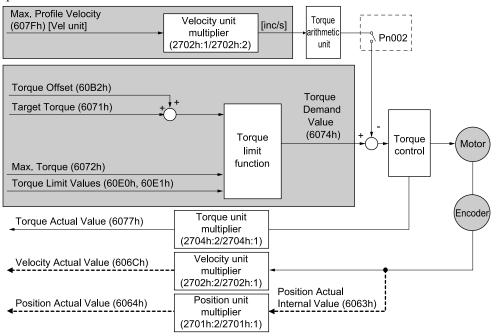
### 14.6.1 Profile Torque Mode

In the Profile Torque Mode, the torque is output up to the Target Torque according to the Torque Slope setting. The following figure shows the block diagram for the Profile Torque Mode.



### (1) Related Objects

| Index | Subindex | Name                        | Data Type | Access | PDO<br>Mapping | Value                                                       | Saving to EEPROM |
|-------|----------|-----------------------------|-----------|--------|----------------|-------------------------------------------------------------|------------------|
| 6071h | 0        | Target Torque               | INT       | RW     | Yes            | -32768 to 32767<br>(default: 0) [Trq.<br>unit]              | No               |
| 6087h | 0        | Torque Slope                | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default: 1000)<br>[Trq. unit/s]         | Yes              |
| 6074h | 0        | Torque Demand Value         | INT       | RO     | Yes            | – [Trq. unit]                                               | No               |
| 6077h | 0        | Torque Actual Value         | INT       | RO     | Yes            | – [Trq. unit]                                               | No               |
| 6072h | 0        | Max Torque                  | UINT      | RW     | Yes            | 0 to 65535<br>(default: Motor<br>max torque) [Trq.<br>unit] | No               |
| 607Fh | 0        | Max Profile Velocity        | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default:<br>2147483647) [Vel.<br>unit]  | Yes              |
| 60E0h | 0        | Positive Torque Limit Value | UINT      | RW     | Yes            | 0 to 65535<br>(default: 8000)<br>[Trq. unit]                | Yes              |
| 60E1h | 0        | Negative Torque Limit Value | UINT      | RW     | Yes            | 0 to 65535<br>(default: 8000)<br>[Trq. unit]                | Yes              |


Note:

Refer to the following section for details on the unit of "Value".

38 15.14 Torque Limit Function on page 638

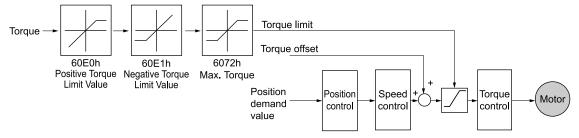
## 14.6.2 Cyclic Sync Torque Mode

In the Cyclic Sync Torque Mode, the master provides the target torque to the SERVOPACK, which performs torque control.



### (1) Related Objects

| Index | Subindex | Name                        | Data Type | Access | PDO<br>Mapping | Value                                                       | Saving to EEPROM |
|-------|----------|-----------------------------|-----------|--------|----------------|-------------------------------------------------------------|------------------|
| 6071h | 0        | Target Torque               | INT       | RW     | Yes            | -32768 to 32767<br>(default: 0) [Trq.<br>unit]              | No               |
| 6074h | 0        | Torque Demand Value         | INT       | RO     | Yes            | – [Trq. unit]                                               | No               |
| 6077h | 0        | Torque Actual Value         | INT       | RO     | Yes            | – [Trq. unit]                                               | No               |
| 60B2h | 0        | Torque Offset               | INT       | RW     | Yes            | -32768 to 32767<br>(default: 0) [Trq.<br>unit]              | No               |
| 6072h | 0        | Max Torque                  | UINT      | RW     | Yes            | 0 to 65535<br>(default: Motor<br>max torque) [Trq.<br>unit] | No               |
| 607Fh | 0        | Max Profile Velocity        | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default:<br>2147483647) [Vel.<br>unit]  | Yes              |
| 60E0h | 0        | Positive Torque Limit Value | UINT      | RW     | Yes            | 0 to 65535<br>(default: 8000)<br>[Trq. unit]                | Yes              |
| 60E1h | 0        | Negative Torque Limit Value | UINT      | RW     | Yes            | 0 to 65535<br>(default: 8000)<br>[Trq. unit]                | Yes              |


Note:

Refer to the following section for details on the unit of "Value".

■ 15.14 Torque Limit Function on page 638

## 14.7 Torque Limits

The following figure shows the block diagram for the torque limits. The torque is limited by the lowest limit value.



## 14.7.1 Related Objects

| Index | Subindex | Name                        | Data Type | Access | PDO<br>Mapping | Value                                                       | Saving to EEPROM |
|-------|----------|-----------------------------|-----------|--------|----------------|-------------------------------------------------------------|------------------|
| 6072h | 0        | Max Torque                  | UINT      | RW     | Yes            | 0 to 65535<br>(default: Motor<br>max torque) [Trq.<br>unit] | No               |
| 60E0h | 0        | Positive Torque Limit Value | UINT      | RW     | Yes            | 0 to 65535<br>(default: 8000)<br>[Trq. unit]                | Yes              |
| 60E1h | 0        | Negative Torque Limit Value | UINT      | RW     | Yes            | 0 to 65535<br>(default: 8000)<br>[Trq. unit]                | Yes              |

Note:

Refer to the following section for details on the unit of "Value".

■ 15.14 Torque Limit Function on page 638

# 14.8 Digital I/O Signals

The Digital Inputs and Digital Outputs are used to control the I/O signals of the CN1 connector on the SERVOPACK.

| Index | Subindex | Name              | Data Type | Access | PDO<br>Mapping | Value                                       | Saving to EEPROM |
|-------|----------|-------------------|-----------|--------|----------------|---------------------------------------------|------------------|
| 60FDh | 0        | Digital Inputs    | UDINT     | RO     | Yes            | -                                           | No               |
|       | 0        | Number of entries | USINT     | RO     | No             | 2                                           | No               |
| 60FEh | 1        | Physical outputs  | UDINT     | RW     | Yes            | 0 to 0xFFFFFFFF (default: 0)                | No               |
|       | 2        | Bit mask          | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default:<br>0x000C0000) | Yes              |

## 14.9 Touch Probe

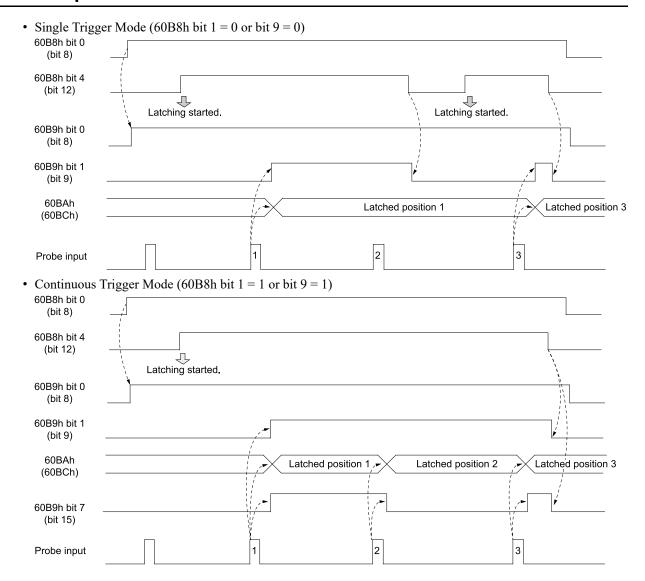
You can latch the feedback position with the following trigger events.

- Trigger with probe 1 input (Probe 1 Latch Input (/Probe1) signal)
- Trigger with probe 2 input (Probe 2 Latch Input (/Probe2) signal)
- Trigger with encoder zero signal (phase C)

The following two touch probe latches can be used at the same time.

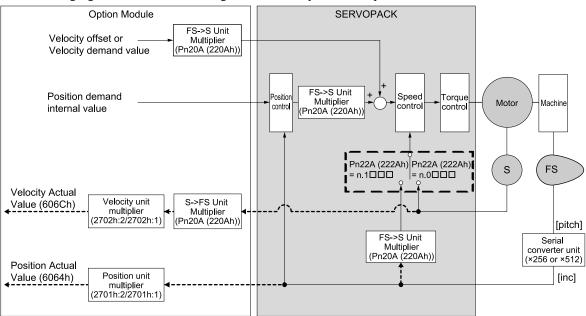
- Touch Probe 1 Latch
  - Latch control object: 60B8h (bits 0 to 7)
  - Latch status object: 60B9h (bits 0 to 7)
  - Save latched position: 60BAh (Touch Probe 1 Positive Edge) or 60BBh (Touch Probe 1 Negative Edge)
  - Trigger signal: Encoder zero signal or /Probe1 signal
- Touch Probe 2 Latch
  - Latch control object: 60B8h (bits 8 to 15)
  - Latch status object: 60B9h (bits 8 to 15)
  - Save latched position: 60BCh (Touch Probe 2 Positive Edge) or 60BDh (Touch Probe 2 Negative Edge)
  - Trigger signal: /Probe2 signal

You can change the connector pin assignments and the /Probe1 and /Probe2 signal logic in the Probe 1 Latch Input Signal parameter (Pn511 =  $\square\square X\square$ ) and the Probe 2 Latch Input Signal parameter (Pn511 =  $\square X\square$ ).


#### Note:

Touch probe 1 cannot be used during homing. If touch probe 1 was already enabled during homing, touch probe 1 operation will be disabled.

### 14.9.1 Related Objects


| Index | Subindex | Name                        | Data Type | Access | PDO<br>Mapping | Value                    | Saving to EEPROM |
|-------|----------|-----------------------------|-----------|--------|----------------|--------------------------|------------------|
| 60B8h | 0        | Touch probe function        | UINT      | RW     | Yes            | 0 to 0xFFFF (default: 0) | No               |
| 60B9h | 0        | Touch Probe Status          | UINT      | RO     | Yes            | ı                        | No               |
| 60BAh | 0        | Touch probe 1 positive edge | DINT      | RO     | Yes            | - [Pos. unit]            | No               |
| 60BBh | 0        | Touch probe 1 negative edge | DINT      | RO     | Yes            | - [Pos. unit]            | No               |
| 60BCh | 0        | Touch probe 2 positive edge | DINT      | RO     | Yes            | - [Pos. unit]            | No               |
| 60BDh | 0        | Touch probe 2 negative edge | DINT      | RO     | Yes            | - [Pos. unit]            | No               |

## 14.9.2 Example of Execution Procedure for a Touch Probe



## 14.10 Fully-Closed Loop Control

The following figure shows the block diagram for the fully-closed loop control.



The basic setting procedure for the related parameters is given in the following table.

| Step | Description                                                                   | Parameter Setting                                                                                                                                   |  |  |
|------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1    | Set the speed feedback method to use during fully-closed loop control.        | Fully-closed Control Selections (Pn22A (222Ah))                                                                                                     |  |  |
| 2    | Set the motor rotation direction.                                             | Rotation Direction Selection (Pn000 (2000h) = $n.\square\square\square X$ )<br>External Encoder Usage (Pn002 (2002h) = $n.X\square\square\square$ ) |  |  |
| 3    | Set the number of pitches (cycles) of the sine wave for the external encoder. | Number of External Encoder Scale Pitches (Pn20A (220Ah))                                                                                            |  |  |
| 4    | Set the position reference unit (electronic gear).                            | Position User Unit (2701h)                                                                                                                          |  |  |
| 5    | Set the alarm detection level for the external encoder.                       | Motor-Load Position Deviation Overflow Detection Level (Pn51B (251Bh)) Multiplier per Fully-closed Rotation (Pn52A (252Ah))                         |  |  |

## **Object Dictionary**

This chapter provides tables of the objects that are supported by an EtherCAT SERVOPACK. Each object is described.

| 15.1 | Object Dictionary List                              | 581 |
|------|-----------------------------------------------------|-----|
| 15.2 | General Objects                                     | 586 |
|      | 15.2.1 Device Type (1000h)                          | 586 |
|      | 15.2.2 Error Register (1001h)                       | 586 |
|      | 15.2.3 Manufacturer Device Name (1008h)             | 586 |
|      | 15.2.4 Manufacturer Software Version (100Ah)        | 586 |
|      | 15.2.5 Store Parameters (1010h)                     | 587 |
|      | 15.2.6 Restore Default Parameters (1011h)           | 587 |
|      | 15.2.7 Identity Object (1018h)                      | 588 |
| 15.3 | PDO Mapping Objects                                 | 589 |
|      | 15.3.1 Receive PDO Mapping (1600h to 1603h)         | 590 |
|      | 15.3.2 Transmit PDO Mapping (1A00h to 1A03h)        | 594 |
| 15.4 | Sync Manager Communication Objects                  | 598 |
|      | 15.4.1 Sync Manager Communication Type (1C00h)      | 598 |
|      | 15.4.2 Sync Manager PDO Assignment (1C10h to 1C13h) | 598 |
|      | 15.4.3 Sync Manager Synchronization (1C32h, 1C33h)  | 599 |
|      | 15.4.4 Sync Error Settings (10F1h)                  | 601 |
| 15.5 | Manufacturer Specific Objects                       | 602 |
|      | 15.5.1 SERVOPACK Parameters (2000h to 26FFh)        | 602 |
|      | 15.5.2 User Parameter Configuration (2700h)         | 602 |
|      | 15.5.3 Position User Unit (2701h)                   | 602 |
|      | 15.5.4 Velocity User Unit (2702h)                   | 603 |
|      | 15.5.5 Acceleration User Unit (2703h)               | 603 |
|      | 15.5.6 Torque User Unit (2704h)                     | 603 |
|      | 15.5.7 SERVOPACK Adjusting Command (2710h)          | 604 |
|      | 15.5.8 Sensing Data Monitor (2770h, 2771h, 2772h)   | 607 |
|      | 15.5.9 Σ-LINK II Data Monitor (2773h, 2774h)        | 608 |
|      | 15.5.10Output Position Setting (2778h)              | 609 |
|      |                                                     |     |

|      | 15.5.11Output Function Setting (2779h)            | 609 |
|------|---------------------------------------------------|-----|
|      | 15.5.12Output Time Setting (277Ah)                | 610 |
|      | 15.5.13Output Distance Setting (277Bh)            | 610 |
|      | 15.5.14Output Position Correction Setting (277Ch) | 610 |
| 15.6 | Device Control                                    | 611 |
|      | 15.6.1 Error Code (603Fh)                         |     |
|      | 15.6.2 Controlword (6040h)                        | 611 |
|      | 15.6.3 Controlword_VenderS (2776h)                | 613 |
|      | 15.6.4 Statusword (6041h)                         | 613 |
|      | 15.6.5 Quick Stop Option Code (605Ah)             | 616 |
|      | 15.6.6 Shutdown Option Code (605Bh)               | 616 |
|      | 15.6.7 Disable Operation Option Code (605Ch)      | 617 |
|      | 15.6.8 Halt Option Code (605Dh)                   | 617 |
|      | 15.6.9 Fault Reaction Option Code (605Eh)         | 618 |
|      | 15.6.10Modes of Operation (6060h)                 | 618 |
|      | 15.6.11Modes of Operation Display (6061h)         | 619 |
|      | 15.6.12Supported Drive Modes (6502h)              | 619 |
| 15.7 | Profile Position Mode                             | 620 |
|      | 15.7.1 Target Position (607Ah)                    | 620 |
|      | 15.7.2 Software Position Limit (607Dh)            | 620 |
|      | 15.7.3 Max Profile Velocity (607Fh)               | 620 |
|      | 15.7.4 Profile Velocity (6081h)                   | 621 |
|      | 15.7.5 Profile Acceleration (6083h)               | 621 |
|      | 15.7.6 Profile Deceleration (6084h)               | 621 |
|      | 15.7.7 Quick Stop Deceleration (6085h)            | 621 |
| 15.8 | Homing Mode                                       | 622 |
|      | 15.8.1 Home Offset (607Ch)                        | 622 |
|      | 15.8.2 Homing Method (6098h)                      | 622 |
|      | 15.8.3 Homing Speeds (6099h)                      | 623 |
|      | 15.8.4 Homing Acceleration (609Ah)                | 623 |
| 15.9 | Position Control Function                         | 624 |
|      | 15.9.1 Position Demand Value (6062h)              |     |
|      | 15.9.2 Position Actual Internal Value (6063h)     | 624 |
|      | 15.9.3 Position Actual Value (6064h)              |     |
|      | 15.9.4 Position Demand Internal Value (60FCh)     |     |
|      | 15.9.5 Following Error Window (6065h)             |     |
|      | 15.9.6 Following Error Time Out (6066h)           |     |
|      | 15.9.7 Following Error Actual Value (60F4h)       | 625 |
|      | 15.9.8 Position Window (6067h)                    | 625 |

|       | 15.9.9 Position Window Time (6068h)                                                                      | 625 |
|-------|----------------------------------------------------------------------------------------------------------|-----|
|       | 15.9.10Position Offset (60B0h)                                                                           | 625 |
|       | 15.9.11Additional Position Actual Value (60E4h)                                                          | 626 |
|       | 15.9.12Position Range Limit (607Bh)                                                                      | 626 |
|       | 15.9.13Position Option Code (60F2h)                                                                      | 626 |
| 15.10 | Interpolated Position Mode                                                                               | 627 |
|       | 15.10.1Interpolation Submode Select (60C0h) (Object Shared by Mode 1 and Mode 2)                         | 627 |
|       | 15.10.2Interpolation Data Record (60C1h) (Object Shared by Mode 1 and Mode 2)                            | 627 |
|       | 15.10.3Interpolation Time Period (60C2h) (Object Shared by Mode 1 and Mode 2)                            | 627 |
|       | 15.10.4Manufacturer Interpolation Data Configuration for 1st Profile (2730h) (Mode 2 Object)             | 628 |
|       | 15.10.5Manufacturer Interpolation Data Configuration for 2 <sup>nd</sup> Profile (2731h) (Mode 2 Object) | 629 |
|       | 15.10.6Interpolation Profile Select (2732h) (Mode 2 Object)                                              |     |
|       | 15.10.7Interpolation Data Record for 1st Profile (27C0h) (Mode 2 Object)                                 | 631 |
|       | 15.10.8Interpolation Data Record for 2 <sup>nd</sup> Profile (27C1h) (Mode 2 Object)                     | 632 |
|       | 15.10.9Interpolation Data Read/Write Pointer Position Monitor (2741h) (Mode 2 Object)                    | 632 |
| 15.11 | Cyclic Synchronous Position Mode                                                                         | 633 |
|       | 15.11.1Velocity Offset (60B1h)                                                                           | 633 |
|       | 15.11.2Torque Offset (60B2h)                                                                             | 633 |
| 15.12 | Profile Velocity/Cyclic Synchronous Velocity Mode                                                        | 634 |
|       | 15.12.1Velocity Demand Value (606Bh)                                                                     | 634 |
|       | 15.12.2Velocity Actual Value (606Ch)                                                                     | 634 |
|       | 15.12.3Velocity Window (606Dh)                                                                           | 634 |
|       | 15.12.4Velocity Window Time (606Eh)                                                                      | 634 |
|       | 15.12.5End Velocity (6082h)                                                                              | 634 |
|       | 15.12.6Target Velocity (60FFh)                                                                           | 635 |
| 15.13 | Profile Torque/Cyclic Synchronous Torque Mode                                                            |     |
|       | 15.13.1Target Torque (6071h)                                                                             |     |
|       | 15.13.2Torque Demand Value (6074h)                                                                       | 636 |
|       | 15.13.3Torque Slope (6087h)                                                                              | 636 |
|       | 15.13.4Motor Rated Torque (6076h)                                                                        | 636 |
|       | 15.13.5Torque Actual Value (6077h)                                                                       |     |
|       | 15.13.6Current Actual Value (6078h)                                                                      | 637 |
| 15.14 | Torque Limit Function                                                                                    |     |
|       | 15.14.1Max. Torque (6072h)                                                                               | 638 |

|       | 15.14.2Positive Torque Limit Value (60E0h) | 638 |
|-------|--------------------------------------------|-----|
|       | 15.14.3Negative Torque Limit Value (60E1h) | 638 |
| 15.15 | Touch Probe Function                       | 639 |
|       | 15.15.1Touch Probe Function (60B8h)        | 639 |
|       | 15.15.2Touch Probe Status (60B9h)          |     |
|       | 15.15.3Touch Probe 1 Positive Edge (60BAh) | 640 |
|       | 15.15.4Touch Probe 1 Negative Edge (60BBh) | 640 |
|       | 15.15.5Touch Probe 2 Positive Edge (60BCh) | 641 |
|       | 15.15.6Touch Probe 2 Negative Edge (60BDh) | 641 |
| 15.16 | Digital Inputs/Outputs                     | 642 |
|       | 15.16.1Digital Inputs (60FDh)              |     |
|       | 15.16.2Digital Outputs (60FEh)             | 642 |
| 15.17 | Motor Catalogue Number (6403h)             | 644 |
| 15.18 | Manufacturer Serial Number (F9F0h)         | 645 |

## 15.1 Object Dictionary List

The following table lists the dictionary objects.

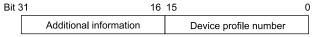
| Functional Classification          | Object Name                     | Reference                                                       |
|------------------------------------|---------------------------------|-----------------------------------------------------------------|
|                                    | Device Type                     | 15.2.1 Device Type (1000h) on page 586                          |
|                                    | Error Register                  | 15.2.2 Error Register (1001h) on page 586                       |
|                                    | Manufacturer Device Name        | 15.2.3 Manufacturer Device Name (1008h) on page 586             |
| General Objects                    | Manufacturer Software Version   | 15.2.4 Manufacturer Software Version (100Ah) on page 586        |
|                                    | Store Parameters                | 15.2.5 Store Parameters (1010h) on page 587                     |
|                                    | Restore Default Parameters      | 15.2.6 Restore Default Parameters (1011h) on page 587           |
|                                    | Identity Object                 | 15.2.7 Identity Object (1018h) on page 588                      |
| DDO M OL                           | Receive PDO Mapping             | 15.3.1 Receive PDO Mapping (1600h to 1603h) on page 590         |
| PDO Mapping Objects                | Transmit PDO Mapping            | 15.3.2 Transmit PDO Mapping (1A00h to 1A03h) on page 594        |
|                                    | Sync Manager Communication Type | 15.4.1 Sync Manager Communication<br>Type (1C00h) on page 598   |
|                                    | Sync Manager PDO Assignment     | 15.4.2 Sync Manager PDO Assignment (1C10h to 1C13h) on page 598 |
| Sync Manager Communication Objects | Sync Manager Synchronization    | 15.4.3 Sync Manager Synchronization (1C32h, 1C33h) on page 599  |
|                                    | Sync Error Setting              | 15.4.4 Sync Error Settings (10F1h) on page 601                  |

| Functional Classification     | Object Name                        | Reference                                                         |
|-------------------------------|------------------------------------|-------------------------------------------------------------------|
|                               | SERVOPACK Parameters               | 15.5.1 SERVOPACK Parameters (2000h to 26FFh) on page 602          |
|                               | User Parameter Configuration       | (2700h) on page 602                                               |
|                               | Position User Unit                 | 15.5.3 Position User Unit (2701h) on page 602                     |
|                               | Velocity User Unit                 | 15.5.4 Velocity User Unit (2702h) on page 603                     |
|                               | Acceleration User Unit             | 15.5.5 Acceleration User Unit (2703h) on page 603                 |
|                               | Torque User Unit                   | 3 15.5.6 Torque User Unit (2704h) on page 603                     |
| Manufacturar Specific Objects | SERVOPACK Adjusting Command Object | 3 15.5.7 SERVOPACK Adjusting Command (2710h) on page 604          |
| Manufacturer Specific Objects | Sensing Data Monitor               | 3 15.5.8 Sensing Data Monitor (2770h, 2771h, 2772h) on page 607   |
|                               | Σ-LINK II Data Monitor             | <b>3</b> 15.5.9 Σ-LINK II Data Monitor (2773h, 2774h) on page 608 |
|                               | Output Position Setting            | 3 15.5.10 Output Position Setting (2778h) on page 609             |
|                               | Output Function Setting            | 3 15.5.11 Output Function Setting (2779h) on page 609             |
|                               | Output Time Setting                | 3 15.5.12 Output Time Setting (277Ah) on page 610                 |
|                               | Output Distance Setting            | 3 15.5.13 Output Distance Setting (277Bh) on page 610             |
|                               | Output Position Correction Setting | 15.5.14 Output Position Correction Setting (277Ch) on page 610    |
|                               | Error Code                         | <b>3</b> 15.6.1 Error Code (603Fh) on page 611                    |
|                               | Controlword                        | 15.6.2 Controlword (6040h) on page 611                            |
|                               | Controlword_VenderS                | 15.6.3 Controlword_VenderS (2776h) on page 613                    |
|                               | Statusword                         | <b>3</b> 15.6.4 Statusword (6041h) on page 613                    |
|                               | Quick Stop Option Code             | 15.6.5 Quick Stop Option Code (605Ah) on page 616                 |
|                               | Shutdown Option Code               | 15.6.6 Shutdown Option Code (605Bh) on page 616                   |
| Device Control                | Disable Operation Option Code      | 15.6.7 Disable Operation Option Code (605Ch) on page 617          |
|                               | Halt Option Code                   | 15.6.8 Halt Option Code (605Dh) on page 617                       |
|                               | Fault Reaction Option Code         | 15.6.9 Fault Reaction Option Code (605Eh) on page 618             |
|                               | Modes of Operation                 | <b>G</b> 15.6.10 Modes of Operation (6060h) on page 618           |
|                               | Modes of Operation Display         | © 15.6.11 Modes of Operation Display (6061h) on page 619          |
|                               | Supported Drive Modes              | 15.6.12 Supported Drive Modes (6502h) on page 619                 |

| Functional Classification | Object Name                      | Reference                                                       |
|---------------------------|----------------------------------|-----------------------------------------------------------------|
|                           | Target Position                  | 15.7.1 Target Position (607Ah) on page 620                      |
|                           | Software Position Limit          | 15.7.2 Software Position Limit (607Dh) on page 620              |
|                           | Max. Profile Velocity            | 15.7.3 Max Profile Velocity (607Fh) on page 620                 |
| Profile Position Mode     | Profile Velocity                 | 15.7.4 Profile Velocity (6081h) on page 621                     |
|                           | Profile Acceleration             | 15.7.5 Profile Acceleration (6083h) on page 621                 |
|                           | Profile Deceleration             | 15.7.6 Profile Deceleration (6084h) on page 621                 |
|                           | Quick Stop Deceleration          | 15.7.7 Quick Stop Deceleration (6085h) on page 621              |
|                           | Home Offset                      | 15.8.1 Home Offset (607Ch) on page 622                          |
| w. · w.l                  | Homing Method                    | 15.8.2 Homing Method (6098h) on page 622                        |
| Homing Mode               | Homing Speeds                    | 15.8.3 Homing Speeds (6099h) on page 623                        |
|                           | Homing Acceleration              | 15.8.4 Homing Acceleration (609Ah) on page 623                  |
|                           | Position Demand Value            | 15.9.1 Position Demand Value (6062h) on page 624                |
|                           | Position Actual Internal Value   | 15.9.2 Position Actual Internal Value (6063h) on page 624       |
|                           | Position Actual Value            | 15.9.3 Position Actual Value (6064h) on page 624                |
|                           | Position Demand Internal Value   | 15.9.4 Position Demand Internal Value (60FCh) on page 624       |
|                           | Following Error Window           | 15.9.5 Following Error Window (6065h) on page 624               |
|                           | Following Error Time Out         | 15.9.6 Following Error Time Out (6066h) on page 625             |
| Position Control Function | Following Error Actual Value     | 15.9.7 Following Error Actual Value (60F4h) on page 625         |
|                           | Position Window                  | 15.9.8 Position Window (6067h) on page 625                      |
|                           | Position Window Time             | 15.9.9 Position Window Time (6068h) on page 625                 |
|                           | Position Offset                  | 15.9.10 Position Offset (60B0h) on page 625                     |
|                           | Additional Position Actual Value | 15.9.11 Additional Position Actual<br>Value (60E4h) on page 626 |
|                           | Position Range Limit             | 15.9.12 Position Range Limit (607Bh) on page 626                |
|                           | Position Option Code             | 15.9.13 Position Option Code (60F2h) on page 626                |

| Functional Classification                    | Object Name                                                               | Reference                                                                                                               |  |  |
|----------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|
|                                              | Interpolation Sub Mode Select                                             | 3 15.10.1 Interpolation Submode Select (60C0h) (Object Shared by Mode 1 and Mode 2) on page 627                         |  |  |
|                                              | Interpolation Data Record                                                 | 15.10.2 Interpolation Data Record<br>(60C1h) (Object Shared by Mode 1 and<br>Mode 2) on page 627                        |  |  |
|                                              | Interpolation Time Period                                                 | 15.10.3 Interpolation Time Period<br>(60C2h) (Object Shared by Mode 1 and<br>Mode 2) on page 627                        |  |  |
|                                              | Manufacturer Interpolation Data Configura-<br>tion for 1st Profile        | 3 15.10.4 Manufacturer Interpolation Data Configuration for 1st Profile (2730h) (Mode 2 Object) on page 628             |  |  |
| Interpolated Position Mode                   | Manufacturer Interpolation Data Configuration for 2 <sup>nd</sup> Profile | 3 15.10.5 Manufacturer Interpolation Data Configuration for 2 <sup>nd</sup> Profile (2731h) (Mode 2 Object) on page 629 |  |  |
|                                              | Interpolation Profile Select                                              | 3 15.10.6 Interpolation Profile Select<br>(2732h) (Mode 2 Object) on page 631                                           |  |  |
|                                              | Interpolation Data Record for 1st Profile                                 | 3 15.10.7 Interpolation Data Record for 1st Profile (27C0h) (Mode 2 Object) on page 631                                 |  |  |
|                                              | Interpolation Data Record for 2 <sup>nd</sup> Profile                     | 3 15.10.8 Interpolation Data Record for 2 <sup>nd</sup> Profile (27C1h) (Mode 2 Object) on page 632                     |  |  |
|                                              | Interpolation Data Read/Write Pointer<br>Position                         | 15.10.9 Interpolation Data Read/Write<br>Pointer Position Monitor (2741h) (Mode<br>2 Object) on page 632                |  |  |
|                                              | Velocity Offset                                                           | 33 15.11.1 Velocity Offset (60B1h) on page                                                                              |  |  |
| Cyclic Synchronous Position Mode             | Torque Offset                                                             | 15.11.2 Torque Offset (60B2h) on page 633                                                                               |  |  |
|                                              | Velocity Demand Value                                                     | 3 15.12.1 Velocity Demand Value (606Bh) on page 634                                                                     |  |  |
|                                              | Velocity Actual Value                                                     | 15.12.2 Velocity Actual Value (606Ch) on page 634                                                                       |  |  |
| Profile Velocity/Cyclic Synchronous Velocity | Velocity Window                                                           | 3 15.12.3 Velocity Window (606Dh) on page 634                                                                           |  |  |
| Mode                                         | Velocity Window Time                                                      | 3 15.12.4 Velocity Window Time (606Eh) on page 634                                                                      |  |  |
|                                              | End Velocity                                                              | 315.12.5 End Velocity (6082h) on page 634                                                                               |  |  |
|                                              | Target Velocity                                                           | 3 15.12.6 Target Velocity (60FFh) on page 635                                                                           |  |  |
|                                              | Target Torque                                                             | 36 15.13.1 Target Torque (6071h) on page 636                                                                            |  |  |
|                                              | Torque Demand Value                                                       | 15.13.2 Torque Demand Value (6074h) on page 636                                                                         |  |  |
| Profile Torque/Cyclic Synchronous Velocity   | Torque Slope                                                              | 15.13.3 Torque Slope (6087h) on page 636                                                                                |  |  |
| Mode                                         | Motor Rated Torque                                                        | 15.13.4 Motor Rated Torque (6076h) on page 636                                                                          |  |  |
|                                              | Torque Actual Value                                                       | 3 15.13.5 Torque Actual Value (6077h) on page 636                                                                       |  |  |
|                                              | Current Actual Value                                                      | 15.13.6 Current Actual Value (6078h) on page 637                                                                        |  |  |

| Functional Classification Object Name |                                                        | Reference                                                 |
|---------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|
|                                       | Max. Torque                                            | 15.14.1 Max. Torque (6072h) on page 638                   |
| Torque Limit Function                 | Positive Torque Limit Value                            | 3 15.14.2 Positive Torque Limit Value (60E0h) on page 638 |
|                                       | Negative Torque Limit Value                            | 3 15.14.3 Negative Torque Limit Value (60E1h) on page 638 |
|                                       | Touch Probe Function                                   | 3 15.15.1 Touch Probe Function (60B8h) on page 639        |
|                                       | Touch Probe Status                                     | 3 15.15.2 Touch Probe Status (60B9h) on page 640          |
| Touch Probe Function                  | Touch Probe 1 Positive Edge                            | 3 15.15.3 Touch Probe 1 Positive Edge (60BAh) on page 640 |
| Touch Probe Function                  | Touch Probe 1 Negative Edge                            | 3 15.15.4 Touch Probe 1 Negative Edge (60BBh) on page 640 |
|                                       | Touch Probe 2 Positive Edge                            | 15.15.5 Touch Probe 2 Positive Edge (60BCh) on page 641   |
|                                       | Touch Probe 2 Negative Edge                            | 15.15.6 Touch Probe 2 Negative Edge (60BDh) on page 641   |
|                                       | Digital Inputs                                         | 3 15.16.1 Digital Inputs (60FDh) on page 642              |
| Digital Inputs/Outputs                | Digital Outputs                                        | 3 15.16.2 Digital Outputs (60FEh) on page 642             |
| Motor Catalogue Number                | 15.17 Motor Catalogue Number (6403h) on page 644       |                                                           |
| Manufacturer Serial Number            | 3 15.18 Manufacturer Serial Number (F9F0h) on page 645 |                                                           |


### 15.2 General Objects

#### 15.2.1 Device Type (1000h)

This object contains the device type and functionality.

| Index | Subindex | Name        | Data Type | Access | PDO<br>Mapping | Value      | Saving to EEPROM |
|-------|----------|-------------|-----------|--------|----------------|------------|------------------|
| 1000h | 0        | Device Type | UDINT     | RO     | No             | 0x00020192 | No               |

#### (1) Data Description



Additional information: 0002 (Servo Drive) Device profile number: 0192 (DS402)

#### 15.2.2 Error Register (1001h)

This object contains the error status of the device. The value of this object is stored as part of an emergency message.

| Index | Subindex | Name           | Data Type | Access | PDO<br>Mapping | Value | Saving to<br>EEPROM |
|-------|----------|----------------|-----------|--------|----------------|-------|---------------------|
| 10011 | 0        | Error Register | USINT     | RO     | No             | -     | No                  |

### (1) Data Description

| Bit    | Data          | Description           |  |
|--------|---------------|-----------------------|--|
| 0      | Generic error | 0: No error, 1: Error |  |
| 1 to 7 | Reserved      | 0: Always 0           |  |

### 15.2.3 Manufacturer Device Name (1008h)

This object contains the SERVOPACK model name.

| Index | Subindex | Name                     | Data Type | Access | PDO<br>Mapping | Value | Saving to<br>EEPROM |
|-------|----------|--------------------------|-----------|--------|----------------|-------|---------------------|
| 1008h | 0        | Manufacturer Device Name | STRING    | RO     | No             | ı     | No                  |

### 15.2.4 Manufacturer Software Version (100Ah)

This object contains the software version of the SERVOPACK.

| Index | Subindex | Name                          | Data Type | Access | PDO<br>Mapping | Value | Saving to EEPROM |
|-------|----------|-------------------------------|-----------|--------|----------------|-------|------------------|
| 100Ah | 0        | Manufacturer Software Version | STRING    | RO     | No             | -     | No               |

Saving to EEPROM

No

No

No

No

No

Value

4

0x00000000 to 0xFFFFFFF

(default: 0x00000001)

0x00000001

0x00000001

0x00000001

# Signature MSB LSB ASCII e v a s hex 65h 76h 61h 73h

ate subindex. The signature is "save."

If you write "save" to subindex 1, all parameters are saved.

#### Note:

(1) Data Description

"xxxx.\*"

Index

1010h

parameters.

The following string is saved.

**15.2.5 Store Parameters (1010h)** 

Subindex

0

1

2

3

Bit

1

0

xxxx.\*: This object contains the software version of the SERVOPACK.

You can use this object to save the parameter settings in non-volatile memory.

**Data Type** 

USINT

UDINT

UDINT

UDINT

UDINT

To prevent saving parameters by mistake, they are saved only when a specific signature is written to the appropri-

If you read the object entry data, a value will be returned that tells whether the SERVOPACK can save the

Access

RO

RW

RW

RW

RW

The SERVOPACK does not save the parameters autonomously.

The SERVOPACK does not save the parameters for a command.

The SERVOPACK saves the parameters for a command.

Mapping

No

No

No

No

No

Description

Name

Value

0

0

1

Largest subindex supported

Save all parameters

Reserved

Reserved

Reserved

- If an incorrect signature is written, the SERVOPACK refuses to save the parameters and returns an SDO abort code.
- $\bullet$  If you read the object entry data while parameters are being saved, 0 will be returned.
- Subindex 1 can be written only in the Switch ON Disabled state (servo OFF).
- After storing parameters with subindex 1, you must turn the power OFF and ON again to move to the Operation Enabled state.

### 15.2.6 Restore Default Parameters (1011h)

You can use this object to restore the parameters to the default values.

| Index  | Subindex | Name                           | Data Type | Access | PDO<br>Mapping | Value                                                   | Saving to EEPROM |
|--------|----------|--------------------------------|-----------|--------|----------------|---------------------------------------------------------|------------------|
|        | 0        | Largest subindex supported     | USINT     | RO     | No             | 4                                                       | No               |
| 1011h  | 1        | Restore all default parameters | UDINT     | RW     | No             | 0x00000000 to<br>0xFFFFFFFF<br>(default:<br>0x00000001) | No               |
| 101111 | 2        | Reserved                       | UDINT     | RW     | No             | 0x00000001                                              | No               |
|        | 3        | Reserved                       | UDINT     | RW     | No             | 0x00000001                                              | No               |
|        | 4        | Reserved                       | UDINT     | RW     | No             | 0x00000001                                              | No               |

If you read the object entry data, a value will be returned that tells whether the SERVOPACK can initialize the parameters.

| Bit | Bit Value Description |                                                                      |  |  |  |
|-----|-----------------------|----------------------------------------------------------------------|--|--|--|
| 0   | 0                     | The SERVOPACK does not restore the parameters to the default values. |  |  |  |
| 0   | 1                     | The SERVOPACK restores the parameters to the default values.         |  |  |  |

To prevent restoring the parameters to the default values by mistake, the parameters are restored to the default values only when a specific signature is written to the appropriate subindex. The signature is "load."

| Signature | MSB |     |     | LSE |  |  |  |
|-----------|-----|-----|-----|-----|--|--|--|
| ASCII     | d   | а   | 0   | I   |  |  |  |
| hex       | 64h | 61h | 6Fh | 6Ch |  |  |  |

If you write "load" to subindex 1, all parameters are restored to the default values.

#### Note:

- If an incorrect signature is written, the SERVOPACK refuses to restore the default values and returns an SDO abort code.
- Subindex 1 can be written only in the Switch ON Disabled state (servo OFF).
- If you read this object while the default values are being restored, 0 will be returned.
- The default values are enabled after the SERVOPACK is reset or after the power to the SERVOPACK is turned OFF and ON again.

### 15.2.7 Identity Object (1018h)

This object contains general information on the device.

| Index | Subindex | Name              | Data Type | Access | PDO<br>Mapping | Value      | Saving to EEPROM |
|-------|----------|-------------------|-----------|--------|----------------|------------|------------------|
|       | 0        | Number of entries | USINT     | RO     | No             | 4          | No               |
|       | 1        | Vendor ID         | UDINT     | RO     | No             | 0x00000539 | No               |
| 1018h | 2        | Product code      | UDINT     | RO     | No             | 0x02200901 | No               |
|       | 3        | Revision number   | UDINT     | RO     | No             | -          | No               |
|       | 4        | Serial number     | UDINT     | RO     | No             | 0x00000000 | No               |

#### Note:

• The revision number is saved as follows:

| Bit 31 Bit 1  | Bit 15 Bit 0  |
|---------------|---------------|
| Major Version | Minor Version |

The major version identifies the operating specifications of EtherCAT. If the EtherCAT functionality is expanded, the major version has to be increased. The minor version number identifies different versions with the same operating specifications.

• Serial Number is not used. (It is always 0.)

### 15.3 PDO Mapping Objects

The CANopen over EtherCAT protocol allows the user to map objects to process data objects (PDOs) in order to use the PDOs for realtime data transfer.

The PDO Mappings define which objects will be included in the PDOs.

A Mapping Entry (subindexes 1 to 16) is defined as shown below.

|                  | Bit 31 16                                                        | 15 8                       | 8 7                                                                                                          |  |  |
|------------------|------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------|--|--|
| Definition       | Object index                                                     | Subindex                   | Length                                                                                                       |  |  |
| Descrip-<br>tion | The index of the mapped object (0 if there is a gap in the PDOs) | O if there is a gap in the | The length of the mapped object in bits (If there is a gap in the PDOs, the bit length of the gap is given.) |  |  |

Information The objects mapped to PDOs can be changed only when the EtherCAT Network Module is in the Pre-Operational state. Set the mapping entries (subindexes 1 to 16) only after you write 0 to subindex 0.

### 15.3.1 Receive PDO Mapping (1600h to 1603h)

### (1) 1st Receive PDO Mapping

| Index | Subindex | Name                          | Data Type | Access | PDO<br>Mapping | Value                                       | Saving to EEPROM |
|-------|----------|-------------------------------|-----------|--------|----------------|---------------------------------------------|------------------|
|       | 0        | Number of objects in this PDO | USINT     | RW     | No             | 0 to 16<br>(default: 8)                     | Yes              |
|       | 1        | Mapping entry 1               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default:<br>0x60400010) | Yes              |
|       | 2        | Mapping entry 2               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default:<br>0x607A0020) | Yes              |
|       | 3        | Mapping entry 3               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default:<br>0x60FF0020) | Yes              |
|       | 4        | Mapping entry 4               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default:<br>0x60710010) | Yes              |
|       | 5        | Mapping entry 5               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default:<br>0x60720010) | Yes              |
|       | 6        | Mapping entry 6               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default:<br>0x60600008) | Yes              |
| 1600h | 7        | Mapping entry 7               | UDINT     | RW     | No             | 0 to 0xFFFFFFF<br>(default:<br>0x00000008)  | Yes              |
|       | 8        | Mapping entry 8               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default:<br>0x60B80010) | Yes              |
|       | 9        | Mapping entry 9               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes              |
|       | 10       | Mapping entry 10              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes              |
|       | 11       | Mapping entry 11              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes              |
|       | 12       | Mapping entry 12              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes              |
|       | 13       | Mapping entry 13              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes              |
|       | 14       | Mapping entry 14              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes              |
|       | 15       | Mapping entry 15              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes              |
|       | 16       | Mapping entry 16              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes              |

### (2) 2nd Receive PDO Mapping

| Index | Subindex | Name                          | Data Type | Access | PDO<br>Mapping | Value                                       | Saving to EEPROM |
|-------|----------|-------------------------------|-----------|--------|----------------|---------------------------------------------|------------------|
|       | 0        | Number of objects in this PDO | USINT     | RW     | No             | 0 to 16<br>(default: 2)                     | Yes              |
|       | 1        | Mapping entry 1               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default:<br>0x60400010) | Yes              |
|       | 2        | Mapping entry 2               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default:<br>0x607A0020) | Yes              |
|       | 3        | Mapping entry 3               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default: 0)             | Yes              |
|       | 4        | Mapping entry 4               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes              |
|       | 5        | Mapping entry 5               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes              |
|       | 6        | Mapping entry 6               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default: 0)             | Yes              |
|       | 7        | Mapping entry 7               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default: 0)             | Yes              |
| 1601h | 8        | Mapping entry 8               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes              |
|       | 9        | Mapping entry 9               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default: 0)             | Yes              |
|       | 10       | Mapping entry 10              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default: 0)             | Yes              |
|       | 11       | Mapping entry 11              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes              |
|       | 12       | Mapping entry 12              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes              |
|       | 13       | Mapping entry 13              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes              |
|       | 14       | Mapping entry 14              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default: 0)             | Yes              |
|       | 15       | Mapping entry 15              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes              |
|       | 16       | Mapping entry 16              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes              |

### (3) 3rd Receive PDO Mapping

| Index | Subindex | Name                          | Data Type | Access | PDO<br>Mapping | Value                                       | Saving to EEPROM |
|-------|----------|-------------------------------|-----------|--------|----------------|---------------------------------------------|------------------|
|       | 0        | Number of objects in this PDO | USINT     | RW     | No             | 0 to 16<br>(default: 2)                     | No               |
|       | 1        | Mapping entry 1               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default:<br>0x60400010) | No               |
|       | 2        | Mapping entry 2               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default:<br>0x60FF0020) | No               |
|       | 3        | Mapping entry 3               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default: 0)             | No               |
|       | 4        | Mapping entry 4               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default: 0)             | No               |
|       | 5        | Mapping entry 5               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default: 0)             | No               |
|       | 6        | Mapping entry 6               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default: 0)             | No               |
|       | 7        | Mapping entry 7               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |
| 1602h | 8        | Mapping entry 8               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |
|       | 9        | Mapping entry 9               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |
|       | 10       | Mapping entry 10              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |
|       | 11       | Mapping entry 11              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |
|       | 12       | Mapping entry 12              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |
|       | 13       | Mapping entry 13              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |
|       | 14       | Mapping entry 14              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |
|       | 15       | Mapping entry 15              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |
|       | 16       | Mapping entry 16              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |

### (4) 4th Receive PDO Mapping

| Index | Subindex | Name                          | Data Type | Access | PDO<br>Mapping | Value                                       | Saving to EEPROM |
|-------|----------|-------------------------------|-----------|--------|----------------|---------------------------------------------|------------------|
|       | 0        | Number of objects in this PDO | USINT     | RW     | No             | 0 to 16<br>(default: 2)                     | No               |
|       | 1        | Mapping entry 1               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default:<br>0x60400010) | No               |
|       | 2        | Mapping entry 2               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default:<br>0x60710010) | No               |
|       | 3        | Mapping entry 3               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |
|       | 4        | Mapping entry 4               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |
|       | 5        | Mapping entry 5               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |
|       | 6        | Mapping entry 6               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default: 0)             | No               |
|       | 7        | Mapping entry 7               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default: 0)             | No               |
| 1603h | 8        | Mapping entry 8               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |
|       | 9        | Mapping entry 9               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |
|       | 10       | Mapping entry 10              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default: 0)             | No               |
|       | 11       | Mapping entry 11              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |
|       | 12       | Mapping entry 12              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |
|       | 13       | Mapping entry 13              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |
|       | 14       | Mapping entry 14              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |
|       | 15       | Mapping entry 15              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |
|       | 16       | Mapping entry 16              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |

### 15.3.2 Transmit PDO Mapping (1A00h to 1A03h)

### (1) 1st Transmit PDO Mapping

| Index | Subindex | Name                          | Data Type | Access | PDO<br>Mapping | Value                                       | Saving to<br>EEPROM |
|-------|----------|-------------------------------|-----------|--------|----------------|---------------------------------------------|---------------------|
|       | 0        | Number of objects in this PDO | USINT     | RW     | No             | 0 to 16<br>(default: 8)                     | Yes                 |
|       | 1        | Mapping entry 1               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default:<br>0x60410010) | Yes                 |
|       | 2        | Mapping entry 2               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default:<br>0x60640020) | Yes                 |
|       | 3        | Mapping entry 3               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default:<br>0x60770010) | Yes                 |
|       | 4        | Mapping entry 4               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default:<br>0x60F40020) | Yes                 |
|       | 5        | Mapping entry 5               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default:<br>0x60610008) | Yes                 |
|       | 6        | Mapping entry 6               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default:<br>0x00000008) | Yes                 |
| 1A00h | 7        | Mapping entry 7               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default:<br>0x60B90010) | Yes                 |
|       | 8        | Mapping entry 8               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default:<br>0x60BA0020) | Yes                 |
|       | 9        | Mapping entry 9               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes                 |
|       | 10       | Mapping entry 10              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes                 |
|       | 11       | Mapping entry 11              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes                 |
|       | 12       | Mapping entry 12              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes                 |
|       | 13       | Mapping entry 13              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes                 |
|       | 14       | Mapping entry 14              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes                 |
|       | 15       | Mapping entry 15              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default: 0)             | Yes                 |
|       | 16       | Mapping entry 16              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes                 |

### (2) 2nd Transmit PDO Mapping

| Index | Subindex | Name                          | Data Type | Access | PDO<br>Mapping | Value                                       | Saving to<br>EEPROM |
|-------|----------|-------------------------------|-----------|--------|----------------|---------------------------------------------|---------------------|
|       | 0        | Number of objects in this PDO | USINT     | RW     | No             | 0 to 16<br>(default: 2)                     | Yes                 |
|       | 1        | Mapping entry 1               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default:<br>0x60410010) | Yes                 |
|       | 2        | Mapping entry 2               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default:<br>0x60640020) | Yes                 |
|       | 3        | Mapping entry 3               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default: 0)             | Yes                 |
|       | 4        | Mapping entry 4               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default: 0)             | Yes                 |
|       | 5        | Mapping entry 5               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes                 |
|       | 6        | Mapping entry 6               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default: 0)             | Yes                 |
|       | 7        | Mapping entry 7               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes                 |
| 1A01h | 8        | Mapping entry 8               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes                 |
|       | 9        | Mapping entry 9               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes                 |
|       | 10       | Mapping entry 10              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default: 0)             | Yes                 |
|       | 11       | Mapping entry 11              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes                 |
|       | 12       | Mapping entry 12              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes                 |
|       | 13       | Mapping entry 13              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes                 |
|       | 14       | Mapping entry 14              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes                 |
|       | 15       | Mapping entry 15              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes                 |
|       | 16       | Mapping entry 16              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | Yes                 |

### (3) 3rd Transmit PDO Mapping

| Index | Subindex | Name                          | Data Type | Access | PDO<br>Mapping | Value                                       | Saving to EEPROM |
|-------|----------|-------------------------------|-----------|--------|----------------|---------------------------------------------|------------------|
|       | 0        | Number of objects in this PDO | USINT     | RW     | No             | 0 to 16<br>(default: 2)                     | No               |
|       | 1        | Mapping entry 1               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default:<br>0x60410010) | No               |
|       | 2        | Mapping entry 2               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default:<br>0x60640020) | No               |
|       | 3        | Mapping entry 3               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default: 0)             | No               |
|       | 4        | Mapping entry 4               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default: 0)             | No               |
|       | 5        | Mapping entry 5               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |
|       | 6        | Mapping entry 6               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |
|       | 7        | Mapping entry 7               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |
| 1A02h | 8        | Mapping entry 8               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |
|       | 9        | Mapping entry 9               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |
|       | 10       | Mapping entry 10              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |
|       | 11       | Mapping entry 11              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |
|       | 12       | Mapping entry 12              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |
|       | 13       | Mapping entry 13              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |
|       | 14       | Mapping entry 14              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |
|       | 15       | Mapping entry 15              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |
|       | 16       | Mapping entry 16              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No               |

### (4) 4th Transmit PDO Mapping

| Index  | Subindex | Name                          | Data Type | Access | PDO<br>Mapping | Value                                       | Saving to<br>EEPROM |
|--------|----------|-------------------------------|-----------|--------|----------------|---------------------------------------------|---------------------|
|        | 0        | Number of objects in this PDO | USINT     | RW     | No             | 0 to 16<br>(default: 3)                     | No                  |
|        | 1        | Mapping entry 1               | UDINT     | RW     | No             | 0 to 0xFFFFFFF<br>(default:<br>0x60410010)  | No                  |
|        | 2        | Mapping entry 2               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default:<br>0x60640020) | No                  |
|        | 3        | Mapping entry 3               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default:<br>0x60770010) | No                  |
|        | 4        | Mapping entry 4               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No                  |
|        | 5        | Mapping entry 5               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No                  |
|        | 6        | Mapping entry 6               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No                  |
| 1A03h  | 7        | Mapping entry 7               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No                  |
| TAGOII | 8        | Mapping entry 8               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No                  |
|        | 9        | Mapping entry 9               | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No                  |
|        | 10       | Mapping entry 10              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No                  |
|        | 11       | Mapping entry 11              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No                  |
|        | 12       | Mapping entry 12              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No                  |
|        | 13       | Mapping entry 13              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No                  |
|        | 14       | Mapping entry 14              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No                  |
|        | 15       | Mapping entry 15              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No                  |
|        | 16       | Mapping entry 16              | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0)                | No                  |

### 15.4 Sync Manager Communication Objects

### 15.4.1 Sync Manager Communication Type (1C00h)

| Index | Subindex | Name                                 | Data Type | Access | PDO<br>Mapping | Value                                    | Saving to EEPROM |
|-------|----------|--------------------------------------|-----------|--------|----------------|------------------------------------------|------------------|
|       | 0        | Number of used Sync Manager channels | USINT     | RO     | No             | 4                                        | No               |
|       | 1        | Communication type sync manager 0    | USINT     | RO     | No             | 1 (mailbox receive<br>(master → slave))  | No               |
| 1C00h | 2        | Communication type sync manager 1    | USINT     | RO     | No             | 2 (mailbox send (slave → master))        | No               |
|       | 3        | Communication type sync manager 2    | USINT     | RO     | No             | 3 (process data output (master → slave)) | No               |
|       | 4        | Communication type sync manager 3    | USINT     | RO     | No             | 4 (process data input (slave → master))  | No               |

### 15.4.2 Sync Manager PDO Assignment (1C10h to 1C13h)

This object defines which PDOs will be transferred in the process data communications.

| Index | Subindex | Name                          | Data Type | Access | PDO<br>Mapping | Value                                 | Saving to EEPROM |
|-------|----------|-------------------------------|-----------|--------|----------------|---------------------------------------|------------------|
| 1C10h | 0        | Sync Manager PDO Assignment 0 | USINT     | RO     | No             | 0                                     | No               |
| 1C11h | 0        | Sync Manager PDO Assignment   | USINT     | RO     | No             | 0                                     | No               |
|       | 0        | Number of assigned PDOs       | USINT     | RO     | No             | 0 to 2<br>(default: 1)                | Yes              |
| 1C12h | 1        | Index of assigned RxPDO 1     | UINT      | RW     | No             | 0x1600 to 0x1603<br>(default: 0x1601) | Yes              |
|       | 2        | Index of assigned RxPDO 2     | UINT      | RW     | No             | 0x1600 to 0x1603<br>(default: 0x1600) | Yes              |
|       | 0        | Number of assigned PDOs       | USINT     | RO     | No             | 0 to 2<br>(default: 1)                | Yes              |
| 1C13h | 1        | Index of assigned TxPDO 1     | UINT      | RW     | No             | 0x1A00 to 0x1A03<br>(default: 0x1A01) | Yes              |
|       | 2        | Index of assigned TxPDO 2     | UINT      | RW     | No             | 0x1A00 to 0x1A03<br>(default: 0x1A00) | Yes              |

Objects 1C12h and 1C13h can be changed when the EtherCAT Network Module is in the Pre-Operational state. Set subindex 1 or 2 only after you write 0 to subindex 0.

### 15.4.3 Sync Manager Synchronization (1C32h, 1C33h)

### (1) Sync Manager 2 (Process Data Output) Synchronization

| Index | Subindex | Name                                 | Data Type | Access | PDO<br>Mapping | Value                                                                | Saving to EEPROM |
|-------|----------|--------------------------------------|-----------|--------|----------------|----------------------------------------------------------------------|------------------|
|       | 0        | Number of synchronization parameters | USINT     | RO     | No             | 32                                                                   | No               |
|       | 1        | Synchronization type                 | UINT      | RO     | No             | 2                                                                    | No               |
|       | 2        | Cycle time                           | UDINT     | RO     | No             | - [ns]                                                               | No               |
|       | 3        | Shift time                           | UDINT     | RW     | No             | 62500 to Sync0<br>event cycle -<br>62500<br>(default: 62500)<br>[ns] | Yes              |
|       | 4        | Synchronization types supported      | UINT      | RO     | No             | 0x0025                                                               | No               |
|       | 5        | Minimum cycle time                   | UDINT     | RO     | No             | 62500 [ns]                                                           | No               |
|       | 6        | Calc and copy time                   | UDINT     | RO     | No             | 62500 [ns]                                                           | No               |
|       | 7        | Reserved (Minimum Delay<br>Time)     | UDINT     | RO     | No             | 0                                                                    | No               |
|       | 8        | Reserved (Get Cycle Time)            | UINT      | RO     | No             | 0                                                                    | No               |
| 1C32h | 9        | Delay time                           | UDINT     | RO     | No             | 0 [ns]                                                               | No               |
|       | 10       | Sync0 cycle time                     | UDINT     | RO     | No             | _                                                                    | No               |
|       | 11       | SM event missed counter              | UINT      | RO     | No             | -                                                                    | No               |
|       | 12       | Reserved (Cycle Time Too<br>Small)   | UINT      | RO     | No             | 0                                                                    | No               |
|       | 13       | Reserved (Shift Time Too Short)      | UINT      | RO     | No             | 0                                                                    | No               |
|       | 14       | Reserved (RxPDO Toggle<br>Failed)    | UINT      | RO     | No             | 0                                                                    | No               |
|       | 15       | Reserved (Minimum Cycle<br>Distance) | UDINT     | RO     | No             | 0                                                                    | No               |
|       | 16       | Reserved (Maximum Cycle<br>Distance) | UDINT     | RO     | No             | 0                                                                    | No               |
|       | 17       | Minimum SM SYNC distance             | UDINT     | RO     | No             | _                                                                    | No               |
|       | 18       | Maximum SM SYNC distance             | UDINT     | RO     | No             | _                                                                    | No               |
|       | 32       | Sync Error                           | BOOL      | RO     | No             | 0                                                                    | No               |

Refer to the following table for details on the subindex values of index 1C32h.

| Subindex | Description                                                                                                                                                                                                                                  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | Current status of DC mode  0: Free-Run (DC not used, no PDO mapping)  1: Free-Run (DC not used, with PDO mapping)  2: DC Sync0 (DC used)                                                                                                     |
| 2        | Sync0 event cycle [ns] (The value is set by the master via an ESC register.) Range and setting increment: $62500 \times n \ (n = 1 \text{ to } 64)$                                                                                          |
| 3        | The time between the Sync0 event and Outputs Valid (i.e., the time from Sync0 until the output data is input to the SERVOPACK). (unit: ns)  Range: $62500$ to (Sync0 event cycle - $62500$ )  Setting increment: $62500 \times n$ (n = 1 to) |

| Subindex | Description                                                                                                                         |
|----------|-------------------------------------------------------------------------------------------------------------------------------------|
| 4        | Bit 0 = 1: Free-Run supported. Bits 2 to 4 = 001: DC Sync0 supported. Bits 5 and 6 = 00: Output shift not supported.                |
| 10       | Same as subindex 2                                                                                                                  |
| 17       | The minimum value of the interrupt time interval at which the reception (SM2) event and synchronization (Sync0) event are captured. |
| 18       | The maximum value of the interrupt time interval at which the reception (SM2) event and synchronization (Sync0) event are captured. |
| 32       | Synchronization error status  0: No synchronization error  1: Synchronization error                                                 |

### (2) Sync Manager 3 (Process Data Input) Synchronization

| Index | Subindex | Name                                 | Data Type | Access | PDO<br>Mapping | Value                                                  | Saving to<br>EEPROM |
|-------|----------|--------------------------------------|-----------|--------|----------------|--------------------------------------------------------|---------------------|
|       | 0        | Number of synchronization parameters | USINT     | RO     | No             | 32                                                     | No                  |
|       | 1        | Synchronization type                 | UINT      | RO     | No             | -                                                      | No                  |
|       | 2        | Cycle time                           | UDINT     | RO     | No             | _                                                      | No                  |
|       | 3        | Shift time                           | UDINT     | RW     | No             | 0 to Sync0 event<br>cycle - 62500<br>(default: 0) [ns] | Yes                 |
|       | 4        | Synchronization types supported      | UINT      | RO     | No             | 0x0025                                                 | No                  |
|       | 5        | Minimum cycle time                   | UDINT     | RO     | No             | 62500 [ns]                                             | No                  |
|       | 6        | Calc and copy time                   | UDINT     | RO     | No             | 62500 [ns]                                             | No                  |
| 1C33h | 7        | Reserved (Minimum Delay<br>Time)     | UDINT     | RO     | No             | 0                                                      | No                  |
|       | 8        | Reserved (Get Cycle Time)            | UINT      | RO     | No             | 0                                                      | No                  |
|       | 9        | Delay time                           | UDINT     | RO     | No             | 0                                                      | No                  |
|       | 10       | Sync0 cycle time                     | UDINT     | RO     | No             | -                                                      | No                  |
|       | 11       | SM event missed counter              | UINT      | RO     | No             | _                                                      | No                  |
|       | 12       | Reserved (Cycle Time Too<br>Small)   | UINT      | RO     | No             | 0                                                      | No                  |
|       | 13       | Reserved (Shift Time Too Short)      | UINT      | RO     | No             | 0                                                      | No                  |
|       | 14       | Reserved (RxPDO Toggle<br>Failed)    | UINT      | RO     | No             | 0                                                      | No                  |
|       | 32       | Sync Error                           | BOOL      | RO     | No             | 0                                                      | No                  |

Refer to the following table for details on the subindex values of index 1C33h.

| Subindex | Description                                                                                                                                                                                                                                 |  |  |  |  |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1        | 1C32h: Same as 1                                                                                                                                                                                                                            |  |  |  |  |  |
| 2        | 1C32h: Same as 2                                                                                                                                                                                                                            |  |  |  |  |  |
| 3        | The time between the Sync0 event and Outputs Valid (i.e., the time from Sync0 until the output data is input to the SERVOPACK). (unit: ns)  Range: $0$ to (Sync0 event cycle - $62500$ )  Setting increment: $62500 \times n$ ( $n = 1$ to) |  |  |  |  |  |

| Subindex | Description                                                                                                                         |
|----------|-------------------------------------------------------------------------------------------------------------------------------------|
| 4        | Bit 0 = 1: Free-Run supported. Bits 2 to 4 = 001: DC Sync0 supported. Bits 5 and 6 = 00:01: Input shift with local timer supported. |
| 5        | 1C32h: Same as 5                                                                                                                    |
| 10       | 1C32h: Same as 10                                                                                                                   |
| 32       | Synchronization error status 0: No synchronization error 1: Synchronization error                                                   |

### 15.4.4 Sync Error Settings (10F1h)

| Index | Subindex | Name                            | Data Type | Access | PDO<br>Mapping | Value                   | Saving to EEPROM |
|-------|----------|---------------------------------|-----------|--------|----------------|-------------------------|------------------|
|       | 0        | Number of entries               | USINT     | RO     | No             | 2                       | No               |
| 10F1h | 1        | Reserved (Local Error Reaction) | UDINT     | RW     | No             | 0                       | No               |
|       | 2        | Sync error count limit          | UINT      | RW     | No             | 0 to 15<br>(default: 9) | Yes              |

#### (1) 10F1h:2 Sync Error Counter Limit

This object defines the allowable number of failures when receiving process data. If the value of the internal error counter in the SERVOPACK exceeds the value of this object, the SERVOPACK will detect an EtherCAT Output Data Synchronization Error (A12h) and change the ESM state to SAFEOP.

The SERVOPACK increments the internal error counter by 3 if the process output data is not updated (i.e., if a reception event does not occur) when the synchronization event (Sync0) occurs. When the process output data is updated normally, the internal error counter is decremented by 1. The internal error counter is reset when the EtherCAT communications state changes from SAFEOP to OP.

An example of internal error counter operation is shown below.

| Reception (SM2) event                                         | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0            | 1 | 0 | 1 |
|---------------------------------------------------------------|---|---|---|---|---|---|---|--------------|---|---|---|
| SERVOPACK internal error counter<br>(Error Counter Limit = 9) | 0 | 3 | 2 | 5 | 4 | 7 | 6 | 9<br>(Error) | 9 | 9 | 9 |

In this example, a failure in receiving the process data occurs every other DC (Sync0) cycle. After eight DC cycles, the internal error count reaches the Sync Error Count Limit, and an error occurs.

No alarm will be detected if the DC mode is disabled or when the Sync Error Count Limit is set to 0.

If an A12h (EtherCAT Output Data Synchronization Error) alarm occurs, check 1C32h:11 (SM2 event miss count) for an estimate of the frequency of reception failures. Use it as reference in setting the Sync Error Count Limit.

The number of reception failures for process data is given in 1C32h: 11. (This is not an internal error count. The counter is incremented each time there is a failure for one reception.)



- Set a suitable cycle time for updating the process data according to the requirements of the application.
- Determine if the default setting of the Sync Error Counter Limit is suitable for the requirements of the application. With the default value of 9, network frames will be lost (SM2 reception events will not occur) three times consecutively before an alarm occurs in the SERVOPACK.
- If the setting of the Sync Error Counter Limit is too small, alarms will occur even when there is no problem in the application.
- For the test, carefully observe the installation guidelines for hardware to minimize the effects of noise and conduct the test in an environment that matches the actual operating environment of the application. If an alarm occurs after the test, reevaluate step 2.

### 15.5 Manufacturer Specific Objects

#### 15.5.1 SERVOPACK Parameters (2000h to 26FFh)

Objects 2000h to 26FFh are mapped to SERVOPACK parameters (Pnpp).

Object index  $2 \square \square \square h$  corresponds to  $Pn \square \square \square$  in the SERVOPACK parameters (e.g., object 2100h is the same as Pn100).

#### 15.5.2 User Parameter Configuration (2700h)

This object enables all user parameter settings and initializes all of the position data.

| Index | Subindex | Name                         | Data Type | Access | PDO<br>Mapping | Value                        | Saving to<br>EEPROM |
|-------|----------|------------------------------|-----------|--------|----------------|------------------------------|---------------------|
| 2700h | 0        | User Parameter Configuration | UDINT     | RW     | No             | 0 to 0xFFFFFFFF (default: 0) | No                  |

If you change any of the following objects and restart operation without turning the power OFF and then ON again, you must execute this object to enable the new settings.

- Objects 2701h, 2702h, 2703h, and 2704h
- SERVOPACK parameters that require that the power be turned OFF and ON again to enable changes to the parameter settings

#### (1) Procedure

- 1. Change the SERVOPACK to the Switch ON Disabled state.
- 2. Set the new parameter settings.
- Set User Parameter Configuration (2700h) to 1. The parameter settings will be enabled.
   After execution, object 2700h will automatically be reset to 0.

### 15.5.3 Position User Unit (2701h)

This object sets the user-defined position reference unit (Pos. unit).

The user-defined position reference unit is calculated with the following formula.

1 [Pos. unit] = (Position User Unit: Numerator (2701h: 1)/ Position User Unit: Denominator (2701h: 2)) [inc]

| Index | Subindex | Name              | Data Type | Access | PDO<br>Mapping | Value                            | Saving to EEPROM |
|-------|----------|-------------------|-----------|--------|----------------|----------------------------------|------------------|
|       | 0        | Number of entries | USINT     | RO     | No             | 2                                | No               |
| 2701h | 1        | Numerator         | UDINT     | RW     | No             | 1 to 1073741824<br>(default: 64) | Yes              |
|       | 2        | Denominator       | UDINT     | RW     | No             | 1 to 1073741824<br>(default: 1)  | Yes              |

Setting range: 0.001 ≤ Position User Unit: Numerator (2701h: 1)/ Position User Unit: Denominator (2701h: 2) ≤ 64000

#### Note:

If the setting range is exceeded, 040h (Parameter Setting Error) will occur.

#### 15.5.4 Velocity User Unit (2702h)

This object sets the user-defined speed reference unit (Vel unit).

The user-defined speed reference unit is calculated with the following formula.

1 [Vel unit] = (Velocity User Unit: Numerator (2702h: 1)/Velocity User Unit: Denominator (2702h: 2)) [inc/s]

| Index | Subindex | Name              | Data Type | Access | PDO<br>Mapping | Value                            | Saving to EEPROM |
|-------|----------|-------------------|-----------|--------|----------------|----------------------------------|------------------|
| 2702h | 0        | Number of entries | USINT     | RO     | No             | 2                                | No               |
|       | 1        | Numerator         | UDINT     | RW     | No             | 1 to 1073741823<br>(default: 64) | Yes              |
|       | 2        | Denominator       | UDINT     | RW     | No             | 1 to 1073741823<br>(default: 1)  | Yes              |

Setting range: 1/256 ≤ Velocity User Unit: Numerator (2702h: 1)/Velocity User Unit: Denominator (2702h: 2) ≤ 33554432

#### Note:

If a value outside this range is set, an A20h alarm (Parameter Setting Error) will occur.

#### 15.5.5 Acceleration User Unit (2703h)

This object sets the user-defined acceleration reference unit (Accunit).

The user-defined acceleration reference unit is calculated with the following formula.

1 [Accunit] = (Acceleration User Unit: Numerator (2703h: 1)/Acceleration User Unit: Denominator (2703h: 2))  $\times$  10<sup>4</sup> [inc/s<sup>2</sup>]

| Index | Subindex | Name              | Data Type | Access | PDO<br>Mapping | Value                            | Saving to EEPROM |
|-------|----------|-------------------|-----------|--------|----------------|----------------------------------|------------------|
|       | 0        | Number of entries | USINT     | RO     | No             | 2                                | No               |
| 2703h | 1        | Numerator         | UDINT     | RW     | No             | 1 to 1073741823<br>(default: 64) | Yes              |
|       | 2        | Denominator       | UDINT     | RW     | No             | 1 to 1073741823<br>(default: 1)  | Yes              |

Setting range:  $1/256 \le$  Acceleration User Unit: Numerator (2703h: 1)/Acceleration User Unit: Denominator (2703h: 2)  $\le$  1048576

#### Note

If a value outside this range is set, an A20h alarm (Parameter Setting Error) will occur.

### 15.5.6 Torque User Unit (2704h)

This object sets the user-defined torque reference unit (Torque unit).

The user-defined speed torque unit is calculated with the following formula.

1 [Trq. unit] = (Torque User Unit: Numerator (2704h: 1)/Torque User Unit: Denominator (2704h: 2)) [%]

| Index | Subindex | Name              | Data Type | Access | PDO<br>Mapping | Value                            | Saving to EEPROM |
|-------|----------|-------------------|-----------|--------|----------------|----------------------------------|------------------|
| 2704h | 0        | Number of entries | USINT     | RO     | No             | 2                                | No               |
|       | 1        | Numerator         | UDINT     | RW     | No             | 1 to 1073741823<br>(default: 1)  | Yes              |
|       | 2        | Denominator       | UDINT     | RW     | No             | 1 to 1073741823<br>(default: 10) | Yes              |

Setting range: 1/256 ≤ Torque User Unit: Numerator (2704h: 1)/Torque User Unit: Denominator (2704h: 2) ≤ 1

#### Note:

If a value outside this range is set, an A20h alarm (Parameter Setting Error) will occur.

#### 15.5.7 SERVOPACK Adjusting Command (2710h)

This object is used for SERVOPACK adjustment services (e.g., encoder setup or multiturn reset). Write data to subindex 1 to start command execution. Also, read the subindex 3 to obtain the response. If you cannot obtain the response by reading subindex 3, the first byte of the response data will give information about the progress of execution.

| Index   | Subindex | Name              | Data Type | Access | PDO<br>Mapping | Value                     | Saving to EEPROM |
|---------|----------|-------------------|-----------|--------|----------------|---------------------------|------------------|
| 2710h   | 0        | Number of entries | USINT     | RO     | No             | 3                         | No               |
|         | 1        | Command           | STRING    | RW     | No             | 0 to 0xFF<br>(default: 0) | No               |
| 27 1011 | 2        | Status            | USINT     | RO     | No             | _                         | No               |
|         | 3        | Reply             | STRING    | RO     | No             | -                         | No               |

Refer to the following table for details on the subindex values of index 2710h.

| Subindex | Description                                                                                                                                                                                                                                          |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | Bytes 0 to n: Service Request Data The command is executed when command data is written.                                                                                                                                                             |
| 2        | 0: Command completed, no errors, and no response data 1: Command completed, no errors, and response data provided 2: Command completed, with errors, and no response data 3: Command completed with an error response 255: Command is being executed |
| 3        | Byte 0: Subindex 2 Byte 1: Not used Bytes 2 to n: Service response data                                                                                                                                                                              |

### (1) Command/Response Data Format

| Con        | nmand Data (Service Request Data)                      | Resp       | oonse Data (Service Response Data) |
|------------|--------------------------------------------------------|------------|------------------------------------|
| Byte       | Description                                            | Byte       | Description                        |
| 0          | Reserved.                                              | 0          | Status (same data as subindex 2)   |
| 1          | Reserved.                                              | 1          | Reserved.                          |
| 2          | CCMD (command code) 00: Read request 01: Write request | 2          | RCMD (echoback of CCMD)            |
| 3          | CSIZE (CDATA data byte size)                           | 3          | RSIZE (R_DATA data byte size)      |
| 4 to 7     | CADDRESS (address)                                     | 4 to 7     | RADDRESS (echoback of CADDRESS)    |
| 8 to 15 *1 | CDATA (writing data)                                   | 8 to 15 *1 | R_DATA (read data)/ERROCODE        |

<sup>\*1</sup> This is the size set with CSIZE.

<sup>\*2</sup> This is the size set with RSIZE.

#### (2) Executable Adjustment Services

| Adjustment Service                             | Request<br>Code | Preparation before<br>Execution | Processing Time | Execution Conditions                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------|-----------------|---------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Absolute Encoder Reset                         | 1008h           | Required.                       | 5 s max.        | Absolute Encoder Reset cannot be executed in the following cases:  • When Pn00C is set to n.uull (enable tests without a motor) and an encoder is not connected  • When an incremental encoder is connected                                                                                                                                           |
|                                                |                 |                                 |                 | When Pn002 is set to n.□1□□ (use the encoder as an incremental encoder)      While the servo is ON                                                                                                                                                                                                                                                    |
| Autotune Motor Current Detection Signal Offset | 100Eh           | Not required.                   | 5 s max.        | Adjustment is disabled in the following cases.  • While the main circuit power is OFF  • While the servo is ON  • While the servomotor is running                                                                                                                                                                                                     |
| Multiturn Limit Setting                        | 1013h           | Required.                       | 5 s max.        | Multiturn Limit Setting cannot be executed in the following cases:  • When Pn00C is set to n.□□□1 (enable tests without a motor) and an encoder is not connected  • When an incremental encoder is connected  • When Pn002 is set to n.□1□□ (use the encoder as an incremental encoder)  • When A.CCO (Multiturn Limit Disagreement) has not occurred |
| Triggers at Preset Positions                   | 2025h           | Required.                       | 5 s max.        | -                                                                                                                                                                                                                                                                                                                                                     |

### (3) How to Send a Command for Adjustment

 $1.\,\,\,$  Send the following data and set the request code for the adjustment service to execute.

CCMD = 01h

CSIZE = 02h

CADDRESS = 00002000h

CDATA = Request code of the adjustment service to execute

Select the request code from the following table.

(2) Executable Adjustment Services on page 605

If the slave station receives the command normally, the Status field will be set to 1.

If an error occurs, perform step 4 to stop execution.

#### 2. For an adjustment that requires preparations, send the following data.

If preparations before execution are not required, perform step 3.

CCMD = 01h

CSIZE = 02h

CADDRESS = 00002001h

CDATA = 0002h

If the slave station receives the command normally, the Status field will be set to 1.

If an error occurs, perform step 4 to stop execution.

3. Send the following data to execute the adjustment service.

CCMD = 01h

CSIZE = 02h

CADDRESS = 00002001h

CDATA = 0001h

If the slave station receives the command normally, the Status field will be set to 1.

If an error occurs, perform step 4 to stop execution.

4. Send the following data to stop execution.

CCMD = 01h

CSIZE = 02h

CADDRESS = 00002000h

CDATA = 0000h

If the slave station receives the command normally, the Status field will be set to 1.

#### (a) Example Settings for Triggers at Preset Positions

This section gives an example of saving the settings for triggers at preset positions to non-volatile memory.

Information Refer to the following sections for details on the settings for triggers at preset positions.

15.5.10 Output Position Setting (2778h) on page 609

3 15.5.11 Output Function Setting (2779h) on page 609

3 15.5.12 Output Time Setting (277Ah) on page 610

3 15.5.13 Output Distance Setting (277Bh) on page 610

15.5.14 Output Position Correction Setting (277Ch) on page 610

Use the following procedure after you configure these settings.

- 1. Send the following data to set the request code to write to non-volatile memory.
  - CCMD = 01h
  - CSIZE = 02h
  - CADDRESS = 00002000h
  - CDATA = 2025h
- 2. Send the following data to perform the first processing for preparations to execute a write to non-volatile memory.
  - CCMD = 01h
  - CSIZE = 02h
  - CADDRESS = 000020F0h
  - CDATA = 0000h
- 3. Send the following data to perform the second processing for preparations to execute a write to non-volatile memory.
  - CCMD = 01h
  - CSIZE = 04h
  - CADDRESS = 000020F2h
  - CDATA = F0000000
- 4. Send the following data to perform the third processing for preparations to execute a write to non-volatile memory.
  - CCMD = 01h
  - CSIZE = 02h
  - CADDRESS = 00002001h
  - CDATA = 0002h
- 5. Send the following data to execute a write to non-volatile memory.
  - CCMD = 01h
  - CSIZE = 02h
  - CADDRESS = 00002001h
  - CDATA = 0001h

#### 6. Send the following data to end the write to non-volatile memory.

- CCMD = 01h
- CSIZE = 02h
- CADDRESS = 00002000h
- CDATA = 0000h

### 15.5.8 Sensing Data Monitor (2770h, 2771h, 2772h)

This object is used to monitor the values of sensing data given the following table.

| Index | Subindex | Name                                                           | Data Type | Access | PDO<br>Mapping | Value                                        | Saving to EEPROM |
|-------|----------|----------------------------------------------------------------|-----------|--------|----------------|----------------------------------------------|------------------|
|       | 0        | Number of entries                                              | USINT     | RO     | No             | 21                                           | No               |
|       | 1        | Estimated vibration                                            | DINT      | RO     | Yes            | -[Overspeed<br>detection speed/<br>1000000h] | No               |
|       | 2        | Estimated external disturbance torque                          | DINT      | RO     | Yes            | - [Maximum torque/1000000h]                  | No               |
|       | 3        | Main circuit DC voltage                                        | INT       | RO     | Yes            | -[V]                                         | No               |
|       | 4        | Un009: Accumulated Load Ratio                                  | UINT      | RO     | No             | -[%]                                         | No               |
|       | 5        | Un00A: Regenerative Load Ratio                                 | UINT      | RO     | No             | -[%]                                         | No               |
| 2770h | 6        | Un078: Maximum Value of<br>Amplitude of Estimated<br>Vibration | INT       | RO     | No             | - [min-1]                                    | No               |
|       | 7        | Un07A: Maximum Value of Estimated External Disturbance Torque  | INT       | RO     | No             | -[%]                                         | No               |
|       | 8        | Un07B: Minimum Value of Estimated External Disturbance Torque  | INT       | RO     | No             | -[%]                                         | No               |
|       | 9        | Un07C: Identified Moment of Inertia Ratio                      | UDINT     | RO     | Yes            | -                                            | No               |
|       | 10       | Un104: Number of Serial<br>Encoder Communications Errors       | UINT      | RO     | No             | – [Time]                                     | No               |
|       | 11       | Un105: Settling Time                                           | UINT      | RO     | No             | -[0.1 ms]                                    | No               |
|       | 12       | Un106: Amount of Overshoot                                     | UDINT     | RO     | No             | – [Pos. unit]                                | No               |
|       | 13       | Un107: Residual Vibration<br>Frequency                         | UINT      | RO     | No             | -[0.1 Hz]                                    | No               |
|       | 14       | Un108: Maximum Settling Time                                   | UINT      | RO     | No             | - [0.1 ms]                                   | No               |
|       | 15       | Un109: Maximum Amount of<br>Overshoot                          | UDINT     | RO     | No             | – [Pos. unit]                                | No               |
| 2770h | 16       | Un145: Maximum Value of<br>Accumulated Load Ratio              | UINT      | RO     | No             | - [%]                                        | No               |
|       | 17       | Un14E: Margin until Overload                                   | INT       | RO     | Yes            | - [0.01%]                                    | No               |
|       | 18       | Reserved                                                       | UDINT     | RO     | Yes            | -                                            | No               |
|       | 19       | Reserved                                                       | UDINT     | RO     | Yes            | _                                            | No               |
|       | 20       | Error detection trace counter                                  | UDINT     | RO     | No             | -                                            | No               |
|       | 21       | Error detection trace error rate                               | UDINT     | RO     | No             | _                                            | No               |

| Index | Subindex | Name                                                    | Data Type | Access | PDO<br>Mapping | Value        | Saving to EEPROM |
|-------|----------|---------------------------------------------------------|-----------|--------|----------------|--------------|------------------|
|       | 0        | Number of entries                                       | USINT     | RO     | No             | 13           | No               |
|       | 1        | Un174: Temperature Margin until Servomotor Overheats    | INT       | RO     | No             | -[°C]        | No               |
|       | 2        | Un177: Encoder Power Supplied<br>Time                   | UDINT     | RO     | No             | - [100 ms]   | No               |
|       | 3        | Reserved                                                | UINT      | RO     | No             | _            | No               |
|       | 4        | Un17A: Encoder Power Supply<br>Voltage                  | INT       | RO     | No             | -[0.01 V]    | No               |
|       | 5        | Un17B: Encoder Battery Voltage                          | UINT      | RO     | No             | -[0.1 V]     | No               |
|       | 6        | Un181: Motor Total Number of<br>Rotations               | UDINT     | RO     | No             | -[100 rev]   | No               |
| 2771h | 7        | Un183: Maintenance Prediction<br>Monitor - Bearings     | UINT      | RO     | No             | - [0.01%]    | No               |
|       | 8        | Un184: Maintenance Prediction<br>Monitor - Oil Seal     | UINT      | RO     | No             | - [0.01%]    | No               |
|       | 9        | Un190: Motor Vibration in X-<br>Axis Direction          | DINT      | RO     | Yes            | -[0.0001 G]  | No               |
|       | 10       | Un191: Motor Vibration in Y-<br>Axis Direction          | DINT      | RO     | Yes            | -[0.0001 G]  | No               |
|       | 11       | Un192: Motor Vibration in Z-<br>Axis Direction          | DINT      | RO     | Yes            | - [0.0001 G] | No               |
|       | 12       | Un193: Motor Vibration XYZ<br>Composite Value           | UDINT     | RO     | Yes            | - [0.0001 G] | No               |
|       | 13       | Un194: Maximum Motor<br>Vibration                       | UDINT     | RO     | No             | - [0.0001 G] | No               |
|       | 0        | Number of entries                                       | USINT     | RO     | No             | 9            | No               |
|       | 1        | Un025: SERVOPACK Installation Environment Monitor       | INT       | RO     | No             | - [%]        | No               |
|       | 2        | Un026: Servomotor Installation<br>Environment Monitor   | INT       | RO     | No             | - [%]        | No               |
|       | 3        | Un027: Built-in Fan Remaining<br>Life Ratio             | UINT      | RO     | No             | - [0.01%]    | No               |
| 2772h | 4        | Un028: Capacitor Remaining<br>Life Ratio                | UINT      | RO     | No             | - [0.01%]    | No               |
|       | 5        | Un029: Surge Prevention Circuit<br>Remaining Life Ratio | UINT      | RO     | No             | - [0.01%]    | No               |
|       | 6        | Un02A: Dynamic Brake Circuit<br>Remaining Life Ratio    | UINT      | RO     | No             | - [0.01%]    | No               |
|       | 7        | Un032: Instantaneous Power                              | INT       | RO     | No             | - [W]        | No               |
|       | 8        | Un033: Power Consumption                                | DINT      | RO     | No             | -[0.001 Wh]  | No               |
|       | 9        | Un034: Cumulative Power<br>Consumption                  | DINT      | RO     | No             | - [Wh]       | No               |

### 15.5.9 $\Sigma$ -LINK II Data Monitor (2773h, 2774h)

This object is used to monitor the values of data in the  $\Sigma$ -LINK II register area given in the following table.

| ⊏.            |
|---------------|
| æ             |
| $\subseteq$   |
| 0             |
| -             |
| $\pi$         |
|               |
| $\overline{}$ |
| $\Box$        |
|               |
|               |
|               |
| Ö             |
| e             |
| jec           |
| bjec          |
| Objec         |
| Objec         |
| Objec         |

| Index | Subindex | Name                              | Data Type | Access | PDO<br>Mapping | Value                          | Saving to EEPROM |
|-------|----------|-----------------------------------|-----------|--------|----------------|--------------------------------|------------------|
|       | 0        | Number of entries                 | USINT     | RO     | No             | 11                             | No               |
|       | 1        | Σ-LINK II response data 1         | UDINT     | RO     | Yes            | _                              | No               |
|       | 2        | Σ-LINK II response data 2         | UDINT     | RO     | Yes            | _                              | No               |
|       | 3        | Σ-LINK II response data 3         | UDINT     | RO     | Yes            | _                              | No               |
|       | 4        | Σ-LINK II response data 4         | UDINT     | RO     | Yes            | _                              | No               |
|       | 5        | Σ-LINK II response data 5         | UDINT     | RO     | Yes            | _                              | No               |
| 2773h | 6        | Σ-LINK II response data 6         | UDINT     | RO     | Yes            | _                              | No               |
|       | 7        | Σ-LINK II response data 7         | UDINT     | RO     | Yes            | _                              | No               |
|       | 8        | Σ-LINK II response data 8         | UDINT     | RO     | Yes            | _                              | No               |
|       | 9        | Σ-LINK II data status information | UDINT     | RO     | Yes            | -                              | No               |
|       | 10       | Reserved                          | UDINT     | RO     | Yes            | _                              | No               |
|       | 11       | Reserved                          | UDINT     | RO     | Yes            | _                              | No               |
|       | 0        | Number of entries                 | USINT     | RO     | No             | 4                              | No               |
|       | 1        | Σ-LINK II command data 1          | UDINT     | RW     | Yes            | 0h to FFFFFFFh<br>(default: –) | No               |
| 2774h | 2        | Σ-LINK II command data 2          | UDINT     | RW     | Yes            | 0h to FFFFFFFh<br>(default: –) | No               |
|       | 3        | Σ-LINK II command data 3          | UDINT     | RW     | Yes            | 0h to FFFFFFFh<br>(default: –) | No               |
|       | 4        | Σ-LINK II command data 4          | UDINT     | RW     | Yes            | 0h to FFFFFFFh<br>(default: –) | No               |

### 15.5.10 Output Position Setting (2778h)

This object is used to set the output position for triggers at preset positions.

| Index | Subindex | Name                                     | Data Type | Access | PDO<br>Mapping | Value                                                       | Saving to EEPROM |
|-------|----------|------------------------------------------|-----------|--------|----------------|-------------------------------------------------------------|------------------|
|       | 0        | Number of entries                        | USINT     | RO     | No             | 32                                                          | No               |
| 2778h | 1 to 6   | Output Position1 to Output<br>Position6  | DINT      | RW     | Yes            | -2147483648 to<br>2147483647<br>(default: 0) [Pos.<br>unit] | No               |
|       | 7 to 32  | Output Position7 to Output<br>Position32 | DINT      | RW     | No             | -2147483648 to<br>2147483647<br>(default: 0) [Pos.<br>unit] | No               |

### 15.5.11 Output Function Setting (2779h)

This object is used to select the output function for triggers at preset positions.

| Index | Subindex | Name                                     | Data Type | Access | PDO<br>Mapping | Value                                       | Saving to EEPROM |
|-------|----------|------------------------------------------|-----------|--------|----------------|---------------------------------------------|------------------|
|       | 0        | Number of entries                        | USINT     | RO     | No             | 32                                          | No               |
| 2779h | 1 to 32  | Output Function1 to Output<br>Function32 | UDINT     | RW     | No             | 0x00000000 to<br>0x00001282<br>(default: 0) | No               |

#### 15.5.12 Output Time Setting (277Ah)

This object is used to set the output time for triggers at preset positions.

| Index | Subindex | Name                          | Data Type | Access | PDO<br>Mapping | Value                              | Saving to EEPROM |
|-------|----------|-------------------------------|-----------|--------|----------------|------------------------------------|------------------|
|       | 0        | Number of entries             | USINT     | RO     | No             | 32                                 | No               |
| 277Ah | 1 to 32  | Output Time1 to Output Time32 | UDINT     | RW     | No             | 0 to 32767000<br>(default: 0) [μs] | No               |

### 15.5.13 Output Distance Setting (277Bh)

This object is used to set the output distance for triggers at preset positions.

| Index | Subindex | Name                                     | Data Type | Access | PDO<br>Mapping | Value                                          | Saving to<br>EEPROM |
|-------|----------|------------------------------------------|-----------|--------|----------------|------------------------------------------------|---------------------|
|       | 0        | Number of entries                        | USINT     | RO     | No             | 32                                             | No                  |
| 277Bh | 1 to 32  | Output Distance1 to Output<br>Distance32 | UDINT     | RW     | No             | 0 to 0x7FFFFFFF<br>(default: 0) [Pos.<br>unit] | No                  |

### 15.5.14 Output Position Correction Setting (277Ch)

This object is used to set output position correction for triggers at preset positions.

| Index | Subindex | Name                                                                  | Data Type | Access | PDO<br>Mapping | Value                                                       | Saving to EEPROM |
|-------|----------|-----------------------------------------------------------------------|-----------|--------|----------------|-------------------------------------------------------------|------------------|
|       | 0        | Number of entries                                                     | USINT     | RO     | No             | 32                                                          | No               |
| 277Ch | 1 to 32  | Output Position Compensation1<br>to Output Position<br>Compensation32 | DINT      | RW     | No             | -2147483648 to<br>2147483647<br>(default: 0) [Pos.<br>unit] | No               |

### 15.6 Device Control

### 15.6.1 Error Code (603Fh)

This object provides the SERVOPACK alarm/warning code of the last error that occurred.

| Index | Subindex | Name       | Data Type | Access | PDO<br>Mapping | Value | Saving to EEPROM |
|-------|----------|------------|-----------|--------|----------------|-------|------------------|
| 603Fh | 0        | Error Code | UINT      | RO     | Yes            | 1     | No               |

### 15.6.2 Controlword (6040h)

This object controls the device and operation mode.

| Index | Subindex | Name        | Data Type | Access | PDO<br>Mapping | Value                    | Saving to EEPROM |
|-------|----------|-------------|-----------|--------|----------------|--------------------------|------------------|
| 6040h | 0        | Controlword | UINT      | RW     | Yes            | 0 to 0xFFFF (default: 0) | No               |

### (1) Controlword Bits

| Bit      | Function                | Description                                                                                           |
|----------|-------------------------|-------------------------------------------------------------------------------------------------------|
| 0        | Switch on               |                                                                                                       |
| 1        | Enable voltage          | □ (a) Details on Bits 0 to 3 on page 611                                                              |
| 2        | Quick stop              | (a) Details on Bits o to 3 on page 011                                                                |
| 3        | Enable operation        |                                                                                                       |
| 4 to 6   | Operation mode specific | (b) Details on Bits 4 to 9 on page 612                                                                |
| 7        | Fault reset             | 0→1: Alarm/warning reset.                                                                             |
| 8        | Halt                    | ■ (b) Details on Bits 4 to 9 on page 612                                                              |
| 9        | Operation mode specific | (b) Details on Bits + 10 + on page 012                                                                |
| 10       | - (Reserved)            | _                                                                                                     |
| 11       | Positive torque limit   | 0: Disables Torque Limit Parameter (object 2404h).  1: Enables Torque Limit Parameter (object 2404h). |
| 12       | Negative torque limit   | 0: Disables Torque Limit Parameter (object 2405h). 1: Enables Torque Limit Parameter (object 2405h).  |
| 13 to 15 | - (Reserved)            | -                                                                                                     |

#### (a) Details on Bits 0 to 3

Bits 0 to 3: These bits function as the control command for the servo drive's state.

|                              | Controlword Bits |       |       |       |       |  |  |  |
|------------------------------|------------------|-------|-------|-------|-------|--|--|--|
| Command                      | Bit 7            | Bit 3 | Bit 2 | Bit 1 | Bit 0 |  |  |  |
| Shutdown                     | 0                | X     | 1     | 1     | 0     |  |  |  |
| Switch on                    | 0                | 0     | 1     | 1     | 1     |  |  |  |
| Switch on + Enable operation | 0                | 1     | 1     | 1     | 1     |  |  |  |
| Disable voltage              | 0                | X     | X     | 0     | X     |  |  |  |

| 0                 | Controlword Bits |       |       |       |       |  |
|-------------------|------------------|-------|-------|-------|-------|--|
| Command           | Bit 7            | Bit 3 | Bit 2 | Bit 1 | Bit 0 |  |
| Quick stop        | 0                | X     | 0     | 1     | X     |  |
| Disable operation | 0                | 0     | 1     | 1     | 1     |  |
| Enable operation  | 0                | 1     | 1     | 1     | 1     |  |

#### (b) Details on Bits 4 to 9

#### ♦ Bits 4, 5, and 9: Profile Position Mode

| Bit 9 | Bit 5 | Bit 4             | Description                                                                                                                 |
|-------|-------|-------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 0     | 0     | $0 \rightarrow 1$ | Starts the next positioning after the current positioning is completed (i.e., after the target is reached).                 |
| X     | 1     | $0 \rightarrow 1$ | Starts the next positioning immediately.                                                                                    |
| 1     | 0     | $0 \rightarrow 1$ | Continues positioning with the current profile speed up to the current target position and then start the next positioning. |

#### ♦ Bits 6 and 8: Profile Position Mode

| Bit    | Function  | Value                                                 | Description                                                                                                        |
|--------|-----------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|        | 0         | Treats the target position as an absolute value.      |                                                                                                                    |
| 6      | 6 Abs/rel | 1                                                     | Treats the target position as a relative value. (Treats it as the travel amount from the current target position.) |
| 8 Halt | 0         | Executes or continues positioning.                    |                                                                                                                    |
|        | 1         | Stops the axis according to Halt Option Code (605Dh). |                                                                                                                    |

#### ♦ Bits 4, 5, 6, 8, and 9: Homing Mode

| Bit            | Function         | Value | Description                                           |  |
|----------------|------------------|-------|-------------------------------------------------------|--|
| 4 Hom<br>start | Homing operation | 0     | Does not start homing.                                |  |
|                | ~ .              | 1     | Starts or continues homing.                           |  |
| 5              | _                | 0     | Reserved.                                             |  |
| 6              | _                | 0     | Reserved.                                             |  |
| 8 Halt         |                  | 0     | Enables bit 4.                                        |  |
|                | Halt             | 1     | Stops the axis according to Halt Option Code (605Dh). |  |
| 9              | _                | 0     | Reserved.                                             |  |

#### ♦ Bits 4, 5, 6, 8, and 9: Cyclic Synchronous Position, Velocity, or Torque Mode

| Bit    | Function | Value | Description                                           |
|--------|----------|-------|-------------------------------------------------------|
| 4      | _        | 0     | Reserved.                                             |
| 5      | _        | 0     | Reserved.                                             |
| 6      | _        | 0     | Reserved.                                             |
| 8 Halt |          | 0     | Executes or continues operation.                      |
|        | Halt     | 1     | Stops the axis according to Halt Option Code (605Dh). |
| 9      | -        | 0     | Reserved.                                             |

# Object Dictionar

# 15

#### ◆ Bits 4, 5, 6, 8, and 9: Interpolated Position Mode

| Bit | Function      | Value | Description                                           |
|-----|---------------|-------|-------------------------------------------------------|
|     | Enable        | 0     | Disables interpolation.                               |
| 4   | interpolation | 1     | Enables interpolation.                                |
| 5   | _             | 0     | Reserved.                                             |
| 6   | _             | 0     | Reserved.                                             |
| _   |               | 0     | Executes specification for bit 4.                     |
| 8   | Halt          | 1     | Stops the axis according to Halt Option Code (605Dh). |
| 9   | _             | 0     | Reserved.                                             |

#### ◆ Bits 4, 5, 6, 8, and 9: Profile Velocity/Torque Mode

| Bit | Function | Value | Description                                           |
|-----|----------|-------|-------------------------------------------------------|
| 4   | _        | 0     | Reserved.                                             |
| 5   | _        | 0     | Reserved.                                             |
| 6   | _        | 0     | Reserved.                                             |
| 0   | ** 1     | 0     | Executes or continues operation.                      |
| 8   | Halt     | 1     | Stops the axis according to Halt Option Code (605Dh). |
| 9   | _        | 0     | Reserved.                                             |

#### 15.6.3 Controlword\_VenderS (2776h)

This object performs vendor-specific device control.

| Index | Subindex | Name                | Data Type | Access | PDO<br>Mapping | Value                       | Saving to EEPROM |
|-------|----------|---------------------|-----------|--------|----------------|-----------------------------|------------------|
| 2776h | 0        | Controlword_VenderS | UINT      | RW     | Yes            | 0 to 0xFFFF<br>(default: –) | No               |

# (1) Controlword\_VenderS Bits

| Bit     | Function                    | Description                                                                                                                                                                         |
|---------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0       | EXT trace                   | 0: EXT trace OFF 1: EXT trace ON Data can be acquired at the preferred timing by setting "EXT Trace" to a data trace trigger in the SigmaWin+ and controlling bit 0 of this object. |
| 1       | Preset position forced stop | 0: Disable forced stop at preset position. 1: Enable forced stop at preset position.                                                                                                |
| 2 to 15 | – (Reserved)                | _                                                                                                                                                                                   |

## 15.6.4 Statusword (6041h)

Statusword contains the bits that give the current state of the servo drive and the operating state of the operation mode.

| Index | Subindex | Name       | Data Type | Access | PDO<br>Mapping | Value | Saving to EEPROM |
|-------|----------|------------|-----------|--------|----------------|-------|------------------|
| 6041h | 0        | Statusword | UINT      | RO     | Yes            | -     | No               |

#### (1) Statusword Bits

| Bit    | Function                | Description                                              |  |  |
|--------|-------------------------|----------------------------------------------------------|--|--|
| 0      | Ready to Switch ON      |                                                          |  |  |
| 1      | Switched ON             |                                                          |  |  |
| 2      | Operation Enabled       |                                                          |  |  |
| 3      | Fault                   |                                                          |  |  |
| 4      | Voltage Enabled         | (a) Details on Bits 0 to 7 on page 614                   |  |  |
| 5      | Quick Stop              |                                                          |  |  |
| 6      | Switch ON Disabled      |                                                          |  |  |
| 7      | Warning                 |                                                          |  |  |
| 8      | Reserved                | _                                                        |  |  |
| 9      | Remote                  | Controlword (6040h) is being processed.                  |  |  |
| 10     | Operation Mode Specific | (c) Details on Bits 10, 12, and 13 on page 615           |  |  |
| 11     | Internal Limit Active   | (b) Details on Bit 11 on page 614                        |  |  |
| 12, 13 | Operation Mode Specific | (c) Details on Bits 10, 12, and 13 on page 615           |  |  |
| 14     | Torque Limit Active     | 0: Torque limit is disabled. 1: Torque limit is enabled. |  |  |
| 15     | Safety Active           | 1: Safety function is active.                            |  |  |

#### (a) Details on Bits 0 to 7

#### ♦ Bits 0 to 7: Current State of Servo Drive

|       |       | Comus Britas State |       |       |       |       |       |                        |
|-------|-------|--------------------|-------|-------|-------|-------|-------|------------------------|
| Bit 7 | Bit 6 | Bit 5              | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Servo Drive State      |
| X     | 0     | X                  | X     | 0     | 0     | 0     | 0     | Not ready to switch ON |
| X     | 1     | X                  | X     | 0     | 0     | 0     | 0     | Switch ON disabled     |
| X     | 0     | 1                  | X     | 0     | 0     | 0     | 1     | Ready to switch ON     |
| X     | 0     | 1                  | X     | 0     | 0     | 1     | 1     | Switched ON            |
| X     | 0     | 1                  | X     | 0     | 1     | 1     | 1     | Operation enabled      |
| X     | 0     | 0                  | X     | 0     | 1     | 1     | 1     | Quick stop active      |
| X     | 0     | X                  | X     | 1     | 1     | 1     | 1     | Fault reaction active  |
| X     | 0     | X                  | X     | 1     | 0     | 0     | 0     | Fault                  |
| X     | X     | X                  | 1     | X     | X     | X     | X     | Main power ON          |
| 1     | X     | X                  | X     | X     | X     | X     | X     | Warning is occurred    |

#### (b) Details on Bit 11

- Bit 11: Internal limit active
  - The internal limit is activated in the following cases:
  - The target position was limited by a software limit.
  - The N-OT or P-OT signal was activated.
  - The interpolation speed was exceeded in Interpolated Position Mode or Cyclic Position Mode.

If the interpolated reference speed exceeds the following speed range, the target position will be ignored. (TargetPosition – position demand value)  $\times$  (2701h:1)/(2701h:2) < 1073741824 [inc/Interpolation time period]

#### (c) Details on Bits 10, 12, and 13

#### ♦ Bits 10, 12, and 13: Profile Position Mode

| Bit | Meaning                  | Value | Description                                                                                                                            |   |   |   |
|-----|--------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------|---|---|---|
| 10  | Target reached           | 0     | Halt (bit 8 in Controlword) = 0: The target position has not been reached.  Halt (bit 8 in Controlword) = 1: The axis is decelerating. |   |   |   |
| 10  |                          | 1     | Halt (bit 8 in Controlword) = 0: The target position was reached.  Halt (bit 8 in Controlword) = 1: The axis is stopped.               |   |   |   |
| 12  | Set-point<br>acknowledge | 0     | Processing of previous set point (reference) was completed and servo drive is waiting for a new set point.                             |   |   |   |
| 12  |                          |       |                                                                                                                                        | 1 | 1 | 1 |
| 12  | Following error          | 0     | No following error has occurred.                                                                                                       |   |   |   |
| 13  |                          | 1     | A following error occurred.                                                                                                            |   |   |   |

#### **♦** Bits 10, 12, and 13: Homing Mode

| Bit 13       | Bit 12          | Bit 10         |                                                                |
|--------------|-----------------|----------------|----------------------------------------------------------------|
| Homing error | Homing attained | Target reached | Description                                                    |
| 0            | 0               | 0              | Homing is in progress.                                         |
| 0            | 0               | 1              | Homing was interrupted or has not yet started.                 |
| 0            | 1               | 0              | Home has been defined, but the operation is still in progress. |
| 0            | 1               | 1              | Homing was completed normally.                                 |
| 1            | 0               | 0              | A homing error occurred and the speed is not 0.                |
| 1            | 0               | 1              | A homing error occurred and the speed is 0.                    |

#### ♦ Bits 10, 12, and 13: Cyclic Synchronous Position, Velocity, or Torque Mode

| Bit | State                | Value | Description                                                                                    |
|-----|----------------------|-------|------------------------------------------------------------------------------------------------|
| 10  | Target reached       | 0     | The target (position, speed, or torque) has not been reached (always 0 in Cyclic Torque Mode). |
|     |                      | 1     | The target (position, speed, or torque) was reached.                                           |
| 10  | Target value ignored | 0     | The target value (position, speed, or torque) was ignored.                                     |
| 12  |                      | 1     | The target value will be used as the input to the (position, speed, or torque) control loop.   |
| 12  | Following error      | 0     | There is no following error (always 0 in Cyclic Velocity or Torque Mode).                      |
| 13  |                      | 1     | A following error occurred.                                                                    |

#### ♦ Bits 10, 12, and 13: Interpolated Position Mode

| Bit | State             | Value | Description                                                                                                                            |
|-----|-------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------|
| 10  | Target reached    | 0     | Halt (bit 8 in Controlword) = 0: The target position has not been reached.  Halt (bit 8 in Controlword) = 1: The axis is decelerating. |
| 10  |                   | 1     | Halt (bit 8 in Controlword) = 0: The target position was reached.  Halt (bit 8 in Controlword) = 1: The axis is stopped.               |
| 10  | v 1               | 0     | Interpolation is disabled.                                                                                                             |
| 12  | 12 Ip mode active | 1     | Interpolation is enabled.                                                                                                              |
| 13  | _                 | 0     | Reserved.                                                                                                                              |

#### ◆ Bits 10, 12, and 13: Profile Velocity Mode

| Bit | State             | Value | Description                                                                                                                            |
|-----|-------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------|
| 10  | 10 Target reached | 0     | Halt (bit 8 in Controlword) = 0: The target position has not been reached.  Halt (bit 8 in Controlword) = 1: The axis is decelerating. |
| 10  |                   | 1     | Halt (bit 8 in Controlword) = 0: The target position was reached.  Halt (bit 8 in Controlword) = 1: The axis is stopped.               |
| 12  | 2 Speed           | 0     | The speed is equal to or exceeds the Rotation Detection Level (Pn502 (2502h)).                                                         |
| 12  |                   | 1     | The speed is below the Rotation Detection Level (Pn502 (2502h)).                                                                       |
| 13  | _                 | 0     | Reserved.                                                                                                                              |

#### ◆ Bits 10, 12, and 13: Profile Torque Mode

| Bit | State          | Value | Description                                                                                                                            |
|-----|----------------|-------|----------------------------------------------------------------------------------------------------------------------------------------|
| 10  |                | 0     | Halt (bit 8 in Controlword) = 0: The target position has not been reached.  Halt (bit 8 in Controlword) = 1: The axis is decelerating. |
| 10  | Target reached | 1     | Halt (bit 8 in Controlword) = 0: The target position was reached.  Halt (bit 8 in Controlword) = 1: The axis is stopped.               |
| 12  | _              | 0     | Reserved.                                                                                                                              |
| 13  | _              | 0     | Reserved.                                                                                                                              |

#### 15.6.5 Quick Stop Option Code (605Ah)

This object determines what operation will be performed if a Quick Stop is executed.

| Index | Subindex | Name                   | Data Type | Access | PDO<br>Mapping | Value               | Saving to EEPROM |
|-------|----------|------------------------|-----------|--------|----------------|---------------------|------------------|
| 605Ah | 0        | Quick Stop Option Code | INT       | RW     | No             | 0 to 4 (default: 2) | Yes              |

#### (1) Data Description

| Value | Description                                                                                                       |
|-------|-------------------------------------------------------------------------------------------------------------------|
| 0     | Disables the servo drive (moves to the Switch ON Disabled state).                                                 |
| 1     | Decelerates at the deceleration rate for decelerating to a stop and moves to the Switch ON Disabled state. *1, *2 |
| 2     | Decelerates at the deceleration rate for a quick stop and moves to the Switch ON Disabled state. *1, *3           |
| 3     | Decelerates at the torque limit and moves to the Switch ON Disabled state. */                                     |

- \*1 The motor is always stopped according to option code 0 (servo OFF stop) in Profile Torque Mode or Cyclic Torque Mode.
  - The deceleration rate for decelerating to a stop is defined in the following objects.
    - Profile Position/Interpolated Position/Cyclic Position/Cyclic Velocity Mode (6084h)
    - Homing Mode (609Ah)
- \*3 Quick Stop Deceleration (6085h) is the deceleration rate for a quick stop.

### 15.6.6 Shutdown Option Code (605Bh)

This object defines the operation that is performed if there is a move from Operation Enable state to Ready to Switch ON state.

| Index | Subindex | Name                 | Data Type | Access | PDO<br>Mapping | Value               | Saving to EEPROM |
|-------|----------|----------------------|-----------|--------|----------------|---------------------|------------------|
| 605Bh | 0        | Shutdown Option Code | INT       | RW     | No             | 0 to 1 (default: 0) | Yes              |

#### (1) Data Description

| Value | Description                                                                                                       |
|-------|-------------------------------------------------------------------------------------------------------------------|
| 0     | Disables the servo drive (moves to the Switch ON Disabled state).                                                 |
| 1     | Decelerates at the deceleration rate for decelerating to a stop and moves to the Switch ON Disabled state. *1, *2 |

<sup>\*1</sup> The motor is always stopped according to option code 0 (servo OFF stop) in Profile Torque Mode or Cyclic Torque Mode.

- Profile Position/Interpolated Position/Cyclic Position/Cyclic Velocity Mode (6084h)
- Homing Mode (609Ah)

### 15.6.7 Disable Operation Option Code (605Ch)

This object defines the operation that is performed if there is a move from Operation Enable state to Switched ON state.

| Index | Subindex | Name                          | Data Type | Access | PDO<br>Mapping | Value               | Saving to EEPROM |
|-------|----------|-------------------------------|-----------|--------|----------------|---------------------|------------------|
| 605Ch | 0        | Disable Operation Option Code | INT       | RW     | No             | 0 to 1 (default: 1) | Yes              |

#### (1) Data Description

| Value | Description                                                                                                       |  |  |  |
|-------|-------------------------------------------------------------------------------------------------------------------|--|--|--|
| 0     | isables the servo drive (moves to the Switch ON Disabled state).                                                  |  |  |  |
| 1     | Decelerates at the deceleration rate for decelerating to a stop and moves to the Switch ON Disabled state. *1, *2 |  |  |  |

The motor is always stopped according to option code 0 (servo OFF stop) in Profile Torque Mode or Cyclic Torque Mode.

- Profile Position/Interpolated Position/Cyclic Position/Cyclic Velocity Mode (6084h)
- Homing Mode (609Ah)

#### 15.6.8 Halt Option Code (605Dh)

This object defines the operation that is performed if bit 8 (Halt) in Controlword is active.

| Index | Subindex | Name             | Data Type | Access | PDO<br>Mapping | Value                   | Saving to EEPROM |
|-------|----------|------------------|-----------|--------|----------------|-------------------------|------------------|
| 605Dh | 0        | Halt Option Code | INT       | RW     | No             | -3 to 3<br>(default: 1) | Yes              |

#### (1) Data Description

| Value | Description                                                                                                                                                                                                      |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| -3    | Decelerates at the torque limit and moves to the Operation Enabled state.  Zero clamped when the speed becomes "motor stop judgment speed [min-1]" or slower after stopped by Halt.                              |  |
| -2    | Decelerates at the deceleration rate for a quick stop and moves to the Operation Enabled state. */, *2  Zero clamped when the speed becomes "motor stop judgment speed [min-1]" or slower after stopped by Halt. |  |

Continued on next page.

<sup>\*2</sup> The deceleration rate for decelerating to a stop is defined in the following objects.

<sup>\*2</sup> The deceleration rate for decelerating to a stop is defined in the following objects.

Continued from previous page.

| Value | Description                                                                                                                                                                                                                |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -1    | Decelerates at the deceleration rate for decelerating to a stop and moves to the Operation Enabled state. */, *3  Zero clamped when the speed becomes "motor stop judgment speed [min-1]" or slower after stopped by Halt. |
| 0     | Reserved.                                                                                                                                                                                                                  |
| 1     | Decelerates at the deceleration rate for decelerating to a stop and moves to the Operation Enabled state. *1, *3                                                                                                           |
| 2     | Decelerates at the deceleration rate for a quick stop and moves to the Operation Enabled state. *1, *2                                                                                                                     |
| 3     | Decelerates at the torque limit and moves to the Operation Enabled state.                                                                                                                                                  |

- \*1 If bit 8 (Halt) is 1 in Profile Torque Mode or Cyclic Torque Mode, the torque reference value is reduced to zero.
- \*2 Quick Stop Deceleration (6085h) is the deceleration rate for a quick stop.
- \*3 The deceleration rate for decelerating to a stop is defined in the following objects.
  - Profile Position/Interpolated Position/Cyclic Position/Cyclic Velocity Mode (6084h)
  - Homing Mode (609Ah)

### 15.6.9 Fault Reaction Option Code (605Eh)

This object defines the operation that is performed when an alarm is detected in the servo drive system.

| Index | Subindex | Name                       | Data Type | Access | PDO<br>Mapping | Value               | Saving to EEPROM |
|-------|----------|----------------------------|-----------|--------|----------------|---------------------|------------------|
| 605Eh | 0        | Fault Reaction Option Code | INT       | RW     | No             | 0 to 0 (default: 0) | Yes              |

#### (1) Data Description

| Value | Description                                      |
|-------|--------------------------------------------------|
| 0     | Disables the servo drive. (Turns OFF the servo.) |

#### **15.6.10 Modes of Operation (6060h)**

This object is used to select the operation mode. The servo drive gives the actual operation mode in the Modes of Operation Display object.

| Index | Subindex | Name               | Data Type | Access | PDO<br>Mapping | Value                   | Saving to EEPROM |
|-------|----------|--------------------|-----------|--------|----------------|-------------------------|------------------|
| 6060h | 0        | Modes of Operation | SINT      | RW     | Yes            | 0 to 10<br>(default: 0) | Yes              |

#### (1) Data Description

| Value | Description                                  |  |  |  |  |
|-------|----------------------------------------------|--|--|--|--|
| 0     | There is no mode change or no mode assigned. |  |  |  |  |
| 1     | Profile Position Mode                        |  |  |  |  |
| 2     | Reserved (continue previous mode).           |  |  |  |  |
| 3     | Profile Velocity Mode                        |  |  |  |  |
| 4     | Torque Profile Mode                          |  |  |  |  |
| 6     | Homing Mode                                  |  |  |  |  |
| 7     | Interpolated Position Mode                   |  |  |  |  |
| 8     | Cyclic Sync Position Mode                    |  |  |  |  |

Continued on next page.

Continued from previous page.

| Value  | Description                        |
|--------|------------------------------------|
| 9      | Cyclic Sync Velocity Mode          |
| 10     | Cyclic Sync Torque Mode            |
| Others | Reserved (continue previous mode). |

# 15.6.11 Modes of Operation Display (6061h)

This object gives the current mode of operation.

The values that are returned are the same as the object codes for Modes of Operation (6060h).

| Index | Subindex | Name                       | Data Type | Access | PDO<br>Mapping | Value | Saving to<br>EEPROM |
|-------|----------|----------------------------|-----------|--------|----------------|-------|---------------------|
| 6061h | 0        | Modes of Operation Display | SINT      | RO     | Yes            | 0     | No                  |

# 15.6.12 Supported Drive Modes (6502h)

This object gives the operation modes that are supported by the device.

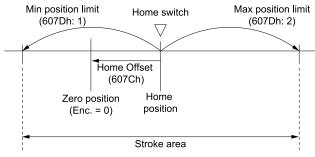
| Index | Subindex | Name                  | Data Type | Access | PDO<br>Mapping | Value  | Saving to<br>EEPROM |
|-------|----------|-----------------------|-----------|--------|----------------|--------|---------------------|
| 6502h | 0        | Supported Drive Modes | UDINT     | RO     | No             | 0x03ED | No                  |

#### (1) Data Description

| Bit      | Description                     | Definition        |
|----------|---------------------------------|-------------------|
| 0        | Pp (Profile position mode)      | 1: Supported.     |
| 1        | VI (Velocity mode)              | 0: Not supported. |
| 2        | Pv (Profile velocity mode)      | 1: Supported.     |
| 3        | Tq (Torque profile mode)        | 1: Supported.     |
| 4        | Reserved.                       | 0                 |
| 5        | Hm (Homing mode)                | 1: Supported.     |
| 6        | Ip (Interpolated position mode) | 1: Supported.     |
| 7        | Csp (Cyclic sync position mode) | 1: Supported.     |
| 8        | Csv (Cyclic sync velocity mode) | 1: Supported.     |
| 9        | Cst (Cyclic sync torque mode)   | 1: Supported.     |
| 10 to 31 | Reserved.                       | 0                 |

# 15.7 Profile Position Mode

#### 15.7.1 Target Position (607Ah)


This object contains the target position for the Profile Position Mode or Cyclic Synchronous Position Mode. In Profile Position Mode, the value of this object is interpreted as either an absolute or relative value depending on the Abs/Rel Flag in Controlword. In Cyclic Synchronous Position Mode, the value is always interpreted as an absolute value.

| Index | Subindex | Name            | Data Type | Access | PDO<br>Mapping | Value                                                       | Saving to EEPROM |
|-------|----------|-----------------|-----------|--------|----------------|-------------------------------------------------------------|------------------|
| 607Ah | 0        | Target Position | DINT      | RW     | Yes            | -2147483648 to<br>2147483647<br>(default: 0) [Pos.<br>unit] | No               |

#### 15.7.2 Software Position Limit (607Dh)

This object defines the absolute positions of the limits to the target position (Position Demand Value). Every target position is checked against these limits.

The limit positions are specified in user-defined position reference units, the same as for target positions. In the same manner as Position Demand Value (6062h) and other objects, set this object with a value to which Home Offset (607Ch) was added.



The software position limits are enabled at the following times:

- · When homing is completed
- · When an absolute encoder is connected

The software limits are disabled if they are set as follows:

• Min position limit ≥ Max position limit

| Index | Subindex | Name               | Data Type | Access | PDO<br>Mapping | Value                                                     | Saving to EEPROM |
|-------|----------|--------------------|-----------|--------|----------------|-----------------------------------------------------------|------------------|
|       | 0        | Number of entries  | USINT     | RO     | No             | 2                                                         | No               |
| 607Dh | 1        | Min position limit | DINT      | RW     | No             | -536870912 to<br>536870911<br>(default: 0) [Pos.<br>unit] | Yes              |
|       | 2        | Max position limit | DINT      | RW     | No             | -536870912 to<br>536870911<br>(default: 0) [Pos.<br>unit] | Yes              |

# 15.7.3 Max Profile Velocity (607Fh)

This object contains the maximum speed during a Profile Mode operation.

| ı | Index | Subindex | Name                 | Data Type | Access | PDO<br>Mapping | Value                                                      | Saving to<br>EEPROM |
|---|-------|----------|----------------------|-----------|--------|----------------|------------------------------------------------------------|---------------------|
| 6 | 607Fh | 0        | Max Profile Velocity | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default:<br>2147483647) [Vel.<br>unit] | Yes                 |

#### 15.7.4 Profile Velocity (6081h)

This object contains the final feed speed at the end of acceleration for a Profile Mode operation.

| Index | Subindex | Name             | Data Type | Access | PDO<br>Mapping | Value                                          | Saving to<br>EEPROM |
|-------|----------|------------------|-----------|--------|----------------|------------------------------------------------|---------------------|
| 6081h | 0        | Profile Velocity | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default: 0) [Vel.<br>unit] | Yes                 |

#### 15.7.5 Profile Acceleration (6083h)

This object specifies the acceleration rate for Profile Mode operations.

| Index | Subindex | Name                 | Data Type | Access | PDO<br>Mapping | Value                                             | Saving to EEPROM |
|-------|----------|----------------------|-----------|--------|----------------|---------------------------------------------------|------------------|
| 6083h | 0        | Profile Acceleration | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default: 1000)<br>[Acc. unit] | Yes              |

#### 15.7.6 Profile Deceleration (6084h)

This object specifies the deceleration rate for Profile Mode operations.

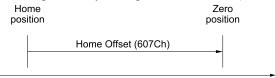
| Index | Subindex | Name                 | Data Type | Access | PDO<br>Mapping | Value                                             | Saving to EEPROM |
|-------|----------|----------------------|-----------|--------|----------------|---------------------------------------------------|------------------|
| 6084h | 0        | Profile Deceleration | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default: 1000)<br>[Acc. unit] | Yes              |

# 15.7.7 Quick Stop Deceleration (6085h)

This object contains the deceleration rate that is used to stop the motor if the Quick Stop Option Code (605Ah) is set to 2 and the Quick Stop command is given.

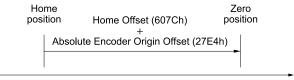
| Index | Subindex | Name                    | Data Type | Access | PDO<br>Mapping | Value                                             | Saving to EEPROM |
|-------|----------|-------------------------|-----------|--------|----------------|---------------------------------------------------|------------------|
| 6085h | 0        | Quick Stop Deceleration | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default: 1000)<br>[Acc. unit] | Yes              |

# 15.8 Homing Mode


#### 15.8.1 Home Offset (607Ch)

This object contains the offset between the zero position for the application and the machine home position (found during homing).

| Index | Subindex | Name        | Data Type | Access | PDO<br>Mapping | Value                                                     | Saving to EEPROM |
|-------|----------|-------------|-----------|--------|----------------|-----------------------------------------------------------|------------------|
| 607Ch | _        | Home Offset | DINT      | RW     | No             | -536870912 to<br>536870911<br>(default: 0) [Pos.<br>unit] | Yes              |


#### • Incremental Encoder

The machine home position is found during homing. After homing is completed, the zero position is offset from the home position by adding the Home Offset (607Ch) to the home position.



#### · Absolute Encoder

If an absolute encoder is connected to the SERVOPACK, the zero position is offset from the home position by adding the values of Home Offset (607Ch) and Absolute Encoder Origin Offset (27E4h) when the power to the SERVOPACK is turned ON.



#### 15.8.2 Homing Method (6098h)

This object specifies the homing method. Refer to the following section for details on the operations that are performed.

3 14.4 Homing on page 565

| Index | Subindex | Name          | Data Type | Access | PDO<br>Mapping | Value                    | Saving to EEPROM |
|-------|----------|---------------|-----------|--------|----------------|--------------------------|------------------|
| 6098h | 0        | Homing Method | SINT      | RW     | Yes            | 0 to 37<br>(default: 37) | No               |

#### (1) Data Description

| Value<br>(Method) | Description                                          |
|-------------------|------------------------------------------------------|
| 0                 | Homing is disabled.                                  |
| 1 *1              | Homing with the reverse limit switch and index pulse |
| 2 *1              | Homing with the forward limit switch and index pulse |
| 7 to 14 *1        | Homing with the home switch and index pulse          |
| 24 * <i>I</i>     | Homing with the home switch                          |
| 28 *1             | Homing with the home switch                          |
| 33, 34            | Homing with the index pulse                          |
| 35, 37            | Homing with the current position                     |

\*1 If the overtravel alarm is enabled, homing using a limit switch cannot be performed.

# 15.8.3 Homing Speeds (6099h)

This object defines the speeds that are used during homing. The speeds are given in user speed reference units.

| Index | Subindex | Name                           | Data Type | Access | PDO<br>Mapping | Value                                               | Saving to EEPROM |
|-------|----------|--------------------------------|-----------|--------|----------------|-----------------------------------------------------|------------------|
|       | 0        | Number of entries              | USINT     | RO     | No             | 2                                                   | No               |
| 6099h | 1        | Speed during search for switch | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default: 500000)<br>[Vel. unit] | Yes              |
|       | 2        | Speed during search for zero   | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default: 100000)<br>[Vel. unit] | Yes              |

# 15.8.4 Homing Acceleration (609Ah)

This object defines the acceleration that is used during homing. The rate is given in user acceleration reference units.

| Index | Subindex | Name                | Data Type | Access | PDO<br>Mapping | Value                                             | Saving to EEPROM |
|-------|----------|---------------------|-----------|--------|----------------|---------------------------------------------------|------------------|
| 609Ah | 0        | Homing Acceleration | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default: 1000)<br>[Acc. unit] | Yes              |

### 15.9 Position Control Function

#### 15.9.1 Position Demand Value (6062h)

This object specifies the current reference position in user position reference units.

| Index | Subindex | Name                  | Data Type | Access | PDO<br>Mapping | Value         | Saving to<br>EEPROM |
|-------|----------|-----------------------|-----------|--------|----------------|---------------|---------------------|
| 6062h | 0        | Position Demand Value | DINT      | RO     | Yes            | - [Pos. unit] | No                  |

#### 15.9.2 Position Actual Internal Value (6063h)

This object gives the current feedback position in encoder pulse units.

| Index | Subindex | Name                           | Data Type | Access | PDO<br>Mapping | Value   | Saving to<br>EEPROM |
|-------|----------|--------------------------------|-----------|--------|----------------|---------|---------------------|
| 6063h | 0        | Position Actual Internal Value | DINT      | RO     | Yes            | - [Inc] | No                  |

#### 15.9.3 Position Actual Value (6064h)

This object gives the current feedback position in user position reference units.

| Index | Subindex | Name                  | Data Type | Access | PDO<br>Mapping | Value         | Saving to<br>EEPROM |
|-------|----------|-----------------------|-----------|--------|----------------|---------------|---------------------|
| 6064h | 0        | Position Actual Value | DINT      | RO     | Yes            | - [Pos. unit] | No                  |

#### 15.9.4 Position Demand Internal Value (60FCh)

This object gives the output of the trajectory generator during position control (the position that is input to the position loop). The value is given in encoder pulses.

| Index | Subindex | Name                           | Data Type | Access | PDO<br>Mapping | Value   | Saving to EEPROM |
|-------|----------|--------------------------------|-----------|--------|----------------|---------|------------------|
| 60FCh | 0        | Position Demand Internal Value | DINT      | RO     | Yes            | - [Inc] | No               |

### 15.9.5 Following Error Window (6065h)

This object defines the detection range for the following error (bit 13 of Statusword).

If the position deviation exceeds the Following Error Window for the Following Error Time Out (6066h), bit 13 in Statusword changes to 1 to indicate following error. A following error can occur when the servo drive is blocked, when the profile speed is too high, or when the gain settings are not correct.

| Index | Subindex | Name                   | Data Type | Access | PDO<br>Mapping | Value                                                | Saving to<br>EEPROM |
|-------|----------|------------------------|-----------|--------|----------------|------------------------------------------------------|---------------------|
| 6065h | 0        | Following Error Window | UDINT     | RW     | No             | 0 to 1073741823<br>(default: 5242880)<br>[Pos. unit] | Yes                 |

# Object Diction

#### 15.9.6 Following Error Time Out (6066h)

If the position deviation exceeds the Following Error Window for the time specified in this object, bit 13 in Statusword changes to 1 to indicate following error.

| Index | Subindex | Name                     | Data Type | Access | PDO<br>Mapping | Value                           | Saving to EEPROM |
|-------|----------|--------------------------|-----------|--------|----------------|---------------------------------|------------------|
| 6066h | 0        | Following Error Time Out | UINT      | RW     | No             | 0 to 65535<br>(default: 0) [ms] | Yes              |

#### 15.9.7 Following Error Actual Value (60F4h)

This object provides the current position deviation.

| Index | Subindex | Name                         | Data Type | Access | PDO<br>Mapping | Value         | Saving to EEPROM |
|-------|----------|------------------------------|-----------|--------|----------------|---------------|------------------|
| 60F4h | 0        | Following Error Actual Value | DINT      | RO     | Yes            | – [Pos. unit] | No               |

#### **15.9.8 Position Window (6067h)**

This object defines the positioning completed width for the target position. When the servo drive has completed outputting the reference to the target position and the time specified in Position Window Time (6068h) has passed after the distance between the target position and the position actual value is within the value of this object, bit 10 (target reached) in Statusword changes to 1.

| Inde | Subindex | Name            | Data Type | Access | PDO<br>Mapping | Value                                           | Saving to EEPROM |
|------|----------|-----------------|-----------|--------|----------------|-------------------------------------------------|------------------|
| 6067 | n 0      | Position Window | UDINT     | RW     | No             | 0 to 1073741823<br>(default: 30) [Pos.<br>unit] | Yes              |

#### 15.9.9 Position Window Time (6068h)

When the servo drive has completed outputting the reference to the target position and the time specified in this object has passed after the distance between the target position and the position actual value is within the Position Window (6067h), bit 10 (target reached) in Statusword changes to 1.

| Index | Subindex | Name                 | Data Type | Access | PDO<br>Mapping | Value                           | Saving to EEPROM |
|-------|----------|----------------------|-----------|--------|----------------|---------------------------------|------------------|
| 6068h | 0        | Position Window Time | UINT      | RW     | No             | 0 to 65535<br>(default: 0) [ms] | Yes              |

#### 15.9.10 Position Offset (60B0h)

This object defines the offset value of the target position. The position offset is added to the target position when the object is written.

| Index | Subindex | Name            | Data Type | Access | PDO<br>Mapping | Value                                                      | Saving to<br>EEPROM |
|-------|----------|-----------------|-----------|--------|----------------|------------------------------------------------------------|---------------------|
| 60B0h | 0        | Position Offset | DINT      | RW     | Yes            | 0x80000000 to<br>0x7FFFFFFF<br>(default: 0) [Pos.<br>Unit] | No                  |

#### 15.9.11 Additional Position Actual Value (60E4h)

This object specifies the external encoder position in user position reference units.

| Index | Subindex | Name                      | Data Type | Access | PDO<br>Mapping | Value         | Saving to EEPROM |
|-------|----------|---------------------------|-----------|--------|----------------|---------------|------------------|
| 60E4h | 0        | Number of entries         | USINT     | RO     | No             | 1             | No               |
|       | 1        | External encoder position | DINT      | RO     | Yes            | 0 [Pos. unit] | Yes              |

# 15.9.12 Position Range Limit (607Bh)

This object specifies the first and last rotational coordinates.

| Index | Subindex | Name                     | Data Type | Access | PDO<br>Mapping | Value                                           | Saving to EEPROM |
|-------|----------|--------------------------|-----------|--------|----------------|-------------------------------------------------|------------------|
| 607Bh | 0        | Number of entries        | USINT     | RO     | No             | 2                                               | No               |
|       | 1        | Min position range limit | DINT      | RW     | Yes            | -2147483648 to 0<br>(default: 0) [Pos.<br>unit] | Yes              |
|       | 2        | Max position range limit | DINT      | RW     | Yes            | 0 to 2147483647<br>(default: 0) [Pos.<br>unit]  | Yes              |

# 15.9.13 Position Option Code (60F2h)

This object specifies the movement method in the rotational coordinate system.

| Index | Subindex | Name                 | Data Type | Access | PDO<br>Mapping | Value                    | Saving to EEPROM |
|-------|----------|----------------------|-----------|--------|----------------|--------------------------|------------------|
| 60F2h | 0        | Position option code | UINT      | RW     | Yes            | 0 to 0xFFFF (default: 0) | No               |

#### (1) Data Description

| Bit     | Value | Name                            | Description                           |
|---------|-------|---------------------------------|---------------------------------------|
| 0 to 5  | 0     | _                               | Reserved.                             |
|         | 0     | Normal (similar to linear axis) | Simple absolute position positioning  |
| 6.7     | 1     | Only negative direction         | Positioning in the reverse direction  |
| 6, 7    | 2     | Only negative direction         | Positioning in the forward direction  |
|         | 3     | Optimized (shortest way)        | Positioning in the shortest direction |
| 8 to 15 | 0     | 0 – Reserved.                   |                                       |

15

# 15.10 Interpolated Position Mode

#### 15.10.1 Interpolation Submode Select (60C0h) (Object Shared by Mode 1 and Mode 2)

This object is used to select the submode for the Interpolated Position Mode.

To use Interpolated Position Mode, set this object first.

| Index | Subindex | Name                          | Data Type | Access | PDO<br>Mapping | Value                   | Saving to<br>EEPROM |
|-------|----------|-------------------------------|-----------|--------|----------------|-------------------------|---------------------|
| 60C0h | 0        | Interpolation Sub Mode Select | INT       | RW     | No             | -3 to 0<br>(default: 0) | No                  |

Information To use the position reference filter, also set Position Reference Filter (2775h).

Refer to the following section for information on Position Reference Filter (2775h).

■ 6.18.2 Average Position Reference Movement Filter on page 288

#### (1) Data Description

| Value<br>(Metho-<br>d) |                                                   | Description                                                                                                                                                |
|------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                      | Selects mode 1 with no position reference filter. | Interpolation Data Record (60C1h) is used as the interpolation position reference.                                                                         |
| -1                     | Reserved.                                         | _                                                                                                                                                          |
| -2                     | Selects mode 2 with no position reference filter. | Interpolation Data Record for 1st Profile (27C0h) and Interpolation Data Record for 2nd Profile (27C1h) are used as the interpolation position references. |
| -3                     | Reserved.                                         | -                                                                                                                                                          |

#### 15.10.2 Interpolation Data Record (60C1h) (Object Shared by Mode 1 and Mode 2)

This object gives the interpolation position reference for Interpolated Position Mode.

| Index | Subindex | Name                      | Data Type | Access | PDO<br>Mapping | Value                                                       | Saving to EEPROM |
|-------|----------|---------------------------|-----------|--------|----------------|-------------------------------------------------------------|------------------|
|       | 0        | Number of entries         | USINT     | RO     | No             | 1                                                           | No               |
| 60C1h | 1        | Interpolation data record | DINT      | RW     | Yes            | -2147483648 to<br>2147483647<br>(default: 0) [Pos.<br>unit] | No               |

### 15.10.3 Interpolation Time Period (60C2h) (Object Shared by Mode 1 and Mode 2)

This object defines the interpolated position reference cycle for Interpolation Mode.

If DC Sync0 Mode is selected, the interpolation time period is automatically stored as the Sync0 Cycle Time.

If DC Free-Run Mode is selected, set the object manually.

| Index | Subindex | Name                            | Data Type | Access | PDO<br>Mapping | Value                      | Saving to EEPROM |
|-------|----------|---------------------------------|-----------|--------|----------------|----------------------------|------------------|
| 60C2h | 0        | Number of entries               | USINT     | RO     | No             | 2                          | No               |
|       | 1        | Interpolation time period value | USINT     | RW     | No             | 1 to 250<br>(default: 125) | No               |
|       | 2        | Interpolation time index        | SINT      | RW     | No             | -6 to -3<br>(default: -6)  | No               |

Interpolation time = (Interpolation Time Period Value (60C2h:1)) × 10 Interpolation time index (60C2h: 2) [s]

#### Note:

You can change this object only under the following conditions.

- If DC Sync0 Mode is selected: EtherCAT is in the Switch ON Disable state.
- If DC Free-Run Mode is selected: EtherCAT is in the Switch ON Disable state. Or, EtherCAT is in Interpolated Position Mode and Enable Interpolation equals 0.

# 15.10.4 Manufacturer Interpolation Data Configuration for 1<sup>st</sup> Profile (2730h) (Mode 2 Object)

This object sets how to use the interpolation position reference in Interpolation Data Record for 1st Profile (27C0h).

| Index | Subindex | Name                                    | Data Type | Access | PDO<br>Mapping | Value                    | Saving to EEPROM |
|-------|----------|-----------------------------------------|-----------|--------|----------------|--------------------------|------------------|
|       | 0        | Number of entries                       | USINT     | RO     | No             | 9                        | No               |
|       | 1        | Maximum buffer size                     | UDINT     | RO     | No             | 254                      | No               |
|       | 2        | Actual buffer size                      | UDINT     | RW     | No             | 254                      | No               |
|       | 3        | Buffer organization                     | USINT     | RW     | No             | 0 to 1 (default: 0)      | No               |
|       | 4        | Buffer position                         | UINT      | RW     | Yes            | 1 to 254<br>(default: 1) | No               |
| 2730h | 5        | Size of data record                     | USINT     | WO     | No             | 1 to 1<br>(default: 1)   | No               |
|       | 6        | Buffer clear                            | USINT     | WO     | No             | 0 to 1 (default: 0)      | No               |
|       | 7        | Position data definition                | USINT     | RW     | Yes            | 0 to 1 (default: 1)      | No               |
|       | 8        | Position data polarity                  | USINT     | RW     | Yes            | 0 to 1 (default: 0)      | No               |
|       | 9        | Behavior after reaching buffer position | USINT     | RW     | Yes            | 0 to 1 (default: 0)      | No               |

### (1) 2730h: 3 Buffer Organization

| Value (Method)                                         | Description                                         |  |
|--------------------------------------------------------|-----------------------------------------------------|--|
| 0                                                      | 0 Uses the reference input buffer as a FIFO buffer. |  |
| 1 Uses the reference input buffer is as a ring buffer. |                                                     |  |

#### Note:

Do not change this value while Enable Interpolation (6040h bit 4) is 1.

#### (2) 2730h: 4 Buffer Position

The object contains the entry point for the available area in the reference input buffer.

#### Note:

Do not change this value while Enable Interpolation (6040h bit 4) is 1.

# Object Dictiona

#### (3) 2730h: 6 Buffer Clear

| Value<br>(Method) | Description                          |
|-------------------|--------------------------------------|
| 0                 | Disables the reference input buffer. |
| 1                 | Enables the reference input buffer.  |

#### (4) 2730h: 7 Position Data Definition

| Value<br>(Method) | Description                                                        |  |
|-------------------|--------------------------------------------------------------------|--|
| 0                 | Uses the value in the reference input buffer as an absolute value. |  |
| 1                 | Uses the value in the reference input buffer as a relative value.  |  |

To enable changing this value, set the WritePointer (2741h: 2) and the ReadPointer (2741h: 1) to the same value.

#### (5) 2730h: 8 Position Data Polarity

| Value<br>(Method) | Description                                               |  |
|-------------------|-----------------------------------------------------------|--|
| 0                 | Multiplies the value in the reference input buffer by 1.  |  |
| 1                 | Multiplies the value in the reference input buffer by -1. |  |

This value is valid when Position data definition (2730h: 7) is 1.

To enable changing this value, set the WritePointer (2741h: 2) and the ReadPointer (2741h: 1) to the same value.

#### (6) 2730h: 9 Behavior after Reaching Buffer Position

| Value<br>(Method) | Description                                                                                                                                           |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                 | Holds the value of the ReadPointer (2741h: 1) when the ReadPointer (2741h: 1) equals the WritePointer (2741h: 2) and Enable Interpolation is 0.       |
| 1                 | Initializes the value of the ReadPointer (2741h: 1) when the ReadPointer (2741h: 1) equals the WritePointer (2741h: 2) and Enable Interpolation is 0. |

This value is valid when Buffer organization (2731h: 3) is 0.

# 15.10.5 Manufacturer Interpolation Data Configuration for 2<sup>nd</sup> Profile (2731h) (Mode 2 Object)

This object sets how to use the interpolation position reference in Interpolation Data Record for 2<sup>nd</sup> Profile (27C1h).

629

| Index | Subindex | Name                                    | Data Type | Access | PDO<br>Mapping | Value                    | Saving to EEPROM |
|-------|----------|-----------------------------------------|-----------|--------|----------------|--------------------------|------------------|
|       | 0        | Number of entries                       | USINT     | RO     | No             | 9                        | No               |
|       | 1        | Maximum buffer size                     | UDINT     | RO     | No             | 254                      | No               |
|       | 2        | Actual buffer size                      | UDINT     | RW     | No             | 254                      | No               |
|       | 3        | Buffer organization                     | USINT     | RW     | No             | 0 to 1 (default: 0)      | No               |
|       | 4        | Buffer position                         | UINT      | RW     | Yes            | 1 to 254<br>(default: 1) | No               |
| 2731h | 5        | Size of data record                     | USINT     | WO     | No             | 1 to 1<br>(default: 1)   | No               |
|       | 6        | Buffer clear                            | USINT     | WO     | No             | 0 to 1 (default: 0)      | No               |
|       | 7        | Position data definition                | USINT     | RW     | Yes            | 0 to 1 (default: 1)      | No               |
|       | 8        | Position data polarity                  | USINT     | RW     | Yes            | 0 to 1 (default: 0)      | No               |
|       | 9        | Behavior after reaching buffer position | USINT     | RW     | Yes            | 0 to 1 (default: 0)      | No               |

#### (1) 2731h:3 Buffer Organization

| Value<br>(Method) | Description                                          |
|-------------------|------------------------------------------------------|
| 0                 | Uses the reference input buffer as a FIFO buffer.    |
| 1                 | Uses the reference input buffer is as a ring buffer. |

#### Note:

Do not change this value while Enable Interpolation (6040h bit 4) is 1.

#### (2) 2731h: 4 Buffer Position

This object contains the entry point for the available area in the reference input buffer.

Note

Do not change this value while Enable Interpolation (6040h bit 4) is 1.

#### (3) 2731h: 6 Buffer Clear

| Value | e (Method) | Description                          |
|-------|------------|--------------------------------------|
|       | 0          | Disables the reference input buffer. |
|       | 1          | Enables the reference input buffer.  |

#### (4) 2731h: 7 Position Data Definition

| Value (Method) | Description                                                        |  |
|----------------|--------------------------------------------------------------------|--|
| 0              | Uses the value in the reference input buffer as an absolute value. |  |
| 1              | Uses the value in the reference input buffer as a relative value.  |  |

To enable changing this value, set the WritePointer (2741h: 2) and the ReadPointer (2741h: 1) to the same value.

#### (5) 2731h: 8 Position Data Polarity

| Value (Method) | Description                                               |  |
|----------------|-----------------------------------------------------------|--|
| 0              | Multiplies the value in the reference input buffer by 1.  |  |
| 1              | Multiplies the value in the reference input buffer by -1. |  |

This value is valid when Position data definition (2731h: 7) is 1.

To enable changing this value, set the WritePointer (2741h: 2) and the ReadPointer (2741h: 1) to the same value.

#### (6) 2731h: 9 Behavior after Reaching Buffer Position

| Value (Method) | Description                                                                                                                                           |  |  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 0              | Holds the value of the ReadPointer (2741h: 1) when the ReadPointer (2741h: 1) equals the WritePointer (2741h: 2) and Enable Interpolation is 0.       |  |  |
| 1              | Initializes the value of the ReadPointer (2741h: 1) when the ReadPointer (2741h: 1) equals the WritePointer (2741h: 2) and Enable Interpolation is 0. |  |  |

This value is valid when Buffer organization (2731h: 3) is 0.

#### 15.10.6 Interpolation Profile Select (2732h) (Mode 2 Object)

This object is used to select the type of interpolation profile to use.

Change the interpolation profile only after execution of the current profile has been completed.

You can change the object when Enable Interpolation (6040h bit 4) is 0.

| Index | Subindex | Name                         | Data Type | Access | PDO<br>Mapping | Value               | Saving to EEPROM |
|-------|----------|------------------------------|-----------|--------|----------------|---------------------|------------------|
| 2732h | 0        | Interpolation Profile Select | USINT     | RW     | Yes            | 0 to 1 (default: 0) | No               |

#### (1) Data Description

| Value<br>(Method) | Description                                                                                                                                                                                           |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                 | Uses the 1st profile.  (Interpolation Data Record for 1st Profile (27C0h) and Manufacturer Interpolation Data Configuration for 1st Profile (2730h) are enabled.)                                     |
| 1                 | Uses the 2 <sup>nd</sup> profile.  (Interpolation Data Record for 2 <sup>nd</sup> Profile (27C1h) and Manufacturer Interpolation Data Configuration for 2 <sup>nd</sup> Profile (2731h) are enabled.) |

#### Note:

Do not change this value while Enable Interpolation (6040h bit 4) is 1.

# 15.10.7 Interpolation Data Record for 1st Profile (27C0h) (Mode 2 Object)

This object is used to set the interpolation position reference for the 1st profile in Buffer Strategies for the Interpolated Position Mode.

Set this object only after setting all of the items in Manufacturer Interpolation Data Configuration for 1st Profile (2730h).

After you set this object, set Enable Interpolation (6040h bit 4) to 1.

| Index | Subindex | Name                           | Data Type | Access | PDO<br>Mapping | Value                                        | Saving to EEPROM |
|-------|----------|--------------------------------|-----------|--------|----------------|----------------------------------------------|------------------|
|       | 0        | Number of entries              | USINT     | RO     | No             | 254                                          | No               |
| 27C0h | 1 to 254 | 1st set-point to 254 set-point | DINT      | RW     | No             | -2147483648 to<br>2147483647<br>(default: 0) | No               |

#### 15.10.8 Interpolation Data Record for 2<sup>nd</sup> Profile (27C1h) (Mode 2 Object)

This object is used to set the interpolation position reference for the 2<sup>nd</sup> profile in Buffer Strategies for the Interpolated Position Mode.

Set this object only after setting all of the items in Manufacturer Interpolation Data Configuration for 2<sup>nd</sup> Profile (2731h).

After you set this object, set Enable Interpolation (6040h bit 4) to 1.

| Index | Subindex | Name                           | Data Type | Access | PDO<br>Mapping | Value                                        | Saving to EEPROM |
|-------|----------|--------------------------------|-----------|--------|----------------|----------------------------------------------|------------------|
|       | 0        | Number of entries              | USINT     | RO     | No             | 254                                          | No               |
| 27C1h | 1 to 254 | 1st set-point to 254 set-point | DINT      | RW     | No             | -2147483648 to<br>2147483647<br>(default: 0) | No               |

# 15.10.9 Interpolation Data Read/Write Pointer Position Monitor (2741h) (Mode 2 Object)

This object gives the current values of the read and write pointers for the reference input buffers in the EtherCAT network module.

| Index | Subindex | Name                                         | Data Type | Access | PDO<br>Mapping | Value                    | Saving to EEPROM |
|-------|----------|----------------------------------------------|-----------|--------|----------------|--------------------------|------------------|
|       | 0        | Number of entries                            | USINT     | RO     | No             | 2                        | No               |
| 2741h | 1        | Interpolation data read pointer<br>Position  | UINT      | RO     | Yes            | 1 to 254<br>(default: –) | No               |
|       | 2        | Interpolation data write pointer<br>Position | UINT      | RO     | Yes            | 1 to 254<br>(default: –) | No               |

#### (1) 2741h: 1 Interpolation Data Read Pointer Position

This object gives the current value of the read pointer for the reference input buffer in the EtherCAT network module.

#### (2) 2741h: 2 Interpolation Data Write Pointer Position

This object gives the current value of the write pointer for the reference input buffer in the EtherCAT network module.

# 15.11 Cyclic Synchronous Position Mode

### 15.11.1 Velocity Offset (60B1h)

In Cyclic Synchronous Position Mode, this object contains the speed feedforward value.

In Cyclic Synchronous Velocity Mode, this object contains the offset value to add to the speed reference.

| Index | Subindex | Name            | Data Type | Access | PDO<br>Mapping | Value                                                       | Saving to EEPROM |
|-------|----------|-----------------|-----------|--------|----------------|-------------------------------------------------------------|------------------|
| 60B1h | 0        | Velocity Offset | DINT      | RW     | Yes            | -2147483648 to<br>2147483647<br>(default: 0) [Vel.<br>unit] | No               |

#### 15.11.2 Torque Offset (60B2h)

In Cyclic Synchronous Position Mode or Cyclic Synchronous Velocity Mode, this object contains the torque feedforward value.

In Cyclic Synchronous Torque Mode, this object contains the offset value to add to the torque reference.

| Index | Subindex | Name          | Data Type | Access | PDO<br>Mapping | Value                                          | Saving to EEPROM |
|-------|----------|---------------|-----------|--------|----------------|------------------------------------------------|------------------|
| 60B2h | 0        | Torque Offset | INT       | RW     | Yes            | -32768 to 32767<br>(default: 0) [Trq.<br>unit] | No               |

# 15.12 Profile Velocity/Cyclic Synchronous Velocity Mode

#### 15.12.1 Velocity Demand Value (606Bh)

This object contains the output value from the velocity trajectory generator or the output value from the position control function (i.e., the input reference for the speed loop).

| Index | Subindex | Name                  | Data Type | Access | PDO<br>Mapping | Value         | Saving to<br>EEPROM |
|-------|----------|-----------------------|-----------|--------|----------------|---------------|---------------------|
| 606Bh | 0        | Velocity Demand Value | DINT      | RO     | Yes            | - [Vel. unit] | No                  |

#### 15.12.2 Velocity Actual Value (606Ch)

This object contains the motor speed.

| Index | Subindex | Name                  | Data Type | Access | PDO<br>Mapping | Value         | Saving to EEPROM |
|-------|----------|-----------------------|-----------|--------|----------------|---------------|------------------|
| 606Ch | 0        | Velocity Actual Value | DINT      | RO     | Yes            | - [Vel. unit] | No               |

#### 15.12.3 Velocity Window (606Dh)

This object sets the speed coincidence detection width.

When the time specified in Velocity Window Time (606Eh) has passed after the difference between the target speed (target velocity) and the velocity actual value is within the setting of the velocity window, bit 10 (target reached) in Statusword is set to 1.

| Index | Subindex | Name            | Data Type | Access | PDO<br>Mapping | Value                                         | Saving to EEPROM |
|-------|----------|-----------------|-----------|--------|----------------|-----------------------------------------------|------------------|
| 606Dh | 0        | Velocity Window | UINT      | RW     | No             | 0 to 65535<br>(default: 20000)<br>[Vel. unit] | Yes              |

### 15.12.4 Velocity Window Time (606Eh)

When the time specified in Velocity Window Time (606Eh) has passed after the difference between the target speed (target velocity) and the velocity actual value is within the setting of the velocity window, bit 10 (target reached) in Statusword is set to 1.

| Index | Subindex | Name                 | Data Type | Access | PDO<br>Mapping | Value                           | Saving to EEPROM |
|-------|----------|----------------------|-----------|--------|----------------|---------------------------------|------------------|
| 606Eh | 0        | Velocity Window Time | UINT      | RW     | No             | 0 to 65535<br>(default: 0) [ms] | Yes              |

### 15.12.5 End Velocity (6082h)

Set a value in End Velocity (6082h) to continue operation at that set speed without stopping when the target position is reached.

| Index | Subindex | Name         | Data Type | Access | PDO<br>Mapping | Value                                          | Saving to EEPROM |
|-------|----------|--------------|-----------|--------|----------------|------------------------------------------------|------------------|
| 6082h | 0        | End Velocity | UDINT     | RO     | Yes            | 0 to 4294967295<br>(default: 0) [Vel.<br>unit] | No               |

# 15.12.6 Target Velocity (60FFh)

This object specifies the target speed for Profile Velocity Mode or Cyclic Synchronous Velocity Mode in user defined speed reference units.

| Index | Subindex | Name            | Data Type | Access | PDO<br>Mapping | Value                                                       | Saving to EEPROM |
|-------|----------|-----------------|-----------|--------|----------------|-------------------------------------------------------------|------------------|
| 60FFh | 0        | Target Velocity | DINT      | RW     | Yes            | -2147483648 to<br>2147483647<br>(default: 0) [Vel.<br>unit] | No               |

# 15.13 Profile Torque/Cyclic Synchronous Torque Mode

#### 15.13.1 Target Torque (6071h)

This object specifies the input torque reference value for Torque Control Mode. The unit is the user-defined torque reference unit.

| Index | Subindex | Name          | Data Type | Access | PDO<br>Mapping | Value                                          | Saving to EEPROM |
|-------|----------|---------------|-----------|--------|----------------|------------------------------------------------|------------------|
| 6071h | 0        | Target Torque | INT       | RW     | Yes            | -32768 to 32767<br>(default: 0) [Trq.<br>unit] | No               |

#### 15.13.2 Torque Demand Value (6074h)

This object gives the currently output torque reference value. The unit is the user-defined torque reference unit.

| Index | Subindex | Name                | Data Type | Access | PDO<br>Mapping | Value         | Saving to EEPROM |
|-------|----------|---------------------|-----------|--------|----------------|---------------|------------------|
| 6074h | 0        | Torque Demand Value | INT       | RO     | Yes            | - [Trq. unit] | No               |

#### 15.13.3 Torque Slope (6087h)

This object sets the torque output slope to use in Profile Torque Mode. Set the value as the rate of change per second in user-defined torque reference units.

| Index | Subindex | Name         | Data Type | Access | PDO<br>Mapping | Value                                               | Saving to EEPROM |
|-------|----------|--------------|-----------|--------|----------------|-----------------------------------------------------|------------------|
| 6087h | 0        | Torque Slope | UDINT     | RW     | Yes            | 0 to 4294967295<br>(default: 1000)<br>[Trq. unit/s] | Yes              |

#### 15.13.4 Motor Rated Torque (6076h)

This object gives the motor rated torque (rated force for a linear servomotor). The value is given in  $m \cdot Nm$  for a rotary servomotor, and in  $m \cdot N$  for a linear servomotor.

| Index | Subindex | Name               | Data Type | Access | PDO<br>Mapping | Value      | Saving to<br>EEPROM |
|-------|----------|--------------------|-----------|--------|----------------|------------|---------------------|
| 6076h | 0        | Motor Rated Torque | UDINT     | RO     | No             | -[mNm, mN] | No                  |

#### 15.13.5 Torque Actual Value (6077h)

For a SERVOPACK, this object contains the same value as the torque reference output value.

| Index | Subindex | Name                | Data Type | Access | PDO<br>Mapping | Value         | Saving to EEPROM |
|-------|----------|---------------------|-----------|--------|----------------|---------------|------------------|
| 6077h | 0        | Torque Actual Value | INT       | RO     | Yes            | - [Trq. unit] | No               |

# 15.13.6 Current Actual Value (6078h)

This object contains the current value of electrical current.

| Index | Subindex | Name                 | Data Type | Access | PDO<br>Mapping | Value                       | Saving to<br>EEPROM |
|-------|----------|----------------------|-----------|--------|----------------|-----------------------------|---------------------|
| 6078h | 0        | Current Actual Value | INT       | RO     | Yes            | - [1/1000 of rated current] | No                  |

# **15.14 Torque Limit Function**

#### 15.14.1 Max. Torque (6072h)

This object sets the maximum output torque for the motor. The unit is the user-defined torque reference unit. The maximum motor torque is automatically set in this object in units of 0.1% of the motor rated torque when the power is turned ON.

| Index | Subindex | Name       | Data Type | Access | PDO<br>Mapping | Value                                                       | Saving to EEPROM |
|-------|----------|------------|-----------|--------|----------------|-------------------------------------------------------------|------------------|
| 6072h | 0        | Max Torque | UINT      | RW     | Yes            | 0 to 65535<br>(default: Motor<br>max torque) [Trq.<br>unit] | No               |

### 15.14.2 Positive Torque Limit Value (60E0h)

This object sets the forward torque limit. The unit is the user-defined torque reference unit.

| Index | Subindex | Name                        | Data Type | Access | PDO<br>Mapping | Value                                        | Saving to EEPROM |
|-------|----------|-----------------------------|-----------|--------|----------------|----------------------------------------------|------------------|
| 60E0h | 0        | Positive Torque Limit Value | UINT      | RW     | Yes            | 0 to 65535<br>(default: 8000)<br>[Trq. unit] | Yes              |

#### 15.14.3 Negative Torque Limit Value (60E1h)

This object sets the reverse torque limit The unit is the user-defined torque reference unit.

| Index | Subindex | Name                        | Data Type | Access | PDO<br>Mapping | Value                                        | Saving to EEPROM |
|-------|----------|-----------------------------|-----------|--------|----------------|----------------------------------------------|------------------|
| 60E1h | 0        | Negative Torque Limit Value | UINT      | RW     | Yes            | 0 to 65535<br>(default: 8000)<br>[Trq. unit] | Yes              |

# 15.15 Touch Probe Function

### 15.15.1 Touch Probe Function (60B8h)

This object sets the touch probes.

| Index | Subindex | Name                 | Data Type | Access | PDO<br>Mapping | Value                    | Saving to EEPROM |
|-------|----------|----------------------|-----------|--------|----------------|--------------------------|------------------|
| 60B8h | 0        | Touch probe function | UINT      | RW     | Yes            | 0 to 0xFFFF (default: 0) | No               |

#### (1) Data Description

| Bit    | Value | Description                                                            |  |  |  |  |  |  |
|--------|-------|------------------------------------------------------------------------|--|--|--|--|--|--|
|        | 0     | Disables touch probe 1.                                                |  |  |  |  |  |  |
| 0      | 1     | Enables touch probe 1.                                                 |  |  |  |  |  |  |
| 1      | 0     | Single Trigger Mode (Latches the position at the first trigger event.) |  |  |  |  |  |  |
| 1      | 1     | Continuous Trigger Mode (Latches the position every trigger event.)    |  |  |  |  |  |  |
| 2      | 0     | Triggers on probe 1 input (SERVOPACK CN1/Probe 1 (SI4) signal).        |  |  |  |  |  |  |
| 2      | 1     | Triggers on encoder zero signal (phase C).                             |  |  |  |  |  |  |
| 3      | -     | Reserved.                                                              |  |  |  |  |  |  |
| 4      | 0     | Stops sampling of touch probe 1 at the rising edge.                    |  |  |  |  |  |  |
| 4      | 1     | Starts sampling of touch probe 1 at the rising edge.                   |  |  |  |  |  |  |
| 5      | 0     | Stops sampling of touch probe 1 at the falling edge.                   |  |  |  |  |  |  |
| 3      | 1     | Starts sampling of touch probe 1 at the falling edge.                  |  |  |  |  |  |  |
| 6, 7   | -     | Reserved.                                                              |  |  |  |  |  |  |
| 8      | 0     | Disables touch probe 2.                                                |  |  |  |  |  |  |
|        | 1     | Enables touch probe 2.                                                 |  |  |  |  |  |  |
| 9      | 0     | Single Trigger Mode (Latches the position at the first trigger event.) |  |  |  |  |  |  |
|        | 1     | Continuous Trigger Mode (Latches the position every trigger event.)    |  |  |  |  |  |  |
| 10     | 0     | Triggers on probe 2 input (SERVOPACK CN1/Probe 2 (SI5) signal).        |  |  |  |  |  |  |
| 10     | 1     | Triggers on encoder zero signal (phase C).                             |  |  |  |  |  |  |
| 11     | 1     | Reserved.                                                              |  |  |  |  |  |  |
| 12     | 0     | Stops sampling of touch probe 2 at the rising edge.                    |  |  |  |  |  |  |
| 12     | 1     | Starts sampling of touch probe 2 at the rising edge.                   |  |  |  |  |  |  |
| 13     | 0     | Stops sampling of touch probe 2 at the falling edge.                   |  |  |  |  |  |  |
| 13     | 1     | Starts sampling of touch probe 2 at the falling edge.                  |  |  |  |  |  |  |
| 14, 15 | -     | Reserved.                                                              |  |  |  |  |  |  |

#### Note:

- Bits 0 to 7: For touch probe 1 Bits 8 to 15: For touch probe 2
- Touch probe 1 cannot be used during execution of homing. If touch probe 1 was already enabled, it will be disabled when homing is started.
- If 1 is specified for bit 1 (i.e., if Continuous Trigger Mode is set), the setting of bit 2 (Trigger Selection Signal) will be read each time the latch is started. To continuously latch with the same trigger signal, do not change the status of bit 2.

#### 15.15.2 Touch Probe Status (60B9h)

This object gives the status of the touch probes.

| Index | Subindex | Name               | Data Type | Access | PDO<br>Mapping | Value | Saving to EEPROM |
|-------|----------|--------------------|-----------|--------|----------------|-------|------------------|
| 60B9h | 0        | Touch Probe Status | UINT      | RO     | Yes            | 1     | No               |

#### (1) Data Description

| Bit      | Value | Description                                                                                                                                   |
|----------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|          | 0     | Touch probe 1 is disabled.                                                                                                                    |
| 0        | 1     | Touch probe 1 is enabled.                                                                                                                     |
| 1        | 0     | No latched position is stored for touch probe 1.                                                                                              |
| 1        | 1     | A latched position is stored for the rising edge of touch probe 1.                                                                            |
| 2        | 0     | No latched position is stored for touch probe 1.                                                                                              |
| 2        | 1     | A latched position is stored for the falling edge of touch probe 1.                                                                           |
| 3 to 6   | -     | Reserved.                                                                                                                                     |
| 7        | 0, 1  | Saving the latched position for Continuous Trigger Mode for touch probe 1 was completed. */(Status toggles every time a position is latched.) |
| 0        | 0     | Touch probe 2 is disabled.                                                                                                                    |
| 8        | 1     | Touch probe 2 is enabled.                                                                                                                     |
|          | 0     | No latched position is stored for touch probe 2.                                                                                              |
| 9        | 1     | A latched position is stored for the rising edge of touch probe 2.                                                                            |
| 10       | 0     | No latched position is stored for touch probe 2.                                                                                              |
| 10       | 1     | A latched position is stored for the falling edge of touch probe 2.                                                                           |
| 11 to 14 | _     | Reserved.                                                                                                                                     |
| 15       | 1     | Saving the latched position for Continuous Trigger Mode for touch probe 2 was completed. */(Status toggles every time a position is latched.) |

<sup>\*1</sup> If the continuous latch is enabled (Touch Probe Function (60B8h) bit 1 = 1 or bit 9 = 1), bit 7 or bit 15 of Touch Probe Status (60B9h) is toggled every time the latched position is updated.

## 15.15.3 Touch Probe 1 Positive Edge (60BAh)

This object gives the latched position saved at the rising edge of touch probe 1. The value is given in user position units (Pos. unit).

| Index | Subindex | Name                        | Data Type | Access | PDO<br>Mapping | Value         | Saving to EEPROM |
|-------|----------|-----------------------------|-----------|--------|----------------|---------------|------------------|
| 60BAh | 0        | Touch probe 1 positive edge | DINT      | RO     | Yes            | - [Pos. unit] | No               |

#### 15.15.4 Touch Probe 1 Negative Edge (60BBh)

This object gives the latched position saved at the falling edge of touch probe 1. The value is given in user position units (Pos. unit).

| Index | Subindex | Name                        | Data Type | Access | PDO<br>Mapping | Value         | Saving to<br>EEPROM |
|-------|----------|-----------------------------|-----------|--------|----------------|---------------|---------------------|
| 60BBh | 0        | Touch probe 1 negative edge | DINT      | RO     | Yes            | – [Pos. unit] | No                  |

### 15.15.5 Touch Probe 2 Positive Edge (60BCh)

This object gives the latched position saved at the rising edge of touch probe 2. The value is given in user position units (Pos. unit).

| Index | Subindex | Name                        | Data Type | Access | PDO<br>Mapping | Value         | Saving to EEPROM |
|-------|----------|-----------------------------|-----------|--------|----------------|---------------|------------------|
| 60BCh | 0        | Touch probe 2 positive edge | DINT      | RO     | Yes            | - [Pos. unit] | No               |

### 15.15.6 Touch Probe 2 Negative Edge (60BDh)

This object gives the latched position saved at the falling edge of touch probe 2. The value is given in user position units (Pos. unit).

| Index | Subindex | Name                        | Data Type | Access | PDO<br>Mapping | Value         | Saving to<br>EEPROM |
|-------|----------|-----------------------------|-----------|--------|----------------|---------------|---------------------|
| 60BDh | 0        | Touch probe 2 negative edge | DINT      | RO     | Yes            | - [Pos. unit] | No                  |

# 15.16 Digital Inputs/Outputs

#### 15.16.1 Digital Inputs (60FDh)

This object gives the status of the digital inputs to CN1 on the SERVOPACK.

| Index | Subindex | Name           | Data Type | Access | PDO<br>Mapping | Value | Saving to<br>EEPROM |
|-------|----------|----------------|-----------|--------|----------------|-------|---------------------|
| 60FDh | 0        | Digital Inputs | UDINT     | RO     | Yes            | -     | No                  |

#### (1) Data Description

| Bit      | Signal                     | Description                                              |  |  |  |  |
|----------|----------------------------|----------------------------------------------------------|--|--|--|--|
| 0        | N-OT: Reverse limit switch |                                                          |  |  |  |  |
| 1        | P-OT: Forward limit switch | 0: OFF, 1: ON                                            |  |  |  |  |
| 2        | /Home: Home switch         |                                                          |  |  |  |  |
| 3 to 15  | _                          | Reserved.                                                |  |  |  |  |
| 16       | SIO                        |                                                          |  |  |  |  |
| 17       | SI1                        |                                                          |  |  |  |  |
| 18       | SI2                        |                                                          |  |  |  |  |
| 19       | SI3                        | 1: OFF (open), 1: ON (closed)                            |  |  |  |  |
| 20       | SI4                        |                                                          |  |  |  |  |
| 21       | SI5                        |                                                          |  |  |  |  |
| 22       | SI6                        |                                                          |  |  |  |  |
| 23       | -                          | Reserved.                                                |  |  |  |  |
| 24       | HWBB1                      | Hardwired base block signal input 1 (0: open, 1: closed) |  |  |  |  |
| 25       | HWBB2                      | Hardwired base block signal input 2 (0: open, 1: closed) |  |  |  |  |
| 26 to 31 | _                          | Reserved.                                                |  |  |  |  |

## 15.16.2 Digital Outputs (60FEh)

This object controls the status of the general-purpose output signals (SO1 to SO3) from CN1 on the SERVOPACK.

Subindex 1 is used to control the status of the output signals. Subindex 2 determines which output signals in subindex 1 are enabled.

If SERVOPACK status outputs are assigned in objects 250Eh, 250Fh, and 2510h, the status will be output using ORs with the settings in this object. If any of these signals (SO1 to SO3) are assigned with objects 250Eh, 250Fh, or 2510h, use the Bit Masks in subindex 2 to disable the corresponding signals so that the signals are not duplicated.

| Index | Subindex | Name              | Data Type | Access | PDO<br>Mapping | Value                                       | Saving to EEPROM |
|-------|----------|-------------------|-----------|--------|----------------|---------------------------------------------|------------------|
|       | 0        | Number of entries | USINT     | RO     | No             | 2                                           | No               |
| 60FEh | 1        | Physical outputs  | UDINT     | RW     | Yes            | 0 to 0xFFFFFFFF (default: 0)                | No               |
|       | 2        | Bit mask          | UDINT     | RW     | No             | 0 to 0xFFFFFFFF<br>(default:<br>0x000C0000) | Yes              |

# (1) Data Description of Physical Outputs

| Bit      | Signal | Description   |
|----------|--------|---------------|
| 0 to 16  | _      | Reserved.     |
| 17       | SO1    |               |
| 18       | SO2    | 0: OFF, 1: ON |
| 19       | SO3    |               |
| 20 to 31 | _      | Reserved.     |

# (2) Data Description of Bit Masks

| Bit      | Signal | Description                                            |  |  |
|----------|--------|--------------------------------------------------------|--|--|
| 0 to 16  | _      | Reserved.                                              |  |  |
| 17       | SO1    |                                                        |  |  |
| 18       | SO2    | Disables physical output.     Enables physical output. |  |  |
| 19       | SO3    | 1. Enables physical output.                            |  |  |
| 20 to 31 | _      | Reserved.                                              |  |  |

# 15.17 Motor Catalogue Number (6403h)

This object contains the model number of the connected servomotor.

| Index | Subindex | Name                   | Data Type | Access | PDO<br>Mapping | Value | Saving to EEPROM |
|-------|----------|------------------------|-----------|--------|----------------|-------|------------------|
| 6403h | 0        | Motor Catalogue Number | STRING    | RO     | No             | _     | No               |

# 15.18 Manufacturer Serial Number (F9F0h)

This object contains the SERVOPACK serial number.

| Index | Subindex | Name                       | Data Type | Access | PDO<br>Mapping | Value | Saving to<br>EEPROM |
|-------|----------|----------------------------|-----------|--------|----------------|-------|---------------------|
| F9F0h | 0        | Manufacturer Serial Number | STRING    | RO     | No             | _     | No                  |

# **Maintenance**

This chapter provides information on the meaning of, causes of, and corrections for alarms and warnings. In this chapter, the object index number  $(2\square\square\square h)$  for EtherCAT communications is given after the SERVO-PACK parameter number  $(Pn\square\square\square)$ .

| 16.1 | Inspections and Part Replacement                                                                                                             | 649  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------|------|
|      | 16.1.1 Inspections                                                                                                                           | 649  |
|      | 16.1.2 Guidelines for Part Replacement                                                                                                       | 649  |
|      | 16.1.3 Replacing the Battery                                                                                                                 | 649  |
| 16.2 | Alarm Displays                                                                                                                               | 652  |
|      | 16.2.1 List of Alarms                                                                                                                        | 652  |
|      | 16.2.2 Troubleshooting Alarms                                                                                                                | 657  |
|      | 16.2.3 Alarm Reset                                                                                                                           | 683  |
|      | 16.2.4 Displaying the Alarm History                                                                                                          | 684  |
|      | 16.2.5 Clearing the Alarm History                                                                                                            | 686  |
|      | 16.2.6 Resetting Option Module Configuration Error                                                                                           | 687  |
|      | 16.2.7 Resetting Motor Type Alarms                                                                                                           |      |
| 16.3 | Warning Displays                                                                                                                             | 690  |
|      | 16.3.1 Warnings Table                                                                                                                        | 690  |
|      | 16.3.2 Troubleshooting Warnings                                                                                                              | 691  |
| 16.4 | Troubleshooting Based on the Operation and Conditions of the Servomotor                                                                      | 697  |
|      | 16.4.1 Servomotor Does Not Start                                                                                                             |      |
|      | 16.4.2 Servomotor Moves Instantaneously, and Then Stops                                                                                      |      |
|      | 16.4.3 Servomotor Speed Is Unstable                                                                                                          |      |
|      | 16.4.4 Servomotor Moves without a Reference Input                                                                                            |      |
|      | 16.4.5 Dynamic Brake Does Not Operate                                                                                                        |      |
|      | 16.4.6 Abnormal Noise from Servomotor                                                                                                        |      |
|      | 16.4.7 Servomotor Vibrates at Frequency of Approx. 200 to 400 Hz                                                                             |      |
|      | 16.4.8 Large Motor Speed on Starting and Stopping                                                                                            |      |
|      | 16.4.9 Absolute Encoder Position Deviation Error (The position that was saved in the host controller when the power was turned OFF is differ | ent  |
|      | from the position when the power was next turned ON.)                                                                                        |      |
|      | 10.4. IUOvertravei Occurreu                                                                                                                  | / บ3 |

| 16.4.11Improper Stop Position for Overtravel (OT) Signal | 703 |
|----------------------------------------------------------|-----|
| 16.4.12Position Deviation (without Alarm)                | 704 |
| 16.4.13Servomotor Overheated                             | 705 |

### 16.1 Inspections and Part Replacement

This section describes inspections and part replacement for SERVOPACKs.

#### 16.1.1 Inspections

Perform the inspections given in the following table at least once every year for the SERVOPACK. Daily inspections are not required.

Maintenance of the safety functions are not required, but regular maintenance is recommended

| Item         | Frequency            | Inspection                                                                              | Correction                                     |
|--------------|----------------------|-----------------------------------------------------------------------------------------|------------------------------------------------|
| Exterior     | At least once a year | Check for dust, dirt, and oil on the surfaces.                                          | Clean with pressurized air or a cloth.         |
| Loose Screws |                      | Check for loose terminal block and connector mounting screws and for other loose parts. | Tighten any loose screws or other loose parts. |

#### 16.1.2 Guidelines for Part Replacement

The following electric or electronic parts are subject to mechanical wear or deterioration over time. Use one of the following methods to check the standard replacement period.

- Use the service life prediction function of the SERVOPACK.
   Refer to the following section for information on service life predictions.
   9.4 Monitoring Product Life on page 469
- Use the following table.

| Part                   | Standard Replace-<br>ment Period | Remarks                                                                                                                                           |
|------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Cooling Fan            | 4 years to 5 years               | The standard replacement periods given on the left are for the following operating conditions.                                                    |
| Electrolytic Capacitor | 10 years                         | <ul> <li>Surrounding air temperature: Annual average of 30°C</li> <li>Load factor: 80% max.</li> <li>Operation rate: 20 hours/day max.</li> </ul> |
| Relays                 | 100000 power ON operations       | Power ON frequency: Once an hour                                                                                                                  |
| Battery                | 3 years without power supplied   | Surrounding temperature without power supplied: 20°C                                                                                              |

When any standard replacement period is close to expiring, contact your Yaskawa representative. After an examination of the part in question, we will determine whether the part should be replaced.



The parameters of any SERVOPACKs that are sent to Yaskawa for part replacement are reset to the factory settings before they are returned to you. Always keep a record of the parameter settings. And, always confirm that the parameters are properly set before starting operation.

#### 16.1.3 Replacing the Battery

If the battery voltage drops to approximately 2.7 V or less, an A.830 alarm (Encoder Battery Alarm) or an A.930 warning (Absolute Encoder Battery Error) will be displayed.

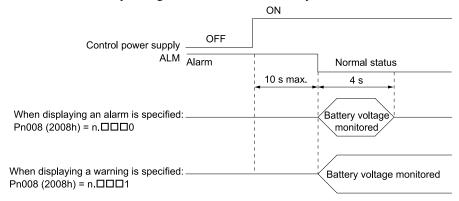
If this alarm or warning is displayed, the battery must be replaced. Refer to the following section for the battery replacement procedure.

(2) Battery Replacement Procedure on page 650

#### (1) Battery Alarm/Warning Selection

Whether to display an alarm or a warning is determined by the setting of Pn008 (2008h) =  $n.\Box\Box\Box X$  (Low Battery Voltage Alarm/Warning Selection).

|                  |        | Low Batte    | ery Voltage Alarm/Warning Selection Speed Pos Trq | When Enabled  |
|------------------|--------|--------------|---------------------------------------------------|---------------|
| Pn008<br>(2008h) | n.□□□X | 0<br>Default | Output alarm (A.830) for low battery voltage.     | After restart |
|                  |        | 1            | Output warning (A.930) for low battery voltage.   |               |


•  $Pn008 (2008h) = n.\Box\Box\Box 0$ 

The ALM (Servo Alarm Output) signal is output for up to 10 seconds when the control power is turned ON, and then the battery voltage is monitored for four seconds.

No alarm will be displayed even if the battery voltage drops below the specified value after these four seconds.

•  $Pn008 (2008h) = n.\Box\Box\Box1$ 

The ALM (Servo Alarm Output) signal is output for up to 10 seconds when the control power is turned ON, and then the battery voltage is monitored continuously.

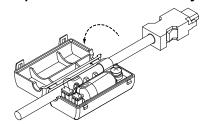


#### **Battery Replacement Procedure**

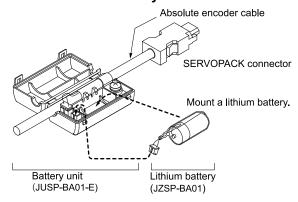
#### (a) When Installing a Battery on the Host Controller

- 1. Turn ON only the control power to the SERVOPACK.
- Remove the old battery and mount a new battery.
- Turn OFF the control power to the SERVOPACK to clear the A.830 alarm (Encoder Battery Alarm).
- 4. Turn ON the control power to the SERVOPACK again.
- Make sure that the alarm has been cleared and that the SERVOPACK operates normally.

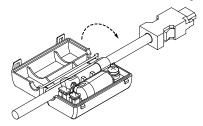
#### (b) When Using an Encoder Cable with a Battery Unit


Turn ON only the control power to the SERVOPACK.




Important

If you remove the battery or disconnect the encoder cable while the control power to the SERVOPACK is OFF, the absolute encoder data will be lost.


#### Open the cover of the battery unit.



#### Remove the old battery and mount a new battery.



4. Close the cover of the battery unit.



- 5. Turn OFF the power to the SERVOPACK to clear the A.830 alarm (Encoder Battery Alarm).
- 6. Turn ON the power to the SERVOPACK.
- 7. Make sure that the alarm has been cleared and that the SERVOPACK operates normally.

#### **Alarm Displays** 16.2

To check an alarm that occurs in the SERVOPACK, use one of the following methods. However, if no alarm number appears on the panel display, this indicates a SERVOPACK system error. Replace the SERVOPACK.

| Panel display on SERVOPACK | If there is an alarm, the code will be displayed one character at a time, as shown below.  Example: Alarm A.020  Status Not lit. |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Digital operator           | The alarm code will be displayed.                                                                                                                                                      |
| Statusword (6041h)         | Bit 3 (fault) in the statusword will change to 1. (Bit 3 is 0 during normal operation.)                                                                                                |
| Error code (603Fh)         | A current alarm code is stored in object 603Fh.                                                                                                                                        |
| Emergency message          | The controller is notified of any alarm that occurs.  (Notification may not be possible if EtherCAT communications are unstable.)                                                      |

This section provides a list of the alarms that may occur and the causes of and corrections for those alarms.

#### 16.2.1 **List of Alarms**

The list of alarms gives the alarm name, alarm meaning, alarm stopping method, and alarm reset possibility in order of the alarm numbers.

#### (1) Servomotor Stopping Method for Alarms

Refer to the following section for information on the stopping method for alarms.

\$\overline{\pi}\$ 5.12.2 Servomotor Stopping Method for Alarms on page 189

#### (2) Alarm Reset Possibility

Yes: You can use an alarm reset to clear the alarm. However, this assumes that the cause of the alarm has been

No: You cannot clear the alarm.

#### (3) List of Alarms

The following table lists the alarms.

- The EtherCAT communications state move to SAFEOP after alarm numbers A10h, E12h, and EA2h are detected.
  - Alarm number E75h occurs when the SERVOPACK is equipped with the fully-closed option module.
  - Alarm numbers FL-1 to FL-7 are not stored in the alarm history. They are only displayed on the panel display.

| Alarm<br>Number | Alarm Name                  | Alarm Meaning                                                 | Servomo-<br>tor Stop-<br>ping<br>Method | Alarm<br>Reset<br>Possibil-<br>ity |
|-----------------|-----------------------------|---------------------------------------------------------------|-----------------------------------------|------------------------------------|
| 020h            | Parameter Checksum Error    | There is an error in the parameter data in the SERVOPACK.     | Gr.1                                    | No                                 |
| 021h            | Parameter Format Error      | There is an error in the parameter data in the SERVOPACK.     | Gr.1                                    | No                                 |
| 022h            | System Checksum Error       | There is an error in the parameter data in the SERVOPACK.     | Gr.1                                    | No                                 |
| 024h            | System Alarm                | An internal program error occurred in the SERVOPACK.          | Gr.1                                    | No                                 |
| 025h            | System Alarm                | An internal program error occurred in the SERVOPACK.          | Gr.1                                    | No                                 |
| 030h            | Main Circuit Detector Error | There is an error in the detection data for the main circuit. | Gr.1                                    | Yes                                |
| 040h            | Parameter Setting Error     | A parameter setting is outside of the setting range.          | Gr.1                                    | No                                 |

| Alarm<br>Number | Alarm Name                                                       | Alarm Meaning                                                                                                                                                                                                                                          | Servomo-<br>tor Stop-<br>ping<br>Method | Alarm<br>Reset<br>Possibil-<br>ity |
|-----------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------|
| 041h            | Encoder Output Pulse Setting<br>Error                            | The setting of Pn212 (2212h) (Number of Encoder Output Pulses) or Pn281 (2281h) (Encoder Output Resolution) is outside of the setting range or does not satisfy the setting conditions.                                                                | Gr.1                                    | No                                 |
| 042h            | Parameter Combination Error                                      | The combination of some parameters exceeds the setting range.                                                                                                                                                                                          | Gr.1                                    | No                                 |
| 044h            | Semi-Closed/Fully-Closed Loop<br>Control Parameter Setting Error | The settings of parameters related to semi-closed/fully-closed loop control do not match.                                                                                                                                                              | Gr.1                                    | No                                 |
| 046h            | SigmaLINK II Command/<br>Response Parameter Setting<br>Error     | An error was detected in the SigmaLINK II response data or SigmaLINK II command data settings.                                                                                                                                                         | Gr.1                                    | No                                 |
| 050h            | Combination Error                                                | The capacities of the SERVOPACK and servomotor do not match.                                                                                                                                                                                           | Gr.1                                    | Yes                                |
| 051h            | Unsupported Device Alarm                                         | An unsupported device was connected.                                                                                                                                                                                                                   | Gr.1                                    | No                                 |
| 070h            | Motor Type Change Detected                                       | The connected motor is a different type of motor from the previously connected motor.                                                                                                                                                                  | Gr.1                                    | No                                 |
| 080h            | Linear Encoder Pitch Setting<br>Error                            | The setting of Pn282 (2282h) (Linear Encoder Scale Pitch) has not been changed from the default setting.                                                                                                                                               | Gr.1                                    | No                                 |
| 0b0h            | Invalid Servo ON Command<br>Alarm                                | The Servo ON command (Enable Operation command) was sent from the host controller after a utility function that turns ON the servomotor was executed.                                                                                                  | Gr.1                                    | Yes                                |
| 100h            | Overcurrent Detected                                             | An overcurrent flowed through the power transistor or the heat sink overheated.                                                                                                                                                                        | Gr.1                                    | No                                 |
| 101h            | Motor Overcurrent Detected                                       | The current to the motor exceeded the allowable current.                                                                                                                                                                                               | Gr.1                                    | No                                 |
| 102h            | Motor Overcurrent Detected 2                                     | The current to the motor exceeded the allowable current.                                                                                                                                                                                               | Gr.1                                    | No                                 |
| 300h            | Regeneration Error                                               | There is an error related to regeneration.                                                                                                                                                                                                             | Gr.1                                    | Yes                                |
| 320h            | Regenerative Overload                                            | A regenerative overload occurred.                                                                                                                                                                                                                      | Gr.2                                    | Yes                                |
| 330h            | Main Circuit Power Supply Wir-<br>ing Error                      | <ul> <li>The AC power supply input setting or DC power supply input setting is not correct.</li> <li>The power supply wiring is not correct.</li> </ul>                                                                                                | Gr.1                                    | Yes                                |
| 400h            | Overvoltage                                                      | The main circuit DC voltage is too high.                                                                                                                                                                                                               | Gr.1                                    | Yes                                |
| 410h            | Undervoltage                                                     | The main circuit DC voltage is too low.                                                                                                                                                                                                                | Gr.2                                    | Yes                                |
| 510h            | Overspeed                                                        | The motor exceeded the maximum speed.                                                                                                                                                                                                                  | Gr.1                                    | Yes                                |
| 511h            | Encoder Output Pulse<br>Overspeed                                | The pulse output speed for the setting of Pn212 (2212h) (Number of Encoder Output Pulses) was exceeded. (Rotary Servomotor) The motor speed upper limit for the setting of Pn281 (2281h) (Encoder Output Resolution) was exceeded. (Linear Servomotor) | Gr.1                                    | Yes                                |
| 520h            | Vibration Alarm                                                  | Abnormal oscillation was detected in the motor speed.                                                                                                                                                                                                  | Gr.1                                    | Yes                                |
| 521h            | Autotuning Alarm                                                 | Vibration was detected during autotuning for the tuning- less function.                                                                                                                                                                                | Gr.1                                    | Yes                                |
| 550h            | Maximum Motor Speed Setting Error                                | The setting of Pn385 (2385h) (Maximum Motor Speed) is greater than the maximum motor speed.                                                                                                                                                            | Gr.1                                    | Yes                                |
| 710h            | Instantaneous Overload                                           | The servomotor was operating for several seconds to several tens of seconds under a torque that largely exceeded the rating.                                                                                                                           | Gr.2                                    | Yes                                |
| 720h            | Continuous Overload                                              | The servomotor was operating continuously under a torque that exceeded the rating.                                                                                                                                                                     | Gr.1                                    | Yes                                |

| Alarm<br>Number | Alarm Name                                                           | Alarm Meaning                                                                                                                               | Servomo-<br>tor Stop-<br>ping<br>Method | Alarm<br>Reset<br>Possibil-<br>ity |
|-----------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------|
| 730h            | Dynamic Brake Overload                                               | When the dynamic brake was applied, the rotational or linear kinetic energy exceeded the capacity of the dynamic brake resistor.            | Gr.1                                    | Yes                                |
| 731h            | Dynamic Brake Overload                                               | When the dynamic brake was applied, the rotational or linear kinetic energy exceeded the capacity of the dynamic brake resistor.            | Gr.1                                    | Yes                                |
| 740h            | Inrush Current Limiting Resistor<br>Overload                         | The main circuit power was frequently turned ON and OFF.                                                                                    | Gr.1                                    | Yes                                |
| 7A1h            | Internal Temperature Error 1<br>(Control Board Temperature<br>Error) | The surrounding temperature of the control board is abnormal.                                                                               | Gr.2                                    | Yes                                |
| 7A2h            | Internal Temperature Error 2<br>(Power Board Temperature<br>Error)   | The surrounding temperature of the power board is abnormal.                                                                                 | Gr.2                                    | Yes                                |
| 7A3h            | Internal Temperature Sensor<br>Error                                 | An error occurred in the temperature sensor circuit.                                                                                        | Gr.2                                    | No                                 |
| 7Abh            | SERVOPACK Built-in Fan<br>Stopped                                    | The fan inside the SERVOPACK stopped.                                                                                                       | Gr.1                                    | Yes                                |
| 810h            | Encoder Backup Alarm                                                 | The power supplies to the encoder all failed and the position data was lost.                                                                | Gr.1                                    | No                                 |
| 820h            | Encoder Checksum Alarm                                               | There is an error in the checksum results for encoder memory.                                                                               | Gr.1                                    | No                                 |
| 830h            | Encoder Battery Alarm                                                | The battery voltage was lower than the specified level after the control power was turned ON.                                               | Gr.1                                    | Yes                                |
| 840h            | Encoder Data Alarm                                                   | There is an internal data error in the encoder.                                                                                             | Gr.1                                    | No                                 |
| 850h            | Encoder Overspeed                                                    | The encoder was operating at high speed when the power was turned ON.                                                                       | Gr.1                                    | No                                 |
| 860h            | Encoder Overheated                                                   | The internal temperature of encoder is too high.                                                                                            | Gr.1                                    | No                                 |
| 861h            | Motor Overheated                                                     | The internal temperature of motor is too high.                                                                                              | Gr.1                                    | No                                 |
| 862h            | Overheat Alarm                                                       | The input voltage (temperature) for the overheat protection input (TH) signal exceeded the setting of Pn61B (261Bh) (Overheat Alarm Level). | Gr.1                                    | Yes                                |
| 890h            | Encoder Scale Error                                                  | A failure occurred in the linear encoder.                                                                                                   | Gr.1                                    | No                                 |
| 891h            | Encoder Module Error                                                 | An error occurred in the linear encoder.                                                                                                    | Gr.1                                    | No                                 |
| 8A0h            | External Encoder Error                                               | An error occurred in the external encoder.                                                                                                  | Gr.1                                    | Yes                                |
| 8A1h            | External Encoder Module Error                                        | An error occurred in the serial converter unit.                                                                                             | Gr.1                                    | Yes                                |
| 8A2h            | External Incremental Encoder<br>Sensor Error                         | An error occurred in the external encoder.                                                                                                  | Gr.1                                    | Yes                                |
| 8A3h            | External Absolute Encoder Position Error                             | An error occurred in the position data of the external encoder.                                                                             | Gr.1                                    | Yes                                |
| 8A5h            | External Encoder Overspeed                                           | An overspeed error occurred in the external encoder.                                                                                        | Gr.1                                    | Yes                                |
| 8A6h            | External Encoder Overheated                                          | An overheating error occurred in the external encoder.                                                                                      | Gr.1                                    | Yes                                |
| A10h            | EtherCAT DC Synchronization Error                                    | The SERVOPACK and Sync0 events cannot be synchronized.                                                                                      | Gr.2                                    | Yes                                |
| A11h            | EtherCAT State Error                                                 | The EtherCAT AL does not move to the Operational state when the DS402 drive is in Operation Enabled state.                                  | Gr.2                                    | Yes                                |
| A12h            | EtherCAT Output Data Synchro-<br>nization Error                      | The process data reception events and Sync0 events cannot be synchronized. (Process data communications failed.)                            | Gr.2                                    | Yes                                |
| A20h            | Parameter Setting Error                                              | A parameter setting exceeds the setting range.                                                                                              | Gr.1                                    | No                                 |

| Alarm<br>Number | Alarm Name                                                   | Alarm Meaning                                                                         | Servomo-<br>tor Stop-<br>ping<br>Method | Alarm<br>Reset<br>Possibil-<br>ity |
|-----------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------|
| A41h            | Communication Device Initialization Error                    | An error occurred during ESC initialization.                                          | Gr.1                                    | No                                 |
| A47h            | Loading Servo Information Error                              | Loading SERVOPACK information failed.                                                 | Gr.1                                    | No                                 |
| b33h            | Current Detection Error 3                                    | An error occurred in the current detection circuit.                                   | Gr.1                                    | No                                 |
| bE2h            | Firmware error                                               | A firmware error occurred in the SERVOPACK.                                           | Gr.1                                    | No                                 |
| bF0h            | System Alarm 0                                               | Internal program error 0 occurred in the SERVOPACK.                                   | Gr.1                                    | No                                 |
| bF1h            | System Alarm 1                                               | Internal program error 1 occurred in the SERVOPACK.                                   | Gr.1                                    | No                                 |
| bF2h            | System Alarm 2                                               | Internal program error 2 occurred in the SERVOPACK.                                   | Gr.1                                    | No                                 |
| bF3h            | System Alarm 3                                               | Internal program error 3 occurred in the SERVOPACK.                                   | Gr.1                                    | No                                 |
| bF4h            | System Alarm 4                                               | Internal program error 4 occurred in the SERVOPACK.                                   | Gr.1                                    | No                                 |
| bF5h            | System Alarm 5                                               | Internal program error 5 occurred in the SERVOPACK.                                   | Gr.1                                    | No                                 |
| bF6h            | System Alarm 6                                               | Internal program error 6 occurred in the SERVOPACK.                                   | Gr.1                                    | No                                 |
| bF7h            | System Alarm 7                                               | Internal program error 7 occurred in the SERVOPACK.                                   | Gr.1                                    | No                                 |
| bF8h            | System Alarm 8                                               | Internal program error 8 occurred in the SERVOPACK.                                   | Gr.1                                    | No                                 |
| bFbh            | System Alarm B                                               | An internal program error B occurred in the SERVOPACK.                                | Gr.1                                    | No                                 |
| bFdh            | System Alarm D                                               | An internal program error D occurred in the SERVOPACK.                                | Gr.1                                    | No                                 |
| C10h            | Servomotor Out of Control                                    | The servomotor ran out of control.                                                    | Gr.1                                    | Yes                                |
| C20h            | Phase Detection Error                                        | The detection of the phase is not correct.                                            | Gr.1                                    | No                                 |
| C21h            | Polarity Sensor Error                                        | An error occurred in the polarity sensor.                                             | Gr.1                                    | No                                 |
| C22h            | Phase Information<br>Disagreement                            | The phase information does not match.                                                 | Gr.1                                    | No                                 |
| C50h            | Polarity Detection Failure                                   | The polarity detection failed.                                                        | Gr.1                                    | No                                 |
| C51h            | Overtravel Detected during Polarity Detection                | The overtravel signal was detected during polarity detection.                         | Gr.1                                    | Yes                                |
| C52h            | Polarity Detection Not<br>Completed                          | The servo was turned ON before the polarity was detected.                             | Gr.1                                    | Yes                                |
| C53h            | Out of Range of Motion for Polarity Detection                | The travel distance exceeded the setting of Pn48E (248Eh) (Polarity Detection Range). | Gr.1                                    | No                                 |
| C54h            | Polarity Detection Failure 2                                 | The polarity detection failed.                                                        | Gr.1                                    | No                                 |
| C80h            | Encoder Clear Error or Multiturn<br>Limit Setting Error      | The multiturn data for the absolute encoder was not correctly cleared or set.         | Gr.1                                    | No                                 |
| C90h            | Encoder Communications Error                                 | Communications between the encoder and SERVOPACK is not possible.                     | Gr.1                                    | No                                 |
| C91h            | Encoder Communications Position Data Acceleration Rate Error | An error occurred in calculating the position data of the encoder.                    | Gr.1                                    | No                                 |
| C92h            | Encoder Communications Timer<br>Error                        | An error occurred in the communications timer between the encoder and SERVOPACK.      | Gr.1                                    | No                                 |
| CA0h            | Encoder Parameter Error                                      | The parameters in the encoder are corrupted.                                          | Gr.1                                    | No                                 |
| Cb0h            | Encoder Echoback Error                                       | The contents of communications with the encoder are incorrect.                        | Gr.1                                    | No                                 |
| CC0h            | Multiturn Limit Disagreement                                 | Different multiturn limits have been set in the encoder and the SERVOPACK.            | Gr.1                                    | No                                 |
| Cd1h            | SigmaLINK II Node Configuration Error                        | A configuration that cannot be connected with SigmaLINK II was detected.              | Gr.1                                    | No                                 |

| Alarm<br>Number | Alarm Name                                                          | Alarm Meaning                                                                                                                                                                                                                                                                                                                                            | Servomo-<br>tor Stop-<br>ping<br>Method | Alarm<br>Reset<br>Possibil-<br>ity |
|-----------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------|
| Cd2h            | SigmaLINK II Power Supply<br>Short-Circuit Detected                 | An error occurred in the power system of the SigmaLINK II connection.                                                                                                                                                                                                                                                                                    | Gr.1                                    | No                                 |
| Cd3h            | SigmaLINK II Configuration Data<br>Checksum Error                   | Saving the configuration data failed.                                                                                                                                                                                                                                                                                                                    | Gr.1                                    | No                                 |
| Cd4h            | SigmaLINK II Node Change<br>Detected                                | The content saved in the configuration and the content detected in node detection are different.                                                                                                                                                                                                                                                         | Gr.1                                    | No                                 |
| Cd7h            | SigmaLINK II I/O Device Com-<br>munications Error                   | An error occurred in communications with the SigmaLINK II I/O device.                                                                                                                                                                                                                                                                                    | Gr.2                                    | No                                 |
| Cd8h            | SigmaLINK II I/O Device Status<br>Error                             | The SigmaLINK II I/O device detected an error.                                                                                                                                                                                                                                                                                                           | Gr.2                                    | No                                 |
| CF1h            | Reception Failed Error in External Encoder                          | Communications between the external encoder and SERVO-PACK is not possible.                                                                                                                                                                                                                                                                              | Gr.1                                    | No                                 |
| CF2h            | Timer Stopped Error in External Encoder                             | An error occurred in the communications timer between the external encoder and SERVOPACK.                                                                                                                                                                                                                                                                | Gr.1                                    | No                                 |
| d00h            | Position Deviation Overflow                                         | The setting of Pn520 (2520h) (Position Deviation Overflow Alarm Level) was exceeded by the position deviation.                                                                                                                                                                                                                                           | Gr.1                                    | Yes                                |
| d01h            | Position Deviation Overflow<br>Alarm at Servo ON                    | The servo was turned ON after the position deviation exceeded the setting of Pn526 (2526h) (Position Deviation Overflow Alarm Level at Servo ON) while the servo was OFF.                                                                                                                                                                                | Gr.1                                    | Yes                                |
| d02h            | Position Deviation Overflow<br>Alarm for Speed Limit at Servo<br>ON | If position deviation remains in the deviation counter, the setting of Pn529 (2529h) or Pn584 (2584h) (Speed Limit Level at Servo ON) limits the speed when the servo is turned ON. This alarm occurs if position reference is input and the setting of Pn520 (2520h) (Position Deviation Overflow Alarm Level) is exceeded before the limit is cleared. | Gr.2                                    | Yes                                |
| d04h            | Overtravel Alarm                                                    | Overtravel was detected while the servo was ON.                                                                                                                                                                                                                                                                                                          | Gr.1                                    | Yes                                |
| d10h            | Motor-Load Position Deviation<br>Overflow                           | There was too much position deviation between the motor and load during fully-closed loop control.                                                                                                                                                                                                                                                       | Gr.2                                    | Yes                                |
| d30h            | Position Data Overflow                                              | The position feedback data exceeded ±1879048192.                                                                                                                                                                                                                                                                                                         | Gr.1                                    | No                                 |
| E00h            | EtherCAT Initialization Timeout<br>Error 1                          | Communications initialization failed between the servo control module and the EtherCAT communications module.                                                                                                                                                                                                                                            | Gr.2                                    | Yes                                |
| E02h            | EtherCAT Internal Synchronization Error 1                           | A synchronization error occurred between the servo control module and the EtherCAT communications module.                                                                                                                                                                                                                                                | Gr.1                                    | Yes                                |
| E72h            | Feedback Option Module Detection Failure                            | Detection of the feedback option module failed.                                                                                                                                                                                                                                                                                                          | Gr.1                                    | No                                 |
| E75h            | Unsupported Feedback Option<br>Module Alarm                         | An unsupported feedback option module was connected.                                                                                                                                                                                                                                                                                                     | Gr.1                                    | No                                 |
| EA0h            | EtherCAT Initialization Timeout Error 2                             | Communications initialization failed between the servo control module and the EtherCAT communications module.                                                                                                                                                                                                                                            | Gr.1                                    | No                                 |
| EA2h            | EtherCAT Internal Synchronization Error 2                           | A synchronization error occurred between the servo control module and the EtherCAT communications module.                                                                                                                                                                                                                                                | Gr.1                                    | Yes                                |
| Eb1h            | Safety Function Signal Input<br>Timing Error                        | An error occurred in the input timing of the safety function signal.                                                                                                                                                                                                                                                                                     | Gr.1                                    | No                                 |
| EC8h            | Gate Drive Error 1                                                  | An error occurred in the gate drive circuit.                                                                                                                                                                                                                                                                                                             | Gr.1                                    | No                                 |
| EC9h            | Gate Drive Error 2                                                  | An error occurred in the gate drive circuit.                                                                                                                                                                                                                                                                                                             | Gr.1                                    | No                                 |
| F10h            | Power Supply Line Open Phase                                        | The voltage was low for more than one second for phase R, S, or T when the main power was ON.                                                                                                                                                                                                                                                            | Gr.2                                    | Yes                                |
| FL-1            | System Alarm                                                        | An internal program error occurred in the SERVOPACK.                                                                                                                                                                                                                                                                                                     | -                                       | No                                 |
| FL-2            | System Alarm                                                        | An internal program error occurred in the SERVOPACK.                                                                                                                                                                                                                                                                                                     | -                                       | No                                 |
| FL-3            | System Alarm                                                        | An internal program error occurred in the SERVOPACK.                                                                                                                                                                                                                                                                                                     | -                                       | No                                 |

| Alarm<br>Number | Alarm Name                              | Alarm Meaning                                                                    | Servomo-<br>tor Stop-<br>ping<br>Method | Alarm<br>Reset<br>Possibil-<br>ity |
|-----------------|-----------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------|------------------------------------|
| FL-4            | System Alarm                            | An internal program error occurred in the SERVOPACK.                             | -                                       | No                                 |
| FL-5            | System Alarm                            | An internal program error occurred in the SERVOPACK.                             | -                                       | No                                 |
| FL-6            | System Alarm                            | An internal program error occurred in the SERVOPACK.                             | -                                       | No                                 |
| FL-7            | System Alarm                            | An internal program error occurred in the SERVOPACK.                             | -                                       | No                                 |
| CPF00           | Digital Operator Communications Error 1 | Communications were not possible between the digital operator and the SERVOPACK. | -                                       | No                                 |
| CPF01           | Digital Operator Communications Error 2 | Communications were not possible between the digital operator and the SERVOPACK. | -                                       | No                                 |

#### 16.2.2 Troubleshooting Alarms

The causes of and corrections for the alarms are given in the following table. Contact your Yaskawa representative if you cannot solve a problem with the correction given in the table.

#### ♦ 020h:Parameter Checksum Error

| Possible Cause                                                                                           | Confirmation                                                                                                         | Correction                                                                                            | Reference |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------|
| The power supply voltage suddenly dropped.                                                               | Measure the power supply voltage.                                                                                    | Set the power supply voltage within the specified range, and initialize the parameter settings.       | 160       |
| The power was shut OFF while writing parameter settings.                                                 | Check the timing of shutting OFF the power.                                                                          | Initialize the parameter settings and then set the parameters again.                                  | 160       |
| The number of times that parameters were written exceeded the limit.                                     | Check to see if the parameters were frequently changed from the host controller.                                     | The SERVOPACK may be faulty. Replace the SERVOPACK. Reconsider the method for writing the parameters. | -         |
| A malfunction was caused by noise from the AC power supply, ground, static electricity, or other source. | Turn the power to the SERVOPACK<br>OFF and ON again. If the alarm still<br>occurs, noise may be the cause.           | Implement countermeasures against noise.                                                              | 109       |
| Gas, water drops, or cutting oil entered the SERVOPACK and caused failure of the internal components.    | Check the installation conditions.                                                                                   | The SERVOPACK may be faulty. Replace the SERVOPACK.                                                   | ı         |
| A failure occurred in the SERVOPACK.                                                                     | Turn the power to the SERVOPACK<br>OFF and ON again. If the alarm still<br>occurs, the SERVOPACK may have<br>failed. | The SERVOPACK may be faulty. Replace the SERVOPACK.                                                   | _         |

#### ◆ 021h:Parameter Format Error

| Possible Cause                                                                                                                        | Confirmation                                                                                                                                   | Correction                                                                                                                                | Reference |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The software version of the SERVO-PACK that caused the alarm is older than the software version of the parameters specified to write. | Read the product information to see if<br>the software versions are the same. If<br>they are different, it could be the cause<br>of the alarm. | Write the parameters from another SER-VOPACK with the same model and the same software version, and then turn the power OFF and ON again. | 452       |
| A failure occurred in the SERVOPACK.                                                                                                  | _                                                                                                                                              | The SERVOPACK may be faulty. Replace the SERVOPACK.                                                                                       | -         |

#### ◆ 022h:System Checksum Error

| Possible Cause                                           | Confirmation                                                                                                         | Correction                                          | Reference |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------|
| The power supply voltage suddenly dropped.               | Measure the power supply voltage.                                                                                    | The SERVOPACK may be faulty. Replace the SERVOPACK. | -         |
| The power was shut OFF while setting a utility function. | Check the timing of shutting OFF the power.                                                                          | The SERVOPACK may be faulty. Replace the SERVOPACK. | -         |
| A failure occurred in the SERVOPACK.                     | Turn the power to the SERVOPACK<br>OFF and ON again. If the alarm still<br>occurs, the SERVOPACK may have<br>failed. | The SERVOPACK may be faulty. Replace the SERVOPACK. | -         |

## 024h:System Alarm025h:System Alarm

030h:Main Circuit Detector Error

| Possible Cause                       | Confirmation | Correction                                          | Reference |
|--------------------------------------|--------------|-----------------------------------------------------|-----------|
| A failure occurred in the SERVOPACK. | _            | The SERVOPACK may be faulty. Replace the SERVOPACK. | -         |

#### ♦ 040h:Parameter Setting Error

| Possible Cause                                                                                                                                                                                                     | Confirmation                                                                                                              | Correction                                                                               | Reference |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------|
| The SERVOPACK and servomotor capacities do not match each other.                                                                                                                                                   | Check the combination of the SERVO-PACK and servomotor capacities.                                                        | Select a proper combination of SERVO-PACK and servomotor capacities.                     | 57        |
| The motor parameter file was not written to the linear encoder. (This applies only when not using a serial converter unit.)                                                                                        | Check to see if the motor parameter file was written to the linear encoder.                                               | Write the motor parameter file to the linear encoder.                                    | 168       |
| A failure occurred in the SERVOPACK.                                                                                                                                                                               | _                                                                                                                         | The SERVOPACK may be faulty. Replace the SERVOPACK.                                      | _         |
| A parameter setting is outside of the setting range.                                                                                                                                                               | Check the setting ranges of the parameters that have been changed.                                                        | Set the parameters to values within the setting ranges.                                  | 207       |
| A pin number or sequence input number that does not exist on the SERVOPACK was allocated in Pn590 to Pn5BC = n. \(\pi XXX\) (Allocated Pin Number). (An alarm will not occur, however, if the signal is disabled.) | Check the setting of Pn590 to Pn5BC = $n.\Box XXX$ .                                                                      | Set a pin number or sequence input number that exists in Pn590 to Pn5BC = $n.\Box XXX$ . | 217       |
| The position unit is outside of the setting range.                                                                                                                                                                 | Make sure it is within the following range.  0.001 ≤ Position User Unit (2701h: 1)/ Position User Unit (2701h: 2) ≤ 64000 | Correct the setting of Position User Unit (2701h).                                       | _         |

#### ◆ 041h:Encoder Output Pulse Setting Error

| Possible Cause                                                                                                                                                                          | Confirmation                                         | Correction                                                  | Reference |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|-----------|
| The setting of Pn212 (2212h) (Number of Encoder Output Pulses) or Pn281 (2281h) (Encoder Output Resolution) is outside of the setting range or does not satisfy the setting conditions. | Check the setting of Pn212 (2212h) or Pn281 (2281h). | Set Pn212 (2212h) or Pn281 (2281h) to an appropriate value. | 237       |

16

#### ◆ 042h:Parameter Combination Error

| Possible Cause                                                                                                                                          | Confirmation                                                                                                                                                          | Correction                                                                                                                                               | Reference |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The speed of program jogging went<br>below the setting range when Pn533<br>(2533h) or Pn585 (2585h) (Program<br>Jogging Movement Speed) was<br>changed. | Check if the setting of Pn533 (2533h) or Pn585 (2585h) satisfies the conditions given in the preparations for program jogging.                                        | Increase the setting of Pn533 (2533h) or Pn585 (2585h).                                                                                                  | 301       |
| Triggers at preset positions are enabled, but the allocations of the input signal allocation mode settings are not correct.                             | Check the settings of Pn660 = n.X $\square\square$ (Triggers at Preset Positions Selections) and Pn50A = n. $\square\square\square$ X (Input Signal Allocation Mode). | Set Pn660 to n.1 and (enable triggers at preset positions), and set Pn50A to n. and 2 (use Pn590 to Pn5BC (Sigma-LINK II input signal allocation mode)). | -         |

#### ◆ 044h:Semi-Closed/Fully-Closed Loop Control Parameter Setting Error

| Possible Cause                                                                                     | Confirmation                                                                                         | Correction                                                                                                                                                 | Reference |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The node specified by Pn0DA (20DAh) or Pn0DB (20DBh) does not exist.                               | Check if the setting for Pn0DA (20DAh) or Pn0DB (20DBh) is the node address of the connected device. | Set Pn0DA (20DAh) and Pn0DB (20DBh) to appropriate values.                                                                                                 | 506       |
| An unsupported serial converter unit, encoder, or external encoder was specified by Pn0DA (20DAh). | Check if the connected serial converter unit, encoder, or external encoder is a supported model.     | Connect a supported serial converter unit, encoder, or external encoder.                                                                                   | 506       |
| A serial converter unit, encoder, or external encoder was specified by Pn0DA (20DAh).              | Check the node address set in Pn0DA (20DAh).                                                         | Set the node address of a servomotor in Pn0DA (20DAh).                                                                                                     | 506       |
| A servomotor was specified by Pn0DB (20DBh).                                                       | Check the node address set in Pn0DB (20DBh).                                                         | Set the node address of a serial converter unit, encoder, or external encoder in Pn0DB (20DBh) (a servomotor cannot be used as an external encoder).       | 506       |
| An I/O device was specified by Pn0DA (20DAh) or Pn0DB (20DBh).                                     | Check the node address set in Pn0DA (20DAh) and Pn0DB (20DBh).                                       | Set the node address of a servomotor in Pn0DA (20DAh), and set the node address of a serial converter unit, encoder, or external encoder in Pn0DB (20DBh). | 506       |
| The same node was specified in Pn0DA (20DAh) and Pn0DB (20DBh).                                    | Check if Pn0DA (20DAh) and Pn0DB (20DBh) are the same value.                                         | Set Pn0DA (20DAh) and Pn0DB (20DBh) to different values.                                                                                                   | 506       |
| The setting of Pn002 (2002h) = n.Xuuu (External Encoder Usage) and the device status do not match. | Check the setting of Pn002 (2002h) = n. $X \square \square \square$ .                                | Make sure that the setting of Pn002 $(2002h) = n.X_{\Box\Box\Box}$ agrees with the device status.                                                          | 486       |

#### ◆ 046h:SigmaLINK II Command/Response Parameter Setting Error

| Possible Cause                                                                                                                                                          | Confirmation                                                          | Correction                                                 | Reference |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------|-----------|
| Slave parameters specified by Pn050 to Pn05E and Pn090 to Pn096 (Sigma-LINK II Response Data Selection 1 to 8/SigmaLINK II Command Data Selection 1 to 4) do not exist. | Check the parameter numbers set in Pn050 to Pn05E and Pn090 to Pn096. | Refer to the I/O device manual and set the correct values. | -         |

#### ♦ 050h:Combination Error

| Possible Cause                                                   | Confirmation                                                                                        | Correction                                                               | Reference |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------|
| The SERVOPACK and servomotor capacities do not match each other. | Confirm that the following condition is met:<br>1/4 ≤ (Servomotor capacity/SERVO-PACK capacity) ≤ 4 | Select a proper combination of the SER-VOPACK and servomotor capacities. | 57        |
| A failure occurred in the encoder.                               | Replace the encoder and check to see if the alarm still occurs.                                     | Replace the servomotor or encoder.                                       | _         |
| A failure occurred in the SERVOPACK.                             | _                                                                                                   | The SERVOPACK may be faulty. Replace the SERVOPACK.                      | _         |

#### ◆ 051h:Unsupported Device Alarm

| Possible Cause                                                                                                              | Confirmation                                                                | Correction                                            | Reference |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------|-----------|
| The motor parameter file was not written to the linear encoder. (This applies only when not using a serial converter unit.) | Check to see if the motor parameter file was written to the linear encoder. | Write the motor parameter file to the linear encoder. | 168       |
| An unsupported serial converter unit or encoder (e.g., an external encoder) is connected to the SERVOPACK.                  | Check the product combination specifications.                               | Change to a correct combination of models.            | -         |

#### ♦ 070h:Motor Type Change Detected

| Possible Cause                                                                               | Confirmation                        | Correction                                                                                                                                          | Reference |
|----------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| A rotary servomotor was removed and a linear servomotor was connected.                       | -                                   | Set the parameters for a linear servomotor and reset the motor type alarm. Then, turn the power to the SERVO-PACK OFF and ON again.                 | 688       |
| A linear servomotor was removed and a rotary servomotor was connected.                       | -                                   | Set the parameters for a rotary servomotor and reset the motor type alarm. Then, turn the power to the SERVO-PACK OFF and ON again.                 | 688       |
| The node specified by Pn0DA (20DAh) was changed from rotary servomotor to linear servomotor. | Check the setting of Pn0DA (20DAh). | Change Pn0DA (20DAh) to the setting for a linear servomotor and reset the motor type alarm. Then, turn the power to the SERVOPACK OFF and ON again. | 506, 688  |
| The node specified by Pn0DA (20DAh) was changed from linear servomotor to rotary servomotor. | Check the setting of Pn0DA (20DAh). | Change Pn0DA (20DAh) to the setting for a rotary servomotor and reset the motor type alarm. Then, turn the power to the SERVOPACK OFF and ON again. | 506, 688  |

#### ♦ 080h:Linear Encoder Pitch Setting Error

| Possible Cause                                                                                           | Confirmation                        | Correction                            | Reference |
|----------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------|-----------|
| The setting of Pn282 (2282h) (Linear Encoder Scale Pitch) has not been changed from the default setting. | Check the setting of Pn282 (2282h). | Correct the setting of Pn282 (2282h). | 167       |

#### ◆ 0b0h:Invalid Servo ON Command Alarm

| Possible Cause                                                                                                                                        | Confirmation | Correction                                                                      | Reference |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------|-----------|
| The Servo ON command (Enable Operation command) was sent from the host controller after a utility function that turns ON the servomotor was executed. | _            | Turn the power to the SERVOPACK OFF and ON again. Or, execute a software reset. | 259       |

# Maintenand

# 16

#### ◆ 100h:Overcurrent Detected

| Possible Cause                                                                                                                | Confirmation                                                                                                                                                                                 | Correction                                                                                                                                           | Reference |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The main circuit cable is not wired correctly or there is faulty contact.                                                     | Check the wiring.                                                                                                                                                                            | Correct the wiring.                                                                                                                                  | 127       |
| There is a short-circuit or ground fault in a main circuit cable.                                                             | Check for short-circuits across servomotor phases U, V, and W, or between the ground and servomotor phases U, V, and W.                                                                      | The cable may be shortcircuited. Replace the cable.                                                                                                  | 127       |
| There is a short-circuit or ground fault inside the servomotor.                                                               | Check for short-circuits across servomotor phases U, V, and W, or between the ground and servomotor phases U, V, or W.                                                                       | The servomotor may be faulty. Replace the servomotor.                                                                                                | 127       |
| There is a short-circuit or ground fault inside the SERVOPACK.                                                                | Check for short-circuits across the servomotor connection terminals U, V, and W on the SERVOPACK, or between the ground and terminals U, V, or W.                                            | The SERVOPACK may be faulty. Replace the SERVOPACK.                                                                                                  | 127       |
| The regenerative resistor is not wired correctly or there is faulty contact.                                                  | Check the wiring.                                                                                                                                                                            | Correct the wiring.                                                                                                                                  | 127       |
| The dynamic brake (DB, emergency stop executed from the SERVOPACK) was frequently activated, or a DB overload alarm occurred. | Check the power consumed by the DB resistor to see how frequently the DB is being used. Or, check the alarm display to see if an A.730 or A.731 alarm (Dynamic Brake Overload) has occurred. | Change the SERVOPACK model, operating methods, or the mechanisms so that the dynamic brake does not need to be used so frequently.                   | -         |
| The regenerative processing capacity was exceeded.                                                                            | Check the regenerative load ratio in the operation monitor of the SigmaWin+ to see how frequently the regenerative resistor is being used.                                                   | Recheck the operating conditions and load.                                                                                                           | 207       |
| The SERVOPACK regenerative resistance is too small.                                                                           | Check the regenerative load ratio in the operation monitor of the SigmaWin+ to see how frequently the regenerative resistor is being used.                                                   | Change the regenerative resistance to a value larger than the SERVOPACK minimum allowable resistance.                                                | 207       |
| A heavy load was applied while the servomotor was stopped or running at a low speed.                                          | Check to see if the operating conditions exceed servo drive specifications.                                                                                                                  | Reduce the load applied to the servomotor. Or, increase the operating speed.                                                                         | ı         |
| A malfunction was caused by noise.                                                                                            | Improve the noise environment, e.g. by improving the wiring or installation conditions, and check to see if the alarm still occurs.                                                          | Implement countermeasures against noise, such as correct wiring of the FG. Use an FG wire size equivalent to the SERVOPACK's main circuit wire size. | -         |
| A failure occurred in the SERVOPACK.                                                                                          | _                                                                                                                                                                                            | Turn the power to the SERVOPACK<br>OFF and ON again. If the alarm still<br>occurs, the SERVOPACK may be faulty.<br>Replace the SERVOPACK.            | -         |

## ◆ 101h:Motor Overcurrent Detected 102h:Motor Overcurrent Detected 2

| Possible Cause                                                                       | Confirmation                                                                                                                                      | Correction                                                                                                                                           | Reference |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The main circuit cable is not wired correctly or there is faulty contact.            | Check the wiring.                                                                                                                                 | Correct the wiring.                                                                                                                                  | 127       |
| There is a short-circuit or ground fault in a main circuit cable.                    | Check for short-circuits across servomotor phases U, V, and W, or between the ground and servomotor phases U, V, and W.                           | The cable may be shortcircuited. Replace the cable.                                                                                                  | 127       |
| There is a short-circuit or ground fault inside the servomotor.                      | Check for short-circuits across servomotor phases U, V, and W, or between the ground and servomotor phases U, V, or W.                            | The servomotor may be faulty. Replace the servomotor.                                                                                                | 127       |
| There is a short-circuit or ground fault inside the SERVOPACK.                       | Check for short-circuits across the servomotor connection terminals U, V, and W on the SERVOPACK, or between the ground and terminals U, V, or W. | The SERVOPACK may be faulty. Replace the SERVOPACK.                                                                                                  | 127       |
| A heavy load was applied while the servomotor was stopped or running at a low speed. | Check to see if the operating conditions exceed servo drive specifications.                                                                       | Reduce the load applied to the servomotor. Or, increase the operating speed.                                                                         | -         |
| A malfunction was caused by noise.                                                   | Improve the noise environment, e.g. by improving the wiring or installation conditions, and check to see if the alarm still occurs.               | Implement countermeasures against noise, such as correct wiring of the FG. Use an FG wire size equivalent to the SERVOPACK's main circuit wire size. | _         |
| A failure occurred in the SERVOPACK.                                                 | _                                                                                                                                                 | Turn the power to the SERVOPACK<br>OFF and ON again. If the alarm still<br>occurs, the SERVOPACK may be faulty.<br>Replace the SERVOPACK.            | -         |

#### ♦ 300h:Regeneration Error

| Possible Cause                                                                                                                                                                                                               | Confirmation                                                                                                                         | Correction                                                                                                                                                                                                         | Reference |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| When using the built-in regenerative resistor, the jumper between the regenerative resistor terminals (B2 and B3) was removed from one of the following SERVOPACKs: SGDXS-3R8A, -5R5A, -7R6A, -120A, -180A, -200A, or -330A. | Confirm to see if the jumper is connected between main circuit terminals B2 and B3.                                                  | Correctly connect a jumper.                                                                                                                                                                                        | 123       |
| The external regenerative resistor or regenerative resistor unit is not wired correctly, or was removed or disconnected.                                                                                                     | Check the wiring of the external regenerative resistor or regenerative resistor unit.                                                | Remove the jumper between B2 and B3, and correctly wire the external regenerative resistor or regenerative resistor unit.                                                                                          | 123       |
| Pn600 (2600h) (Regenerative Resistor Capacity) is not set to 0 and an external regenerative resistor is not connected to one of the following SERVOPACKs: SGDXS-R70A, -R90A,-1R6A, or -2R8A.                                 | Check to see if an external regenerative resistor is connected and check the setting of Pn600 (2600h).                               | Connect an external regenerative resistor, or set Pn600 (2600h) (Regenerative Resistor Capacity) to 0 (setting unit: ×10 W) if no regenerative resistor is required.                                               | 207       |
| An external regenerative resistor is not connected to one of the following SER-VOPACKs: SGDXS-470A, -550A, -590A, or -780A.                                                                                                  | Check to see if an external regenerative resistor or regenerative resistor unit is connected and check the setting of Pn600 (2600h). | Connect an external regenerative resistor and set Pn600 (2600h) to an appropriate value. Or connect a regenerative resistor unit and set Pn600 (2600h) (Regenerative Resistor Capacity) to 0 (setting unit: 10 W). | 207       |
| A failure occurred in the SERVOPACK.                                                                                                                                                                                         | _                                                                                                                                    | While the main circuit power is OFF, turn the control power to the SERVO-PACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK.                                     | -         |

### ♦ 320h:Regenerative Overload

| Possible Cause                                                                                                                                | Confirmation                                                                                 | Correction                                                                                                                 | Reference |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------|
| The power supply voltage exceeded the specified range.                                                                                        | Measure the power supply voltage.                                                            | Set the power supply voltage within the specified range.                                                                   | -         |
| The external regenerative resistance value or regenerative resistor capacity is too small, or there has been a continuous regeneration state. | Check the operating conditions or the capacity.                                              | Change the regenerative resistance value or capacity. Reconsider the operating conditions.                                 | 207       |
| There was a continuous regeneration state because a negative load was continuously applied.                                                   | Check the load applied to the servomotor during operation.                                   | Reconsider the system including the servo, machine, and operating conditions.                                              | -         |
| The setting of Pn600 (2600h) (Regenerative Resistor Capacity) is smaller than the capacity of the external regenerative resistor.             | Check to see if a regenerative resistor is connected and check the setting of Pn600 (2600h). | Correct the setting of Pn600 (2600h).                                                                                      | 207       |
| The setting of Pn603 (2603h) (Regenerative Resistance) is smaller than the capacity of the external regenerative resistor.                    | Check to see if a regenerative resistor is connected and check the setting of Pn603 (2603h). | Correct the setting of Pn603 (2603h).                                                                                      | 207       |
| The external regenerative resistance is too high.                                                                                             | Check the regenerative resistance.                                                           | Change the regenerative resistance to a correct value or use an external regenerative resistor of an appropriate capacity. | 207       |
| A failure occurred in the SERVOPACK.                                                                                                          | _                                                                                            | The SERVOPACK may be faulty. Replace the SERVOPACK.                                                                        | _         |

#### ◆ 330h:Main Circuit Power Supply Wiring Error

| Possible Cause                                                                                                                                                                               | Confirmation                                                                                           | Correction                                                                                                                                                                                   | Reference |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The regenerative resistor was disconnected when the SERVOPACK power supply voltage was high.                                                                                                 | Measure the resistance of the regenerative resistor using a measuring instrument.                      | If you are using the regenerative resistor built into the SERVOPACK, replace the SERVOPACK.  If you are using an external regenerative resistor, replace the external regenerative resistor. | I         |
| DC power was supplied when an AC power supply input was specified in the settings.                                                                                                           | Check the power supply to see if it is a DC power supply.                                              | Correct the power supply setting to match the actual power supply.                                                                                                                           | 162       |
| AC power was supplied when a DC power supply input was specified in the settings.                                                                                                            | Check the power supply to see if it is an AC power supply.                                             | Correct the power supply setting to match the actual power supply.                                                                                                                           | 162       |
| Pn600 (2600h) (Regenerative Resistor Capacity) is not set to 0 and an external regenerative resistor is not connected to one of the following SERVOPACKs: SGDXS-R70A, -R90A,-1R6A, or -2R8A. | Check to see if an external regenerative resistor is connected and check the setting of Pn600 (2600h). | Connect an external regenerative resistor, or if an external regenerative resistor is not required, set Pn600 (2600h) to 0.                                                                  | 123 , 207 |
| A failure occurred in the SERVOPACK.                                                                                                                                                         | -                                                                                                      | The SERVOPACK may be faulty. Replace the SERVOPACK.                                                                                                                                          | -         |

#### ♦ 400h:Overvoltage

| Possible Cause                                                                    | Confirmation                                                                             | Correction                                                                                                                                                                              | Reference |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The power supply voltage exceeded the specified range.                            | Measure the power supply voltage.                                                        | Set the AC/DC power supply voltage within the specified range.                                                                                                                          | _         |
| The power supply is not stable or was influenced by a lightning surge.            | Measure the power supply voltage.                                                        | Improve the power supply conditions, install a surge absorber, and then turn the power OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. | -         |
| The voltage for AC power supply was too high during acceleration or deceleration. | Check the power supply voltage and the speed and torque during operation.                | Set the AC power supply voltage within the specified range.                                                                                                                             | -         |
| The external regenerative resistance is too high for the operating conditions.    | Check the operating conditions and the regenerative resistance.                          | Select a regenerative resistance value that is appropriate for the operating conditions and load.                                                                                       | 207       |
| The load moment of inertia ratio or mass ratio exceeded the allowable value.      | Check to see if the moment of inertia ratio or mass ratio is within the allowable range. | Increase the deceleration time, or reduce the load.                                                                                                                                     | -         |
| A failure occurred in the SERVOPACK.                                              | _                                                                                        | While the main circuit power is OFF, turn the control power to the SERVO-PACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK.          | _         |

#### ♦ 410h:Undervoltage

| Possible Cause                                           | Confirmation                      | Correction                                                                                                            | Reference |
|----------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------|
| The power supply voltage went below the specified range. | Measure the power supply voltage. | Set the power supply voltage within the specified range.                                                              | _         |
| The power supply voltage dropped during operation.       | Measure the power supply voltage. | Increase the power supply capacity.                                                                                   | _         |
| A momentary power interruption occurred.                 | Measure the power supply voltage. | If you have changed the setting of Pn509 (2509h) (Momentary Power Interruption Hold Time), decrease the setting.      | 229       |
| The SERVOPACK fuse is blown out.                         | -                                 | Replace the SERVOPACK and connect a reactor to the DC reactor terminals ( $\ominus$ 1, $\ominus$ 2) on the SERVOPACK. | -         |
| A failure occurred in the SERVOPACK.                     | -                                 | The SERVOPACK may be faulty. Replace the SERVOPACK.                                                                   | _         |

#### ♦ 510h:Overspeed

| Possible Cause                                                           | Confirmation                           | Correction                                                                                                 | Reference |
|--------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------|-----------|
| The order of phases U, V, and W in the motor wiring is not correct.      | Check the wiring of the servomotor.    | Make sure that the servomotor is correctly wired.                                                          | _         |
| A reference value that exceeded the overspeed detection level was input. | Check the input reference.             | Reduce the reference value. Or, adjust the gain.                                                           | _         |
| The motor exceeded the maximum speed.                                    | Check the waveform of the motor speed. | Reduce the speed reference input gain and adjust the servo gain.  Or, reconsider the operating conditions. | _         |
| A failure occurred in the SERVOPACK.                                     | _                                      | The SERVOPACK may be faulty. Replace the SERVOPACK.                                                        | _         |

#### ♦ 511h:Encoder Output Pulse Overspeed

| Possible Cause                                                                              | Confirmation                                                | Correction                                                                                                            | Reference |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------|
| The encoder output pulse frequency exceeded the limit.                                      | Check the encoder output pulse setting.                     | Decrease the setting of Pn212 (2212h) (Number of Encoder Output Pulses) or Pn281 (2281h) (Encoder Output Resolution). | 237       |
| The encoder output pulse frequency exceeded the limit because the motor speed was too high. | Check the encoder output pulse setting and the motor speed. | Reduce the motor speed.                                                                                               | -         |

#### ◆ 520h:Vibration Alarm

| Possible Cause                                                                                                              | Confirmation                                                                                      | Correction                                                                              | Reference |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------|
| Abnormal oscillation was detected in the motor speed.                                                                       | Check for abnormal motor noise, and check the speed and torque waveforms during operation.        | Reduce the motor speed. Or, reduce the setting of Pn100 (2100h) (Speed Loop Gain).      | 429       |
| The setting of Pn103 (2103h) (Moment of Inertia Ratio) is greater than the actual moment of inertia or was greatly changed. | Check the moment of inertia ratio or mass ratio.                                                  | Set Pn103 (2103h) (Moment of Inertia Ratio) to an appropriate value.                    | 329       |
| The setting of Pn312 (2312h) or Pn384 (2384h) (Vibration Detection Level) is not suitable.                                  | Check that the setting of Pn312 (2312h) or Pn384 (2384h) (Vibration Detection Level) is suitable. | Set Pn312 (2312h) or Pn384 (2384h) (Vibration Detection Level) to an appropriate value. | 261       |

#### ♦ 521h:Autotuning Alarm

| Possible Cause                                                                   | Confirmation                           | Correction                                                                                                                                                                        | Reference |
|----------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The servomotor vibrated considerably while performing the tuning-less function.  | Check the waveform of the motor speed. | Reduce the load so that the load moment of inertia ratio is within the allowable value. Or increase the load level or reduce the response level in the tuningless level settings. | 325       |
| The servomotor vibrated considerably while performing custom tuning or Easy FFT. | Check the waveform of the motor speed. | Check the operating procedure of corresponding function and implement corrections.                                                                                                | 370 , 445 |

#### ◆ 550h:Maximum Motor Speed Setting Error

| Possible Cause                       | Confirmation | Correction                                                                 | Reference |
|--------------------------------------|--------------|----------------------------------------------------------------------------|-----------|
| mum Motor Speed) is greater than the | * *          | Set Pn385 (2385h) to a value that does not exceed the maximum motor speed. | 232       |

### ◆ 710h:Instantaneous Overload 720h:Continuous Overload

| Possible Cause                                                                                                                  | Confirmation                                                       | Correction                                                                     | Reference |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------|
| The wiring is not correct or there is a faulty connection in the motor or encoder wiring.                                       | Check the wiring.                                                  | Make sure that the servomotor and encoder are correctly wired.                 | 127       |
| Operation was performed that exceeded the overload protection characteristics.                                                  | Check the motor overload characteristics and operation reference.  | Reconsider the load and operating conditions. Or, increase the motor capacity. | _         |
| An excessive load was applied during operation because the servomotor was not driven due to mechanical problems.                | Check the operation reference and motor speed.                     | Remove the mechanical problem.                                                 | -         |
| There is an error in the setting of Pn282 (2282h) (Linear Encoder Scale Pitch).                                                 | Check the setting of Pn282 (2282h).                                | Set Pn282 (2282h) to an appropriate value.                                     | 167       |
| There is an error in the setting of Pn080 (2080h) = n. \( \subseteq \text{X} \subseteq \text{(Motor Phase Sequence Selection)}. | Check the setting of Pn080 (2080h) = $n.\square\square X\square$ . | Set Pn080 (2080h) = n.□□X□ to an appropriate value.                            | 172       |
| A failure occurred in the SERVOPACK.                                                                                            | _                                                                  | The SERVOPACK may be faulty. Replace the SERVOPACK.                            | _         |

#### ◆ 730h:Dynamic Brake Overload 731h:Dynamic Brake Overload

| Possible Cause                                                                                                                                       | Confirmation                                                                            | Correction                                                                                                                                                                  | Reference |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The servomotor was rotated by an external force.                                                                                                     | Check the operation status.                                                             | Implement measures to ensure that the motor will not be rotated by an external force.                                                                                       | ı         |
| When the servomotor was stopped with the dynamic brake, the rotational or linear kinetic energy exceeded the capacity of the dynamic brake resistor. | Check the power consumed by the DB resistor to see how frequently the DB is being used. | Reconsider the following: Reduce the servomotor command speed. Decrease the moment of inertia ratio or mass ratio. Reduce the frequency of stopping with the dynamic brake. | -         |
| A failure occurred in the SERVOPACK.                                                                                                                 | _                                                                                       | The SERVOPACK may be faulty. Replace the SERVOPACK.                                                                                                                         | -         |

#### ◆ 740h:Inrush Current Limiting Resistor Overload

| Possible Cause                                                                                                                  | Confirmation | Correction                                                         | Reference |
|---------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------|-----------|
| The allowable frequency of the inrush current limiting resistor was exceeded when the main circuit power was turned ON and OFF. | _            | Reduce the frequency of turning the main circuit power ON and OFF. | _         |
| A failure occurred in the SERVOPACK.                                                                                            | -            | The SERVOPACK may be faulty. Replace the SERVOPACK.                | _         |

## ◆ 7A1h:Internal Temperature Error 1 (Control Board Temperature Error) 7A2h:Internal Temperature Error 2 (Power Board Temperature Error)

| Possible Cause                                                                                             | Confirmation                                                                                                                                                   | Correction                                                                                       | Reference |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------|
| The surrounding temperature is too high.                                                                   | Check the surrounding temperature using a thermometer. Or, check the operating status with the SERVOPACK installation environment monitor.                     | Decrease the surrounding temperature<br>by improving the SERVOPACK instal-<br>lation conditions. | 100       |
| An overload alarm was reset by turning OFF the power too many times.                                       | Check the alarm display to see if there is an overload alarm.                                                                                                  | Change the method for resetting the alarm.                                                       | -         |
| There was an excessive load or operation was performed that exceeded the regenerative processing capacity. | Check the load during operation with [Cumulative Load] and check the regenerative capacity with [Regenerative Load] on the operation monitor of the SigmaWin+. | Reconsider the load and operating conditions.                                                    | I         |
| The SERVOPACK installation orientation is not correct or there is insufficient space around the SERVOPACK. | Check the SERVOPACK installation conditions.                                                                                                                   | Install the SERVOPACK according to specifications.                                               | 97 , 99   |
| A failure occurred in the SERVOPACK.                                                                       | _                                                                                                                                                              | The SERVOPACK may be faulty. Replace the SERVOPACK.                                              | _         |

#### ◆ 7A3h:Internal Temperature Sensor Error

| Possible Cause                       | Confirmation | Correction                                          | Reference |
|--------------------------------------|--------------|-----------------------------------------------------|-----------|
| A failure occurred in the SERVOPACK. | _            | The SERVOPACK may be faulty. Replace the SERVOPACK. | -         |

#### ◆ 7Abh:SERVOPACK Built-in Fan Stopped

| Possible Cause | Confirmation                        | Correction                                                                                                                | Reference |
|----------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------|
|                | Check for foreign matter inside the | Remove foreign matter from the SER-VOPACK. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. | -         |

#### ♦ 810h:Encoder Backup Alarm

| Possible Cause                                                                                                                       | Confirmation                                                  | Correction                                                                                                | Reference |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------|
| The power to the absolute encoder was turned ON for the first time.                                                                  | Check to see if the power was turned ON for the first time.   | Set up the encoder.                                                                                       | 201       |
| The encoder cable was disconnected and then connected again.                                                                         | Check to see if the power was turned ON for the first time.   | Check the encoder connection and set up the encoder.                                                      | 201       |
| Power is not being supplied both from<br>the control power supply (+5 V) from<br>the SERVOPACK and from the battery<br>power supply. | Check the encoder connector battery and the connector status. | Replace the battery or implement similar measures to supply power to the encoder, and set up the encoder. | 201       |
| A failure occurred in the absolute encoder.                                                                                          | -                                                             | If the alarm still occurs after setting up the encoder again, replace the servomotor.                     | _         |
| A failure occurred in the SERVOPACK.                                                                                                 | -                                                             | The SERVOPACK may be faulty.<br>Replace the SERVOPACK.                                                    | _         |

#### ♦ 820h:Encoder Checksum Alarm

| Possible Cause                       | Confirmation | Correction                                                                                                                                         | Reference |
|--------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| A failure occurred in the encoder.   |              | When Using an Absolute Encoder<br>Set up the encoder again. If the alarm<br>still occurs, the servomotor may be<br>faulty. Replace the servomotor. |           |
|                                      | _            | When Using a Singleturn Absolute<br>Encoder or Incremental Encoder                                                                                 | 201       |
|                                      |              | The servomotor may be faulty. Replace the servomotor.                                                                                              |           |
|                                      |              | The linear encoder may be faulty.  Replace the linear encoder.                                                                                     |           |
| A failure occurred in the SERVOPACK. | _            | The SERVOPACK may be faulty. Replace the SERVOPACK.                                                                                                | _         |

#### ♦ 830h:Encoder Battery Alarm

| Possible Cause                                                  | Confirmation                  | Correction                                          | Reference |
|-----------------------------------------------------------------|-------------------------------|-----------------------------------------------------|-----------|
| The battery connection is faulty or a battery is not connected. | Check the battery connection. | Correct the battery connection.                     | 128       |
| The battery voltage is lower than the specified value (2.7 V).  | Measure the battery voltage.  | Replace the battery.                                | 649       |
| A failure occurred in the SERVOPACK.                            | _                             | The SERVOPACK may be faulty. Replace the SERVOPACK. | _         |

#### ♦ 840h:Encoder Data Alarm

| Possible Cause                                             | Confirmation                             | Correction                                                                                                                                                                         | Reference |
|------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The encoder malfunctioned.                                 | _                                        | Turn the power to the SERVOPACK<br>OFF and ON again. If the alarm still<br>occurs, the servomotor or linear encoder<br>may be faulty. Replace the servomotor<br>or linear encoder. | -         |
| An error occurred in reading data from the linear encoder. | -                                        | The linear encoder is not mounted within an appropriate tolerance. Correct the mounting of the linear encoder.                                                                     | -         |
| Excessive speed occurred in the linear encoder.            | -                                        | Control the motor speed within the range specified by the linear encoder manufacturer and then turn ON the control power.                                                          | -         |
| The encoder malfunctioned due to noise.                    | -                                        | Correct the wiring around the encoder by separating the encoder cable from the servomotor main circuit cable or by grounding the encoder.                                          | -         |
| The polarity sensor is not wired correctly.                | Check the wiring of the polarity sensor. | Correct the wiring of the polarity sensor.                                                                                                                                         | _         |
| The polarity sensor failed.                                | _                                        | Replace the polarity sensor.                                                                                                                                                       | -         |

#### ♦ 850h:Encoder Overspeed

| Possible Cause                                                                                        | Confirmation                                       | Correction                                                                                                                                                             | Reference |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Rotary Servomotor: The servomotor speed was 200 min-1 or higher when the control power was turned ON. | Check the motor speed when the power is turned ON. | Reduce the servomotor speed to a value less than 200 min <sup>-1</sup> , and turn ON the control power.                                                                | _         |
| Linear Servomotor: The servomotor exceeded the specified speed when the control power was turned ON.  | Check the motor speed when the power is turned ON. | Control the motor speed within the range specified by the linear encoder manufacturer and then turn ON the control power.                                              | -         |
| A failure occurred in the encoder.                                                                    | -                                                  | Turn the power to the SERVOPACK OFF and ON again. If the alarm still occurs, the servomotor or linear encoder may be faulty. Replace the servomotor or linear encoder. | -         |
| A failure occurred in the SERVOPACK.                                                                  | -                                                  | Turn the power to the SERVOPACK<br>OFF and ON again. If the alarm still<br>occurs, the SERVOPACK may be faulty.<br>Replace the SERVOPACK.                              | -         |

#### ♦ 860h:Encoder Overheated

| Possible Cause                                                 | Confirmation                                                                         | Correction                                                                                                                                                                                             | Reference |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The surrounding temperature around the servomotor is too high. | Measure the surrounding temperature around the servomotor.                           | Reduce the surrounding temperature of the servomotor to 40°C or less.                                                                                                                                  | -         |
| The servomotor load is greater than the rated load.            | Check the load with the [Cumulative Load] on the operation monitor of the SigmaWin+. | Operate the servo drive so that the motor load remains within the specified range.                                                                                                                     | 454       |
| A failure occurred in the encoder.                             | _                                                                                    | Turn the power to the SERVOPACK<br>OFF and ON again. If the alarm still<br>occurs, the servomotor or absolute lin-<br>ear encoder may be faulty. Replace the<br>servomotor or absolute linear encoder. | -         |
| A failure occurred in the SERVOPACK.                           | _                                                                                    | Turn the power to the SERVOPACK<br>OFF and ON again. If the alarm still<br>occurs, the SERVOPACK may be faulty.<br>Replace the SERVOPACK.                                                              | -         |

#### ♦ 861h:Motor Overheated

| Possible Cause                                                 | Confirmation                                                                         | Correction                                                                                                                                                        | Reference |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The surrounding temperature around the servomotor is too high. | Measure the surrounding temperature around the servomotor.                           | Reduce the surrounding temperature of the servomotor to 40°C or less.                                                                                             | 1         |
| The servomotor load is greater than the rated load.            | Check the load with the [Cumulative Load] on the operation monitor of the SigmaWin+. | Operate the servo drive so that the motor load remains within the specified range.                                                                                | 454       |
| A failure occurred in the serial converter unit.               | _                                                                                    | Turn the power to the SERVOPACK<br>OFF and ON again. If the alarm still<br>occurs, the serial converter unit may be<br>faulty. Replace the serial converter unit. | -         |
| A failure occurred in the SERVOPACK.                           | _                                                                                    | Turn the power to the SERVOPACK<br>OFF and ON again. If the alarm still<br>occurs, the SERVOPACK may be faulty.<br>Replace the SERVOPACK.                         | -         |

#### ◆ 862h:Overheat Alarm

| Possible Cause                                                                                                        | Confirmation                                                                                                      | Correction                                                                                                                                                                                                | Reference |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The surrounding temperature is too high.                                                                              | Check the surrounding temperature using a thermometer.                                                            | Lower the surrounding temperature by improving the installation conditions of the linear servomotor or the machine.                                                                                       | -         |
| The overheat protection input signal line is disconnected or short-circuited.                                         | Check the input voltage with the overheat protection input information on the operation monitor of the SigmaWin+. | Repair the line for the overheat protection input signal.                                                                                                                                                 | -         |
| An overload alarm was reset by turning OFF the power too many times.                                                  | Check the alarm display to see if there is an overload alarm.                                                     | Change the method for resetting the alarm.                                                                                                                                                                | -         |
| Operation was performed under an excessive load.                                                                      | Check the load with the [Cumulative Load] on the operation monitor of the SigmaWin+.                              | Reconsider the load and operating conditions.                                                                                                                                                             | -         |
| A failure occurred in the SERVOPACK.                                                                                  | -                                                                                                                 | The SERVOPACK may be faulty. Replace the SERVOPACK.                                                                                                                                                       | -         |
| The temperature detection circuit in the linear servomotor is faulty or the sensor attached to the machine is faulty. | _                                                                                                                 | The temperature detection circuit in the linear servomotor may be faulty or the sensor attached to the machine may be faulty. Replace the linear servomotor or repair the sensor attached to the machine. | -         |

#### ♦ 890h:Encoder Scale Error

| Possible Cause                            | Confirmation | Correction                                                    | Reference |
|-------------------------------------------|--------------|---------------------------------------------------------------|-----------|
| A failure occurred in the linear encoder. | -            | The linear encoder may be faulty. Replace the linear encoder. | -         |

#### ♦ 891h:Encoder Module Error

| Possible Cause                            | Confirmation | Correction                                                                                                                                          | Reference |
|-------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| A failure occurred in the linear encoder. | _            | Turn the power to the SERVOPACK<br>OFF and ON again. If the alarm still<br>occurs, the linear encoder may be faulty.<br>Replace the linear encoder. | -         |

#### ♦ 8A0h:External Encoder Error

| Possible Cause                                                                    | Confirmation                                                                                                             | Correction                                                   | Reference |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------|
| Setting the origin of the absolute linear encoder failed because the motor moved. | Before you set the origin, use the fully-<br>closed feedback pulse counter to con-<br>firm that the motor is not moving. | The motor must be stopped while setting the origin position. | 204       |
| A failure occurred in the external encoder.                                       | _                                                                                                                        | Replace the external encoder.                                | -         |

#### ◆ 8A1h:External Encoder Module Error

| Possible Cause                                   | Confirmation | Correction                         | Reference |
|--------------------------------------------------|--------------|------------------------------------|-----------|
| A failure occurred in the external encoder.      | _            | Replace the external encoder.      | -         |
| A failure occurred in the serial converter unit. | _            | Replace the serial converter unit. | _         |

#### ◆ 8A2h:External Incremental Encoder Sensor Error

| Possible Cause                              | Confirmation | Correction                    | Reference |
|---------------------------------------------|--------------|-------------------------------|-----------|
| A failure occurred in the external encoder. | -            | Replace the external encoder. | -         |

#### ◆ 8A3h:External Absolute Encoder Position Error

| Possible Cause                                       | Confirmation | Correction                                                                                                           | Reference |
|------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------|-----------|
| A failure occurred in the external absolute encoder. | l <b>—</b>   | The external absolute encoder may be faulty. Refer to the encoder manufacturer's instruction manual for corrections. | -         |

#### ♦ 8A5h:External Encoder Overspeed

| Possible Cause                                           | Confirmation | Correction                                         | Reference |
|----------------------------------------------------------|--------------|----------------------------------------------------|-----------|
| An overspeed error was detected in the external encoder. |              | Keep the external encoder below its maximum speed. | -         |

#### ◆ 8A6h:External Encoder Overheated

| Possible Cause                                             | Confirmation | Correction                    | Reference |
|------------------------------------------------------------|--------------|-------------------------------|-----------|
| An overheating error was detected in the external encoder. | _            | Replace the external encoder. | -         |

#### ◆ A10h:EtherCAT DC Synchronization Error

| Possible Cause                                                             | Confirmation | Correction                                                       | Reference |
|----------------------------------------------------------------------------|--------------|------------------------------------------------------------------|-----------|
| The synchronization timing (Sync0) for EtherCAT communications fluctuated. |              | Turn the power OFF and ON again and re-establish communications. | -         |

#### ◆ A11h:EtherCAT State Error

| Possible Cause                                                                       | Confirmation | Correction                                            | Reference |
|--------------------------------------------------------------------------------------|--------------|-------------------------------------------------------|-----------|
| The EtherCAT communications state left the Operational state during motor operation. | _            | Reset the alarm and then re-establish communications. | -         |

#### ◆ A12h:EtherCAT Output Data Synchronization Error

| Possible Cause                                                         | Confirmation                                                  | Correction                                                                         | Reference |
|------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------|-----------|
| Noise caused an error in EtherCAT communications.                      | _                                                             | Check the EtherCAT wiring and implement noise countermeasures.                     | -         |
| The controller did not update the process data during the fixed cycle. | Check the process data specified by the controller.           | Correct the controller so that the process data is updated during the fixed cycle. | -         |
| The EtherCAT communications cable or connector wiring is faulty.       | Check the EtherCAT communications cable and connector wiring. | Wire the cable correctly.                                                          | -         |

#### ◆ A20h:Parameter Setting Error

| Possible Cause                                                                                                                                                                        | Confirmation                                                                                                                                             | Correction                                              | Reference |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------|
| The speed unit is outside of the setting range.                                                                                                                                       | Make sure it is within the following range.  1/256 ≤ Velocity User Unit (2702h:1)/ Velocity User Unit (2702h:2) ≤ 33554432                               | Correct the setting of Velocity User Unit (2702h).      | -         |
| The acceleration unit is outside of the setting range.                                                                                                                                | Make sure it is within the following range.  1/256 ≤ Acceleration User Unit (2703h:1)/Acceleration User Unit (2703h:2) ≤ 1048576                         | Correct the setting of Acceleration User Unit (2703h).  | -         |
| The settings of the first and last rotational coordinate are outside the valid range.                                                                                                 | Confirm that the settings conform to the following equation:  Max position range limit (607Bh:2) -  Min position range limit (607Bh:1) + 1  ≤ 0x7FFFFFFF | Correct the setting of Position Range<br>Limit (607Bh). | -         |
| When rotational coordinate system is enabled, the offset value between the zero point position of the application and the home position of the machine are outside the setting range. | Make sure it is within the following range.  Min position range limit (607Bh:1) ≤ Home Offset (607Ch) ≤ Max position range limit (607Bh:2)               | Correct the setting of Home Offset (607Ch).             | -         |

#### ◆ A41h:Communication Device Initialization Error

|   | Possible Cause                       | Confirmation | Correction                                                                                                                                | Reference |
|---|--------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| F | A failure occurred in the SERVOPACK. | _            | Turn the power to the SERVOPACK<br>OFF and ON again. If the alarm still<br>occurs, the SERVOPACK may be faulty.<br>Replace the SERVOPACK. | -         |

#### ◆ A47h:Loading Servo Information Error

| Possible Cause                                                                                                                                | Confirmation                     | Correction                                                                            | Reference |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------|-----------|
| User Parameter Configuration (2700h) was executed while a utility function (Fn***) was being executed from the digital operator or SigmaWin+. | _                                | Turn the power OFF and ON again.                                                      | -         |
| The power was turned ON or User<br>Parameter Configuration (2700h) was<br>executed when an encoder was not<br>connected.                      | Check the wiring of the encoder. | Turn OFF the power, correct the encoder connection, and then turn the power ON again. | _         |
| The power was turned ON or User<br>Parameter Configuration (2700h) was<br>executed when there was an alarm 040h<br>(Parameter Setting Error). | Check the parameter settings.    | Correct the parameter settings and turn the power OFF and ON again.                   | -         |
| A failure occurred in the SERVOPACK.                                                                                                          | _                                | Replace the SERVOPACK.                                                                | -         |

#### ♦ b33h:Current Detection Error 3

| Possible Cause                                       | Confirmation | Correction                                                                                                                                | Reference |
|------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| A failure occurred in the current detection circuit. | l <b>_</b>   | Turn the power to the SERVOPACK<br>OFF and ON again. If the alarm still<br>occurs, the SERVOPACK may be faulty.<br>Replace the SERVOPACK. | -         |

| Possible Cause                       | Confirmation | Correction                                                                                                                                | Reference |
|--------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| A failure occurred in the SERVOPACK. | _            | Turn the power to the SERVOPACK<br>OFF and ON again. If the alarm still<br>occurs, the SERVOPACK may be faulty.<br>Replace the SERVOPACK. | ı         |

#### ◆ C10h:Servomotor Out of Control

| Possible Cause                                                                                                                                                        | Confirmation                                              | Correction                                                                                                                                                                                   | Reference |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The order of phases U, V, and W in the motor wiring is not correct.                                                                                                   | Check the servomotor wiring.                              | Make sure that the servomotor is correctly wired.                                                                                                                                            | -         |
| There is an error in the setting of Pn080 $(2080h) = n.\Box\Box X\Box$ (Motor Phase Sequence Selection).                                                              | Check the setting of Pn080 (2080h) = $n.\Box\Box X\Box$ . | Set Pn080 (2080h) = n.□□X□ to an appropriate value.                                                                                                                                          | 172       |
| When using an absolute encoder, the setting of Pn080 (2080h) = $n.\Box\Box X\Box$ (Motor Phase Sequence Selection) was changed after polarity detection was executed. | _                                                         | Execute polarity detection again.                                                                                                                                                            | 175       |
| A failure occurred in the encoder.                                                                                                                                    | _                                                         | If the motor wiring is correct and an alarm still occurs after turning the power OFF and ON again, the servomotor or linear encoder may be faulty. Replace the servomotor or linear encoder. | I         |
| A failure occurred in the SERVOPACK.                                                                                                                                  | _                                                         | Turn the power to the SERVOPACK<br>OFF and ON again. If the alarm still<br>occurs, the SERVOPACK may be faulty.<br>Replace the SERVOPACK.                                                    |           |

#### ◆ C20h:Phase Detection Error

| Possible Cause                                                                                                     | Confirmation                                                                                                                                           | Correction                                                                                                                   | Reference |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------|
| The linear encoder signal level is too low.                                                                        | Check the voltage of the linear encoder signal.                                                                                                        | Fine-tune the mounting of the scale sensor head. Or, replace the linear encoder.                                             | _         |
| The count-up direction of the linear encoder does not match the forward direction of the moving coil in the motor. | Check the setting of Pn080 (2080h) = n X. (Motor Phase Sequence Selection). Check the installation orientation for the linear encoder and moving coil. | Check the setting of Pn080 (2080h) = n. $X \square \square \square$ . Correctly reinstall the linear encoder or moving coil. | 172       |
| The polarity sensor signal is being affected by noise.                                                             | -                                                                                                                                                      | Correct the FG wiring. Implement countermeasures against noise for the polarity sensor wiring.                               | _         |
| The setting of Pn282 (2282h) (Linear Encoder Scale Pitch) is not correct.                                          | Check the setting of Pn282 (2282h) (Linear Encoder Scale Pitch).                                                                                       | Check the specifications of the linear encoder and set a correct value.                                                      | 167       |

#### ♦ C21h:Polarity Sensor Error

| Possible Cause                                                        | Confirmation                             | Correction                                                        | Reference |
|-----------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------|-----------|
| The polarity sensor is protruding from the magnetic way of the motor. | Check the polarity sensor.               | Correctly reinstall the moving coil or magnetic way of the motor. | _         |
| The polarity sensor is not wired correctly.                           | Check the wiring of the polarity sensor. | Correct the wiring of the polarity sensor.                        | -         |
| The polarity sensor failed.                                           | _                                        | Replace the polarity sensor.                                      | _         |

#### ◆ C22h:Phase Information Disagreement

| Possible Cause                                                                          | Confirmation | Correction                  | Reference |
|-----------------------------------------------------------------------------------------|--------------|-----------------------------|-----------|
| The SERVOPACK phase information is different from the linear encoder phase information. |              | Perform polarity detection. | 176       |

#### ◆ C50h:Polarity Detection Failure

| Possible Cause                                                 | Confirmation                                                                                                                                                                                                                                                                                                                                                         | Correction                                                                                                                                                                                                                                                                                                              | Reference |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The parameter settings are not correct.                        | Check the linear encoder specifications and feedback signal status.                                                                                                                                                                                                                                                                                                  | The settings of Pn282 (2282h) (Linear Encoder Scale Pitch) and Pn080 (2080h) = n. \( \subseteq \text{X} \subseteq \text{(Motor Phase Sequence Selection)} \) may not match the installation. Set the parameters to correct values.                                                                                      | 167,172   |
| There is noise on the scale signal.                            | Check to make sure that the frame grounds of the serial converter unit and servomotor are connected to the FG terminal on the SERVOPACK and that the FG terminal on the SERVOPACK is connected to the frame ground on the power supply.  And, confirm that the shield is properly processed on the linear encoder cable.  Check to see if the detection reference is | Implement appropriate countermeasures against noise for the linear encoder cable.                                                                                                                                                                                                                                       | -         |
|                                                                | repeatedly output in one direction.                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                         |           |
|                                                                |                                                                                                                                                                                                                                                                                                                                                                      | The polarity cannot be properly detected if the detection reference is 0 and the speed feedback is not 0 because of an external force, such as cable tension, applied to the moving coil.                                                                                                                               |           |
| An external force was applied to the moving coil of the motor. | _                                                                                                                                                                                                                                                                                                                                                                    | Implement measures to reduce the external force so that the speed feedback goes to 0.                                                                                                                                                                                                                                   | _         |
|                                                                |                                                                                                                                                                                                                                                                                                                                                                      | If the external force cannot be reduced, increase the setting of Pn481 (2481h) (Polarity Detection Speed Loop Gain).                                                                                                                                                                                                    |           |
|                                                                |                                                                                                                                                                                                                                                                                                                                                                      | If the linear encoder scale pitch is 100 µm or higher, the SERVOPACK cannot detect the correct speed feedback.                                                                                                                                                                                                          |           |
| The linear encoder resolution is too low.                      | Check the linear encoder scale pitch to see if it is within 100 $\mu m$ .                                                                                                                                                                                                                                                                                            | Use a linear encoder scale pitch with higher resolution. (We recommend a pitch of 40 µm or less.) Or, increase the setting of Pn485 (2485h) (Polarity Detection Reference Speed). However, increasing the setting of Pn485 (2485h) will increase the servomotor movement range that is required for polarity detection. | -         |

#### ◆ C51h:Overtravel Detected during Polarity Detection

| Possible Cause                                                | Confirmation                   | Correction                                                                                                              | Reference |
|---------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------|
| The overtravel signal was detected during polarity detection. | Check the overtravel position. | Wire the overtravel signals. Execute polarity detection at a position where an overtravel signal would not be detected. | 140       |

#### ◆ C52h:Polarity Detection Not Completed

| Possible Cause                                                                                                                                                | Confirmation | Correction                                                                            | Reference |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------|-----------|
| The servo was turned ON when using an absolute linear encoder, Pn587 (2587h) was set to n 0 (do not detect polarity), and the polarity had not been detected. | -            | When using an absolute linear encoder, set Pn587 (2587h) to n.□□□1 (detect polarity). | -         |

### ◆ C53h:Out of Range of Motion for Polarity Detection

| Possible Cause                                                                                                   | Confirmation | Correction                                                                                                                                        | Reference |
|------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The travel distance exceeded the setting of Pn48E (248Eh) (Polarity Detection Range) in the middle of detection. | <del>-</del> | Increase the setting of Pn48E (248Eh) (Polarity Detection Range). Or, increase the setting of Pn481 (2481h) (Polarity Detection Speed Loop Gain). | -         |

#### ◆ C54h:Polarity Detection Failure 2

| Possible Cause                                   | Confirmation | Correction                                                                                                                                                                                                                                           | Reference |
|--------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| An external force was applied to the servomotor. | _            | Increase the setting of Pn495 (2495h) (Polarity Detection Confirmation Force Reference).  Increase the setting of Pn498 (2498h) (Polarity Detection Allowable Error Range). Increasing the allowable error will also increase the motor temperature. | -         |

#### ◆ C80h:Encoder Clear Error or Multiturn Limit Setting Error

| Possible Cause                       | Confirmation | Correction                                                                                                                                                                         | Reference |
|--------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| A failure occurred in the encoder.   | _            | Turn the power to the SERVOPACK<br>OFF and ON again. If the alarm still<br>occurs, the servomotor or linear encoder<br>may be faulty. Replace the servomotor<br>or linear encoder. | -         |
| A failure occurred in the SERVOPACK. | _            | Turn the power to the SERVOPACK OFF and ON again. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK.                                                   | _         |

#### ◆ C90h:Encoder Communications Error

| Possible Cause                                                                                                                                                                                                    | Confirmation                                                                                | Correction                                                                                                                                                                                                             | Reference |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The content saved in the configuration and the content detected in node detection are different when SigmaLINK II was used.                                                                                       | Check the content that was saved with self-configuration and the actual device connections. | If the actual device configuration is correct, execute self-configuration again.  If the content that was saved with self-configuration is correct, change the actual device configuration to match the saved content. | 501       |
| There is a faulty contact in the connector or the connector is not wired correctly for the encoder cable.                                                                                                         | Check the condition of the connector for encoder cable.                                     | Reconnect the connector for encoder cable and check the encoder wiring.                                                                                                                                                | 127       |
| There is a cable disconnection or short-circuit in the encoder. Or, the cable impedance is outside the specified values.                                                                                          | Check the condition of the encoder cable.                                                   | Use the encoder cable within the specified specifications.                                                                                                                                                             | -         |
| One of the following has occurred: corrosion caused by improper temperature, humidity, or gas, a short-circuit caused by entry of water drops or cutting oil, or faulty contact in connector caused by vibration. | Check the operating environment.                                                            | Improve the operating environment, and replace the cable. If the alarm still occurs, replace the SERVOPACK.                                                                                                            | 96        |
| A malfunction was caused by noise.                                                                                                                                                                                | _                                                                                           | Correct the wiring around the encoder by separating the encoder cable from the servomotor main circuit cable or by grounding the encoder.                                                                              | 109       |
| A failure occurred in the SERVOPACK.                                                                                                                                                                              | _                                                                                           | If the alarm does not occur when the servomotor is connected to a different SERVOPACK and the control power is supplied, the SERVOPACK may be faulty. Replace the SERVOPACK.                                           | -         |

#### ◆ C91h:Encoder Communications Position Data Acceleration Rate Error

| Possible Cause                                                                                                        | Confirmation                                             | Correction                                                             | Reference |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------|-----------|
| Noise entered on the signal lines because the encoder cable is bent or the sheath is damaged.                         | Check the condition of the encoder cable and connectors. | Check the encoder cable to see if it is installed correctly.           | 111       |
| The encoder cable is bundled with a high-current line or installed near a high-current line.                          | Check the installation condition of the encoder cable.   | Confirm that there is no surge voltage on the encoder cable.           | -         |
| There is variation in the FG potential because of the influence of machines on the servomotor side, such as a welder. | Check the installation condition of the encoder cable.   | Properly ground the machine to separate it from the FG of the encoder. | -         |

#### ◆ C92h:Encoder Communications Timer Error

| Possible Cause                                           | Confirmation                    | Correction                                                                                                                                                                         | Reference |
|----------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Noise entered on the signal line from the encoder.       | _                               | Implement countermeasures against noise for the encoder wiring.                                                                                                                    | 109       |
| Excessive vibration or shock was applied to the encoder. | Check the operating conditions. | Reduce machine vibration.  Correctly install the servomotor or linear encoder.                                                                                                     | I         |
| A failure occurred in the encoder.                       | -                               | Turn the power to the SERVOPACK<br>OFF and ON again. If the alarm still<br>occurs, the servomotor or linear encoder<br>may be faulty. Replace the servomotor<br>or linear encoder. | -         |
| A failure occurred in the SERVOPACK.                     | -                               | Turn the power to the SERVOPACK<br>OFF and ON again. If the alarm still<br>occurs, the SERVOPACK may be faulty.<br>Replace the SERVOPACK.                                          | _         |

#### ◆ CA0h:Encoder Parameter Error

| Possible Cause                       | Confirmation | Correction                                                                                                                                                                         | Reference |
|--------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| A failure occurred in the encoder.   | _            | Turn the power to the SERVOPACK<br>OFF and ON again. If the alarm still<br>occurs, the servomotor or linear encoder<br>may be faulty. Replace the servomotor<br>or linear encoder. | -         |
| A failure occurred in the SERVOPACK. | _            | Turn the power to the SERVOPACK<br>OFF and ON again. If the alarm still<br>occurs, the SERVOPACK may be faulty.<br>Replace the SERVOPACK.                                          | -         |

#### ◆ Cb0h:Encoder Echoback Error

| Possible Cause                                                                                                        | Confirmation                                             | Correction                                                                                                                                                                         | Reference |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The encoder is wired incorrectly or there is faulty contact.                                                          | Check the wiring of the encoder.                         | Make sure that the encoder is correctly wired.                                                                                                                                     | 127       |
| The specifications of the encoder cable are not correct and noise entered on it.                                      | _                                                        | Use a shielded twisted-pair wire cable or a screened twisted-pair cable with conductors of at least 0.12 mm <sup>2</sup> .                                                         | ı         |
| The encoder cable is too long and noise entered on it.                                                                | _                                                        | Rotary Servomotors: The encoder cable wiring distance must be 50 m max.     Linear Servomotors: The encoder cable wiring distance must be 20 m max.                                | -         |
| There is variation in the FG potential because of the influence of machines on the servomotor side, such as a welder. | Check the condition of the encoder cable and connectors. | Properly ground the machine to separate it from the FG of the encoder.                                                                                                             | -         |
| Excessive vibration or shock was applied to the encoder.                                                              | Check the operating conditions.                          | Reduce machine vibration. Correctly install the servomotor or linear encoder.                                                                                                      | -         |
| A failure occurred in the encoder.                                                                                    | _                                                        | Turn the power to the SERVOPACK<br>OFF and ON again. If the alarm still<br>occurs, the servomotor or linear encoder<br>may be faulty. Replace the servomotor<br>or linear encoder. | -         |
| A failure occurred in the SERVOPACK.                                                                                  | _                                                        | Turn the power to the SERVOPACK<br>OFF and ON again. If the alarm still<br>occurs, the SERVOPACK may be faulty.<br>Replace the SERVOPACK.                                          | -         |

#### ◆ CC0h:Multiturn Limit Disagreement

|                                                                                                                                        | O .                                                   |                                                                                                                                           |           |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Possible Cause                                                                                                                         | Confirmation                                          | Correction                                                                                                                                | Reference |
| When using a direct drive servomotor, the setting of Pn205 (2205h) (Multiturn Limit) does not agree with the encoder.                  | Check the setting of Pn205 (2205h).                   | Correct the setting of Pn205 (2205h) (0 to 65535).                                                                                        | 251       |
| The multiturn limit of the encoder is different from that of the SERVOPACK. Or, the multiturn limit of the SERVOPACK has been changed. | Check the setting of Pn205 (2205h) (Multiturn Limit). | Change the setting if the alarm occurs.                                                                                                   | 251       |
| A failure occurred in the SERVOPACK.                                                                                                   | _                                                     | Turn the power to the SERVOPACK<br>OFF and ON again. If the alarm still<br>occurs, the SERVOPACK may be faulty.<br>Replace the SERVOPACK. | _         |

#### ◆ Cd1h:SigmaLINK II Node Configuration Error

| Possible Cause                                                              | Confirmation                                                                           | Correction                                                                             | Reference |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------|
| Nodes that are compatible and incompatible with SigmaLINK II are connected. | Check if nodes that are compatible and incompatible with SigmaLINK II are connected.   | Make all of the connected nodes either compatible or incompatible with Sigma-LINK II.  | 500       |
| Four or more nodes are connected.                                           | Check the number of connected servo-<br>motors, external encoders, and I/O<br>devices. | Connect no more than a total of three servomotors, external encoders, and I/O devices. | 500       |
| Two or more servomotors are connected.                                      | Check the number of servomotors that are connected.                                    | Connect one servomotor.                                                                | 500       |
| Two or more external encoders are connected.                                | Check the number of external encoders that are connected.                              | Connect one external encoder.                                                          | 500       |

#### ◆ Cd2h:SigmaLINK II Power Supply Short-Circuit Detected

| Possible Cause                           | Confirmation                              | Correction                                                                                                                                                                                                                      | Reference |
|------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The CN2 power supply is short-circuited. | Check the condition of the encoder cable. | Disconnect the connected node and check if the alarm occurs.  If the alarm occurs even when the connected node is disconnected, replace the encoder cable.  If the alarm still occurs, replace the connected node or SERVOPACK. | -         |

#### ◆ Cd3h:SigmaLINK II Configuration Data Checksum Error

| Possible Cause                                                              | Confirmation | Correction                                                           | Reference |
|-----------------------------------------------------------------------------|--------------|----------------------------------------------------------------------|-----------|
| Saving the configuration data failed.                                       | _            | Execute SigmaLINK II self-configuration again and save the settings. | 501       |
| The SigmaLINK II configuration data saved in nonvolatile memory is damaged. | _            | Execute SigmaLINK II self-configuration again and save the settings. | 501       |

#### ◆ Cd4h:SigmaLINK II Node Change Detected

| Possible Cause                                                                                   | Confirmation                                                                                | Correction                                                                                                                                                                                                             | Reference |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The content saved in the configuration and the content detected in node detection are different. | Check the content that was saved with self-configuration and the actual device connections. | If the actual device configuration is correct, execute self-configuration again.  If the content that was saved with self-configuration is correct, change the actual device configuration to match the saved content. | 501       |
| Detection of the node failed.                                                                    | _                                                                                           | Execute SigmaLINK II self-configuration again and save the settings.                                                                                                                                                   | 501       |

16

| Possible Cause                                                                                                                                                                                                    | Confirmation                                             | Correction                                                                                                                                                                    | Reference |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| There is a faulty contact in the connector or the connector is not wired correctly for the encoder cable.                                                                                                         | Check the connection and condition of the encoder cable. | Correctly connect the encoder cable.     Replace the encoder cable.                                                                                                           | -         |
| There is a cable disconnection or short-circuit in the encoder. Or, the cable impedance is outside the specified values.                                                                                          | Check the condition of the encoder cable.                | Use the encoder cable within the specified specifications.                                                                                                                    | -         |
| One of the following has occurred: corrosion caused by improper temperature, humidity, or gas, a short-circuit caused by entry of water drops or cutting oil, or faulty contact in connector caused by vibration. | Check the operating environment.                         | Improve the operating environment, and replace the cable. If the alarm still occurs, replace the SERVOPACK.                                                                   | 96        |
| A malfunction was caused by noise.                                                                                                                                                                                | _                                                        | Correct the wiring around the encoder by separating the encoder cable from the servomotor main circuit cable or by grounding the encoder.                                     | 109       |
| A failure occurred in the SERVOPACK.                                                                                                                                                                              | _                                                        | If the alarm does not occur when the I/O device is connected to a different SER-VOPACK and the control power is supplied, the SERVOPACK may be faulty. Replace the SERVOPACK. | -         |

#### ◆ Cd8h:SigmaLINK II I/O Device Status Error

| Possible Cause                    | Confirmation                                                           | Correction                                                 | Reference |
|-----------------------------------|------------------------------------------------------------------------|------------------------------------------------------------|-----------|
| The I/O device detected a warning | Check the alarm code by reading the I/O device alarm in the SigmaWin+. | Take corrective action according to the I/O device manual. | -         |

#### ◆ CF1h:Reception Failed Error in External Encoder

| Possible Cause                                                                                                              | Confirmation                                                                                | Correction                                                                                                                                                                                                             | Reference |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The content saved in the configuration and the content detected in node detection are different when SigmaLINK II was used. | Check the content that was saved with self-configuration and the actual device connections. | If the actual device configuration is correct, execute self-configuration again.  If the content that was saved with self-configuration is correct, change the actual device configuration to match the saved content. | 501       |
| The cable between the serial converter unit and SERVOPACK is not wired correctly or there is a faulty contact.              | Check the wiring of the external encoder.                                                   | Correctly wire the cable between the serial converter unit and SERVOPACK.                                                                                                                                              | 133       |
| A specified cable is not being used between serial converter unit and SERVOPACK.                                            | Check the wiring specifications of the external encoder.                                    | Use a specified cable.                                                                                                                                                                                                 | ı         |
| The cable between the serial converter unit and SERVOPACK is too long.                                                      | Measure the length of the cable that connects the serial converter unit.                    | The length of the cable between the serial converter unit and SERVOPACK must be 20 m or less.                                                                                                                          | -         |
| The sheath on cable between the serial converter unit and SERVOPACK is broken.                                              | Check the cable that connects the serial converter unit.                                    | Replace the cable between the serial converter unit and SERVOPACK.                                                                                                                                                     | _         |

#### ◆ CF2h:Timer Stopped Error in External Encoder

| ''                                                                       |              |                                                                                                                              |           |
|--------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------|-----------|
| Possible Cause                                                           | Confirmation | Correction                                                                                                                   | Reference |
| Noise entered the cable between the serial converter unit and SERVOPACK. |              | Correct the wiring around the serial converter unit, e.g., separate I/O signal lines from the main circuit cables or ground. |           |
| A failure occurred in the serial converter unit.                         | -            | Replace the serial converter unit.                                                                                           | _         |
| A failure occurred in the SERVOPACK.                                     | _            | Replace the SERVOPACK.                                                                                                       | _         |

#### ◆ d00h:Position Deviation Overflow

| Possible Cause                                                                                                  | Confirmation                                                                                                                       | Correction                                                                                                                                | Reference |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The servomotor U, V, and W wiring is not correct.                                                               | Check the wiring of the servomotor main circuit cables.                                                                            | Make sure that there are no faulty contacts in the wiring for the servomotor and encoder.                                                 | -         |
| The position reference speed is too fast.                                                                       | Reduce the position reference speed and try operating the SERVOPACK.                                                               | Reduce the position reference speed or<br>the reference acceleration rate, or recon-<br>sider the electronic gear ratio.                  | 193       |
| The acceleration of the position reference is too high.                                                         | Reduce the reference acceleration and try operating the SERVOPACK.                                                                 | Reduce the acceleration of the position reference using an EtherCAT command.                                                              | -         |
| The setting of Pn520 (2520h) (Position Deviation Overflow Alarm Level) is too low for the operating conditions. | Check the setting of Pn520 (2520h)<br>(Position Deviation Overflow Alarm<br>Level) to see if it is set to an appropriate<br>value. | Optimize the setting of Pn520 (2520h).                                                                                                    | 320       |
| A failure occurred in the SERVOPACK.                                                                            | _                                                                                                                                  | Turn the power to the SERVOPACK<br>OFF and ON again. If the alarm still<br>occurs, the SERVOPACK may be faulty.<br>Replace the SERVOPACK. | -         |

#### ◆ d01h:Position Deviation Overflow Alarm at Servo ON

| Possible Cause                     | Confirmation                                         | Correction                                                                                         | Reference |
|------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------|
| IPn576 (7576h) (Position Deviation | Check the position deviation while the servo is OFF. | Optimize the setting of Pn526 (2526h)<br>(Position Deviation Overflow Alarm<br>Level at Servo ON). | 320       |

#### ♦ d02h:Position Deviation Overflow Alarm for Speed Limit at Servo ON

| Possible Cause                                                                                                                                                                                                                                                                                                                  | Confirmation | Correction                                                                                             | Reference |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------|-----------|
| If position deviation remains in the deviation counter, the setting of Pn529 (2529h) or Pn584 (2584h) (Speed Limit Level at Servo ON) limits the speed when the servo is turned ON.  This alarm occurs if a position reference is input and the setting of Pn520 (2520h) (Position Deviation Overflow Alarm Level) is exceeded. | _            | Optimize the setting of Pn520 (2520h). Or, set Pn529 (2529h) or Pn584 (2584h) to an appropriate value. | 320       |

#### ♦ d04h:Overtravel Alarm

| Possible Cause                                  | Confirmation                                                            | Correction                                                                                                                                                                                                                          | Reference |
|-------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Overtravel was detected while the servo was ON. | Check the status of the overtravel signals on the input signal monitor. | Review the references from the host controller so that the moving parts of the machine do not exceed the overtravel range and software limits. Check the wiring of the overtravel signals. Implement countermeasures against noise. | 180       |

#### ◆ d10h:Motor-Load Position Deviation Overflow

| Possible Cause                                                                                    | Confirmation                                                                 | Correction                                                                                                                                                                        | Reference |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The motor direction and external encoder installation orientation are backward.                   | Check the motor direction and the external encoder installation orientation. | Install the external encoder in the opposite direction, or change the setting of $Pn002 (2002h) = n.X \square \square \square$ (External Encoder Usage) to reverse the direction. | 486       |
| There is an error in the connection between the load (e.g., stage) and external encoder coupling. | Check the coupling of the external encoder.                                  | Check the mechanical coupling.                                                                                                                                                    | _         |

#### ♦ d30h:Position Data Overflow

| Possible Cause                          | Confirmation                             | Correction                               | Reference |
|-----------------------------------------|------------------------------------------|------------------------------------------|-----------|
| The position data exceeded ±1879048192. | Check the input reference pulse counter. | Reconsider the operating specifications. | -         |

#### ◆ E00h:EtherCAT Initialization Timeout Error 1

| Possible Cause                       | Confirmation | Correction             | Reference |
|--------------------------------------|--------------|------------------------|-----------|
| A failure occurred in the SERVOPACK. | _            | Replace the SERVOPACK. | -         |

#### ◆ E02h:EtherCAT Internal Synchronization Error 1

| Possible Cause                              | Confirmation | Correction                                                                                                                                | Reference |
|---------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The EtherCAT transmission cycle fluctuated. | _            | Remove the cause of transmission cycle fluctuation at the host controller.                                                                | _         |
| A failure occurred in the SERVOPACK.        | <del>-</del> | Turn the power to the SERVOPACK<br>OFF and ON again. If the alarm still<br>occurs, the SERVOPACK may be faulty.<br>Replace the SERVOPACK. | _         |

#### ◆ E72h:Feedback Option Module Detection Failure

| Possible Cause                                                                     | Confirmation                                                                | Correction                                                                                         | Reference |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------|
| There is a faulty connection between the SERVOPACK and the feedback option module. | Check the connection between the SER-VOPACK and the feedback option module. | Correctly connect the feedback option module.                                                      | _         |
| The feedback option module was disconnected.                                       | _                                                                           | Reset the option module configuration error and turn the power to the SERVO-PACK OFF and ON again. | 687       |
| A failure occurred in the feedback option module.                                  | -                                                                           | Replace the feedback option module.                                                                | _         |
| A failure occurred in the SERVOPACK.                                               | _                                                                           | Replace the SERVOPACK.                                                                             | _         |

#### ◆ E75h:Unsupported Feedback Option Module Alarm

| Possible Cause                                    | Confirmation                                                                                 | Correction                                   | Reference |
|---------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------|-----------|
| A failure occurred in the feedback option module. | -                                                                                            | Replace the safety option module.            | _         |
|                                                   | Refer to the catalog of the connected feedback option module or the manual of the SERVOPACK. | Connect a compatible feedback option module. | _         |

#### ◆ EA0h:EtherCAT Initialization Timeout Error 2

| Possible Cause                       | Confirmation | Correction                       | Reference |
|--------------------------------------|--------------|----------------------------------|-----------|
| A failure occurred in the SERVOPACK. | _            | Repair or replace the SERVOPACK. | _         |

#### ◆ EA2h:EtherCAT Internal Synchronization Error 2

| Possible Cause                                                                                                                                | Confirmation | Correction                                                       | Reference |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------|-----------|
| The synchronization timing inside the SERVOPACK fluctuated because the synchronization timing (Sync0) for EtherCAT communications fluctuated. | _            | Turn the power OFF and ON again and re-establish communications. | ľ         |
| A failure occurred in the SERVOPACK.                                                                                                          | _            | Repair or replace the SERVOPACK.                                 | _         |

#### ◆ Eb1h:Safety Function Signal Input Timing Error

| Possible Cause                                                                                             | Confirmation                                                  | Correction                                                                                                                                                                                                                                              | Reference |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The delay between activation of the /HWBB1 and /HWBB2 input signals for the HWBB was ten second or longer. | Measure the time delay between the /HWBB1 and /HWBB2 signals. | The output signal circuits or devices for /HWBB1 and /HWBB2 or the SERVO-PACK input signal circuits may be faulty. Alternatively, the input signal cables may be disconnected. Check to see if any of these items are faulty or have been disconnected. | ı         |
| A failure occurred in the SERVOPACK.                                                                       | _                                                             | Replace the SERVOPACK.                                                                                                                                                                                                                                  | _         |

#### EC8h:Gate Drive Error 1 EC9h:Gate Drive Error 2

| Possible Cause                       | Confirmation | Correction                                                                                                                                | Reference |
|--------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| A failure occurred in the SERVOPACK. | _            | Turn the power to the SERVOPACK<br>OFF and ON again. If the alarm still<br>occurs, the SERVOPACK may be faulty.<br>Replace the SERVOPACK. | -         |

#### ◆ F10h:Power Supply Line Open Phase

| Possible Cause                                                                                                           | Confirmation                                                        | Correction                                                                                                                                | Reference |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The three-phase power supply wiring is not correct.                                                                      | Check the power supply wiring.                                      | Make sure that the power supply is correctly wired.                                                                                       | 115       |
| The three-phase power supply is unbalanced.                                                                              | Measure the voltage for each phase of the three-phase power supply. | Balance the power supply by changing phases.                                                                                              | _         |
| A single-phase AC power supply was input without specifying Pn00B (200Bh) = n.□1□□ (Single-phase AC Power Supply Input). | Check the power supply and the parameter setting.                   | Match the parameter setting to the power supply.                                                                                          | 115       |
| A failure occurred in the SERVOPACK.                                                                                     | -                                                                   | Turn the power to the SERVOPACK<br>OFF and ON again. If the alarm still<br>occurs, the SERVOPACK may be faulty.<br>Replace the SERVOPACK. | -         |

#### ♦ FL-1:System Alarm

FL-2:System Alarm

FL-3:System Alarm

FL-4:System Alarm

FL-5:System Alarm

FL-6:System Alarm

FL-7:System Alarm

| Possible Cause                       | Confirmation | Correction                                                                                                                                | Reference |
|--------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| A failure occurred in the SERVOPACK. | _            | Turn the power to the SERVOPACK<br>OFF and ON again. If the alarm still<br>occurs, the SERVOPACK may be faulty.<br>Replace the SERVOPACK. | -         |

#### ◆ CPF00:Digital Operator Communications Error 1

| Possible Cause                                                               | Confirmation                 | Correction                                                           | Reference |
|------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------|-----------|
| There is a faulty connection between the digital operator and the SERVOPACK. | Check the connector contact. | Disconnect the connector and insert it again. Or, replace the cable. | -         |
| A malfunction was caused by noise.                                           | _                            | Keep the digital operator or the cable away from sources of noise.   | -         |

#### ◆ CPF01:Digital Operator Communications Error 2

| Possible Cause                              | Confirmation | Correction                                                                                                                                              | Reference |
|---------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| A failure occurred in the digital operator. | _            | Disconnect the digital operator and then connect it again. If the alarm still occurs, the digital operator may be faulty. Replace the digital operator. | -         |
| A failure occurred in the SERVOPACK.        | _            | Turn the power to the SERVOPACK<br>OFF and ON again. If the alarm still<br>occurs, the SERVOPACK may be faulty.<br>Replace the SERVOPACK.               | -         |
| A malfunction was caused by noise.          | _            | Keep the digital operator or the cable away from sources of noise.                                                                                      | -         |

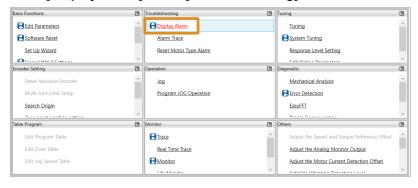
#### 16.2.3 Alarm Reset

If there is an ALM (Servo Alarm Output) signal, use one of the following methods to reset the alarm after eliminating the cause of the alarm.



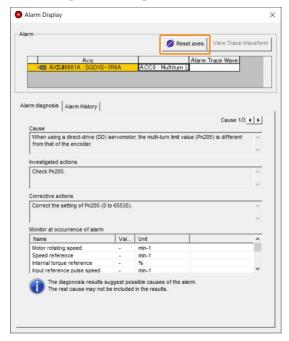
Be sure to eliminate the cause of an alarm before you reset the alarm.

If you reset the alarm and continue operation without eliminating the cause of the alarm, it may result in damage to the equipment or fire.


#### (1) Resetting Alarms with the SigmaWin+

Use the following procedure to reset alarms with the SigmaWin+.

1. Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.


The [Menu] window will be displayed.

2. Click [Display Alarm] in the [Troubleshooting] area.



The [Alarm Display] window will be displayed.

#### 3. Click the [Reset axes] button.



The alarm will be reset, and the alarm display will be cleared.

This concludes the procedure to reset alarms.

#### (2) Clearing Alarms and Warnings with the Fault Reset Command

Execute the Fault Reset command to clear alarms or warnings.

Refer to the following section for details on the Fault Reset command.

(1) Controlword Bits on page 611

#### (3) Resetting Alarms Using the Digital Operator

Press the [ALARM RESET] key on the digital operator. Refer to the following manual for details on resetting alarms.

Σ-7/Σ-X-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33)

#### 16.2.4 Displaying the Alarm History

The alarm history displays up to the last ten alarms that have occurred in the SERVOPACK.

Note:

The following alarms are not displayed in the alarm history: A.E50 (EtherCAT Synchronization Error), A.E60 (Reception Error in EtherCAT Communications), and FL-1 to FL-7.

#### (1) Preparations

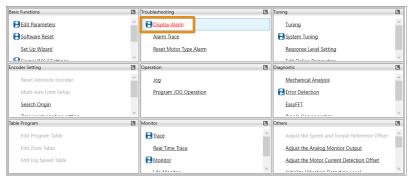
No preparations are required.

#### (2) Applicable Tools

The following table lists the tools that you can use to display the alarm history.

| Tool             | Fn No./Function Name                | Reference                                                                      |
|------------------|-------------------------------------|--------------------------------------------------------------------------------|
| Digital Operator | Fn000                               | Σ-7/Σ-X-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33) |
| SigmaWin+        | [Troubleshooting] – [Display Alarm] | (3) Operating Procedure on page 685                                            |

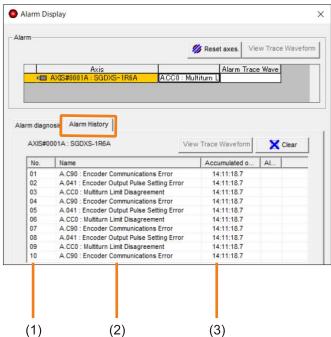
16


### (3) Operating Procedure

Use the following procedure to display the alarm history.

1. Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.

The [Menu] window will be displayed.


Click [Display Alarm] in the [Troubleshooting] area.



The [Alarm Display] window will be displayed.

#### 3. Click the [Alarm History] tab.

The following window will appear and you can check the alarms that occurred in the past.



|                                                                                                              | Code | Item                                                              | Meaning                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) No. Alarms in order of occurrence (Older alarms have higher numbers.)  (2) Name Alarm number, alarm name |      | Alarms in order of occurrence (Older alarms have higher numbers.) |                                                                                                                                                                                                                                                        |
|                                                                                                              |      | Name                                                              | Alarm number, alarm name                                                                                                                                                                                                                               |
|                                                                                                              | (3)  | fion fime                                                         | Total operation time to the point at which the alarm occurred is displayed in increments of 100 ms from when the control power and main circuit power turned ON. For 24-hour, 365-day operation, measurements are possible for approximately 13 years. |

Information

- If the same alarm occurs consecutively within one hour, it is not saved in the alarm history. If it occurs after an hour or more, it is saved.
- You can clear the alarm history by clicking the [Clear] button. The alarm history is not cleared when alarms are reset or when the SERVOPACK main circuit power is turned OFF.

This concludes the procedure to display the alarm history.

### 16.2.5 Clearing the Alarm History

You can clear the alarm history that is recorded in the SERVOPACK.

The alarm history is not cleared when alarms are reset or when the SERVOPACK main circuit power is turned OFF. You must perform the following procedure.

### (1) Preparations

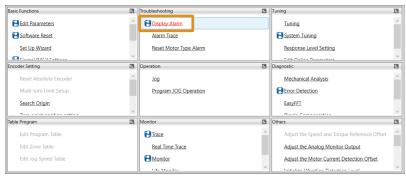
Always check the following before you clear the alarm history.

• The parameters must not be write prohibited.

### (2) Applicable Tools

The following table lists the tools that you can use to clear the alarm history.

| Tool             | Fn No./Function Name                | Reference                                                                      |
|------------------|-------------------------------------|--------------------------------------------------------------------------------|
| Digital Operator | Fn006                               | Σ-7/Σ-X-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33) |
| SigmaWin+        | [Troubleshooting] – [Display Alarm] | (3) Operating Procedure on page 686                                            |


### (3) Operating Procedure

Use the following procedure to clear the alarm history.

1. Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.

The [Menu] window will be displayed.

2. Click [Display Alarm] in the [Troubleshooting] area.



The [Alarm Display] window will be displayed.

- 3. Click the [Alarm History] tab.
- 4. Click the [Clear] button.

The alarm history will be cleared.



This concludes the procedure to clear the alarm history.

If any option modules are attached to the SERVOPACK, the SERVOPACK detects the presence and models of the connected option modules. If it finds any errors, it outputs alarms.

You can delete those alarms with this operation.

Informatio

This operation is the only way to reset alarms for option modules. The alarms are not reset when you reset other alarms or when you turn OFF the power to the SERVOPACK.

Always remove the cause of an alarm before you reset the alarm.

### (1) Preparations

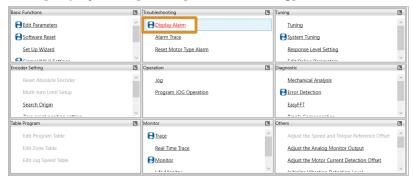
Always check the following before you clear an alarm detected in an option module.

• The parameters must not be write prohibited.

### (2) Applicable Tools

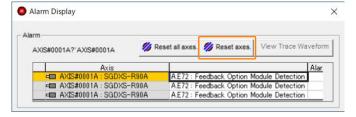
The following table lists the tools that you can use to reset option module configuration errors.

| Tool             | Fn No./Function Name                | Reference                                                                      |
|------------------|-------------------------------------|--------------------------------------------------------------------------------|
| Digital Operator | Fn014                               | Σ-7/Σ-X-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33) |
| SigmaWin+        | [Troubleshooting] – [Display Alarm] | (3) Operating Procedure on page 687                                            |


### (3) Operating Procedure

Use the following procedure to reset alarms detected in option modules.

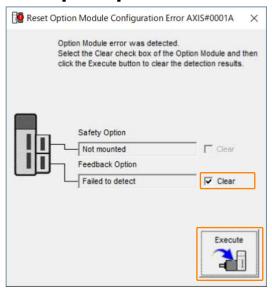
1. Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.


The [Menu] window will be displayed.

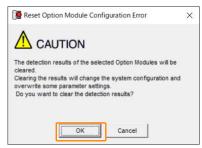
2. Click [Display Alarm] in the [Troubleshooting] area.



The [Alarm Display] window will be displayed.


Click the [Reset axes] button.




The [Reset Option Module Configuration Error] window will be displayed.

16

 Select the [Clear] check box for the option module for which to reset the alarm and then click the [Execute] button.



5. Read the precaution and then click the [OK] button.



6. Read the precaution and then click the [OK] button.



7. Turn the power to the SERVOPACK OFF and ON again.

This concludes the procedure to reset alarms detected in option modules.

### 16.2.7 Resetting Motor Type Alarms

The SERVOPACK automatically determines the type of servomotor that is connected to it. If the type of servomotor that is connected is changed, A.070 alarm (Motor Type Change Detected) will occur the next time the SERVOPACK is started. If an A.070 alarm occurs, you must set the parameters to match the new type of servomotor.

An A.070 alarm is reset by executing the Reset Motor Type Alarm utility function.



- This utility function is the only way to reset an A.070 alarm (Motor Type Change Detected). The errors are not reset when you reset alarms or turn OFF the power to the SERVOPACK.
- If an A.070 alarm occurs, first set the parameters according to the newly connected servomotor type and then execute the Reset Motor Type Alarm utility function.

### (1) Preparations

Always check the following before you reset a motor type alarm.

• The parameters must not be write prohibited.

### (2) Applicable Tools

The following table lists the tools that you can use to reset the motor type alarms.

| Tool             | Fn No./Function Name                         | Reference                                                                      |
|------------------|----------------------------------------------|--------------------------------------------------------------------------------|
| Digital Operator | Fn021                                        | Σ-7/Σ-X-Series Digital Operator Operating Manual (Manual No.: SIEP S800001 33) |
| SigmaWin+        | [Troubleshooting] - [Reset Motor Type Alarm] | (3) Operating Procedure on page 689                                            |

### (3) Operating Procedure

Use the following procedure to reset motor type alarm.

- 1. Click the [ ] button for the servo drive in the workspace of the Main Window of the SigmaWin+.
- 2. Click the [Reset Motor Type Alarm] in the [Menu] window.

The [Reset Motor Type Alarm] window will be displayed.

3. Click the [Reset] button.



4. Read the precaution and then click the [OK] button.



5. Read the precaution and then click the [OK] button.



6. Turn the power to the SERVOPACK OFF and ON again.

This concludes the procedure to reset motor type alarms.

### 16.3 Warning Displays

To check a warning that occurs in the SERVOPACK, use one of the following methods. Warnings are displayed to warn you before an alarm occurs.

| Panel display on SERVOPACK | If there is a warning, the code will be displayed one character at a time, as shown below.  Example: Alarm A.910  Status  Not lit.   Not lit. |  |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Digital operator           | The warning code is displayed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Statusword (6041h)         | Bit 7 (Warning) in the Statusword will change to 1. (Bit 7 is 0 during normal operation.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Error code (603Fh)         | A current warning code is stored in object 603Fh.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Emergency message          | The controller is notified of any warning that occurs. (Notification may not be possible if Ether-CAT communications are unstable.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |

If a warning occurs, eliminate the cause and then reset it with the SigmaWin+. Refer to the following section for the reset procedure.

(1) Resetting Alarms with the SigmaWin+ on page 683

This section provides a list of warnings and the causes of and corrections for warnings.

### 16.3.1 Warnings Table

The list of warnings gives the warning name and warning meaning in order of the warning numbers.

#### Note:

Use  $Pn008 = n.\Box X \Box \Box$  (Warning Detection Selection) to control warning detection. However, the following warnings are not affected by the setting of  $Pn008 = n.\Box X \Box \Box$  and other parameter settings are required in addition to  $Pn008 = n.\Box X \Box \Box$ .

| Warning Number | Parameters That Must Be Set to Select Warning Detection                                                                                                                 | Reference |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 911h           | Pn310 (2310h) = n.□□□X (Vibration Detection Selection)                                                                                                                  | 261       |
| 923h           | - (Not affected by the setting of Pn008 (2008h) = n.□X□□.)                                                                                                              | _         |
| 930h           | Pn008 (2008h) = n.□□□X (Low Battery Voltage Alarm/Warning Selection)                                                                                                    | 649       |
| 932h           | Pn0DD (20DDh) = n.□□□X (SigmaLINK II I/O Device Communications Check Mask)                                                                                              | 521       |
| 933h           | Pn0DD (20DDh) = n.□X□□ (SigmaLINK II I/O Device Status Check Mask)                                                                                                      | 521       |
| 971h           | Pn008 (2008h) = n. $\square\square X\square$ (Function Selection for Undervoltage)<br>(Not affected by the setting of Pn008 (2008h) = n. $\square X\square\square$ .)   | 230       |
| 9A0h           | Pn00D (200Dh) = n.X $\square\square\square$ (Overtravel Warning Detection Selection) (Not affected by the setting of Pn008 (2008h) = n. $\square$ X $\square\square$ .) | 181       |
| 9b0h           | Pn00F (200Fh) = n.□□□X (SERVOPACK Preventative Maintenance Warning Selection)                                                                                           | 470       |
| 9b1h           | Pn00F (200Fh) = n.□□X□ (Servomotor Preventative Maintenance Warning Selection)                                                                                          | 170       |

| Warning<br>Number | Warning Name                                     | Warning Meaning                                                                                                                                           |
|-------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 900h              | Position Deviation Overflow                      | The position deviation exceeded the percentage set with the following formula: (Pn520 (2520h) × Pn51E (251Eh)/100)                                        |
| 901h              | Position Deviation Overflow<br>Alarm at Servo ON | The position deviation when the servo was turned ON exceeded the percentage set with the following formula: $ (Pn526\ (2526h)\times Pn528\ (2528h)/100) $ |
| 905h              | Error Detection Warning                          | An error was detected in error detection.                                                                                                                 |

Continued on next page.

| Warning<br>Number | Warning Name                                                           | Warning Meaning                                                                                                                                                                                          |
|-------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 910h              | Overload                                                               | This warning occurs before an A.710 or A.720 alarm (overload) occurs. If the warning is ignored and operation is continued, an alarm may occur.                                                          |
| 911h              | Vibration                                                              | Abnormal vibration was detected during motor operation. The detection level is the same as A.520. Set whether to output an alarm or a warning by setting Pn310 (2310h) (Vibration Detection Selections). |
| 912h              | Internal Temperature Warning<br>1 (Control Board Temperature<br>Error) | The surrounding temperature of the control board is abnormal.                                                                                                                                            |
| 913h              | Internal Temperature Warning<br>2 (Power Board Temperature<br>Error)   | The surrounding temperature of the power board is abnormal.                                                                                                                                              |
| 920h              | Regenerative Overload                                                  | This warning occurs before an A.320 alarm (Regenerative Overload) occurs. If the warning is ignored and operation is continued, an alarm may occur.                                                      |
| 923h              | SERVOPACK Built- Fan<br>Stopped                                        | The fan inside the SERVOPACK stopped.                                                                                                                                                                    |
| 930h              | Absolute Encoder Battery<br>Error                                      | This warning occurs when the voltage of absolute encoder's battery is low.                                                                                                                               |
| 932h              | SigmaLINK II I/O Device Communications Warning                         | An error occurred in communications with the SigmaLINK II I/O device.                                                                                                                                    |
| 933h              | SigmaLINK II I/O Device Status Warning                                 | The SigmaLINK II I/O device detected an error.                                                                                                                                                           |
| 93bh              | Overheat Warning                                                       | The input voltage (temperature) of the overheat protection input (TH) signal exceeded the setting of Pn61C (261Ch) (Overheat Warning Level).                                                             |
| 942h              | Speed Ripple Compensation<br>Information Disagreement                  | The speed ripple compensation information stored in the encoder does not agree with the speed ripple compensation information stored in the SERVOPACK.                                                   |
| 971h              | Undervoltage                                                           | This warning occurs before an A.410 alarm (Undervoltage) occurs. If the warning is ignored and operation is continued, an alarm may occur.                                                               |
| 9A0h              | Overtravel                                                             | Overtravel was detected while the servo was ON.                                                                                                                                                          |
| 9b0h              | SERVOPACK Preventative Maintenance Warning                             | One of the consumable parts of the SERVOPACK has reached the end of its service life.                                                                                                                    |
| 9b1h              | Servomotor Preventative<br>Maintenance Warning                         | One of the consumable parts of the servomotor has reached the time when maintenance is needed.                                                                                                           |

### 16.3.2 Troubleshooting Warnings

The causes of and corrections for the warnings are given in the following table. Contact your Yaskawa representative if you cannot solve a problem with the correction given in the table.

### ◆ 900h:Position Deviation Overflow

| Possible Cause                                                                                                             | Confirmation                                                                                                                     | Correction                                                                                                                                | Reference |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The servomotor U, V, and W wiring is not correct.                                                                          | Check the wiring of the servomotor main circuit cables.                                                                          | Make sure that there are no faulty contacts in the wiring for the servomotor and encoder.                                                 | _         |
| A SERVOPACK gain is too low.                                                                                               | Check the SERVOPACK gains.                                                                                                       | Increase the servo gain, e.g., by using autotuning without a host reference.                                                              | 349       |
| The acceleration of the position reference is too high.                                                                    | Reduce the reference acceleration and try operating the SERVOPACK.                                                               | Reduce the acceleration of the position reference using an EtherCAT command.                                                              | _         |
| The excessive position deviation alarm level (Pn520 (2520h) × Pn51E (251Eh) /100) is too low for the operating conditions. | Check excessive position deviation alarm level (Pn520 (2520h) × Pn51E (251Eh) /100) to see if it is set to an appropriate value. | Optimize the setting of Pn520 (2520h) and Pn51E (251Eh).                                                                                  | 320       |
| A failure occurred in the SERVOPACK.                                                                                       | -                                                                                                                                | Turn the power to the SERVOPACK<br>OFF and ON again. If the alarm still<br>occurs, the SERVOPACK may be faulty.<br>Replace the SERVOPACK. | _         |

### ◆ 901h:Position Deviation Overflow Alarm at Servo ON

| Possible Cause                                                                                                                                  | Confirmation | Correction                                                                                     | Reference |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------|-----------|
| The position deviation when the servo was turned ON exceeded the percentage set with the following formula: (Pn526 (2526h) × Pn528 (2528h)/100) | -            | Optimize the setting of Pn528 (2528h) (Position Deviation Overflow Warning Level at Servo ON). | _         |

### ◆ 905h:Error Detection Warning

| Possible Cause                                                                                | Confirmation                                               | Correction                                                                                                                                                                            | Reference |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| A behavior was detected that differs greatly from the sample data in error detection tracing. | Check the error detection tracing waveform and error rate. | Check if an error has occurred on the equipment. Reconsider Pn5C4 (Error Detection Sample Data Set 1 Warning Level 1) and Pn5C5 (Error Detection Sample Data Set 1 Judgment Level 1). | -         |
| The correct sample data is not saved.                                                         | Check if the SigmaWin+ is Ver. 7.42 or higher.             | First upgrade to the SigmaWin+ Ver. 7.42 or higher, and then create the sample data again.                                                                                            | 473       |

### ♦ 910h:Overload

| Possible Cause                                                                                                   | Confirmation                                                                  | Correction                                                                     | Reference |
|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------|
| The wiring is not correct or there is a faulty connection in the motor or encoder wiring.                        | Check the wiring.                                                             | Make sure that the servomotor and encoder are correctly wired.                 | _         |
| Operation was performed that exceeded the overload protection characteristics.                                   | Check the motor overload characteristics and operation reference.             | Reconsider the load and operating conditions. Or, increase the motor capacity. | _         |
| An excessive load was applied during operation because the servomotor was not driven due to mechanical problems. | Check the operation reference and motor speed.                                | Remove the mechanical problem.                                                 | _         |
| The setting of Pn52B (252Bh) (Overload Warning Level) is not suitable.                                           | Check that the setting of Pn52B (252Bh) (Overload Warning Level) is suitable. | Set Pn52B (252Bh) (Overload Warning Level) to an appropriate value.            | 191       |
| A failure occurred in the SERVOPACK.                                                                             | -                                                                             | The SERVOPACK may be faulty. Replace the SERVOPACK.                            | _         |

### ♦ 911h:Vibration

| Possible Cause                                                                                                              | Confirmation                                                                                      | Correction                                                                              | Reference |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------|
| Abnormal vibration was detected during motor operation.                                                                     | Check for abnormal motor noise, and check the speed and torque waveforms during operation.        | Reduce the motor speed. Or, reduce the servo gain with custom tuning.                   | 370       |
| The setting of Pn103 (2103h) (Moment of Inertia Ratio) is greater than the actual moment of inertia or was greatly changed. | Check the moment of inertia ratio or mass ratio.                                                  | Set Pn103 (2103h) (Moment of Inertia Ratio) to an appropriate value.                    | 329       |
| The setting of Pn312 (2312h) or Pn384 (2384h) (Vibration Detection Level) is not suitable.                                  | Check that the setting of Pn312 (2312h) or Pn384 (2384h) (Vibration Detection Level) is suitable. | Set Pn312 (2312h) or Pn384 (2384h) (Vibration Detection Level) to an appropriate value. | 261       |

### ◆ 912h:Internal Temperature Warning 1 (Control Board Temperature Error) 913h:Internal Temperature Warning 2 (Power Board Temperature Error)

| Possible Cause                                                                                             | Confirmation                                                                                                                                                   | Correction                                                                                       | Reference |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------|
| The surrounding temperature is too high.                                                                   | Check the surrounding temperature using a thermometer. Or, check the operating status with the SERVOPACK installation environment monitor.                     | Decrease the surrounding temperature<br>by improving the SERVOPACK instal-<br>lation conditions. | 100       |
| An overload alarm was reset by turning OFF the power too many times.                                       | Check the alarm display to see if there is an overload alarm.                                                                                                  | Change the method for resetting the alarm.                                                       | _         |
| There was an excessive load or operation was performed that exceeded the regenerative processing capacity. | Check the load during operation with [Cumulative Load] and check the regenerative capacity with [Regenerative Load] on the operation monitor of the SigmaWin+. | Reconsider the load and operating conditions.                                                    | -         |
| The SERVOPACK installation orientation is not correct or there is insufficient space around the SERVOPACK. | Check the SERVOPACK installation conditions.                                                                                                                   | Install the SERVOPACK according to specifications.                                               | 97, 99    |
| A failure occurred in the SERVOPACK.                                                                       | _                                                                                                                                                              | The SERVOPACK may be faulty. Replace the SERVOPACK.                                              | _         |

### ♦ 920h:Regenerative Overload

| Possible Cause                                                                                                                                                    | Confirmation                                               | Correction                                                                                                                              | Reference |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The power supply voltage exceeded the specified range.                                                                                                            | Measure the power supply voltage.                          | Set the power supply voltage within the specified range.                                                                                | _         |
| There is insufficient external regenerative resistance, regenerative resistor capacity, or SERVOPACK capacity, or there has been a continuous regeneration state. | Check the operating conditions or the capacity.            | Change the regenerative resistance value, regenerative resistance capacity, or SERVOPACK capacity. Reconsider the operating conditions. |           |
| There was a continuous regeneration state because a negative load was continuously applied.                                                                       | Check the load applied to the servomotor during operation. | Reconsider the system including the servo, machine, and operating conditions.                                                           | _         |

### ◆ 923h:SERVOPACK Built- Fan Stopped

| Possible Cause | Confirmation                                   | Correction                                                                                                                | Reference |
|----------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------|
|                | Check for foreign matter inside the SERVOPACK. | Remove foreign matter from the SER-VOPACK. If the alarm still occurs, the SERVOPACK may be faulty. Replace the SERVOPACK. | _         |

### ◆ 930h:Absolute Encoder Battery Error

| Possible Cause                                                  | Confirmation                  | Correction                                          | Reference |
|-----------------------------------------------------------------|-------------------------------|-----------------------------------------------------|-----------|
| The battery connection is faulty or a battery is not connected. | Check the battery connection. | Correct the battery connection.                     | 128       |
| The battery voltage is lower than the specified value (2.7 V).  | Measure the battery voltage.  | Replace the battery.                                | 649       |
| A failure occurred in the SERVOPACK.                            | _                             | The SERVOPACK may be faulty. Replace the SERVOPACK. | _         |

### ◆ 932h:SigmaLINK II I/O Device Communications Warning

| Possible Cause                                                                                                                                                                                                    | Confirmation                              | Correction                                                                                                                                                                    | Reference |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| There is a faulty contact in the connector or the connector is not wired correctly for the encoder cable.                                                                                                         | Check the condition of the encoder cable. | Replace the encoder cable.                                                                                                                                                    | _         |
| There is a cable disconnection or short-circuit in the encoder. Or, the cable impedance is outside the specified values.                                                                                          | Check the condition of the encoder cable. | Use the encoder cable within the specified specifications.                                                                                                                    | _         |
| One of the following has occurred: corrosion caused by improper temperature, humidity, or gas, a short-circuit caused by entry of water drops or cutting oil, or faulty contact in connector caused by vibration. | Check the operating environment.          | Improve the operating environment, and replace the cable. If the alarm still occurs, replace the SERVOPACK.                                                                   | _         |
| A malfunction was caused by noise.                                                                                                                                                                                | _                                         | Correct the wiring around the encoder by separating the encoder cable from the servomotor main circuit cable or by grounding the encoder.                                     | _         |
| A failure occurred in the SERVOPACK.                                                                                                                                                                              | -                                         | If the alarm does not occur when the I/O device is connected to a different SER-VOPACK and the control power is supplied, the SERVOPACK may be faulty. Replace the SERVOPACK. | _         |

### ♦ 933h:SigmaLINK II I/O Device Status Warning

| Possible Cause                     | Confirmation                                                           | Correction                                                 | Reference |
|------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------|-----------|
| TThe I/O device detected a warning | Check the alarm code by reading the I/O device alarm in the SigmaWin+. | Take corrective action according to the I/O device manual. | _         |

### 93bh:Overheat Warning

| Possible Cause                                                                                                        | Confirmation                                                                         | Correction                                                                                                                                                                                                | Reference |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The surrounding temperature is too high.                                                                              | Check the surrounding temperature using a thermometer.                               | Lower the surrounding temperature by improving the installation conditions of the linear servomotor or the machine.                                                                                       | _         |
| Operation was performed under an excessive load.                                                                      | Check the load with the [Cumulative Load] on the operation monitor of the SigmaWin+. | Reconsider the load and operating conditions.                                                                                                                                                             | _         |
| A failure occurred in the SERVOPACK.                                                                                  | -                                                                                    | The SERVOPACK may be faulty. Replace the SERVOPACK.                                                                                                                                                       | _         |
| The temperature detection circuit in the linear servomotor is faulty or the sensor attached to the machine is faulty. | _                                                                                    | The temperature detection circuit in the linear servomotor may be faulty or the sensor attached to the machine may be faulty. Replace the linear servomotor or repair the sensor attached to the machine. | -         |

## Maintenance

16

### ◆ 942h:Speed Ripple Compensation Information Disagreement

| Possible Cause                                                                                                                                         | Confirmation | Correction                                                                                                                                                                                   | Reference |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The speed ripple compensation information stored in the encoder does not agree with the speed ripple compensation information stored in the SERVOPACK. | _            | Reset the speed ripple compensation value on the SigmaWin+.                                                                                                                                  | 390       |
| The speed ripple compensation information stored in the encoder does not agree with the speed ripple compensation information stored in the SERVOPACK. | _            | Set Pn423 to n.□□□2 (execute speed ripple compensation using the default adjustment value). However, changing this setting may increase the speed ripple when using a Σ-X rotary servomotor. | 390       |
| The speed ripple compensation information stored in the encoder does not agree with the speed ripple compensation information stored in the SERVOPACK. | _            | Set Pn423 to n. □□1□ (do not detect A.942 alarms). However, changing this setting may increase the speed ripple.                                                                             | 390       |
| The speed ripple compensation information stored in the encoder does not agree with the speed ripple compensation information stored in the SERVOPACK. | _            | Set Pn423 to n. □□□0 (disable speed ripple compensation). However, changing this setting may increase the speed ripple.                                                                      | 390       |

### ♦ 971h:Undervoltage

| •                                                                       |                                   |                                                                                                                  |           |
|-------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------|-----------|
| Possible Cause                                                          | Confirmation                      | Correction                                                                                                       | Reference |
| For a 200-V SERVOPACK, the AC power supply voltage dropped below 140 V. | Measure the power supply voltage. | Set the power supply voltage within the specified range.                                                         | _         |
| The power supply voltage dropped during operation.                      | Measure the power supply voltage. | Increase the power supply capacity.                                                                              | _         |
| A momentary power interruption occurred.                                | Measure the power supply voltage. | If you have changed the setting of Pn509 (2509h) (Momentary Power Interruption Hold Time), decrease the setting. | 229       |
| The SERVOPACK fuse is blown out.                                        | -                                 | Replace the SERVOPACK and connect a reactor.                                                                     | 125       |
| A failure occurred in the SERVOPACK.                                    | _                                 | The SERVOPACK may be faulty. Replace the SERVOPACK.                                                              | _         |

### ♦ 9A0h:Overtravel

| Possible Cause                                  | Confirmation                                                            | Correction                                                                                                                                                                                                                                                                           | Reference |
|-------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Overtravel was detected while the servo was ON. | Check the status of the overtravel signals on the input signal monitor. | Even if an overtravel signal is not shown by the input signal monitor, momentary overtravel may have been detected. Take the following precautions.  • Do not specify movements that would cause overtravel from the host controller.  • Check the wiring of the overtravel signals. | 181       |

### ◆ 9b0h:SERVOPACK Preventative Maintenance Warning

| Possible Cause                                                                        | Confirmation | Correction                                                             | Reference |
|---------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------|-----------|
| One of the consumable parts of the SERVOPACK has reached the end of its service life. |              | Replace the part. Contact your Yaskawa representative for replacement. | 470       |

### ◆ 9b1h:Servomotor Preventative Maintenance Warning

| Possible Cause                                                                                 | Confirmation | Correction                                                             | Reference |
|------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------|-----------|
| One of the consumable parts of the servomotor has reached the time when maintenance is needed. |              | Replace the part. Contact your Yaskawa representative for replacement. | 470       |

### 16.4 Troubleshooting Based on the Operation and Conditions of the Servomotor

This section provides troubleshooting based on the operation and conditions of the servomotor, including causes and corrections.

### 16.4.1 Servomotor Does Not Start

| Possible Cause                                                                                                                  | Confirmation                                                                                                                                                  | Correction                                                                                                                                                     | Reference |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The control power is not turned ON.                                                                                             | Measure the voltage between control power supply terminals.                                                                                                   | Turn OFF the power to the servo system.  Correct the wiring so that the control power is turned ON.                                                            | _         |
| The main circuit power is not turned ON.                                                                                        | Measure the voltage between the main circuit power input terminals.                                                                                           | Turn OFF the power to the servo system.  Correct the wiring so that the main circuit power is turned ON.                                                       | 1         |
| The I/O signal connector (CN1) pins are not wired correctly or are disconnected.                                                | Turn OFF the power to the servo system. Check the wiring condition of the I/O signal connector (CN1) pins.                                                    | Correct the wiring of the I/O signal connector (CN1) pins.                                                                                                     | 137,459   |
| The wiring servomotor main circuit cables or encoder cable is disconnected.                                                     | Check the wiring conditions.                                                                                                                                  | Turn OFF the power to the servo system. Wire the cable correctly.                                                                                              | _         |
| There is an overload on the servomotor.                                                                                         | Operate the servomotor with no load and check the load status.                                                                                                | Turn OFF the power to the servo system.<br>Reduce the load or replace the servomotor with a servomotor with a larger capacity.                                 | _         |
| The type of encoder that is being used does not agree with the setting of Pn002 $(2002h) = n.\Box X \Box \Box$ (Encoder Usage). | Check the type of the encoder that is being used and the setting of Pn002 $(2002h) = n.\Box X \Box \Box$ .                                                    | Set Pn002 (2002h) = n. $\square X \square \square$ according to the type of the encoder that is being used.                                                    | 246       |
| There is a mistake in the input signal allocations.                                                                             | Check the allocations of the input signals.  • Pn50A (250Ah), Pn50B (250Bh), Pn511 (2511h), Pn516 (2516h) or  • Pn50A (250Ah), Pn590 (2590h) to Pn599 (2599h) | Correctly allocate the input signals.                                                                                                                          | 216,459   |
| The Servo ON command (Enable Operation command) was not sent.                                                                   | Make sure the Servo ON command (Enable Operation command) is set to "Operation enabled".                                                                      | Set the correct value for the Servo ON command (Enable Operation command).                                                                                     | -         |
| The torque limit reference is too small.                                                                                        | Check the torque limit reference.                                                                                                                             | Increase the torque limit reference.                                                                                                                           | _         |
| The operation mode is not set.                                                                                                  | Check to see if the operation mode (6060h) is set.                                                                                                            | Set the operation mode (6060h) correctly.                                                                                                                      | _         |
| A software limit is active.                                                                                                     | Check to see if the target position exceeds a software limit.                                                                                                 | Specify a target position that is within the software limits.                                                                                                  | _         |
| EtherCAT communications are not established.                                                                                    | Check to see if the EtherCAT indicator shows the Operational state.                                                                                           | Place the EtherCAT communications in the Operational state.                                                                                                    | -         |
| The P-OT (Forward Drive Prohibit<br>Input) or N-OT (Reverse Drive Prohibit<br>Input) signal is still OFF.                       | Check the P-OT and N-OT signals.                                                                                                                              | Turn ON the P-OT and N-OT signals.                                                                                                                             | 459       |
| The safety input signals (/HWBB1 or /HWBB2) are still OFF.                                                                      | Check the /HWBB1 and /HWBB2 input signals.                                                                                                                    | Turn ON the /HWBB1 and /HWBB2 input signals.  If you are not using the safety function, connect the safety jumper connector (provided as an accessory) to CN8. | 459       |
|                                                                                                                                 |                                                                                                                                                               |                                                                                                                                                                |           |

Continued on next page.

Continued from previous page.

| Possible Cause                                    | Confirmation                                                             | Correction                                                                                                                                                                                               | Reference |
|---------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The FSTP (Forced Stop Input) signal is still OFF. | Check the FSTP signal.                                                   | Turn ON the FSTP signal.  If you will not use the function to force the motor to stop, set Pn516 (2516h) = n.□□□X (FSTP (Forced Stop Input) Signal Allocation) to disable the signal.                    | 459       |
| A failure occurred in the SERVOPACK.              | _                                                                        | Turn OFF the power to the servo system. Replace the SERVOPACK.                                                                                                                                           | _         |
| The polarity detection was not executed.          | Check the setting of Pn080 (2080h) = n.□□□X (Polarity Sensor Selection). | Correct the parameter setting.                                                                                                                                                                           | 174       |
|                                                   | Check the inputs to the Servo ON command (Enable Operation command).     | If you are using an incremental linear encoder, send the Servo ON command (Enable Operation command) from the host controller.  If you are using an absolute linear encoder, execute polarity detection. | 175       |

### 16.4.2 Servomotor Moves Instantaneously, and Then Stops

| Possible Cause                                                                                                     | Confirmation                                                                                                             | Correction                                                                                                                                | Reference |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| There is a mistake in the servomotor wiring.                                                                       | Turn OFF the power to the servo system. Check the wiring.                                                                | Wire the cable correctly.                                                                                                                 | _         |
| There is a mistake in the wiring of the encoder or serial converter unit.                                          | Turn OFF the power to the servo system. Check the wiring.                                                                | Wire the cable correctly.                                                                                                                 | _         |
| There is a mistake in the linear encoder wiring.                                                                   | Turn OFF the power to the servo system. Check the wiring.                                                                | Wire the cable correctly.                                                                                                                 | _         |
| The setting of Pn282 (2282h) (Linear Encoder Scale Pitch) is not correct.                                          | Check the setting of Pn282 (2282h).                                                                                      | Correct the setting of Pn282 (2282h).                                                                                                     | 167       |
| The count-up direction of the linear encoder does not match the forward direction of the moving coil in the motor. | Check the directions.                                                                                                    | Change the setting of Pn080 (2080h) = n.□□X□ (Motor Phase Sequence Selection).  Place the linear encoder and motor in the same direction. | 172       |
| Polarity detection was not performed correctly.                                                                    | Check to see if electrical angle 2 (electrical angle from polarity origin) at any position is between $\pm 10^{\circ}$ . | Correct the settings for the polarity detection-related parameters.                                                                       | _         |

### 16.4.3 Servomotor Speed Is Unstable

| Possible Cause                                              | Confirmation                                                                                                                                                                           | Correction                                                        | Reference |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------|
| There is a faulty connection in the servo-<br>motor wiring. | The connector connections for the power line (U, V, and W phases) and the encoder or serial converter unit may be unstable.  Turn OFF the power to the servo system. Check the wiring. | Tighten any loose terminals or connectors and correct the wiring. | -         |

### 16.4.4 Servomotor Moves without a Reference Input

| Possible Cause                                                                                                     | Confirmation                                                                                                             | Correction                                                                                                                                   | Reference |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| A failure occurred in the SERVOPACK.                                                                               | _                                                                                                                        | Turn OFF the power to the servo system. Replace the SERVOPACK.                                                                               | _         |
| The count-up direction of the linear encoder does not match the forward direction of the moving coil in the motor. | Check the directions.                                                                                                    | Change the setting of Pn080 (2080h) = n.□□X□ (Motor Phase Sequence Selection).  Match the linear encoder direction and servomotor direction. | 172       |
| Polarity detection was not performed correctly.                                                                    | Check to see if electrical angle 2 (electrical angle from polarity origin) at any position is between $\pm 10^{\circ}$ . | Correct the settings for the polarity detection-related parameters.                                                                          | _         |

### 16.4.5 Dynamic Brake Does Not Operate

| Possible Cause                                                                                                    | Confirmation                                                                                                                                                                                                         | Correction                                                                                                                  | Reference |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------|
| The setting of Pn001 (2001h) = n.  □□□X (Motor Stopping Method for Servo OFF and Group 1 Alarms) is not suitable. | Check the setting of Pn001 (2001h) = $n.\Box\Box X$ .                                                                                                                                                                | Correct the setting of Pn001 (2001h) = $n.\Box\Box X$ .                                                                     | _         |
| The dynamic brake resistor is disconnected.                                                                       | Check the moment of inertia, motor speed, and dynamic brake frequency of use. If the moment of inertia, motor speed, or dynamic brake frequency of use is excessive, the dynamic brake resistor may be disconnected. | Turn OFF the power to the servo system. Replace the SERVOPACK. To prevent disconnection, reduce the load.                   | _         |
| There was a failure in the dynamic brake drive circuit.                                                           | _                                                                                                                                                                                                                    | There is a defective component in the dynamic brake circuit. Turn OFF the power to the servo system. Replace the SERVOPACK. | _         |

### 16.4.6 Abnormal Noise from Servomotor

| Possible Cause                                                                                            | Confirmation                                                                                   | Correction                                                                                                                                                                                                                                                                                                                                                            | Reference |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The servomotor vibrated considerably while performing the tuning-less function with the default settings. | Check the waveform of the motor speed.                                                         | Reduce the load so that the load moment of inertia ratio or mass ratio is within the allowable value, or increase the load level or reduce the response level in the tuning-less level settings.  If the situation is not improved, set Pn170 (2170h) = n. □ □ □ 0 (disable the tuning-less function) and execute autotuning either with or without a host reference. | 324       |
| The machine mounting is not secure.                                                                       | Turn OFF the power to the servo system. Check the servomotor installation.                     | Tighten the mounting screws.                                                                                                                                                                                                                                                                                                                                          | _         |
|                                                                                                           | Turn OFF the power to the servo system. Check to see if there is misalignment in the coupling. | Align the coupling.                                                                                                                                                                                                                                                                                                                                                   | _         |
|                                                                                                           | Turn OFF the power to the servo system. Check to see if the coupling is balanced.              | Balance the coupling.                                                                                                                                                                                                                                                                                                                                                 | _         |

Continued on next page.

Continued from previous page.

| Possible Cause                                                                                                        | Confirmation                                                                                                                                                                                                                                                                         | Correction                                                                                                                                                                                                                                     | Reference |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Possible Cause                                                                                                        | Commitmation                                                                                                                                                                                                                                                                         | Correction                                                                                                                                                                                                                                     | Reference |
| The bearings are defective.                                                                                           | Turn OFF the power to the servo system.<br>Check for noise and vibration around the<br>bearings.                                                                                                                                                                                     | Replace the servomotor.                                                                                                                                                                                                                        | _         |
|                                                                                                                       | Turn OFF the power to the servo system.                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                |           |
| There is a vibration source at the driven machine.                                                                    | Check for any foreign matter, damage, or deformation in the machine's moving parts.                                                                                                                                                                                                  | Consult with the machine manufacturer.                                                                                                                                                                                                         | _         |
| Noise interference occurred because of incorrect I/O signal cable specifications.                                     | Turn OFF the power to the servo system. Check the I/O signal cables to see if they satisfy specifications. Use a shielded twisted-pair wire cable or a screened twisted-pair cable with conductors of at least 0.12 mm <sup>2</sup> .                                                | Use cables that satisfy the specifications.                                                                                                                                                                                                    | -         |
| Noise interference occurred because an I/O signal cable is too long.                                                  | Turn OFF the power to the servo system.<br>Check the lengths of the I/O signal<br>cables.                                                                                                                                                                                            | The I/O signal cables must be no longer than 3 m.                                                                                                                                                                                              | _         |
| Noise interference occurred because of incorrect encoder cable specifications.                                        | Turn OFF the power to the servo system. Check the encoder cable to see if it satisfies specifications. Use a shielded twisted-pair wire cable or a screened twisted-pair cable with conductors of at least 0.12 mm <sup>2</sup> .                                                    | Use cables that satisfy the specifications.                                                                                                                                                                                                    | -         |
| Noise interference occurred because the encoder cable is too long.                                                    | Turn OFF the power to the servo system.  Check the length of the encoder cable.                                                                                                                                                                                                      | Rotary servomotors: The encoder cable length must be 50 m max.  Linear servomotors: Make sure that the serial converter unit cable is no longer than 20 m and that the linear encoder cable and the sensor cable are no longer than 15 m each. | -         |
| Noise interference occurred because the encoder cable is damaged.                                                     | Turn OFF the power to the servo system.<br>Check the encoder cable to see if it is<br>pinched or the sheath is damaged.                                                                                                                                                              | Replace the encoder cable and correct the cable installation environment.                                                                                                                                                                      | _         |
| The encoder cable was subjected to excessive noise interference.                                                      | Turn OFF the power to the servo system.<br>Check to see if the encoder cable is<br>bundled with a power line or installed<br>near a power line.                                                                                                                                      | Correct the cable layout so that no surge is applied by power line.                                                                                                                                                                            | _         |
| There is variation in the FG potential because of the influence of machines on the servomotor side, such as a welder. | Turn OFF the power to the servo system.<br>Check to see if the machines are correctly grounded.                                                                                                                                                                                      | Properly ground the machines to separate them from the FG of the encoder.                                                                                                                                                                      | _         |
| There is a SERVOPACK pulse counting error due to noise.                                                               | Check to see if there is noise interference on the signal line from the encoder.                                                                                                                                                                                                     | Turn OFF the power to the servo system.<br>Implement countermeasures against<br>noise for the encoder wiring.                                                                                                                                  | _         |
| The encoder was subjected to excessive vibration or shock.                                                            | Turn OFF the power to the servo system. Check to see if vibration from the machine occurred. Check the servomotor installation (mounting surface precision, securing state, and alignment).  Check the linear encoder installation (mounting surface precision and securing method). | Reduce machine vibration. Improve the mounting state of the servomotor or linear encoder.                                                                                                                                                      | -         |
| A failure occurred in the encoder.                                                                                    | -                                                                                                                                                                                                                                                                                    | Turn OFF the power to the servo system. Replace the servomotor.                                                                                                                                                                                | _         |
| A failure occurred in the serial converter unit.                                                                      | -                                                                                                                                                                                                                                                                                    | Turn OFF the power to the servo system. Replace the serial converter unit.                                                                                                                                                                     | _         |
| A failure occurred in the linear encoder.                                                                             | _                                                                                                                                                                                                                                                                                    | Turn OFF the power to the servo system.<br>Replace the linear encoder.                                                                                                                                                                         | _         |

### 16.4.7 Servomotor Vibrates at Frequency of Approx. 200 to 400 Hz.

| Possible Cause                                                                       | Confirmation                                                                                                 | Correction                                                                     | Reference |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------|
| The servo gains are not balanced.                                                    | Check to see if the servo gains have been correctly tuned.                                                   | Perform autotuning without a host reference.                                   | 349       |
| The setting of Pn100 (2100h) (Speed Loop Gain) is too high.                          | Check the setting of Pn100 (2100h) (Speed Loop Gain). The default setting is Kv = 40.0 Hz.                   | Set Pn100 (2100h) (Speed Loop Gain) to an appropriate value.                   | _         |
| The setting of Pn102 (2102h) (Position Loop Gain) is too high.                       | Check the setting of Pn102 (2102h) (Position Loop Gain). The default setting is Kp = 40.0/s.                 | Set Pn102 (2102h) (Position Loop Gain) to an appropriate value.                | _         |
| The setting of Pn101 (2101h) (Speed Loop Integral Time Constant) is not appropriate. | Check the setting of Pn101 (2101h) (Speed Loop Integral Time Constant). The default setting is Ti = 20.0 ms. | Set Pn101 (2101h) (Speed Loop Integral Time Constant) to an appropriate value. | _         |
| The setting of Pn103 (2103h) (Moment of Inertia Ratio) is not appropriate.           | Check the setting of Pn103 (2103h) (Moment of Inertia Ratio).                                                | Set Pn103 (2103h) (Moment of Inertia<br>Ratio) to an appropriate value.        | _         |

### 16.4.8 Large Motor Speed on Starting and Stopping

| Possible Cause                                                                                                   | Confirmation                                                                                                 | Correction                                                                                                   | Reference |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------|
| The servo gains are not balanced.                                                                                | Check to see if the servo gains have been correctly tuned.                                                   | Perform autotuning without a host reference.                                                                 | 349       |
| The setting of Pn100 (2100h) (Speed Loop Gain) is too high.                                                      | Check the setting of Pn100 (2100h) (Speed Loop Gain). The default setting is Kv = 40.0 Hz.                   | Set Pn100 (2100h) (Speed Loop Gain) to an appropriate value.                                                 | _         |
| The setting of Pn102 (2102h) (Position Loop Gain) is too high.                                                   | Check the setting of Pn102 (2102h) (Position Loop Gain). The default setting is Kp = 40.0/s.                 | Set Pn102 (2102h) (Position Loop Gain) to an appropriate value.                                              | _         |
| The setting of Pn101 (2101h) (Speed Loop Integral Time Constant) is not appropriate.                             | Check the setting of Pn101 (2101h) (Speed Loop Integral Time Constant). The default setting is Ti = 20.0 ms. | Set Pn101 (2101h) (Speed Loop Integral Time Constant) to an appropriate value.                               | _         |
| The setting of Pn103 (2103h) (Moment of Inertia Ratio) is not appropriate.                                       | Check the setting of Pn103 (2103h) (Moment of Inertia Ratio).                                                | Set Pn103 (2103h) (Moment of Inertia Ratio) to an appropriate value.                                         | _         |
| The torque reference is saturated.                                                                               | Check the waveform of the torque reference.                                                                  | Use the mode switching.                                                                                      | _         |
| Pn483 (2483h) (Forward Force Limit)<br>and Pn484 (2484h) (Reverse Force<br>Limit) are set to the default values. | Force limits: Default settings<br>Pn483 (2483h) = 30%<br>Pn484 (2484h) = 30%                                 | Set Pn483 (2483h) (Forward Force<br>Limit) and Pn484 (2484h) (Reverse<br>Force Limit) to appropriate values. | 241       |

# 16.4.9 Absolute Encoder Position Deviation Error (The position that was saved in the host controller when the power was turned OFF is different from the position when the power was next turned ON.)

| Possible Cause                                                                                                        | Confirmation                                                                                                                                                                                                                                                                        | Correction                                                                                                                                                                                                                                     | Reference |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Noise interference occurred because of incorrect encoder cable specifications.                                        | Turn OFF the power to the servo system. Check the encoder cable to see if it satisfies specifications. Use a shielded twisted-pair wire cable or a screened twisted-pair cable with conductors of at least 0.12 mm <sup>2</sup> .                                                   | Use cables that satisfy the specifications.                                                                                                                                                                                                    | -         |
| Noise interference occurred because the encoder cable is too long.                                                    | Turn OFF the power to the servo system.  Check the length of the encoder cable.                                                                                                                                                                                                     | Rotary servomotors: The encoder cable length must be 50 m max.  Linear servomotors: Make sure that the serial converter unit cable is no longer than 20 m and that the linear encoder cable and the sensor cable are no longer than 15 m each. | -         |
| Noise interference occurred because the encoder cable is damaged.                                                     | Turn OFF the power to the servo system.<br>Check the encoder cable to see if it is<br>pinched or the sheath is damaged.                                                                                                                                                             | Replace the encoder cable and correct the cable installation environment.                                                                                                                                                                      | _         |
| The encoder cable was subjected to excessive noise interference.                                                      | Turn OFF the power to the servo system.<br>Check to see if the encoder cable is<br>bundled with a power line or installed<br>near a power line.                                                                                                                                     | Correct the cable layout so that no surge is applied by power line.                                                                                                                                                                            | _         |
| There is variation in the FG potential because of the influence of machines on the servomotor side, such as a welder. | Turn OFF the power to the servo system. Check to see if the machines are correctly grounded.                                                                                                                                                                                        | Properly ground the machines to separate them from the FG of the encoder.                                                                                                                                                                      | _         |
| There is a SERVOPACK pulse counting error due to noise.                                                               | Turn OFF the power to the servo system.<br>Check to see if there is noise interference on the signal line from the encoder or serial converter unit.                                                                                                                                | Implement countermeasures against noise for the encoder or serial converter unit wiring.                                                                                                                                                       | _         |
| The encoder was subjected to excessive vibration or shock.                                                            | Turn OFF the power to the servo system. Check to see if vibration from the machine occurred. Check the servomotor installation (mounting surface precision, securing state, and alignment). Check the linear encoder installation (mounting surface precision and securing method). | Reduce machine vibration. Improve the mounting state of the servomotor or linear encoder.                                                                                                                                                      | _         |
| A failure occurred in the encoder.                                                                                    | _                                                                                                                                                                                                                                                                                   | Turn OFF the power to the servo system.<br>Replace the servomotor or linear<br>encoder.                                                                                                                                                        | _         |
| A failure occurred in the SERVOPACK.                                                                                  | -                                                                                                                                                                                                                                                                                   | Turn OFF the power to the servo system. Replace the SERVOPACK.                                                                                                                                                                                 | _         |
|                                                                                                                       | Check the error detection section of the host controller.                                                                                                                                                                                                                           | Correct the error detection section of the host controller.                                                                                                                                                                                    | _         |
| Host controller multiturn data or absolute encoder position data reading error                                        | Check to see if the host controller is executing data parity checks.                                                                                                                                                                                                                | Perform parity checks for the multiturn data or absolute encoder position data.                                                                                                                                                                | _         |
|                                                                                                                       | Check for noise interference in the cable between the SERVOPACK and the host controller.                                                                                                                                                                                            | Implement countermeasures against noise and then perform parity checks again for the multiturn data or absolute encoder position data.                                                                                                         | _         |

16

### 16.4.10 Overtravel Occurred

| Possible Cause                                                                                     | Confirmation                                                                                                                                                                                                                                                                                                                                        | Correction                                                                                                                                                                       | Reference |  |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
|                                                                                                    | Check the external power supply (+24 V) voltage for the input signals.                                                                                                                                                                                                                                                                              | Correct the external power supply (+24 V) voltage for the input signals.                                                                                                         | _         |  |
| The DOTALOT (Femuland Drive Due                                                                    | Check the operating condition of the overtravel limit switches.                                                                                                                                                                                                                                                                                     | Make sure that the overtravel limit switches operate correctly.                                                                                                                  | _         |  |
| The P-OT/N-OT (Forward Drive Prohibit Input or Reverse Drive Prohibit Input) signal was input.     | Check the wiring of the overtravel limit switches.                                                                                                                                                                                                                                                                                                  | Correct the wiring of the overtravel limit switches.                                                                                                                             | 178       |  |
|                                                                                                    | Check the settings of the overtravel input signal allocation (Pn50A (250Ah)/Pn50B (250Bh) or Pn590 (2590h)/Pn50B (250Bh)).                                                                                                                                                                                                                          | Set the parameters to correct values.                                                                                                                                            | 178       |  |
|                                                                                                    | Check for fluctuation in the external power supply (+24 V) voltage for the input signals.                                                                                                                                                                                                                                                           | Eliminate fluctuation from the external power supply (+24 V) voltage for the input signals.                                                                                      | _         |  |
| The P-OT/N-OT (Forward Drive Prohibit Input or Reverse Drive Prohibit Input) signal malfunctioned. | Check to see if the operation of the over-travel limit switches is unstable.                                                                                                                                                                                                                                                                        | Stabilize the operating condition of the overtravel limit switches.                                                                                                              | _         |  |
| mput) signai manunctioned.                                                                         | Check the wiring of the overtravel limit switches (e.g., check for cable damage and loose screws).                                                                                                                                                                                                                                                  | Correct the wiring of the overtravel limit switches.                                                                                                                             | _         |  |
| There is a mistake in the allocation of                                                            | Check if the SERVOPACK is configured in one of the following ways:  • Pn50A (250Ah) = n.□□□1 (use Sigma-7S-compatible I/O signal allocations) and the P-OT signal is allocated to CN1 with Pn50A (250Ah) = n.X□□□.  • Pn50A (250Ah) = n.□□□2 (use SigmaLINK II input signal allocation) and the P-OT signal is allocated to CN1 with Pn590 (2590h). | owing ways:  h) = n. \pi \pi 1 (use inpatible I/O signal allone P-OT signal is allowith Pn50A (250Ah) =  h) = n. \pi \pi 2 (use Signut signal allocation) signal is allocated to |           |  |
| the P-OT/N-OT (Forward Drive Prohibit Input or Reverse Drive Prohibit Input).                      | Check if the SERVOPACK is configured in one of the following ways:  Pn50A (250Ah) = n.□□□1 (use Sigma-7S-compatible I/O signal allocations) and the N-OT signal is allocated to CN1 with Pn50B (250Bh) = n.□□□X.  Pn50A (250Ah) = n.□□□2 (use SigmaLINK II input signal allocation) and the N-OT signal is allocated to CN1 with Pn591 (2591h).     | Set the parameters to correct values.                                                                                                                                            | 178       |  |
| The selection of the servomotor stopping                                                           | Check the servo OFF stopping method set in Pn001 (2001h) = n. $\square\square\square X$ or Pn001 (2001h) = n. $\square\square X\square$ .                                                                                                                                                                                                           | Select a servomotor stopping method other than coasting to a stop.                                                                                                               | 179       |  |
| method is not correct.                                                                             | Check the torque control stopping method set in Pn001 (2001h) = $n.\Box\Box X$ or Pn001 (2001h) = $n.\Box\Box X\Box$ .                                                                                                                                                                                                                              | Select a servomotor stopping method other than coasting to a stop.                                                                                                               |           |  |

### 16.4.11 Improper Stop Position for Overtravel (OT) Signal

| Possible Cause                                                               | Confirmation | Correction                                                       | Reference |
|------------------------------------------------------------------------------|--------------|------------------------------------------------------------------|-----------|
| The limit switch position and dog length are not appropriate.                | _            | Install the limit switch at the appropriate position.            | _         |
| The overtravel limit switch position is too close for the coasting distance. | _            | Install the overtravel limit switch at the appropriate position. | _         |

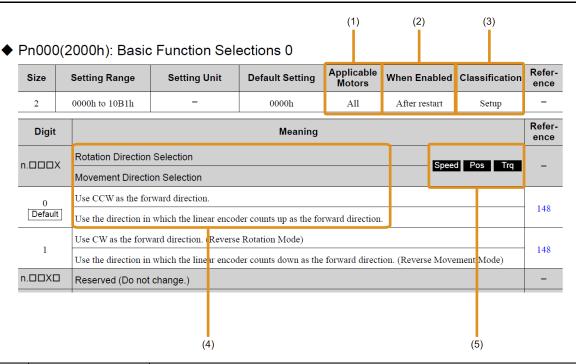
### 16.4.12 Position Deviation (without Alarm)

| Possible Cause                                                                                                        | Confirmation                                                                                                                                                                                                                                                                        | Correction                                                                                                                                                                                                                                     | Reference |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Noise interference occurred because of incorrect encoder cable specifications.                                        | Turn OFF the power to the servo system. Check the encoder cable to see if it satisfies specifications. Use a shielded twisted-pair wire cable or a screened twisted-pair cable with conductors of at least 0.12 mm <sup>2</sup> .                                                   | Use cables that satisfy the specifications.                                                                                                                                                                                                    | -         |
| Noise interference occurred because the encoder cable is too long.                                                    | Turn OFF the power to the servo system.  Check the length of the encoder cable.                                                                                                                                                                                                     | Rotary servomotors: The encoder cable length must be 50 m max.  Linear servomotors: Make sure that the serial converter unit cable is no longer than 20 m and that the linear encoder cable and the sensor cable are no longer than 15 m each. | ı         |
| Noise interference occurred because the encoder cable is damaged.                                                     | Turn OFF the power to the servo system. Check the encoder cable to see if it is pinched or the sheath is damaged.                                                                                                                                                                   | Replace the encoder cable and correct the cable installation environment.                                                                                                                                                                      |           |
| The encoder cable was subjected to excessive noise interference.                                                      | Turn OFF the power to the servo system.<br>Check to see if the encoder cable is<br>bundled with a power line or installed<br>near a power line.                                                                                                                                     | Correct the cable layout so that no surge is applied by power line.                                                                                                                                                                            | ı         |
| There is variation in the FG potential because of the influence of machines on the servomotor side, such as a welder. | Turn OFF the power to the servo system.<br>Check to see if the machines are correctly grounded.                                                                                                                                                                                     | Properly ground the machines to separate them from the FG of the encoder.                                                                                                                                                                      | -         |
| There is a SERVOPACK pulse counting error due to noise.                                                               | Turn OFF the power to the servo system. Check to see if there is noise interference on the signal line from the encoder or serial converter unit.                                                                                                                                   | Implement countermeasures against noise for the encoder wiring or serial converter unit wiring.                                                                                                                                                | _         |
| The encoder was subjected to excessive vibration or shock.                                                            | Turn OFF the power to the servo system. Check to see if vibration from the machine occurred. Check the servomotor installation (mounting surface precision, securing state, and alignment). Check the linear encoder installation (mounting surface precision and securing method). | Reduce machine vibration. Improve the mounting state of the servomotor or linear encoder.                                                                                                                                                      | -         |
| The coupling between the machine and servomotor not suitable.                                                         | Turn OFF the power to the servo system. Check to see if position offset occurs at the coupling between machine and servomotor.                                                                                                                                                      | Correctly secure the coupling between the machine and servomotor.                                                                                                                                                                              | _         |
| Noise interference occurred because of incorrect I/O signal cable specifications.                                     | Turn OFF the power to the servo system. Check the I/O signal cables to see if they satisfy specifications. Use a shielded twisted-pair wire cable or a screened twisted-pair cable with conductors of at least 0.12 mm <sup>2</sup> .                                               | Use cables that satisfy the specifications.                                                                                                                                                                                                    | -         |
| Noise interference occurred because an I/O signal cable is too long.                                                  | Turn OFF the power to the servo system.<br>Check the lengths of the I/O signal<br>cables.                                                                                                                                                                                           | The I/O signal cables must be no longer than 3 m.                                                                                                                                                                                              | _         |
| An encoder fault occurred. (The pulse count does not change.)                                                         | _                                                                                                                                                                                                                                                                                   | Turn OFF the power to the servo system.<br>Replace the servomotor or linear<br>encoder.                                                                                                                                                        | _         |
| A failure occurred in the SERVOPACK.                                                                                  | _                                                                                                                                                                                                                                                                                   | Turn OFF the power to the servo system. Replace the SERVOPACK.                                                                                                                                                                                 | _         |

# Maintenand

### 16.4.13 Servomotor Overheated

| Possible Cause                                  | Confirmation                                                                                                             | Correction                                                                                                                                   | Reference |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The surrounding temperature is too high.        | Measure the surrounding temperature around the servomotor.                                                               | Reduce the surrounding temperature to 40°C or less.                                                                                          | _         |
| The surface of the servomotor is dirty.         | of the servomotor is dirty.  Turn OFF the power to the servo system. Visually check the surface for dirt.                |                                                                                                                                              | _         |
| There is an overload on the servomotor.         | Check the load status with a monitor.                                                                                    | If the servomotor is overloaded, reduce<br>the load or replace the servo drive with a<br>SERVOPACK and servomotor with<br>larger capacities. | _         |
| Polarity detection was not performed correctly. | Check to see if electrical angle 2 (electrical angle from polarity origin) at any position is between $\pm 10^{\circ}$ . | Correct the settings for the polarity detection-related parameters.                                                                          | _         |


### **Parameter and Object Lists**

This chapter provides information on parameters and objects.

| 17.1 | Parameter Lists                         | 708 |
|------|-----------------------------------------|-----|
|      | 17.1.1 Interpreting the Parameter Lists | 708 |
|      | 17.1.2 List of Parameters               | 709 |
| 17.2 | Object List                             | 773 |
| 17.3 | SDO Abort Code List                     | 791 |
| 17.4 | Parameter Recording Table               | 792 |

### 17.1 Parameter Lists

### 17.1.1 Interpreting the Parameter Lists



| No. | Item              | Meaning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) | Applicable Motors | <ul> <li>Indicates the types of servomotors to which the parameter applies.</li> <li>All: The parameter is used for both rotary servomotors and linear servomotors.</li> <li>Rotary: The parameter is used for only rotary servomotors.</li> <li>Linear: The parameter is used for only linear servomotors.</li> <li>If this item differs by digit, it is added to the digit table.</li> <li>Rotary servomotor terms are used for parameters that are applicable to all servomotors. If you are using a linear servomotor, you need to interpret the terms accordingly. Refer to the following sections for details.</li> <li>i.5.2 Differences in Terms for Rotary Servomotors and Linear Servomotors on page 30</li> </ul> |
| (2) | When Enabled      | Indicates when a change to the parameter will be effective.  If this item differs by digit, it is added to the digit table.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (3) | Classification    | There are the following two classifications.  • Setup  • Tuning Refer to the following sections for details.   3 5.1.1 Classifications of SERVOPACK Parameters on page 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (4) | Digit Name        | If there are differences in the parameters for rotary servomotor and linear servomotor, information is provided for both.  • Top row: For rotary servomotors  • Bottom row: For linear servomotors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (5) | Control Mode      | Speed: A parameter that can be used in speed control.  Pos: A parameter that can be used in position control.  Trq: A parameter that can be used in torque control. "Torque" is used even for linear servomotor parameters.  Grayed-out icons (Speed, Pos, Trq) indicate parameters that cannot be used in the corresponding control method.  For parameters for numeric settings, this item is added next to the parameter name.  For parameters for selecting functions, this item is added to each digit in the table.                                                                                                                                                                                                    |

### 17.1.2 List of Parameters

The following table lists the parameters.

#### Note

Do not change the following parameters from their default settings.

- Reserved parameters
- Parameters not given in this manual
- Parameters that are not valid for the servomotor that you are using, as given in the parameter table

#### ◆ Pn000(2000h): Basic Function Selections 0

| Size        | Setting Range        | Setting Unit                                                                                                | Default Setting   | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|-------------|----------------------|-------------------------------------------------------------------------------------------------------------|-------------------|-------------------|---------------|----------------|----------------|
| 2           | 0000h to 10B1h       | -                                                                                                           | 0000h             | All               | After restart | Setup          | _              |
| Digit       | Meaning              |                                                                                                             |                   |                   |               | Refer-<br>ence |                |
| n. 🗆 🗆 🗆 🗅  | Rotation Direction   | Selection                                                                                                   |                   |                   | Spee          | d Pos Tra      | _              |
|             | · ·                  | Movement Direction Selection Speed Pos Trq                                                                  |                   |                   |               |                |                |
| 0           | Use CCW as the for   | Use CCW as the forward direction.                                                                           |                   |                   |               |                |                |
| Defaul      | Use the direction in | Use the direction in which the linear encoder counts up as the forward direction.                           |                   |                   |               |                |                |
| 1           | Use CW as the forw   | Use CW as the forward direction. (Reverse Rotation Mode)                                                    |                   |                   |               |                |                |
|             | Use the direction in | Use the direction in which the linear encoder counts down as the forward direction. (Reverse Movement Mode) |                   |                   |               |                |                |
| n.□□XE      | Reserved (Do not     | change.)                                                                                                    |                   |                   |               |                | -              |
| n.□X□□      | Reserved (Do not     | Reserved (Do not change.)                                                                                   |                   |                   |               |                | -              |
| n.X□□□      | Rotary/Linear Ser    | Rotary/Linear Servomotor Startup Selection When Encoder Is Not Connected Speed Pos Trq                      |                   |                   |               | -              |                |
| 0<br>Defaul | When an encoder is   | When an encoder is not connected, start as SERVOPACK for rotary servomotor.                                 |                   |                   |               |                | 164            |
| 1           | When an encoder is   | not connected, start as                                                                                     | SERVOPACK for lin | ear servomotor    | •             |                | 164            |

n.X□□□

Reserved (Do not change.)

### ◆ Pn001(2001h): Application Function Selections 1

| Size        | Setting Range                   | Setting Unit                                                                                                      | Default Setting           | Applicable Motors | When Enabled         | Classification            | Refer-<br>ence |
|-------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------|----------------------|---------------------------|----------------|
| 2           | 0000h to 1142h                  | _                                                                                                                 | 0000h                     | All               | After restart        | Setup                     | -              |
| Digit       |                                 |                                                                                                                   | Meaning                   |                   |                      |                           | Refer-<br>ence |
| n.□□□)      | X Motor Stopping M              | Motor Stopping Method for Servo OFF and Group 1 Alarms  Speed Pos Trq                                             |                           |                   | _                    |                           |                |
| 0<br>Defaul | Stop the motor by a             | applying the dynamic b                                                                                            | rake.                     |                   |                      |                           | 188            |
| 1           | Stop the motor by t             | he applying dynamic b                                                                                             | rake and then release t   | he dynamic bra    | ke.                  |                           | 188            |
| 2           | Coast the motor to              | a stop without the dyna                                                                                           | mic brake.                |                   |                      |                           | 188            |
| n.□□XE      | Overtravel Stoppi               | ng Method                                                                                                         |                           |                   | Speed                | d Pos Trq                 | 1              |
| 0<br>Defaul | Apply the dynamic               | brake or coast the moto                                                                                           | or to a stop (use the sto | opping method     | set in Pn001 (2001)  | $n) = n.\Box\Box\Box X).$ | 179            |
| 1           | Decelerate the motor the motor. | or to a stop using the to                                                                                         | rque set in Pn406 (240    | 6h) as the max    | imum torque and th   | en servo-lock             | 179            |
| 2           | Decelerate the moto coast.      | or to a stop using the to                                                                                         | rque set in Pn406 (240    | 6h) as the max    | imum torque and th   | en let the motor          | 179            |
| 3           | Decelerate the motor            | or to a stop using the de                                                                                         | eceleration time set in   | Pn30A (230Ah      | ) and then servo-loc | k the motor.              | 179            |
| 4           | Decelerate the motor            | or to a stop using the de                                                                                         | eccleration time set in   | Pn30A (230Ah      | and then let the me  | otor coast.               | 179            |
| n.□X□E      | Main Circuit Powe               | er Supply AC/DC Inpu                                                                                              | ıt Selection              |                   | Speed                | d Pos Trq                 | -              |
| 0<br>Defaul | Input AC power as               | Input AC power as the main circuit power supply using the L1, L2, and L3 terminals (do not use shared converter). |                           |                   |                      | 162                       |                |

Input DC as the main circuit power supply using the B1/ $\oplus$ ,  $\ominus$ 2 terminals or the B1 and  $\ominus$ 2 terminals (use an external converter or the shared converter).

### ◆ Pn002(2002h): Application Function Selections 2

| Size | Setting Range  | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
| 2    | 0000h to 4213h | -            | 0011h           | _                 | After restart | Setup          | -              |

| Digit        | Meaning                                                                                         | Appli-<br>cable<br>Motors | Refer-<br>ence |
|--------------|-------------------------------------------------------------------------------------------------|---------------------------|----------------|
| n.□□□X       | EtherCAT Module Torque Limit Command Usage Selection Speed Pos Trq                              | _                         | -              |
| 0            | Reserved (Do not use.)                                                                          | All                       | _              |
| 1<br>Default | Enable torque limit commands from EtherCAT.                                                     | All                       | -              |
| 2            | Reserved (Do not use.)                                                                          | All                       |                |
| 3            | Reserved (Do not use.)                                                                          | All                       |                |
| n.□□X□       | EtherCAT Module Speed Limit Command Usage Selection Speed Pos Trq                               | -                         | -              |
| 0            | Disable speed limit commands from EtherCAT during torque control.                               | All                       | _              |
| 1<br>Default | Enable speed limit commands (Max Profile Velocity (607Fh)) from EtherCAT during torque control. | All                       | -              |
| n.□X□□       | Encoder Usage Speed Pos Trq                                                                     | -                         | -              |
| 0<br>Default | Use the encoder according to encoder specifications.                                            | All                       | 246            |
| 1            | Use the encoder as an incremental encoder.                                                      | All                       | 246            |
| 2            | Use the encoder as a single-turn absolute encoder.                                              | Rotary                    | 246            |
| n.X□□□       | External Encoder Usage Speed Pos Trq                                                            | -                         | -              |
| 0<br>Default | Do not use an external encoder.                                                                 | Rotary                    | 487            |
| 1            | The external encoder moves in the forward direction for CCW motor rotation.                     | Rotary                    | 487            |
| 2            | Reserved (Do not use.)                                                                          | Rotary                    | 487            |
| 3            | The external encoder moves in the reverse direction for CCW motor rotation.                     | Rotary                    | 487            |
| 4            | Reserved (Do not use.)                                                                          | Rotary                    | 487            |

### ◆ Pn006(2006h): Application Function Selections 6

|   | Size | Setting Range  | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|---|------|----------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| - | 2    | 0000h to 105Fh | -            | 0002h           | All               | Immediately  | Setup          | 464            |

| Digit    | Meaning                                                                                 |
|----------|-----------------------------------------------------------------------------------------|
| n.□□XX   | Analog Monitor 1 Signal Selection Speed Pos Trq                                         |
| 00       | Motor speed (1 V/1000 min <sup>-1</sup> )                                               |
| 00       | Motor speed (1 V/1000 mm/s)                                                             |
| 0.1      | Speed reference (1 V/1000 min <sup>-1</sup> )                                           |
| 01       | Speed reference (1 V/1000 mm/s)                                                         |
| 02       | Torque reference (1 V/100% rated torque)                                                |
| Default  | Force reference (1 V/100% rated force)                                                  |
| 03       | Position deviation (0.05 V/reference unit)                                              |
| 04       | Position amplifier deviation (after electronic gear) (0.05 V/encoder pulse unit)        |
| 04       | Position amplifier deviation (after electronic gear) (0.05 V/linear encoder pulse unit) |
| 0.5      | Position reference speed (1 V/1000 min <sup>-1</sup> )                                  |
| 05       | Position reference speed (1 V/1000 mm/s)                                                |
| 06       | Reserved (Do not use.)                                                                  |
| 07       | Position deviation between motor and load (0.01 V/reference unit)                       |
| 08       | Positioning completion (positioning completed: 5 V, positioning not completed: 0 V)     |
| 00       | Speed feedforward (1 V/1000 min <sup>-1</sup> )                                         |
| 09       | Speed feedforward (1 V/1000 mm/s)                                                       |
| 0A       | Torque feedforward (1 V/100% rated torque)                                              |
| UA       | Force feedforward (1 V/100% rated force)                                                |
| 0B       | Active gain (gain 1: 1 V, gain 2: 2 V) 2 V)                                             |
| 0C       | Completion of position reference distribution (completed: 5 V, not completed: 0 V)      |
| 0D       | External encoder speed (1 V/1000 min <sup>-1</sup> : value at the motor shaft)          |
| 0E       | Reserved (Do not use.)                                                                  |
| 0F       | Reserved (Do not use.)                                                                  |
| 10       | Main circuit DC voltage                                                                 |
| 11 to 5F | Reserved (Do not use.)                                                                  |
| n.□X□□   | Reserved (Do not change.)                                                               |
| n.X□□□   | Reserved (Do not change.)                                                               |

### ◆ Pn007(2007h): Application Function Selections 7

| Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 0000h to 105Fh | _            | 0000h           | All                  | Immediately  | Setup          | 464            |

| Digit    | Meaning                                                                                 |               |
|----------|-----------------------------------------------------------------------------------------|---------------|
| n.□□XX   | Analog Monitor 2 Signal Selection                                                       | Speed Pos Trq |
| 00       | Motor speed (1 V/1000 min <sup>-1</sup> )                                               |               |
| Default  | Motor speed (1 V/1000 mm/s)                                                             |               |
| 0.1      | Speed reference (1 V/1000 min <sup>-1</sup> )                                           |               |
| 01       | Speed reference (1 V/1000 mm/s)                                                         |               |
| 02       | Torque reference (1 V/100% rated torque)                                                |               |
|          | Force reference (1 V/100% rated force)                                                  |               |
| 03       | Position deviation (0.05 V/reference unit)                                              |               |
| 04       | Position amplifier deviation (after electronic gear) (0.05 V/encoder pulse unit)        |               |
|          | Position amplifier deviation (after electronic gear) (0.05 V/linear encoder pulse unit) |               |
| 05       | Position reference speed (1 V/1000 min <sup>-1</sup> )                                  |               |
|          | Position reference speed (1 V/1000 mm/s)                                                |               |
| 06       | Reserved (Do not use.)                                                                  |               |
| 07       | Position deviation between motor and load (0.01 V/reference unit)                       |               |
| 08       | Positioning completion (positioning completed: 5 V, positioning not completed: 0 V)     |               |
| 09       | Speed feedforward (1 V/1000 min <sup>-1</sup> )                                         |               |
|          | Speed feedforward (1 V/1000 mm/s)                                                       |               |
| 0A       | Torque feedforward (1 V/100% rated torque)                                              |               |
|          | Force feedforward (1 V/100% rated force)                                                |               |
| 0B       | Active gain (gain 1: 1 V, gain 2: 2 V) 2 V)                                             |               |
| 0C       | Completion of position reference distribution (completed: 5 V, not completed: 0 V)      |               |
| 0D       | External encoder speed (1 V/1000 min <sup>-1</sup> : value at the motor shaft)          |               |
| 0E       | Reserved (Do not use.)                                                                  |               |
| 0F       | Reserved (Do not use.)                                                                  |               |
| 10       | Main circuit DC voltage                                                                 |               |
| 11 to 5F | Reserved (Do not use.)                                                                  |               |
| n.□X□□   | Reserved (Do not change.)                                                               |               |
| n.X□□□   | Reserved (Do not change.)                                                               |               |

### ◆ Pn008(2008h): Application Function Selections 8

| Size        | Setting Range       | Setting Unit                                             | Default Setting         | Applicable<br>Motors | When Enabled          | Classification | Refer-<br>ence |
|-------------|---------------------|----------------------------------------------------------|-------------------------|----------------------|-----------------------|----------------|----------------|
| 2           | 0000h to 7121h      | _                                                        | 4000h                   | Rotary               | After restart         | Setup          | _              |
| Digit       |                     | Meaning F                                                |                         |                      |                       |                |                |
| n.□□□)      | X Low Battery Volta | ow Battery Voltage Alarm/Warning Selection Speed Pos Trq |                         |                      |                       |                |                |
| 0<br>Defaul | Output alarm (A.83  | 0) for low battery volta                                 | ige.                    |                      |                       |                | 650            |
| 1           | Output warning (A.  | Output warning (A.930) for low battery voltage.          |                         |                      |                       |                |                |
| n.□□X□      | Function Selection  | n for Undervoltage                                       |                         |                      | Speed                 | d Pos Trq      | -              |
| 0<br>Defaul | Do not detect under | voltage.                                                 |                         |                      |                       |                | 230            |
| 1           | Detect undervoltage | e warning and limit toro                                 | que at host controller. |                      |                       |                | 230            |
| 2           | Detect undervoltage | e warning and limit toro                                 | que with Pn424 (2424)   | n) and Pn425 (2      | 2425h) (i.e., only in | SERVOPACK).    | 230            |
| n.□X□□      | Warning Detection   | n Selection                                              |                         |                      | Speed                 | d Pos Trq      | -              |
| 0<br>Defaul | Detect warnings.    | Detect warnings.                                         |                         |                      |                       | 690            |                |
| 1           | Do not detect warn  | ings except for A.971.                                   |                         |                      |                       |                | 690            |
| n.X□□□      | Reserved (Do not    | change.)                                                 |                         |                      |                       |                | -              |

### ◆ Pn009(2009h): Application Function Selections 9

| Size         | Setting Range                                                                                                                                                                                                                                                                             | Setting Unit                                 | Default Setting       | Applicable<br>Motors | When Enabled          | Classification | Refer-<br>ence |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------|----------------------|-----------------------|----------------|----------------|
| 2            | 0000h to 0141h                                                                                                                                                                                                                                                                            | -                                            | 0040h                 | All                  | After restart         | Tuning         | _              |
| Digit        |                                                                                                                                                                                                                                                                                           |                                              | Meaning               |                      |                       |                | Refer-<br>ence |
| n.□□□X       | Reserved (Do not                                                                                                                                                                                                                                                                          | Reserved (Do not change.)                    |                       |                      |                       |                |                |
| n.□□X□       | Current Control M                                                                                                                                                                                                                                                                         | Current Control Mode Selection Speed Pos Trq |                       |                      |                       |                |                |
| 0            | Use current control                                                                                                                                                                                                                                                                       | mode 1.                                      |                       |                      |                       |                | 422            |
| 1            | <ul> <li>SERVOPACK Models SGDXS-R70A, -R90A, -1R6A, -2R8A, -3R8A, -5R5A, -7R6A: Use current control mode 1.</li> <li>SERVOPACK Models SGDXS-120A, -180A, -200A, -330A, -470A, -550A, -590A, -780A: Use current control mode 2. (For noise reduction when the motor is stopped)</li> </ul> |                                              |                       |                      |                       |                | 422            |
| 2            | Use current control                                                                                                                                                                                                                                                                       | mode 2. (For noise red                       | uction when the motor | r is stopped)        |                       |                | 422            |
| 3            | Use current control                                                                                                                                                                                                                                                                       | mode 3. (For noise red                       | uction when the motor | r is operating at    | t high speed)         |                | 422            |
| 4<br>Default | Use current control                                                                                                                                                                                                                                                                       | mode 4. (For noise red                       | uction when the motor | r is stopped and     | l operating at high s | speed)         | 422            |
| n.□X□□       | Speed Detection I                                                                                                                                                                                                                                                                         | Method Selection                             |                       |                      | Speed                 | d Pos Trq      | ı              |
| 0<br>Default | Use speed detection                                                                                                                                                                                                                                                                       | Use speed detection 1.                       |                       |                      |                       |                | 422            |
| 1            | Use speed detection                                                                                                                                                                                                                                                                       | ı 2.                                         |                       |                      |                       |                | 422            |
| n.X□□□       | Reserved (Do not                                                                                                                                                                                                                                                                          | change.)                                     |                       |                      |                       |                | -              |

### ◆ Pn00A(200Ah): Application Function Selections A

| S | Size | Setting Range  | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|---|------|----------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
|   | 2    | 0000h to 1244h | -            | 0001h           | All               | After restart | Setup          | -              |

| Digit        | Meaning                                                                                                                                                                          | Refer-<br>ence |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| n.□□□X       | Motor Stopping Method for Group 2 Alarms  Speed Pos Trq                                                                                                                          | -              |
| 0            | Apply the dynamic brake or coast the motor to a stop (use the stopping method set in Pn001 (2001h) = $n.\Box\Box\Box X$ ).                                                       | 189            |
| 1<br>Default | Decelerate the motor to a stop using the torque set in Pn406 (2406h) as the maximum torque. Use the setting of Pn001 (2001h) = $n.\Box\Box\Box X$ for the status after stopping. | 189            |
| 2            | Decelerate the motor to a stop using the torque set in Pn406 (2406h) as the maximum torque and then let the motor coast.                                                         | 189            |
| 3            | Decelerate the motor to a stop using the deceleration time set in Pn30A (230Ah). Use the setting of Pn001 (2001h) = $n.\Box\Box\Box X$ for the status after stopping.            | 189            |
| 4            | Decelerate the motor to a stop using the deceleration time set in Pn30A (230Ah) and then let the motor coast.                                                                    | 189            |
| n.□□X□       | Stopping Method for Forced Stops Speed Pos Trq                                                                                                                                   | 1              |
| 0<br>Default | Apply the dynamic brake or coast the motor to a stop (use the stopping method set in Pn001 (2001h) = $n.\Box\Box\Box X$ ).                                                       | 268            |
| 1            | Decelerate the motor to a stop using the torque set in Pn406 (2406h) as the maximum torque. Use the setting of Pn001 (2001h) = $n.\Box\Box\Box X$ for the status after stopping. | 268            |
| 2            | Decelerate the motor to a stop using the torque set in Pn406 (2406h) as the maximum torque and then let the motor coast.                                                         | 268            |
| 3            | Decelerate the motor to a stop using the deceleration time set in Pn30A (230Ah). Use the setting of Pn001 (2001h) = $n.\Box\Box\Box X$ for the status after stopping.            | 268            |
| 4            | Decelerate the motor to a stop using the deceleration time set in Pn30A (230Ah) and then let the motor coast.                                                                    | 268            |
| n.□X□□       | Reserved (Do not change.)                                                                                                                                                        | -              |
| n.XDDD       | Reserved (Do not change.)                                                                                                                                                        | -              |

### ◆ Pn00B(200Bh): Application Function Selections B

| Size         | Setting Range       | Setting Unit                                                               | Default Setting                       | Applicable<br>Motors | When Enabled        | Classification            | Refer-<br>ence |  |
|--------------|---------------------|----------------------------------------------------------------------------|---------------------------------------|----------------------|---------------------|---------------------------|----------------|--|
| 2            | 0000h to 1121h      | _                                                                          | 0000h                                 | All                  | After restart       | Setup                     | _              |  |
| Digit        |                     | Meaning F                                                                  |                                       |                      |                     |                           |                |  |
| n.□□□X       | Operator Paramet    | erator Parameter Display Selection Speed Pos Trq                           |                                       |                      |                     |                           |                |  |
| 0<br>Default | Display only setup  | play only setup parameters.                                                |                                       |                      |                     |                           |                |  |
| 1            | Display all paramet | risplay all parameters.                                                    |                                       |                      |                     |                           |                |  |
| n.□□X□       | Motor Stopping M    | Motor Stopping Method for Group 2 Alarms  Speed Pos Trq                    |                                       |                      |                     |                           |                |  |
| 0<br>Default | Stop the motor by s | etting the speed referer                                                   | nce to 0.                             |                      |                     |                           | 189            |  |
| 1            | Apply the dynamic   | brake or coast the moto                                                    | or to a stop (use the sto             | opping method        | set in Pn001 (2001) | $n) = n.\Box\Box\Box X).$ | 189            |  |
| 2            | Set the stopping me | ethod with Pn00A (200                                                      | $Ah) = n. \square \square \square X.$ |                      |                     |                           | 189            |  |
| n.□X□□       | Power Input Selec   | ction for Three-phase                                                      | SERVOPACK                             |                      | Speed               | d Pos Trq                 | -              |  |
| 0<br>Default | Use a three-phase p | Use a three-phase power supply input.                                      |                                       |                      |                     |                           |                |  |
| 1            | Use a three-phase p | Use a three-phase power supply input as a single-phase power supply input. |                                       |                      |                     |                           |                |  |
| n.X□□□       | Reserved (Do not    | change.)                                                                   |                                       |                      |                     |                           | -              |  |

### ◆ Pn00C(200Ch): Application Function Selections C

| Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 2    | 0000h to 0141h | ı            | 0040h           | _                    | After restart | Setup          | 308            |
|      |                |              |                 |                      |               |                |                |

| Digit        | Meaning                                                        | Applicable Motors |
|--------------|----------------------------------------------------------------|-------------------|
| n.□□□X       | Function Selection for Test without a Motor Speed Pos Trq      | _                 |
| 0<br>Default | Disable tests without a motor.                                 | All               |
| 1            | Enable tests without a motor.                                  | All               |
| n.□□X□       | Encoder Resolution for Tests without a Motor Speed Pos Trq     | _                 |
| 0            | Use 13 bits.                                                   | Rotary            |
| 1            | Use 20 bits.                                                   | Rotary            |
| 2            | Use 22 bits.                                                   | Rotary            |
| 3            | Use 24 bits.                                                   | Rotary            |
| 4<br>Default | Use 26 bits.                                                   | Rotary            |
| n.□X□□       | Encoder Type Selection for Tests without a Motor Speed Pos Trq | -                 |
| 0<br>Default | Use an incremental encoder.                                    | All               |
| 1            | Use an absolute encoder.                                       | All               |
| n.X□□□       | Reserved (Do not change.)                                      | _                 |

### ◆ Pn00D(200Dh): Application Function Selections D

| Size  | Setting Range  | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|-------|----------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
| 2     | 0000h to 2001h | -            | 0000h           | All               | After restart | Setup          | 181            |
| Digit |                |              | Mean            | ing               |               |                |                |

|                                  | Digit        | Medining                                             |
|----------------------------------|--------------|------------------------------------------------------|
|                                  | n.□□□X       | Reserved (Do not change.)                            |
|                                  | n.□□X□       | Reserved (Do not change.)                            |
| n.□X□□ Reserved (Do not change.) |              | Reserved (Do not change.)                            |
|                                  | n.X□□□       | Overtravel Warning Detection Selection Speed Pos Trq |
|                                  | 0<br>Default | Do not detect overtravel warnings.                   |
|                                  | 1            | Detect overtravel warnings.                          |
|                                  | 2            | Detect overtravel alarms.                            |

# Parameter and Object Lists

### ◆ Pn00E(200Eh): Application Function Selections E

| Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 2    | 0000h to 4001h | _            | 0000h           | All                  | After restart | Setup          | 492            |

| Digit        | Meaning                                      |  |  |  |  |  |
|--------------|----------------------------------------------|--|--|--|--|--|
| n.□□□X       | Reserved (Do not change.)                    |  |  |  |  |  |
| n.□□X□       | Reserved (Do not change.)                    |  |  |  |  |  |
| n.□X□□       | Reserved (Do not change.)                    |  |  |  |  |  |
| n.X□□□       | External Encoder Monitor Usage Speed Pos Trq |  |  |  |  |  |
| 0<br>Default | Do not use an external encoder monitor.      |  |  |  |  |  |
| 1            | Use CCW as the forward direction.            |  |  |  |  |  |
| 2            | Reserved (Do not use.)                       |  |  |  |  |  |
| 3            | Use CW as the forward direction.             |  |  |  |  |  |
| 4            | Reserved (Do not use.)                       |  |  |  |  |  |

### ◆ Pn00F(200Fh): Application Function Selections F

| Size        | Setting Range       | Setting Unit                                                        | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|-------------|---------------------|---------------------------------------------------------------------|-----------------|-------------------|---------------|----------------|----------------|
| 2           | 0000h to 2021h      | _                                                                   | 0000h           | All               | After restart | Setup          | -              |
| Digit       | Meaning             |                                                                     |                 |                   |               |                | Refer-<br>ence |
| n. 🗆 🗆 🗆 🔾  | SERVOPACK Pre       | SERVOPACK Preventative Maintenance Warning Selection Speed Pos Trq  |                 |                   |               |                |                |
| 0<br>Defaul | Do not detect SERV  | Do not detect SERVOPACK preventative maintenance warnings.          |                 |                   |               |                | 470            |
| 1           | Detect SERVOPAC     | K preventative mainter                                              | nance warnings. |                   |               |                | 470            |
| n.□□X□      | Servomotor Preve    | Servomotor Preventative Maintenance Warning Selection Speed Pos Trq |                 |                   |               |                | 1              |
| 0<br>Defaul | Do not detect servo | Do not detect servomotor preventative maintenance warnings.         |                 |                   |               |                | 471            |
| 1           | Detect servomotor p | Detect servomotor preventative maintenance warnings.                |                 |                   |               |                | 471            |
| n.□X□□      | Reserved (Do not    | Reserved (Do not change.)                                           |                 |                   |               |                |                |

### ◆ Pn021(2021h): Reserved (Do not change.)

Reserved (Do not change.)

 $n.X\square\square\square$ 

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | _             | _            | 0000h           | All               | _            | _              | -              |

Speed Pos Trq

### ◆ Pn022(2022h): Application Function Selections 22

| Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 2    | 0000h to 0011h | -            | 0000h           | All                  | After restart | Setup          | 182            |

| Digit        | Meaning                                                                                                                                              |  |  |  |  |  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| n.□□□X       | Overtravel Release Method Selection Speed Pos Trq                                                                                                    |  |  |  |  |  |
| 0<br>Default | Overtravel exists while the P-OT or N-OT signal is being input.                                                                                      |  |  |  |  |  |
| 1            | Overtravel exists while the P-OT or N-OT signal is input and the current position of the workpiece is separated from the P-OT signal or N-OT signal. |  |  |  |  |  |
| n.□□X□       | Reserved (Do not change.)                                                                                                                            |  |  |  |  |  |
| n.□X□□       | Reserved (Do not change.)                                                                                                                            |  |  |  |  |  |
| n.X□□□       | Reserved (Do not change.)                                                                                                                            |  |  |  |  |  |

### ◆ Pn02F(202Fh): Application Function Selections 2F

| Size | Setting Range  | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
| 2    | 0000h to 0002h | _            | 0000h           | All               | After restart | Setup          | -              |

| Digit        | Meaning                                                                                            |  |  |  |  |  |
|--------------|----------------------------------------------------------------------------------------------------|--|--|--|--|--|
| n.□□□X       | Selection of Capacitor Discharge Mode When Main Circuit Power OFF  Speed Pos Tr                    |  |  |  |  |  |
| 0<br>Default | SGDXS-R70A to -200A: Do not perform rapid discharge. SGDXS-330A to -780A: Perform rapid discharge. |  |  |  |  |  |
| 1            | Perform rapid discharge.                                                                           |  |  |  |  |  |
| 2            | Reserved (Do not use.)                                                                             |  |  |  |  |  |
| n.□□X□       | Reserved (Do not change.)                                                                          |  |  |  |  |  |
| n.□X□□       | Reserved (Do not change.)                                                                          |  |  |  |  |  |
| n.X□□□       | Reserved (Do not change.)                                                                          |  |  |  |  |  |

### ◆ Pn040(2040h): Reserved (Do not change.)

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | _             | _            | 0000h           | -                    | -            | _              | -              |

Speed Pos Trq

Speed Pos Trq

### ◆ Pn050(2050h): SigmaLINK II Response Data Selection 1

| Size | Setting Range             | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|------|---------------------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
| 4    | 00000000h to<br>FF7EFFFFh | -            | 00000000h       | All               | After restart | Setup          | 508            |

| Digit      | Meaning                           |  |  |
|------------|-----------------------------------|--|--|
| n.ooooXXXX | Parameter Number (0000h to FFFFh) |  |  |
| n.00XX0000 | Node Address (10h to 1Eh)         |  |  |
| n.XX       | Reserved.                         |  |  |

Speed Pos Trq

Speed Pos Trq

Speed Pos Trq

### ◆ Pn052(2052h): SigmaLINK II Response Data Selection 2

| Size | Setting Range             | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|------|---------------------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
| 4    | 00000000h to<br>FF7EFFFFh | _            | 00000000h       | All               | After restart | Setup          | 508            |

| Digit                                   | Meaning                   |  |  |
|-----------------------------------------|---------------------------|--|--|
| n.ppp=parameter Number (0000h to FFFFh) |                           |  |  |
| n.00XX0000                              | Node Address (10h to 1Eh) |  |  |
| n.XX                                    | Reserved.                 |  |  |

### ◆ Pn054(2054h): SigmaLINK II Response Data Selection 3

| Size | Setting Range             | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|------|---------------------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
| 4    | 00000000h to<br>FF7EFFFFh | -            | 00000000h       | All               | After restart | Setup          | 508            |

| Digit      | Meaning                           |  |  |
|------------|-----------------------------------|--|--|
| n.ooooXXXX | Parameter Number (0000h to FFFFh) |  |  |
| n.00XX0000 | Node Address (10h to 1Eh)         |  |  |
| n.XX00000  | Reserved.                         |  |  |

### ◆ Pn056(2056h): SigmaLINK II Response Data Selection 4

| Size | Setting Range             | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|------|---------------------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 4    | 00000000h to<br>FF7EFFFFh | _            | 00000000h       | All                  | After restart | Setup          | 508            |

| Digit       | Meaning                           |  |  |
|-------------|-----------------------------------|--|--|
| n. □□□□XXXX | Parameter Number (0000h to FFFFh) |  |  |
| n.00XX0000  | Node Address (10h to 1Eh)         |  |  |
| n.XX00000   | Reserved.                         |  |  |

### ◆ Pn058(2058h): SigmaLINK II Response Data Selection 5

| Size | Setting Range             | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|------|---------------------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
| 4    | 00000000h to<br>FF7EFFFFh | -            | 00000000h       | All               | After restart | Setup          | 508            |

| Digit      | Meaning                           |  |  |
|------------|-----------------------------------|--|--|
| n.ooooXXXX | Parameter Number (0000h to FFFFh) |  |  |
| n.00XX0000 | Node Address (10h to 1Eh)         |  |  |
| n.XX00000  | Reserved.                         |  |  |

Size

4

Size

4

**Setting Range** 

00000000h to

FF7EFFFFh

**Setting Range** 

00000000h to

FF7EFFFFh

#### ◆ Pn05A(205Ah): SigmaLINK II Response Data Selection 6

| Size | Setting Range             | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|------|---------------------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
| 4    | 00000000h to<br>FF7EFFFFh | -            | 00000000h       | All               | After restart | Setup          | 508            |

| Digit      | Meaning                           |  |  |
|------------|-----------------------------------|--|--|
| n.ooooXXXX | Parameter Number (0000h to FFFFh) |  |  |
| n.00XX0000 | Node Address (10h to 1Eh)         |  |  |
| n.XX00000  | Reserved.                         |  |  |

### ◆ Pn05C(205Ch): SigmaLINK II Response Data Selection 7

**Setting Unit** 

|               | Speed Pos      | Trq            |
|---------------|----------------|----------------|
| When Enabled  | Classification | Refer-<br>ence |
| After restart | Setup          | 508            |

Speed Pos Trq

| Digit      | Meaning                           |  |  |
|------------|-----------------------------------|--|--|
| n.ooooXXXX | Parameter Number (0000h to FFFFh) |  |  |
| n.00XX0000 | Node Address (10h to 1Eh)         |  |  |
| n.XX       | Reserved.                         |  |  |

**Default Setting** 

00000000h

Applicable Motors

All

Applicable Motors

All

### ◆ Pn05E(205Eh): SigmaLINK II Response Data Selection 8

**Setting Unit** 

| When Enabled  | Classification | Refer-<br>ence |  |
|---------------|----------------|----------------|--|
| After restart | Setup          | 508            |  |

Speed Pos Trq

| D114       | Manada a                          |  |  |
|------------|-----------------------------------|--|--|
| Digit      | Meaning                           |  |  |
| n.ooooXXXX | Parameter Number (0000h to FFFFh) |  |  |
| n.00XX0000 | Node Address (10h to 1Eh)         |  |  |
| n.XX00000  | Reserved.                         |  |  |

**Default Setting** 

00000000h

# ◆ Pn080(2080h): Application Function Selections 80

| Size         | Setting Range        | Setting Unit                                                                 | Default Setting        | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|--------------|----------------------|------------------------------------------------------------------------------|------------------------|----------------------|---------------|----------------|----------------|
| 2            | 0000h to 1111h       | _                                                                            | 0000h                  | Linear               | After restart | Setup          | _              |
| Digit        |                      | Meaning                                                                      |                        |                      |               |                |                |
| n.□□□>       | Polarity Sensor Se   | election                                                                     |                        |                      | Speed         | d Pos Trq      | _              |
| 0<br>Default | Use polarity sensor. | Use polarity sensor.                                                         |                        |                      |               |                |                |
| 1            | Do not use polarity  | sensor.                                                                      |                        |                      |               |                | 174            |
| n.□□X□       | Motor Phase Sequ     | uence Selection                                                              |                        |                      | Speed         | d Pos Trq      | _              |
| 0<br>Default | Set a phase-A lead   | Set a phase-A lead as a phase sequence of U, V, and W.                       |                        |                      |               |                |                |
| 1            | Set a phase-B lead a | as a phase sequence of                                                       | U, V, and W.           |                      |               |                | 172            |
| n.□X□□       | Reserved (Do not     | Reserved (Do not change.)                                                    |                        |                      |               |                | _              |
| n.X□□□       | Calculation Metho    | Calculation Method for Maximum Speed or Encoder Output Pulses  Speed Pos Trq |                        |                      |               |                | _              |
| 0<br>Default | Calculate the encod  | Calculate the encoder output pulse setting for a fixed maximum motor speed.  |                        |                      |               |                |                |
| 1            | Calculate the maxir  | num motor speed for a                                                        | fixed encoder output j | oulse setting.       |               |                | 809            |

#### ◆ Pn081(2081h): Application Function Selections 81

| Size | Setting Range  | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
| 2    | 0000h to 1111h | ı            | 0000h           | All               | After restart | Setup          | 235            |

| Digit        | Meaning                                                           |     |  |  |
|--------------|-------------------------------------------------------------------|-----|--|--|
| n.□□□X       | Phase-C Pulse Output Selection Speed Pos                          | Trq |  |  |
| 0<br>Default | Output phase-C pulses only in the forward direction.              |     |  |  |
| 1            | Output phase-C pulses in both the forward and reverse directions. |     |  |  |
| n.□□X□       | Reserved (Do not change.)                                         |     |  |  |
| n.□X□□       | Reserved (Do not change.)                                         |     |  |  |
| n.X□□□       | Reserved (Do not change.)                                         |     |  |  |

# ◆ Pn090(2090h): SigmaLINK II Command Data Selection 1

| Size | Setting Range             | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|------|---------------------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
| 4    | 00000000h to<br>FF7EFFFFh | -            | 00000000h       | All               | After restart | Setup          | 516            |

| Digit      | Meaning                           |
|------------|-----------------------------------|
| n.ooooXXXX | Parameter Number (0000h to FFFFh) |
| n.00XX0000 | Node Address (10h to 1Eh)         |
| n.XX00000  | Reserved.                         |

#### ◆ Pn092(2092h): SigmaLINK II Command Data Selection 2

| Size | Setting Range             | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|------|---------------------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
| 4    | 00000000h to<br>FF7EFFFFh | _            | 00000000h       | All               | After restart | Setup          | 516            |

Speed Pos Trq

Speed Pos Trq

Speed Pos Trq

| Digit      | Meaning                           |
|------------|-----------------------------------|
| n.ooooXXXX | Parameter Number (0000h to FFFFh) |
| n.00XX0000 | Node Address (10h to 1Eh)         |
| n.XX00000  | Reserved.                         |

#### ◆ Pn094(2094h): SigmaLINK II Command Data Selection 3

| Size | Setting Range             | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|------|---------------------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
| 4    | 00000000h to<br>FF7EFFFFh | -            | 00000000h       | All               | After restart | Setup          | 516            |

| Digit      | Meaning                           |  |  |  |
|------------|-----------------------------------|--|--|--|
| n.ooooXXXX | Parameter Number (0000h to FFFFh) |  |  |  |
| n.00XX0000 | Node Address (10h to 1Eh)         |  |  |  |
| n.XX00000  | Reserved.                         |  |  |  |

#### ◆ Pn096(2096h): SigmaLINK II Command Data Selection 4

| Size | Setting Range             | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|------|---------------------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
| 4    | 00000000h to<br>FF7EFFFFh | -            | 00000000h       | All               | After restart | Setup          | 516            |

| Digit       | Meaning                           |  |  |  |
|-------------|-----------------------------------|--|--|--|
| n. uuu XXXX | Parameter Number (0000h to FFFFh) |  |  |  |
| n.00XX0000  | Node Address (10h to 1Eh)         |  |  |  |
| n.XX00000   | Reserved.                         |  |  |  |

# ◆ Pn0B1(20B1h): SigmaLINK II Sequence Input Allocation 1

|   | Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|---|------|----------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| _ | 2    | 0000h to FFFFh | -            | 0000h           | All                  | After restart | Setup          | 515            |

| Digit         | Meaning                                                                       |  |  |  |  |
|---------------|-------------------------------------------------------------------------------|--|--|--|--|
| n.□□XX        | SigmaLINK II Response Data Selection Speed Pos Trq                            |  |  |  |  |
| 00<br>Default | Disable (data is not set to the SigmaLINK II sequence input).                 |  |  |  |  |
| 01            | Allocate SigmaLINK II Response Data 1 to the SigmaLINK II sequence input.     |  |  |  |  |
| 02            | Allocate SigmaLINK II Response Data 2 to the SigmaLINK II sequence input.     |  |  |  |  |
| 03            | Allocate SigmaLINK II Response Data 3 to the SigmaLINK II sequence input.     |  |  |  |  |
| 04            | Allocate SigmaLINK II Response Data 4 to the SigmaLINK II sequence input.     |  |  |  |  |
| 05            | Allocate SigmaLINK II Response Data 5 to the SigmaLINK II sequence input.     |  |  |  |  |
| 06            | Allocate SigmaLINK II Response Data 6 to the SigmaLINK II sequence input.     |  |  |  |  |
| 07            | Allocate SigmaLINK II Response Data 7 to the SigmaLINK II sequence input.     |  |  |  |  |
| 08            | Allocate SigmaLINK II Response Data 8 to the SigmaLINK II sequence input.     |  |  |  |  |
| n.XX□□        | SigmaLINK II Sequence Input Allocation Start Position Selection Speed Pos Trq |  |  |  |  |
| 00 to 20      | Specify the allocation start bit to the SigmaLINK II sequence input.          |  |  |  |  |

# ◆ Pn0B2(20B2h): SigmaLINK II Sequence Input Allocation 2

| Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 2    | 0000h to FFFFh | -            | 0000h           | All                  | After restart | Setup          | 515            |

| Digit         | Meaning                                                                       |  |  |  |  |
|---------------|-------------------------------------------------------------------------------|--|--|--|--|
| n.□□XX        | SigmaLINK II Response Data Selection Speed Pos Trq                            |  |  |  |  |
| 00<br>Default | Disable (data is not set to the SigmaLINK II sequence input).                 |  |  |  |  |
| 01            | Allocate SigmaLINK II Response Data 1 to the SigmaLINK II sequence input.     |  |  |  |  |
| 02            | Allocate SigmaLINK II Response Data 2 to the SigmaLINK II sequence input.     |  |  |  |  |
| 03            | Allocate SigmaLINK II Response Data 3 to the SigmaLINK II sequence input.     |  |  |  |  |
| 04            | Allocate SigmaLINK II Response Data 4 to the SigmaLINK II sequence input.     |  |  |  |  |
| 05            | Allocate SigmaLINK II Response Data 5 to the SigmaLINK II sequence input.     |  |  |  |  |
| 06            | Allocate SigmaLINK II Response Data 6 to the SigmaLINK II sequence input.     |  |  |  |  |
| 07            | Allocate SigmaLINK II Response Data 7 to the SigmaLINK II sequence input.     |  |  |  |  |
| 08            | Allocate SigmaLINK II Response Data 8 to the SigmaLINK II sequence input.     |  |  |  |  |
| n.XX□□        | SigmaLINK II Sequence Input Allocation Start Position Selection Speed Pos Trq |  |  |  |  |
| 00 to 20      | Specify the allocation start bit to the SigmaLINK II sequence input.          |  |  |  |  |

#### ◆ Pn0B5(20B5h): SigmaLINK II Sequence Output Allocation 1

|   | Size | Setting Range  | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|---|------|----------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
| - | 2    | 0000h to FFFFh | -            | 0000h           | All               | After restart | Setup          | 516            |

| Digit         | Meaning                                                                   |               |  |  |  |
|---------------|---------------------------------------------------------------------------|---------------|--|--|--|
| n.□□XX        | SigmaLINK II Command Data Selection                                       | Speed Pos Trq |  |  |  |
| 00<br>Default | Disable (data is not set to the SigmaLINK II sequence output).            |               |  |  |  |
| 01            | Allocate SigmaLINK II Command Data 1 to the SigmaLINK II sequence output. |               |  |  |  |
| 02            | Allocate SigmaLINK II Command Data 2 to the SigmaLINK II sequence output. |               |  |  |  |
| 03            | Allocate SigmaLINK II Command Data 3 to the SigmaLINK II sequence output. |               |  |  |  |
| 04            | Allocate SigmaLINK II Command Data 4 to the SigmaLINK II sequence output. |               |  |  |  |
| n.XX□□        | SigmaLINK II Sequence Output Allocation Start Position Selection          | Speed Pos Trq |  |  |  |
| 00 to 20      | Specify the allocation start bit to the SigmaLINK II sequence output.     |               |  |  |  |

#### ◆ Pn0DA(20DAh): SigmaLINK II Semi-closed Encoder Selection

| Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 2    | 0000h to 011Eh | _            | 0000h           | All                  | After restart | Setup          | 506            |

| Digit    | Meaning                                                    |  |  |  |
|----------|------------------------------------------------------------|--|--|--|
| n.□□XX   | Node Address Speed Pos Trq                                 |  |  |  |
| 00 to 1E | Select an encoder with a node address between 00h and 1Eh. |  |  |  |
| n.□X□□   | Reserved (Do not change.)                                  |  |  |  |
| n.X□□□   | Reserved (Do not change.)                                  |  |  |  |

#### ◆ Pn0DB(20DBh): SigmaLINK II Fully-closed Encoder Selection

| Size     | Setting Range         | Setting Unit                                               | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|----------|-----------------------|------------------------------------------------------------|-----------------|----------------------|---------------|----------------|----------------|
| 2        | 0000h to 011Eh        | _                                                          | 0101h           | All                  | After restart | Setup          | _              |
| Digit    |                       | Meaning                                                    |                 |                      |               |                |                |
| n.□□XX   | Node Address          | Node Address Speed Pos Tr                                  |                 |                      |               | Trq            |                |
| 00 to 11 | E Select an encoder w | Select an encoder with a node address between 00h and 1Eh. |                 |                      |               |                |                |
| n.□X□□   | Reserved (Do not      | Reserved (Do not change.)                                  |                 |                      |               |                |                |
| n ХППГ   | 1 Reserved (Do not    | Reserved (Do not change )                                  |                 |                      |               |                |                |

#### ◆ Pn0DC(20DCh): SigmaLINK II Node Change Detection Condition Selection

| Size | Setting Range  | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
| 2    | 0000h to 0003h | _            | 0000h           | All               | After restart | Setup          | -              |

| Digit        | Meaning                                                                      |  |  |  |  |
|--------------|------------------------------------------------------------------------------|--|--|--|--|
| n.□□□X       | Connected Node Change Detection Condition Speed Pos Trq                      |  |  |  |  |
| 0<br>Default | Set vendor ID and product ID as conditions.                                  |  |  |  |  |
| 1            | Set vendor ID, product ID, and serial number as conditions.                  |  |  |  |  |
| 2            | Set vendor ID, product ID, and product version as conditions.                |  |  |  |  |
| 3            | Set vendor ID, product ID, product version, and serial number as conditions. |  |  |  |  |
| n.□□X□       | Reserved (Do not change.)                                                    |  |  |  |  |
| n.□X□□       | Reserved (Do not change.)                                                    |  |  |  |  |
| n.X□□□       | Reserved (Do not change.)                                                    |  |  |  |  |

#### ◆ Pn0DD(20DDh): SigmaLINK II I/O Device Error Detection Selection

| Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 2    | 0000h to F4F2h | ı            | 0110h           | All                  | After restart | Setup          | -              |

| Digit        | Meaning                                                                                                                          |  |  |  |  |  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| n.□□□X       | SigmaLINK II I/O Device Communications Check Mask  Speed Pos Trq                                                                 |  |  |  |  |  |
| 0<br>Default | Set SigmaLINK II slave communications error as an alarm (A.Cd7).                                                                 |  |  |  |  |  |
| 1            | Set SigmaLINK II slave communications error as a warning (A.932).                                                                |  |  |  |  |  |
| 2            | Do not detect the SigmaLINK II slave communications error.                                                                       |  |  |  |  |  |
| n.□□X□       | Reserved (Do not change.)                                                                                                        |  |  |  |  |  |
| n.□X□□       | SigmaLINK II I/O Device Status Check Mask  Speed Pos Trq                                                                         |  |  |  |  |  |
| 0            | A.Cd8 occurs when the alarm or warning signal is received from the SigmaLINK II slave.                                           |  |  |  |  |  |
| 1<br>Default | A.Cd8 occurs when the alarm signal is received from the SigmaLINK II slave and A.933 occurs when the warning signal is received. |  |  |  |  |  |
| 2            | A.933 occurs when the alarm or warning signal is received from the SigmaLINK II slave.                                           |  |  |  |  |  |
| 3            | Do not detect the SigmaLINK II slave status error.                                                                               |  |  |  |  |  |
| n.X□□□       | Reserved (Do not change.)                                                                                                        |  |  |  |  |  |

#### ◆ Pn100(2100h): Speed Loop Gain

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 10 to 20000   | 0.1 Hz       | 400             | All               | Immediately  | Tuning         | 429            |

#### ◆ Pn101(2101h): Speed Loop Integral Time Constant

|      | , , ,         | . 0          |                 |                   |              |                | _              |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
| 2    | 15 to 51200   | 0.01 ms      | 2000            | All               | Immediately  | Tuning         | 429            |

## ◆ Pn102(2102h): Position Loop Gain

|   |      | •             | · ·          |                 |                      |              |                |                |
|---|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
|   | Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
| • | 2    | 10 to 20000   | 0.1/s        | 400             | All                  | Immediately  | Tuning         | 429            |

# ◆ Pn103(2103h): Moment of Inertia Ratio

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 65535    | 1%           | 100             | All               | Immediately  | Tuning         | 429            |

Speed Pos Trq

### ◆ Pn104(2104h): Second Speed Loop Gain

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 10 to 20000   | 0.1 Hz       | 400             | All               | Immediately  | Tuning         | 415            |

#### ◆ Pn105(2105h): Second Speed Loop Integral Time Constant

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 15 to 51200   | 0.01 ms      | 2000            | All                  | Immediately  | Tuning         | 415            |

# ◆ Pn106(2106h): Second Position Loop Gain

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 10 to 20000   | 0.1/s        | 400             | All                  | Immediately  | Tuning         | 415            |

#### ◆ Pn109(2109h): Feedforward

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 0 to 100      | 1%           | 0               | All                  | Immediately  | Tuning         | 439            |

#### ◆ Pn10A(210Ah): Feedforward Filter Time Constant

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 6400     | 0.01 ms      | 0               | All               | Immediately  | Tuning         | 439            |

Speed Pos Trq

Speed Pos Trq

# ◆ Pn10B(210Bh): Gain Application Selections

| Size  | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|-------|----------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2     | 0000h to 5334h | _            | 0000h           | All                  | _            | Setup          | -              |
| Digit | t              |              | Meaning         |                      | ,            | When Enabled   | Refer-         |

| Digit        | Meaning                                                                            | When Enabled  | Refer-<br>ence |
|--------------|------------------------------------------------------------------------------------|---------------|----------------|
| n.□□□X       | Mode Switching Selection Speed Pos Trq                                             | -             | -              |
| 0<br>Default | Use the internal torque reference as the condition (level setting: Pn10C (210Ch)). | Immediately   | 440            |
| 1            | Use the speed reference as the condition (level setting: Pn10D (210Dh)).           | Immediately   | 440            |
|              | Use the speed reference as the condition (level setting: Pn181 (2181h)).           | immediately   | 440            |
| 2            | Use the acceleration reference as the condition (level setting: Pn10E (210Eh)).    | Immediately   | 440            |
|              | Use the acceleration reference as the condition (level setting: Pn182 (2182h)).    | minediately   | 440            |
| 3            | Use the position deviation as the condition (level setting: Pn10F (210Fh)).        | Immediately   | 440            |
| 4            | Do not use mode switching.                                                         | Immediately   | 440            |
| n.□□X□       | Speed Loop Control Method Speed Pos Trq                                            | -             | -              |
| 0<br>Default | PI control                                                                         | After restart | 435            |
| 1            | I-P control                                                                        | After restart | 435            |
| 2, 3         | Reserved (Do not use.)                                                             | After restart | 435            |
| n.□X□□       | Reserved (Do not change.)                                                          | _             | -              |
| n.XDDD       | Reserved (Do not change.)                                                          | _             | -              |

#### ◆ Pn10C(210Ch): Mode Switching Level for Torque Reference

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 0 to 800      | 1%           | 200             | All                  | Immediately  | Tuning         | 440            |

# ◆ Pn10D(210Dh): Mode Switching Level for Speed Reference

| Size | Setting Range | Setting Unit        | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|---------------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 0 to 10000    | 1 min <sup>-1</sup> | 0               | Rotary               | Immediately  | Tuning         | 440            |

### ◆ Pn10E(210Eh): Mode Switching Level for Acceleration

| Size | Setting Range | Setting Unit           | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|------------------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 30000    | 1 min <sup>-1</sup> /s | 0               | Rotary            | Immediately  | Tuning         | 440            |

## ◆ Pn10F(210Fh): Mode Switching Level for Position Deviation

| Size | Setting Range | Setting Unit     | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|------------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 10000    | 1 reference unit | 0               | All               | Immediately  | Tuning         | 440            |

#### ◆ Pn11F(211Fh): Position Integral Time Constant

| • | Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|---|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
|   | 2    | 0 to 50000    | 0.1 ms       | 0               | All               | Immediately  | Tuning         | 443            |

| ◆ Pn121(2121) | ). Friction | Companea | tion Cain     |
|---------------|-------------|----------|---------------|
|               | 1) Fucilon  | Compensa | IIIOH (52111) |

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 10 to 1000    | 1%           | 100             | All               | Immediately  | Tuning         | 415,<br>359    |

Speed Pos Trq

#### ◆ Pn122(2122h): Second Friction Compensation Gain

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 10 to 1000    | 1%           | 100             | All                  | Immediately  | Tuning         | 415,<br>359    |

#### ◆ Pn123(2123h): Friction Compensation Coefficient

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 100      | 1%           | 0               | All               | Immediately  | Tuning         | 359            |

#### ◆ Pn124(2124h): Friction Compensation Frequency Correction

| Size | Setting Range   | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|-----------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | -10000 to 10000 | 0.1 Hz       | 0               | All                  | Immediately  | Tuning         | 359            |

#### ◆ Pn125(2125h): Friction Compensation Gain Correction

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 1 to 1000     | 1%           | 100             | All               | Immediately  | Tuning         | 359            |

#### ◆ Pn131(2131h): Gain Switching Time 1

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 65535    | 1 ms         | 0               | All               | Immediately  | Tuning         | 415            |

#### ◆ Pn132(2132h): Gain Switching Time 2

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 65535    | 1 ms         | 0               | All               | Immediately  | Tuning         | 415            |

#### ◆ Pn135(2135h): Gain Switching Waiting Time 1

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 0 to 65535    | 1 ms         | 0               | All                  | Immediately  | Tuning         | 415            |

#### ◆ Pn136(2136h): Gain Switching Waiting Time 2

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 65535    | 1 ms         | 0               | All               | Immediately  | Tuning         | 415            |

# Parameter and Object Lists

# ◆ Pn139(2139h): Automatic Gain Switching Selections 1

| Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 0000h to 0052h | _            | 0000h           | All                  | Immediately  | Tuning         | 415            |

| Digit        | Meaning                                                                                                                                                                                                                     |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| n.□□□X       | Gain Switching Selection Speed Pos Trq                                                                                                                                                                                      |
| 0<br>Default | Disable automatic gain switching.                                                                                                                                                                                           |
| 1            | Reserved (Do not use.)                                                                                                                                                                                                      |
| 2            | Use automatic gain switching pattern 1.  The gain settings 1 switch automatically to 2 when switching condition A is satisfied.  The gain settings 2 switch automatically to 1 when switching condition A is not satisfied. |
| n.□□X□       | Gain Switching Condition A Speed Pos Trq                                                                                                                                                                                    |
| 0<br>Default | /COIN (Positioning Completion Output) signal turns ON.                                                                                                                                                                      |
| 1            | /COIN (Positioning Completion Output) signal turns OFF.                                                                                                                                                                     |
| 2            | /NEAR (Near Output) signal turns ON.                                                                                                                                                                                        |
| 3            | /NEAR (Near Output) signal turns OFF.                                                                                                                                                                                       |
| 4            | Position reference filter output is 0 and position reference input is OFF.                                                                                                                                                  |
| 5            | Position reference input is ON.                                                                                                                                                                                             |
| n.□X□□       | Reserved (Do not change.)                                                                                                                                                                                                   |
| n.X□□□       | Reserved (Do not change.)                                                                                                                                                                                                   |

# ◆ Pn13D(213Dh): Current Gain Level

| Speed | Pos | Refer- |
|-------|-----|--------|
|       |     |        |

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 100 to 2000   | 1%           | 2000            | All                  | Immediately  | Tuning         | 422            |

# ◆ Pn140(2140h): Model Following Control-Related Selections

| Size                                                     | Setting Range        | Setting Unit                                                              | Default Setting       | Applicable Motors    | When Enabled         | Classification     | Refer-<br>ence |  |  |
|----------------------------------------------------------|----------------------|---------------------------------------------------------------------------|-----------------------|----------------------|----------------------|--------------------|----------------|--|--|
| 2                                                        | 0000h to 1121h       | -                                                                         | 0100h                 | All                  | Immediately          | Tuning             | -              |  |  |
| Digit                                                    |                      |                                                                           | Meaning               |                      |                      |                    | Refer-<br>ence |  |  |
| n.□□□                                                    | X Model Following C  | Control Selection                                                         |                       |                      | Speed                | d Pos Trq          | -              |  |  |
| 0<br>Defaul                                              | Do not use model for | ollowing control.                                                         |                       |                      |                      |                    | 436            |  |  |
| 1                                                        | Use model followin   | g control.                                                                |                       |                      |                      |                    | 436            |  |  |
| n.□□X□                                                   | ☐ Vibration Suppres  | sion Selection                                                            |                       |                      | Speed                | d Pos Trq          | -              |  |  |
| 0<br>Defaul                                              | Do not perform vib   | ration suppression.                                                       |                       |                      |                      |                    | 436            |  |  |
| 1                                                        | Perform vibration s  | uppression for a specifi                                                  | ic frequency.         |                      |                      |                    | 436            |  |  |
| 2                                                        | Perform vibration s  | Perform vibration suppression for two specific frequencies.               |                       |                      |                      |                    |                |  |  |
| n.□X□□                                                   | ☐ Vibration Suppres  | sion Adjustment Sele                                                      | ection                |                      | Speed                | d Pos Trq          | 1              |  |  |
| 0                                                        |                      | tion suppression autom<br>rence, and custom tunin                         |                       | on of autotunin      | g without a host re  | ference, autotun-  | 359            |  |  |
| 1<br>Defaul                                              |                      | opression automatically d custom tuning.                                  | during execution of a | utotuning with       | out a host reference | e, autotuning with | 359            |  |  |
| n.X□□□                                                   | Speed Feedforwa      | rd (VFF)/Torque Fee                                                       | dforward (TFF) Sele   | ction                | Speed                | d Pos Trq          | -              |  |  |
| 0<br>Defaul                                              | Do not use model for | Do not use model following control and speed/torque feedforward together. |                       |                      |                      |                    |                |  |  |
| 1                                                        | Use model followin   | Use model following control and speed/torque feedforward together.        |                       |                      |                      |                    |                |  |  |
| Pn141(2141h): Model Following Control Gain  Speed Pos Tr |                      |                                                                           |                       |                      |                      |                    |                |  |  |
| Size                                                     | Setting Range        | Setting Unit                                                              | Default Setting       | Applicable<br>Motors | When Enabled         | Classification     | Refer-<br>ence |  |  |
| 2                                                        | 10 to 20000          | 0.1/s                                                                     | 500                   | All                  | Immediately          | Tuning             | 436            |  |  |
| Pn142                                                    | 2(2142h): Mode       | el Following Co                                                           | ontrol Gain Co        | orrection            |                      | Speed Pos          | Trq            |  |  |
| Size                                                     | Setting Range        | Setting Unit                                                              | Default Setting       | Applicable Motors    | When Enabled         | Classification     | Refer-<br>ence |  |  |
| 2                                                        | 500 to 2000          | 0.1%                                                                      | 1000                  | All                  | Immediately          | Tuning             | 415            |  |  |
| • Pn143                                                  | 3(2143h): Mode       | el Following Co                                                           | ontrol Bias in t      | the Forwa            | ard Direction        | Speed Pos          | Trq            |  |  |
| Size                                                     | Setting Range        | Setting Unit                                                              | Default Setting       | Applicable<br>Motors | When Enabled         | Classification     | Refer-<br>ence |  |  |
| 2                                                        | 0 to 10000           | 0.1%                                                                      | 1000                  | All                  | Immediately          | Tuning             | 436            |  |  |
| • Pn144                                                  | 1(2144h): Mode       | el Following Co                                                           | ontrol Bias in t      | the Rever            | se Direction         | Speed Pos          | Trq            |  |  |
| Size                                                     | Setting Range        | Setting Unit                                                              | Default Setting       | Applicable<br>Motors | When Enabled         | Classification     | Refer-<br>ence |  |  |
| 2                                                        | 0 to 10000           | 0.1%                                                                      | 1000                  | All                  | Immediately          | Tuning             | 436            |  |  |
| Pn145                                                    | 5(2145h): Vibra      | tion Suppress                                                             | ion 1 Freauer         | ncy A                |                      | Speed Pos          | Trq            |  |  |
| Size                                                     | Setting Range        | Setting Unit                                                              | Default Setting       | Applicable Motors    | When Enabled         | Classification     | Refer-<br>ence |  |  |
| 2                                                        | 10 to 2500           | 0.1 Hz                                                                    | 500                   | All                  | Immediately          | Tuning             | 389            |  |  |
|                                                          | - * *                | <u> </u>                                                                  | 1                     | I                    | I,                   | 1 .5               |                |  |  |

Speed Pos Trq

Speed Pos Trq

Speed Pos Trq

Speed Pos Trq

Classification

Refer-

| ◆ Pn146(2146h): Vibration Suppression 1 Frequency B | Pos | Trq |
|-----------------------------------------------------|-----|-----|
|-----------------------------------------------------|-----|-----|

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 10 to 2500    | 0.1 Hz       | 700             | All                  | Immediately  | Tuning         | 389            |

#### ◆ Pn147(2147h): Model Following Control Speed Feedforward Compensation

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 10000    | 0.1%         | 1000            | A11               | Immediately  | Tuning         | 436            |

#### ◆ Pn148(2148h): Second Model Following Control Gain

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 10 to 20000   | 0.1/s        | 500             | All               | Immediately  | Tuning         | 415            |

#### ◆ Pn149(2149h): Second Model Following Control Gain Correction

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 500 to 2000   | 0.1%         | 1000            | All               | Immediately  | Tuning         | 415            |

#### ◆ Pn14A(214Ah): Vibration Suppression 2 Frequency

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 10 to 2000    | 0.1 Hz       | 800             | All                  | Immediately  | Tuning         | 389            |

#### ◆ Pn14B(214Bh): Vibration Suppression 2 Correction

**Setting Unit** 

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 10 to 1000    | 1%           | 100             | All               | Immediately  | Tuning         | 389            |

**Default Setting** 

Applicable Motors

When Enabled

#### ◆ Pn14F(214Fh): Control-Related Selections

**Setting Range** 

Size

| 2           | 0000h to 0031h       | _                                                      | 0030h | All | After restart | Tuning | _              |
|-------------|----------------------|--------------------------------------------------------|-------|-----|---------------|--------|----------------|
| Digit       | i                    | Meaning                                                |       |     |               |        | Refer-<br>ence |
| n.□□□)      | X Model Following C  | Model Following Control Type Selection Speed Pos Trq   |       |     | _             |        |                |
| 0<br>Defaul | Use overshoot contr  | e overshoot control type for model following control.  |       |     |               | 439    |                |
| 1           | Use response emph    | se response emphasis type for model following control. |       |     |               | 439    |                |
| n.□□X[      | ☐ Tuning-less Type   | Tuning-less Type Selection Speed Pos Trq               |       |     |               | -      |                |
| 0           | Use tuning-less type | e 1.                                                   |       |     |               |        | 325            |
| 1           | Use tuning-less type | e 2.                                                   |       |     |               |        | 325            |
| 2           | Use tuning-less type | e 3.                                                   |       |     |               |        | 325            |
| 3<br>Defaul | Use tuning-less type | Use tuning-less type 4.                                |       |     |               | 325    |                |
| n.□X□[      | Reserved (Do not     | Reserved (Do not change.)                              |       |     |               | -      |                |
| n.X□□□      | Reserved (Do not     | Reserved (Do not change.)                              |       |     |               | -      |                |
|             | •                    |                                                        |       |     |               |        |                |

# ◆ Pn160(2160h): Anti-Resonance Control-Related Selections

| Size                                                           | Setting Range                       | Setting Unit                                      | Default Setting       | Applicable<br>Motors | When Enabled          | Classification     | Refer-<br>ence |
|----------------------------------------------------------------|-------------------------------------|---------------------------------------------------|-----------------------|----------------------|-----------------------|--------------------|----------------|
| 2                                                              | 0000h to 0011h                      | -                                                 | 0010h                 | All                  | Immediately           | Tuning             | _              |
| Digit                                                          | :                                   |                                                   | Meaning               |                      |                       |                    | Refer-<br>ence |
| n.□□□                                                          | X Anti-Resonance C                  | Control Selection                                 |                       |                      | Speed                 | d Pos Trq          | -              |
| 0<br>Defaul                                                    | Do not use anti-reso                | onance control.                                   |                       |                      |                       |                    | 379            |
| 1                                                              | Use anti-resonance                  | control.                                          |                       |                      |                       |                    | 379            |
| n.□□X□                                                         | ☐ Anti-Resonance C                  | Control Adjustment Se                             | election              |                      | Speed                 | d Pos Trq          | -              |
| 0                                                              |                                     | esonance control auton<br>rence, and custom tunir |                       | ion of autotuni      | ng without a host re  | eference, autotun- | 358            |
| 1<br>Defaul                                                    |                                     | ce control automaticall e, and custom tuning.     | y during execution of | autotuning with      | nout a host reference | e, autotuning      | 358            |
| n.□X□E                                                         | Reserved (Do not                    | change.)                                          |                       |                      |                       |                    | -              |
| n.X□□□                                                         | Reserved (Do not                    | change.)                                          |                       |                      |                       |                    | -              |
| Pn161                                                          | s1(2161h): Anti-Resonance Frequency |                                                   |                       |                      |                       | Trq                |                |
| Size                                                           | Setting Range                       | Setting Unit                                      | Default Setting       | Applicable Motors    | When Enabled          | Classification     | Refer-<br>ence |
| 2                                                              | 10 to 20000                         | 0.1 Hz                                            | 1000                  | All                  | Immediately           | Tuning             | 379            |
| Pn162                                                          | 2(2162h): Anti-F                    | Resonance Ga                                      | ain Correction        |                      |                       | Speed Pos          | Trq            |
| Size                                                           | Setting Range                       | Setting Unit                                      | Default Setting       | Applicable Motors    | When Enabled          | Classification     | Refer-<br>ence |
| 2                                                              | 1 to 1000                           | 1%                                                | 100                   | All                  | Immediately           | Tuning             | 379            |
| Pn163                                                          | 3(2163h): Anti-F                    | Resonance Da                                      | amping Gain           |                      |                       | Speed Pos          | Trq            |
| Size                                                           | Setting Range                       | Setting Unit                                      | Default Setting       | Applicable Motors    | When Enabled          | Classification     | Refer-<br>ence |
| 2                                                              | 0 to 300                            | 1%                                                | 0                     | All                  | Immediately           | Tuning             | 379            |
| Pn164                                                          | 4(2164h): Anti-F                    | Resonance Fil                                     | ter Time Cons         | stant 1 Co           | orrection             | Speed Pos          | Trq            |
| Size                                                           | Setting Range                       | Setting Unit                                      | Default Setting       | Applicable Motors    | When Enabled          | Classification     | Refer-<br>ence |
| 2                                                              | -1000 to 1000                       | 0.01 ms                                           | 0                     | All                  | Immediately           | Tuning             | 379            |
| Pn165(2165h): Anti-Resonance Filter Time Constant 2 Correction |                                     |                                                   |                       |                      |                       | Trq                |                |
| Size                                                           | Setting Range                       | Setting Unit                                      | Default Setting       | Applicable<br>Motors | When Enabled          | Classification     | Refer-<br>ence |
| 2                                                              | -1000 to 1000                       | 0.01 ms                                           | 0                     | All                  | Immediately           | Tuning             | 379            |
| Pn166                                                          | 6(2166h): Anti-F                    | Resonance Da                                      | amping Gain 2         | )                    |                       | Speed Pos          | Trq            |
|                                                                | ,                                   |                                                   |                       | Applicable           | When Enghlad          |                    | Refer-         |
| Size                                                           | Setting Range                       | Setting Unit                                      | Default Setting       | Motors               | When Enabled          | Classification     | ence           |

0

All

Immediately

Tuning

384

0 to 1000

1%

# Parameter and Object Lists

# ◆ Pn170(2170h): Tuning-less Function-Related Selections

| Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 0000h to 2711h | _            | 1401h           | All                  | _            | Setup          | 324            |

| Digit        | Meaning                                                             | When Enabled  |
|--------------|---------------------------------------------------------------------|---------------|
| n.□□□X       | Tuning-less Selection Speed Pos Trq                                 | -             |
| 0            | Disable tuning-less function.                                       | After restart |
| 1<br>Default | Enable tuning-less function.                                        | After restart |
| n.□□X□       | Speed Control Method Speed Pos Trq                                  | -             |
| 0<br>Default | Use for speed control.                                              | After restart |
| 1            | Use for speed control and use host controller for position control. | After restart |
| n.□X□□       | Tuning-less Level Speed Pos Trq                                     | -             |
| 0            | Set the tuning-less level to 0.                                     | Immediately   |
| 1            | Set the tuning-less level to 1.                                     | Immediately   |
| 2            | Set the tuning-less level to 2.                                     | Immediately   |
| 3            | Set the tuning-less level to 3.                                     | Immediately   |
| 4<br>Default | Set the tuning-less level to 4.                                     | Immediately   |
| 5            | Set the tuning-less level to 5.                                     | Immediately   |
| 6            | Set the tuning-less level to 6.                                     | Immediately   |
| 7            | Set the tuning-less level to 7.                                     | Immediately   |
| n.XDDD       | Tuning-less Load Level Speed Pos Trq                                | -             |
| 0            | Set the tuning-less load level to 0.                                | Immediately   |
| 1<br>Default | Set the tuning-less load level to 1.                                | Immediately   |
| 2            | Set the tuning-less load level to 2.                                | Immediately   |

# ◆ Pn173(2173h): Load Fluctuation Compensation Control-Related Selections

| Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 0000h to 0001h | _            | 0000h           | All                  | Immediately  | Setup          | 412            |

| Digit        | Meaning                                           |               |
|--------------|---------------------------------------------------|---------------|
| n.□□□X       | Load Fluctuation Compensation Control Selection   | Speed Pos Trq |
| 0<br>Default | Do not use load fluctuation compensation control. |               |
| 1            | Use load fluctuation compensation control.        |               |
| n.□□X□       | Reserved (Do not change.)                         |               |
| n.□X□□       | Reserved (Do not change.)                         |               |
| n.X□□□       | Reserved (Do not change.)                         |               |

# ◆ Pn174(2174h): Load Fluctuation Compensation Control Response Level

|   | Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|---|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| • | 2    | 10 to 20000   | 0.1          | 400             | All                  | Immediately  | Tuning         | 412            |

Size

2

#### ◆ Pn181(2181h): Mode Switching Level for Speed Reference

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 10000    | 1 mm/s       | 0               | Linear            | Immediately  | Tuning         | 440            |

**Default Setting** 

0

Applicable Motors

Linear

When Ena

#### ◆ Pn182(2182h): Mode Switching Level for Acceleration

**Setting Unit** 

 $1 \text{ mm/s}^2$ 

| Vhen Enabled | Classification | Refer-<br>ence |
|--------------|----------------|----------------|
| Immediately  | Tuning         | 440            |

Speed Pos Trq

Speed Pos Trg

#### Pn205(2205h): Multiturn Limit

**Setting Range** 

0 to 30000

| Speed | Pos | Trq |
|-------|-----|-----|
|       |     |     |

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 2    | 0 to 65535    | 1 rev        | 65535           | Rotary               | After restart | Setup          | 250            |

#### ◆ Pn207(2207h): Position Control Function Selections

| Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 2    | 0000h to 2210h | _            | 0010h           | All                  | After restart | Setup          | 225            |

| Digit        | Meaning                                                                                                                                                                                              |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| n.□□□X       | Reserved (Do not change.)                                                                                                                                                                            |
| n.□□X□       | Reserved (Do not change.)                                                                                                                                                                            |
| n.□X□□       | Reserved (Do not change.)                                                                                                                                                                            |
| n.XDDD       | /COIN (Positioning Completion Output) Signal Output Timing                                                                                                                                           |
| 0<br>Default | Output when the absolute value of the position deviation is the same or less than the setting of Pn522 (2522h) (Positioning Completed Width).                                                        |
| 1            | Output when the absolute value of the position error is the same or less than the setting of Pn522 (2522h) (Positioning Completed Width) and the reference after the position reference filter is 0. |
| 2            | Output when the absolute value of the position error is the same or less than the setting of Pn522 (2522h) (Positioning Completed Width) and the reference input is 0.                               |

#### ◆ Pn20A(220Ah): Number of External Encoder Scale Pitches

| Speed | Pos | Tra |
|-------|-----|-----|

| Size | Setting Range | Setting Unit                 | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|------|---------------|------------------------------|-----------------|-------------------|---------------|----------------|----------------|
| 4    | 4 to 1048576  | 1 scale pitch/<br>revolution | 32768           | Rotary            | After restart | Setup          | 487            |

#### ◆ Pn20E(220Eh): Electronic Gear Ratio (Numerator)

| Speed | Pos | Trq |
|-------|-----|-----|
|-------|-----|-----|

| Size | Setting Range   | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|------|-----------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
| 4    | 1 to 1073741824 | -            | 64              | All               | After restart | Setup          | 1              |

For the settings related to the electronic gear, use objects 2701h to 2704h. For details, refer to the following section.

■ 15.5 Manufacturer Specific Objects on page 602

| Size | Setting Range   | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|------|-----------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 4    | 1 to 1073741824 | -            | 1               | All                  | After restart | Setup          | -              |

Note:

For the settings related to the electronic gear, use objects 2701h to 2704h. For details, refer to the following section.

■ 15.5 Manufacturer Specific Objects on page 602

#### ◆ Pn212(2212h): Number of Encoder Output Pulses

| Speed | Pos | Trq |
|-------|-----|-----|
|-------|-----|-----|

| Size | Setting Range    | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|------|------------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 4    | 16 to 1073741824 | 1 P/Rev      | 2048            | Rotary               | After restart | Setup          | 237            |

#### ◆ Pn21D(221Dh): Encoder Resolution Setting

| Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 2    | 0000h to 00A1h | -            | 0080h           | Rotary               | After restart | Setup          | 209            |

| Digit        | Meaning                                                              |
|--------------|----------------------------------------------------------------------|
| n.□□□X       | Encoder Resolution Compatibility Selection Speed Pos Trq             |
| 0<br>Default | Disable encoder resolution compatibility.                            |
| 1            | Enable encoder resolution compatibility.                             |
| n.□□X□       | Encoder Resolution Compatibility: Resolution Selection Speed Pos Trq |
| 4            | Operate as 20-bit encoder.                                           |
| 6            | Operate as 22-bit encoder.                                           |
| 8<br>Default | Operate as 24-bit encoder.                                           |
| A            | Operate as 26-bit encoder.                                           |
| Other values | Reserved (Do not use.)                                               |
| n.□X□□       | Reserved (Do not change.)                                            |
| n.XDDD       | Reserved (Do not change.)                                            |

#### ◆ Pn22A(222Ah): Fully-closed Control Selections

| Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 2    | 0000h to 1003h | -            | 0000h           | Rotary               | After restart | Setup          | 491            |

| Digit        | Meaning                                                     |
|--------------|-------------------------------------------------------------|
| n.□□□X       | Reserved (Do not change.)                                   |
| n.□□X□       | Reserved (Do not change.)                                   |
| n.□X□□       | Reserved (Do not change.)                                   |
| n.X□□□       | Fully-closed Control Speed Feedback Selection Speed Pos Trq |
| 0<br>Default | Use motor encoder speed.                                    |
| 1            | Use external encoder speed.                                 |

#### ◆ Pn230(2230h): Position Control Expansion Function Selections

| Size  | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|-------|----------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 2     | 0000h to 0001h | ı            | 0000h           | All                  | After restart | Setup          | 423            |
| Digit |                |              | Mean            | ina                  |               |                |                |

| Digit        | Meaning                                       |
|--------------|-----------------------------------------------|
| n.□□□X       | Backlash Compensation Direction Speed Pos Trq |
| 0<br>Default | Compensate forward references.                |
| 1            | Compensate reverse references.                |
| n.□□X□       | Reserved (Do not change.)                     |
| n.□X□□       | Reserved (Do not change.)                     |
| n.X□□□       | Reserved (Do not change.)                     |

#### ◆ Pn231(2231h): Backlash Compensation Value

| Size | Setting Range     | Setting Unit       | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|-------------------|--------------------|-----------------|-------------------|--------------|----------------|----------------|
| 4    | -500000 to 500000 | 0.1 reference unit | 0               | All               | Immediately  | Setup          | 424            |

#### ◆ Pn233(2233h): Backlash Compensation Time Constant

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 65535    | 0.01 ms      | 0               | All               | Immediately  | Setup          | 424            |

#### ◆ Pn281(2281h): Encoder Output Resolution

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 2    | 1 to 4096     | 1 edge/pitch | 20              | All                  | After restart | Setup          | 238            |

Speed Pos Trq

#### ◆ Pn282(2282h): Linear Encoder Scale Pitch

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
| 4    | 0 to 6553600  | 0.01 μm      | 0               | Linear            | After restart | Setup          | 167            |

#### ◆ Pn304(2304h): Jogging Speed

| Size | Setting Range | Setting Unit                                                    | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|-----------------------------------------------------------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 10000    | Rotary: 1 min <sup>-1</sup> Direct Drive: 0.1 min <sup>-1</sup> | 500             | Rotary            | Immediately  | Setup          | 295            |

#### ◆ Pn305(2305h): Soft Start Acceleration Time

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 0 to 12000    | 1 ms         | 0               | All                  | Immediately  | Setup          | 287            |

#### ◆ Pn306(2306h): Soft Start Deceleration Time

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 12000    | 1 ms         | 0               | All               | Immediately  | Setup          | 287            |

Speed Pos Trq

Speed Pos Trq

| ◆ Pn307(2307h): Speed Reference Filter Time Const |
|---------------------------------------------------|
|---------------------------------------------------|

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 65535    | 0.01 ms      | 0               | All               | Immediately  | Setup          | 288            |

#### ◆ Pn308(2308h): Speed Feedback Filter Time Constant

|      | , , ,         |              |                 |                      |              | <u> </u>       |                |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
| 2    | 0 to 65535    | 0.01 ms      | 0               | All                  | Immediately  | Setup          | 423            |

#### ◆ Pn30A(230Ah): Deceleration Time for Servo OFF and Forced Stops

| _ |      | ,             |              |                 |                   | -            |                |                |
|---|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
|   | Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
| - | 2    | 0 to 12000    | 1 ms         | 0               | All               | Immediately  | Setup          | 180            |

#### ◆ Pn30C(230Ch): Speed Feedforward Average Movement Time

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 5100     | 0.1 ms       | 0               | All               | Immediately  | Setup          | -              |

#### ◆ Pn310(2310h): Vibration Detection Selections

| Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 0000h to 0002h | _            | 0000h           | All                  | Immediately  | Setup          | 261            |

| Digit        | Meaning                                            |
|--------------|----------------------------------------------------|
| n.□□□X       | Vibration Detection Selection Speed Pos Trq        |
| 0<br>Default | Do not detect vibration.                           |
| 1            | Output a warning (A.911) if vibration is detected. |
| 2            | Output an alarm (A.520) if vibration is detected.  |
| n.□□X□       | Reserved (Do not change.)                          |
| n.□X□□       | Reserved (Do not change.)                          |
| n.X□□□       | Reserved (Do not change.)                          |

#### ◆ Pn311(2311h): Vibration Detection Sensitivity

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 50 to 500     | 1%           | 100             | All                  | Immediately  | Tuning         | 261            |

#### ◆ Pn312(2312h): Vibration Detection Level

| Size | Setting Range | Setting Unit        | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|---------------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 0 to 5000     | 1 min <sup>-1</sup> | 50              | Rotary               | Immediately  | Tuning         | 261            |

#### ◆ Pn316(2316h): Maximum Motor Speed

|   | Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|---|------|---------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
| _ | 2    | 0 to 65535    | 1 min-1      | 10000           | Rotary            | After restart | Setup          | 232            |

737

#### ◆ Pn324(2324h): Moment of Inertia Calculation Starting Level

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 20000    | 1%           | 300             | All               | Immediately  | Setup          | 357            |

Speed Pos Trq

#### ◆ Pn383(2383h): Jogging Speed

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 10000    | 1 mm/s       | 50              | Linear            | Immediately  | Setup          | 295            |

#### ◆ Pn384(2384h): Vibration Detection Level

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 5000     | 1 mm/s       | 10              | Linear            | Immediately  | Tuning         | 261            |

#### ◆ Pn385(2385h): Maximum Motor Speed

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 2    | 1 to 100      | 100 mm/s     | 50              | Linear               | After restart | Setup          | 232            |

# ◆ Pn401(2401h): First Stage First Torque Reference Filter Time Constant

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 0 to 65535    | 0.01 ms      | 100             | All                  | Immediately  | Tuning         | 431            |

#### ◆ Pn402(2402h): Forward Torque Limit

|      | ,             | •            |                 |                   |              |                |                |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
| 2    | 0 to 800      | 1%           | 800             | Rotary            | Immediately  | Setup          | 241            |

Note

The setting is a percentage of the motor rated torque.

#### ◆ Pn403(2403h): Reverse Torque Limit

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 0 to 800      | 1%           | 800             | Rotary               | Immediately  | Setup          | 241            |

Note:

The setting is a percentage of the motor rated torque.

#### ◆ Pn404(2404h): Forward External Torque Limit

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 800      | 1%           | 100             | All               | Immediately  | Setup          | 242            |

Note:

The setting is a percentage of the motor rated torque.

Speed Pos Trq

# Parameter and Object Lists

431

419

419

Immediately

Immediately

Immediately

Speed Pos Trq

#### ◆ Pn405(2405h): Reverse External Torque Limit

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 0 to 800      | 1%           | 100             | All                  | Immediately  | Setup          | 242            |

Note:

The setting is a percentage of the motor rated torque.

#### ◆ Pn406(2406h): Emergency Stop Torque

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 800      | 1%           | 800             | All               | Immediately  | Setup          | 179            |

Note:

The setting is a percentage of the motor rated torque.

#### ◆ Pn407(2407h): Speed Limit during Torque Control

| Size | Setting Range | Setting Unit        | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|---------------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 10000    | 1 min <sup>-1</sup> | 10000           | Rotary            | Immediately  | Setup          | 227            |

#### ◆ Pn408(2408h): Torque-Related Function Selections

| Size  | Setting Range        | Setting Unit | Default Setting | Motors | When Enabled | Classification | ence           |
|-------|----------------------|--------------|-----------------|--------|--------------|----------------|----------------|
| 2     | 0000h to 1111h       | ı            | 0000h           | All    | ı            | Setup          | -              |
| Digit | :                    |              | Meaning         |        |              | When Enabled   | Refer-<br>ence |
| n.000 | X Notch Filter Selec | tion 1       |                 | Speed  | Pos Trq      | -              | -              |
|       | 1                    |              |                 |        |              |                |                |

| 0<br>Default | Disable first stage notch filter.                                                                           | Immediately                           | 431 |
|--------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------|-----|
| 1            | Enable first stage notch filter.                                                                            | Immediately                           | 431 |
| n.□□X□       | Speed Limit Selection Speed Pos Trq                                                                         | -                                     | -   |
| 0            | Use the smaller of the maximum motor speed and the setting of Pn407 (2407h) as the speed limit.             |                                       | 207 |
| Default      | Use the smaller of the maximum motor speed and the setting of Pn480 (2480h) as the speed limit.             | After restart                         | 227 |
| 1            | Use the smaller of the overspeed alarm detection speed and the setting of Pn407 (2407h) as the speed limit. | A G                                   | 227 |
|              | Use the smaller of the overspeed alarm detection speed and the setting of Pn480 (2480h) as the speed limit. | After restart                         | 227 |
| n.□X□□       | Notch Filter Selection 2 Speed Pos Trq                                                                      | 1                                     | -   |
| 0<br>Default | Disable second stage notch filter.                                                                          | Immediately                           | 431 |
|              |                                                                                                             | · · · · · · · · · · · · · · · · · · · | 1   |

#### ◆ Pn409(2409h): First Stage Notch Filter Frequency

Friction Compensation Function Selection

Enable second stage notch filter.

Disable friction compensation.

Enable friction compensation.

n.X□□□

0

Default

| 5 | Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|---|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
|   | 2    | 10 to 5000    | 1 Hz         | 5000            | All               | Immediately  | Tuning         | 431            |

Size

2

◆ Pn40A(240Ah): First Stage Notch Filter Q Value

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 50 to 1000    | 0.01         | 70              | All                  | Immediately  | Tuning         | 431            |

◆ Pn40B(240Bh): First Stage Notch Filter Depth

**Setting Range** 

0 to 1000

| •               |                      |              |                |                |
|-----------------|----------------------|--------------|----------------|----------------|
| Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
| 0               | All                  | Immediately  | Tuning         | 431            |

Speed Pos Trq

Pn40C(240Ch): Second Stage Notch Filter Frequency

**Setting Unit** 

0.001

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2.   | 10 to 5000    | 1 Hz         | 5000            | A11                  | Immediately  | Tuning         | 431            |

◆ Pn40D(240Dh): Second Stage Notch Filter Q Value

|   | Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|---|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| _ | 2    | 50 to 1000    | 0.01         | 70              | All               | Immediately  | Tuning         | 431            |

◆ Pn40E(240Eh): Second Stage Notch Filter Depth

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 0 to 1000     | 0.001        | 0               | All                  | Immediately  | Tuning         | 431            |

Pn40F(240Fh): Second Stage Second Torque Reference Filter Frequency

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 100 to 5000   | 1 Hz         | 5000            | All               | Immediately  | Tuning         | 431            |

◆ Pn410(2410h): Second Stage Second Torque Reference Filter Q Value Speed Pos Trg

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 50 to 100     | 0.01         | 50              | All               | Immediately  | Tuning         | 431            |

▶ Pn412(2412h): First Stage Second Torque Reference Filter Time Constant

|   | Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|---|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| - | 2    | 0 to 65535    | 0.01 ms      | 100             | All                  | Immediately  | Tuning         | 415            |

Speed Pos Trq

Speed Pos Trq

Speed Pos Trq

Speed Pos Trq

#### ◆ Pn416(2416h): Torque-Related Function Selections 2

| Size        | Setting Range         | Setting Unit                     | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|-------------|-----------------------|----------------------------------|-----------------|-------------------|--------------|----------------|----------------|
| 2           | 0000h to 1111h        | _                                | 0000h           | All               | Immediately  | Setup          | 432            |
| Digit       |                       | Meaning                          |                 |                   |              |                |                |
| n. 🗆 🗆 🗆 🔾  | X Notch Filter Selec  | tion 3                           |                 |                   |              | Speed Pos      | Trq            |
| 0<br>Defaul | Disable third stage   | ble third stage notch filter.    |                 |                   |              |                |                |
| 1           | Enable third stage r  | nable third stage notch filter.  |                 |                   |              |                |                |
| n.□□X[      | Notch Filter Selec    | tion 4                           |                 |                   |              | Speed Pos      | Trq            |
| 0<br>Defaul | Disable fourth stage  | e notch filter.                  |                 |                   |              |                |                |
| 1           | Enable fourth stage   | notch filter.                    |                 |                   |              |                |                |
| n.□X□[      | Notch Filter Selec    | tion 5                           |                 |                   |              | Speed Pos      | Trq            |
| 0<br>Defaul | Disable fifth stage i | isable fifth stage notch filter. |                 |                   |              |                |                |
| 1           | Enable fifth stage n  | able fifth stage notch filter.   |                 |                   |              |                |                |
| n.X□□□      | Reserved (Do not      | rved (Do not change.)            |                 |                   |              |                |                |

#### ◆ Pn417(2417h): Third Stage Notch Filter Frequency

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 10 to 5000    | 1 Hz         | 5000            | All               | Immediately  | Tuning         | 432            |

### ◆ Pn418(2418h): Third Stage Notch Filter Q Value

| I | Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|---|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
|   | 2    | 50 to 1000    | 0.01         | 70              | All                  | Immediately  | Tuning         | 432            |

#### ◆ Pn419(2419h): Third Stage Notch Filter Depth

|      | •             | _            |                 |                      |              |                |                |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
| 2    | 0 to 1000     | 0.001        | 0               | All                  | Immediately  | Tuning         | 432            |

#### ◆ Pn41A(241Ah): Fourth Stage Notch Filter Frequency

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 10 to 5000    | 1 Hz         | 5000            | All                  | Immediately  | Tuning         | 432            |

#### ◆ Pn41B(241Bh): Fourth Stage Notch Filter Q Value

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 50 to 1000    | 0.01         | 70              | All                  | Immediately  | Tuning         | 432            |

#### ◆ Pn41C(241Ch): Fourth Stage Notch Filter Depth

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 0 to 1000     | 0.001        | 0               | All                  | Immediately  | Tuning         | 432            |

#### ◆ Pn41D(241Dh): Fifth Stage Notch Filter Frequency

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 10 to 5000    | 1 Hz         | 5000            | All               | Immediately  | Tuning         | 432            |

Speed Pos Trq

Speed Pos Trq

Speed Pos Trq

Speed Pos Trq

#### ◆ Pn41E(241Eh): Fifth Stage Notch Filter Q Value

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 50 to 1000    | 0.01         | 70              | All               | Immediately  | Tuning         | 432            |

#### ◆ Pn41F(241Fh): Fifth Stage Notch Filter Depth

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 1000     | 0.001        | 0               | All               | Immediately  | Tuning         | 432            |

#### ◆ Pn423(2423h): Speed Ripple Compensation Selections

| Size | Setting Range  | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0000H to 1112h | _            | 0002h           | -                 | _            | Setup          | 409            |

| Digit        | Meaning                                                                        | Applicable Motors | When Enabled  |
|--------------|--------------------------------------------------------------------------------|-------------------|---------------|
| n.□□□X       | Speed Ripple Compensation Function Selection Speed Pos Trq                     | -                 | -             |
| 0            | Do not execute speed ripple compensation.                                      | Rotary            | Immediately   |
| 1            | Execute speed ripple compensation using the value adjusted by the user.        | Rotary            | Immediately   |
| 2<br>Default | Execute speed ripple compensation using the default adjustment value.          | Rotary            | Immediately   |
| n.□□X□       | Speed Ripple Compensation Information Disagreement Warning Detection Selection | 1                 | -             |
| 0<br>Default | Detect A.942 alarms.                                                           | Rotary            | After restart |
| 1            | Do not detect A.942 alarms.                                                    | Rotary            | After restart |
| n.□X□□       | Speed Ripple Compensation Enable Condition Selection Speed Pos Trq             | -                 | -             |
| 0<br>Default | Speed Reference                                                                | Rotary            | After restart |
| 1            | Motor Speed                                                                    | Rotary            | After restart |
| n.X□□□       | Speed Ripple Compensation Function Operation Mode Selection Speed Pos Trq      | -                 | -             |
| 0<br>Default | Execute speed ripple compensation in normal mode.                              | All               | After restart |
| 1            | Execute speed ripple compensation in press operation mode.                     | All               | After restart |
| 2            | Reserved (Do not use.)                                                         | All               | After restart |
| 3            | Reserved (Do not use.)                                                         | All               | After restart |

#### ◆ Pn424(2424h): Torque Limit at Main Circuit Voltage Drop

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 100      | 1%           | 50              | All               | Immediately  | Setup          | 231            |

Note:

The setting is a percentage of the motor rated torque.

#### Pn425(2425h): Release Time for Torque Limit at Main Circuit Voltage Drop

Speed Pos Trq

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 1000     | 1 ms         | 100             | All               | Immediately  | Setup          | 231            |

◆ Pn426(2426h): Torque Feedforward Average Movement Time

Speed Pos Trq

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 5100     | 0.1 ms       | 0               | All               | Immediately  | Setup          | ı              |

#### ◆ Pn427(2427h): Speed Ripple Compensation Enable Speed

Speed Pos

| Pos | Trq |
|-----|-----|
|     |     |

| Size | Setting Range | Setting Unit        | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|---------------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 10000    | 1 min <sup>-1</sup> | 0               | Rotary            | Immediately  | Tuning         | 409            |

#### ◆ Pn428(2428h): Output Torque Compensation Selections

|   | Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|---|------|----------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| - | 2    | 0000h to 0001h | _            | 0001h           | All                  | After restart | Setup          | 421            |

| Digit        | Meaning                                       |               |
|--------------|-----------------------------------------------|---------------|
| n.□□□X       | Output Torque Compensation Function Selection | Speed Pos Trq |
| 0            | Disable output torque compensation.           |               |
| 1<br>Default | Enable output torque compensation.            |               |
| n.□□X□       | Reserved (Do not change.)                     |               |
| n.□X□□       | Reserved (Do not change.)                     |               |
| n.X□□□       | Reserved (Do not change.)                     |               |

#### ◆ Pn456(2456h): Sweep Torque Reference Amplitude

|  | Speed | Pos | Trq |
|--|-------|-----|-----|
|--|-------|-----|-----|

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 1 to 800      | 1%           | 15              | All               | Immediately  | Tuning         | 449            |

#### ◆ Pn460(2460h): Notch Filter Adjustment Selections 1

| Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 0000h to 0101h | _            | 0101h           | All                  | Immediately  | Tuning         | 327,<br>358    |

| Digit        | Meaning                                                                                                                                                                                                             |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| n.□□□X       | Notch Filter Adjustment Selection 1 Speed Pos Trq                                                                                                                                                                   |
| 0            | Do not adjust the first stage notch filter automatically during execution of autotuning without a host reference, autotuning with a host reference, and custom tuning.                                              |
| 1<br>Default | Adjust the first stage notch filter automatically during execution of autotuning without a host reference, autotuning with a host reference, and custom tuning.                                                     |
| n.□□X□       | Reserved (Do not change.)                                                                                                                                                                                           |
| n.□X□□       | Notch Filter Adjustment Selection 2 Speed Pos Trq                                                                                                                                                                   |
| 0            | Do not adjust the second stage notch filter automatically when the tuning-less function is enabled or during execution of autotuning without a host reference, autotuning with a host reference, and custom tuning. |
| 1<br>Default | Adjust the second stage notch filter automatically when the tuning-less function is enabled or during execution of autotuning without a host reference, autotuning with a host reference, and custom tuning.        |
| n.X□□□       | Reserved (Do not change.)                                                                                                                                                                                           |

#### ◆ Pn475(2475h): Gravity Compensation-Related Selections

| Size | Setting Range  | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
| 2    | 0000h to 0001h | _            | 0000h           | All               | After restart | Setup          | 420            |

| Digit        | Mea                            | ning          |
|--------------|--------------------------------|---------------|
| n.□□□X       | Gravity Compensation Selection | Speed Pos Trq |
| 0<br>Default | Disable gravity compensation.  |               |
| 1            | Enable gravity compensation.   |               |
| n.□□X□       | Reserved (Do not change.)      |               |
| n.□X□□       | Reserved (Do not change.)      |               |
| n.X□□□       | Reserved (Do not change.)      |               |

# ◆ Pn476(2476h): Gravity Compensation Torque

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | -1000 to 1000 | 0.1%         | 0               | All               | Immediately  | Tuning         | 420            |

Speed Pos Trq

Speed Pos Trq

Speed Pos Trq

#### ◆ Pn480(2480h): Speed Limit during Force Control

|   | Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|---|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| • | 2    | 0 to 10000    | 1 mm/s       | 10000           | Linear            | Immediately  | Setup          | 227            |

#### ◆ Pn481(2481h): Polarity Detection Speed Loop Gain

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 10 to 20000   | 0.1 Hz       | 400             | Linear            | Immediately  | Tuning         | _              |

Speed Pos Trq

Speed Pos Trq

Speed Pos Trq

Speed Pos Trq

Speed Pos

◆ Pn482(2482h): Polarity Detection Speed Loop Integral Time

| Size  | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|-------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| <br>2 | 15 to 51200   | 0.01 ms      | 3000            | Linear            | Immediately  | Tuning         | -              |

◆ Pn483(2483h): Forward Force Limit

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 800      | 1%           | 30              | Linear            | Immediately  | Setup          | 241            |

Note:

The setting is a percentage of the motor rated torque.

#### ◆ Pn484(2484h): Reverse Force Limit

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 0 to 800      | 1%           | 30              | Linear               | Immediately  | Setup          | 241            |

Note:

The setting is a percentage of the motor rated torque.

#### ◆ Pn485(2485h): Polarity Detection Reference Speed

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 100      | 1 mm/s       | 20              | Linear            | Immediately  | Tuning         | -              |

# ◆ Pn486(2486h): Polarity Detection Reference Acceleration/Deceleration Speed Pos Trg

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 100      | 1 ms         | 25              | Linear            | Immediately  | Tuning         | -              |

#### ◆ Pn487(2487h): Polarity Detection Constant Speed Time

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 0 to 300      | 1 ms         | 0               | Linear               | Immediately  | Tuning         | -              |

#### ◆ Pn488(2488h): Polarity Detection Reference Waiting Time

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 50 to 500     | 1 ms         | 100             | Linear               | Immediately  | Tuning         | _              |

#### ◆ Pn48E(248Eh): Polarity Detection Range

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 1 to 65535    | 1 mm         | 10              | Linear               | Immediately  | Tuning         | 1              |

#### ◆ Pn490(2490h): Polarity Detection Load Level

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 20000    | 1%           | 100             | Linear            | Immediately  | Tuning         | _              |

| Size              | Setting Range                                                        | Setting Unit                                              | Default Setting                                       | Applicable Motors                                             | When Enabled              | Classification                   |   |
|-------------------|----------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------|---------------------------|----------------------------------|---|
| 2                 | 0 to 200                                                             | 1%                                                        | 100                                                   | Linear                                                        | Immediately               | Tuning                           | Ī |
|                   | )(0.400L) D. I                                                       |                                                           | –                                                     |                                                               |                           |                                  |   |
| <sup>2</sup> n498 | 3(2498h): Polar                                                      | ity Detection A                                           | Allowable Erro                                        |                                                               |                           | Speed Pos                        |   |
| Size              | Setting Range                                                        | Setting Unit                                              | Default Setting                                       | Applicable<br>Motors                                          | When Enabled              | Classification                   |   |
| 2                 | 0 to 30                                                              | 1 deg                                                     | 10                                                    | Linear                                                        | Immediately               | Tuning                           |   |
| Pn49F             | F(249Fh): Spee                                                       | ed Ripple Com                                             | pensation En                                          | able Spe                                                      | ed (Linear)               | Speed Pos                        |   |
| Size              | Setting Range                                                        | Setting Unit                                              | Default Setting                                       | Applicable<br>Motors                                          | When Enabled              | Classification                   |   |
| 2                 | 0 to 10000                                                           | 1 mm/s                                                    | 0                                                     | Linear                                                        | Immediately               | Tuning                           | Ī |
| 25E01             | 1/2501h): Zoro                                                       | Clamping Lav                                              | ما                                                    |                                                               |                           | Cnood                            |   |
|                   | 1(2501h): Zero                                                       |                                                           |                                                       | Applicable                                                    |                           | Speed Pos                        | ī |
| Size              | Setting Range                                                        | Setting Unit                                              | Default Setting                                       | Motors                                                        | When Enabled              | Classification                   |   |
| 2                 | 0 to 10000                                                           | 1 min <sup>-1</sup>                                       | 10                                                    | Rotary                                                        | Immediately               | Setup                            |   |
| ⊃n502             | 2(2502h): Rotat                                                      | ion Detection                                             | Level                                                 |                                                               |                           | Speed Pos                        |   |
| Size              | Setting Range                                                        | Setting Unit                                              | Default Setting                                       | Applicable<br>Motors                                          | When Enabled              | Classification                   |   |
| 2                 | 1 to 10000                                                           | 1 min-1                                                   | 20                                                    | Rotary                                                        | Immediately               | Setup                            | Ī |
| 75 F01            | 2/2E02h\. Cn.o.                                                      | d Cainaidana                                              | Dotootion Ci                                          | anal Oute                                                     | t \ \ / / ; al t la       |                                  |   |
| 711503            | 3(2503h): Spee                                                       |                                                           | Detection Si                                          |                                                               | out wiatri                | Speed Pos                        | _ |
| Size              | Setting Range                                                        | Setting Unit                                              | Default Setting                                       | Applicable<br>Motors                                          | When Enabled              | Classification                   |   |
| 2                 | 0 to 100                                                             | 1 min <sup>-1</sup>                                       | 10                                                    | Rotary                                                        | Immediately               | Setup                            |   |
| ⊃n506             | 6(2506h): Brake                                                      | e Reference-S                                             | ervo OFF De                                           | lay Time                                                      |                           | Speed Pos                        |   |
| Size              | Setting Range                                                        | Setting Unit                                              | Default Setting                                       | Applicable<br>Motors                                          | When Enabled              | Classification                   |   |
| 2                 | 0 to 50                                                              | 10 ms                                                     | 0                                                     | All                                                           | Immediately               | Setup                            | Ī |
|                   |                                                                      |                                                           |                                                       | •                                                             | •                         |                                  |   |
| ⊃n507             | 7(2507h)· Brake                                                      | e Reference ∩                                             | utnut Sneed                                           | l evel                                                        |                           | Speed Pos                        | P |
|                   | 7(2507h): Brake                                                      |                                                           |                                                       | 1                                                             |                           | Speed Pos                        |   |
| Pn507             | 7(2507h): Brake<br>Setting Range                                     | e Reference O                                             | utput Speed                                           | Level Applicable Motors                                       | When Enabled              | Speed Pos Classification         |   |
|                   | ,                                                                    |                                                           |                                                       | Applicable                                                    | When Enabled Immediately  |                                  | T |
| Size 2            | Setting Range                                                        | Setting Unit                                              | Default Setting                                       | Applicable<br>Motors<br>Rotary                                | Immediately               | Classification                   |   |
| Size 2            | Setting Range  0 to 10000                                            | Setting Unit                                              | Default Setting                                       | Applicable<br>Motors<br>Rotary                                | Immediately               | <b>Classification</b> Setup      |   |
| 2<br>2<br>Pn508   | Setting Range  0 to 10000  8(2508h): Serve                           | Setting Unit  1 min-1  O OFF-Brake 0                      | Default Setting  100  Command Wa                      | Applicable Motors  Rotary  aiting Time Applicable             | Immediately               | Classification Setup Speed Pos   |   |
| 2 Pn508 Size 2    | Setting Range  0 to 10000  8(2508h): Serve  Setting Range  10 to 100 | Setting Unit  1 min-1  O OFF-Brake C  Setting Unit  10 ms | Default Setting  100  Command Wa  Default Setting  50 | Applicable Motors  Rotary  aiting Time Applicable Motors  All | Immediately  When Enabled | Speed Pos  Classification        |   |
| 2 Pn508 Size 2    | Setting Range  0 to 10000  3(2508h): Serve                           | Setting Unit  1 min-1  O OFF-Brake C  Setting Unit  10 ms | Default Setting  100  Command Wa  Default Setting  50 | Applicable Motors  Rotary  aiting Time Applicable Motors  All | Immediately  When Enabled | Speed Pos  Classification  Setup |   |

# ◆ Pn50A(250Ah): Input Signal Selections 1

|   | Size  | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|---|-------|----------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
|   | 2     | 0000h to FFF2h | _            | 1881h           | All                  | After restart | Setup          | _              |
| ĺ | Digit | :              |              | Meaning         |                      |               |                | Refer-<br>ence |

| Digit        | Meaning                                                              | Refer-<br>ence |
|--------------|----------------------------------------------------------------------|----------------|
| n.□□□X       | Input Signal Allocation Mode Speed Pos Trq                           | _              |
| 0            | Reserved (Do not use.)                                               | 216            |
| 1<br>Default | Use Pn50A to Pn516 (Sigma-7S-compatible I/O signal allocation mode). | 216            |
| 2            | Use Pn590 to Pn5BC (SigmaLINK II input signal allocation mode).      | 216            |
| n.□□X□       | Reserved (Do not change.)                                            | _              |
| n.□X□□       | Reserved (Do not change.)                                            | -              |
| n.X□□□       | P-OT (Forward Drive Prohibit Input) Signal Allocation Speed Pos Trq  | -              |
| 0            | Enable forward drive when CN1-13 input signal is ON (closed).        | 179            |
| 1<br>Default | Enable forward drive when CN1-7 input signal is ON (closed).         | 179            |
| 2            | Enable forward drive when CN1-8 input signal is ON (closed).         | 179            |
| 3            | Enable forward drive when CN1-9 input signal is ON (closed).         | 179            |
| 4            | Enable forward drive when CN1-10 input signal is ON (closed).        | 179            |
| 5            | Enable forward drive when CN1-11 input signal is ON (closed).        | 179            |
| 6            | Enable forward drive when CN1-12 input signal is ON (closed).        | 179            |
| 7            | Set the signal to always prohibit forward drive.                     | 179            |
| 8            | Set the signal to always enable forward drive.                       | 179            |
| 9            | Enable forward drive when CN1-13 input signal is OFF (open).         | 179            |
| A            | Enable forward drive when CN1-7 input signal is OFF (open).          | 179            |
| В            | Enable forward drive when CN1-8 input signal is OFF (open).          | 179            |
| С            | Enable forward drive when CN1-9 input signal is OFF (open).          | 179            |
| D            | Enable forward drive when CN1-10 input signal is OFF (open).         | 179            |
| Е            | Enable forward drive when CN1-11 input signal is OFF (open).         | 179            |
| F            | Enable forward drive when CN1-12 input signal is OFF (open).         | 179            |

# ◆ Pn50B(250Bh): Input Signal Selections 2

| S | Size | Setting Range  | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|---|------|----------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
|   | 2    | 0000h to FFFFh | ı            | 8882h           | All               | After restart | Setup          | ı              |

| Digit                           | Meaning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Refer-<br>ence                                                     |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| n.□□□X                          | N-OT (Reverse Drive Prohibit Input) Signal Allocation Speed Pos Trq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                  |
| 0                               | Enable reverse drive when CN1-13 input signal is ON (closed).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 179                                                                |
| 1                               | Enable reverse drive when CN1-7 input signal is ON (closed).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 179                                                                |
| 2<br>Default                    | Enable reverse drive when CN1-8 input signal is ON (closed).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 179                                                                |
| 3                               | Enable reverse drive when CN1-9 input signal is ON (closed).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 179                                                                |
| 4                               | Enable reverse drive when CN1-10 input signal is ON (closed).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 179                                                                |
| 5                               | Enable reverse drive when CN1-11 input signal is ON (closed).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 179                                                                |
| 6                               | Enable reverse drive when CN1-12 input signal is ON (closed).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 179                                                                |
| 7                               | Set the signal to always prohibit reverse drive.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 179                                                                |
| 8                               | Set the signal to always enable reverse drive.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 179                                                                |
| 9                               | Enable reverse drive when CN1-13 input signal is OFF (open).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 179                                                                |
| A                               | Enable reverse drive when CN1-7 input signal is OFF (open).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 179                                                                |
| В                               | Enable reverse drive when CN1-8 input signal is OFF (open).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 179                                                                |
| С                               | Enable reverse drive when CN1-9 input signal is OFF (open).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 179                                                                |
| D                               | Enable reverse drive when CN1-10 input signal is OFF (open).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 179                                                                |
| Е                               | Enable reverse drive when CN1-11 input signal is OFF (open).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 179                                                                |
| F                               | Enable reverse drive when CN1-12 input signal is OFF (open).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 179                                                                |
| n.□□X□                          | Reserved (Do not change.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                  |
| n.□X□□                          | /P-CL (Forward External Torque Limit Input) Signal Allocation Speed Pos Trq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                  |
| 0                               | Active when CN1-13 input signal is ON (closed).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 242                                                                |
| 1                               | Active when CN1-7 input signal is ON (closed).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 242                                                                |
|                                 | 1 0 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |
| 2                               | Active when CN1-8 input signal is ON (closed).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 242                                                                |
| 3                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 242<br>242                                                         |
|                                 | Active when CN1-8 input signal is ON (closed).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |
| 3                               | Active when CN1-8 input signal is ON (closed).  Active when CN1-9 input signal is ON (closed).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 242                                                                |
| 3 4                             | Active when CN1-8 input signal is ON (closed).  Active when CN1-9 input signal is ON (closed).  Active when CN1-10 input signal is ON (closed).                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 242<br>242                                                         |
| 3<br>4<br>5                     | Active when CN1-8 input signal is ON (closed).  Active when CN1-9 input signal is ON (closed).  Active when CN1-10 input signal is ON (closed).  Active when CN1-11 input signal is ON (closed).                                                                                                                                                                                                                                                                                                                                                                                                              | 242<br>242<br>242                                                  |
| 3<br>4<br>5<br>6                | Active when CN1-8 input signal is ON (closed).  Active when CN1-9 input signal is ON (closed).  Active when CN1-10 input signal is ON (closed).  Active when CN1-11 input signal is ON (closed).  Active when CN1-12 input signal is ON (closed).                                                                                                                                                                                                                                                                                                                                                             | 242<br>242<br>242<br>242                                           |
| 3<br>4<br>5<br>6<br>7<br>8      | Active when CN1-8 input signal is ON (closed).  Active when CN1-9 input signal is ON (closed).  Active when CN1-10 input signal is ON (closed).  Active when CN1-11 input signal is ON (closed).  Active when CN1-12 input signal is ON (closed).  The signal is always active.                                                                                                                                                                                                                                                                                                                               | 242<br>242<br>242<br>242<br>242<br>242                             |
| 3 4 5 6 7 8 Default             | Active when CN1-8 input signal is ON (closed).  Active when CN1-9 input signal is ON (closed).  Active when CN1-10 input signal is ON (closed).  Active when CN1-11 input signal is ON (closed).  Active when CN1-12 input signal is ON (closed).  The signal is always active.  The signal is always inactive.                                                                                                                                                                                                                                                                                               | 242<br>242<br>242<br>242<br>242<br>242<br>242                      |
| 3 4 5 6 7 8 Default             | Active when CN1-8 input signal is ON (closed).  Active when CN1-9 input signal is ON (closed).  Active when CN1-10 input signal is ON (closed).  Active when CN1-11 input signal is ON (closed).  Active when CN1-12 input signal is ON (closed).  The signal is always active.  The signal is always inactive.  Active when CN1-13 input signal is OFF (open).                                                                                                                                                                                                                                               | 242<br>242<br>242<br>242<br>242<br>242<br>242<br>242               |
| 3 4 5 6 7 8 Default 9 A         | Active when CN1-8 input signal is ON (closed).  Active when CN1-9 input signal is ON (closed).  Active when CN1-10 input signal is ON (closed).  Active when CN1-11 input signal is ON (closed).  Active when CN1-12 input signal is ON (closed).  The signal is always active.  The signal is always inactive.  Active when CN1-13 input signal is OFF (open).  Active when CN1-7 input signal is OFF (open).                                                                                                                                                                                                | 242<br>242<br>242<br>242<br>242<br>242<br>242<br>242<br>242        |
| 3 4 5 6 7 8 Default 9 A B       | Active when CN1-8 input signal is ON (closed).  Active when CN1-9 input signal is ON (closed).  Active when CN1-10 input signal is ON (closed).  Active when CN1-11 input signal is ON (closed).  Active when CN1-12 input signal is ON (closed).  The signal is always active.  The signal is always inactive.  Active when CN1-13 input signal is OFF (open).  Active when CN1-7 input signal is OFF (open).  Active when CN1-8 input signal is OFF (open).                                                                                                                                                 | 242<br>242<br>242<br>242<br>242<br>242<br>242<br>242<br>242<br>242 |
| 3 4 5 6 7 8 Default 9 A B C     | Active when CN1-8 input signal is ON (closed).  Active when CN1-9 input signal is ON (closed).  Active when CN1-10 input signal is ON (closed).  Active when CN1-11 input signal is ON (closed).  Active when CN1-12 input signal is ON (closed).  The signal is always active.  The signal is always inactive.  Active when CN1-13 input signal is OFF (open).  Active when CN1-7 input signal is OFF (open).  Active when CN1-8 input signal is OFF (open).  Active when CN1-9 input signal is OFF (open).                                                                                                  | 242<br>242<br>242<br>242<br>242<br>242<br>242<br>242<br>242<br>242 |
| 3 4 5 6 7 8 Default 9 A B C D   | Active when CN1-8 input signal is ON (closed).  Active when CN1-10 input signal is ON (closed).  Active when CN1-11 input signal is ON (closed).  Active when CN1-12 input signal is ON (closed).  The signal is always active.  The signal is always inactive.  Active when CN1-13 input signal is OFF (open).  Active when CN1-7 input signal is OFF (open).  Active when CN1-8 input signal is OFF (open).  Active when CN1-9 input signal is OFF (open).  Active when CN1-10 input signal is OFF (open).                                                                                                  | 242 242 242 242 242 242 242 242 242 242                            |
| 3 4 5 6 7 8 Default 9 A B C D E | Active when CN1-8 input signal is ON (closed).  Active when CN1-10 input signal is ON (closed).  Active when CN1-10 input signal is ON (closed).  Active when CN1-11 input signal is ON (closed).  Active when CN1-12 input signal is ON (closed).  The signal is always active.  The signal is always inactive.  Active when CN1-13 input signal is OFF (open).  Active when CN1-7 input signal is OFF (open).  Active when CN1-8 input signal is OFF (open).  Active when CN1-9 input signal is OFF (open).  Active when CN1-10 input signal is OFF (open).  Active when CN1-11 input signal is OFF (open). | 242 242 242 242 242 242 242 242 242 242                            |

# ◆ Pn50E(250Eh): Output Signal Selections 1

| Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 2    | 0000h to 6666h | _            | 0000h           | All                  | After restart | Setup          | _              |

| Digit        | Meaning                                                                                       | Refer-<br>ence |  |  |  |  |  |
|--------------|-----------------------------------------------------------------------------------------------|----------------|--|--|--|--|--|
| n.□□□X       | /COIN (Positioning Completion Output) Signal Allocation Speed Pos Trq                         | -              |  |  |  |  |  |
| 0<br>Default | Disabled (the above signal output is not used).                                               |                |  |  |  |  |  |
| 1            | Output the signal from the CN1-1 or CN1-2 output terminal.                                    | 224            |  |  |  |  |  |
| 2            | Output the signal from the CN1-23 or CN1-24 output terminal.                                  | 224            |  |  |  |  |  |
| 3            | Output the signal from the CN1-25 or CN1-26 output terminal.                                  |                |  |  |  |  |  |
| 4            | Reserved (Do not use.)                                                                        |                |  |  |  |  |  |
| 5            | Reserved (Do not use.)                                                                        |                |  |  |  |  |  |
| 6            | Reserved (Do not use.)                                                                        | 224            |  |  |  |  |  |
| Other values | Disabled (the above signal output is not used).                                               | 224            |  |  |  |  |  |
| n.□□X□       | /V-CMP (Speed Coincidence Detection Output) Signal Allocation Speed Pos Trq                   | -              |  |  |  |  |  |
| 0 to 6       | The allocations are the same as the /COIN (Positioning Completion Output) signal allocations. | 223            |  |  |  |  |  |
| n.□X□□       | /TGON (Rotation Detection Output) Signal Allocation Speed Pos Trq                             | -              |  |  |  |  |  |
| 0 to 6       | The allocations are the same as the /COIN (Positioning Completion Output) signal allocations. | 221            |  |  |  |  |  |
| n.XDDD       | /S-RDY (Servo Ready Output) Signal Allocation Speed Pos Trq                                   | -              |  |  |  |  |  |
| 0 to 6       | The allocations are the same as the /COIN (Positioning Completion Output) signal allocations. | 222            |  |  |  |  |  |

# ◆ Pn50F(250Fh): Output Signal Selections 2

| Size         | Setting Range          | Setting Unit              | Default Setting       | Applicable Motors | When Enabled   | Classification | Refer-<br>ence |
|--------------|------------------------|---------------------------|-----------------------|-------------------|----------------|----------------|----------------|
| 2            | 0000h to 6666h         | _                         | 0100h                 | All               | After restart  | Setup          | _              |
| Digit        |                        |                           | Meaning               |                   |                |                | Refer-<br>ence |
| n.□□□X       | /CLT (Torque Limi      | it Detection Output) S    | ignal Allocation      |                   | Speed          | d Pos Trq      | -              |
| 0<br>Default | Disabled (the above    | e signal output is not us | ed).                  |                   |                |                | 245            |
| 1            | Output the signal fr   | om the CN1-1 or CN1-      | 2 output terminal.    |                   |                |                | 245            |
| 2            | Output the signal fr   | rom the CN1-23 or CN      | 1-24 output terminal. |                   |                |                | 245            |
| 3            | Output the signal fr   | rom the CN1-25 or CN      | 1-26 output terminal. |                   |                |                | 245            |
| 4            | Reserved (Do not u     | se.)                      |                       |                   |                |                | 245            |
| 5            | Reserved (Do not u     | se.)                      |                       |                   |                |                | 245            |
| 6            | Reserved (Do not u     | se.)                      |                       |                   |                |                | 245            |
| Other value  | es Disabled (the above | e signal output is not us | ed).                  |                   |                |                | 245            |
| n.□□X□       | /VLT (Speed Limit      | t Detection Output) S     | gnal Allocation       |                   | Speed          | d Pos Trq      | -              |
| 0 to 6       | The allocations are    | the same as the /CLT (    | Torque Limit Detectio | n Output) signa   | l allocations. |                | 227            |
| n.□X□□       | /BK (Brake Outpu       | t) Signal Allocation      |                       |                   | Speed          | d Pos Trq      | -              |
| 0 to 6       | The allocations are    | the same as the /CLT (    | Torque Limit Detectio | n Output) signa   | l allocations. |                | 185            |
| n.X□□□       | /WARN (Warning         | Output) Signal Alloca     | ition                 |                   | Speed          | d Pos Trq      | -              |
| 0 to 6       | The allocations are    | the same as the /CLT (    | Torque Limit Detectio | n Output) signa   | l allocations. |                | 221            |

# ◆ Pn510(2510h): Output Signal Selections 3

| Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 2    | 0000h to 0666h | -            | 0000h           | All                  | After restart | Setup          | 226            |

| Digit        | Meaning                                                      |
|--------------|--------------------------------------------------------------|
| n.□□□X       | /NEAR (Near Output) Signal Allocation Speed Pos Trq          |
| 0<br>Default | Disabled (the above signal output is not used).              |
| 1            | Output the signal from the CN1-1 or CN1-2 output terminal.   |
| 2            | Output the signal from the CN1-23 or CN1-24 output terminal. |
| 3            | Output the signal from the CN1-25 or CN1-26 output terminal. |
| 4            | Reserved (Do not use.)                                       |
| 5            | Reserved (Do not use.)                                       |
| 6            | Reserved (Do not use.)                                       |
| Other values | Disabled (the above signal output is not used).              |
| n.□□X□       | Reserved (Do not change.)                                    |
| n.□X□□       | Reserved (Do not change.)                                    |
| n.X□□□       | Reserved (Do not change.)                                    |

#### ◆ Pn511(2511h): Input Signal Selections 5

/Probe2 (Probe 2 Latch Input) Signal Allocation

/Home (Home Switch Input) Signal Allocation

The allocations are the same as the /Probe1 (Probe 1 Latch Input) signal allocations.

The allocations are the same as the /Probe1 (Probe 1 Latch Input) signal allocations.

|    | Size         | Setting Range       | Setting Unit                                   | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|----|--------------|---------------------|------------------------------------------------|-----------------|----------------------|---------------|----------------|----------------|
|    | 2            | 0000h to FFFFh      | _                                              | 6543h           | All                  | After restart | Setup          | 216            |
|    | Digit        |                     |                                                | Mean            | ing                  |               |                |                |
| n. | X            | Reserved (Do not    | change.)                                       |                 |                      |               |                |                |
| n. |              | /Probe1 (Probe 1    | Latch Input) Signal A                          | llocation       |                      |               | Speed Pos      | Trq            |
|    | 0 to 3       | The signal is alway | s inactive.                                    |                 |                      |               |                |                |
|    | 4<br>Default | Active when CN1-    | 10 input signal is ON (o                       | closed).        |                      |               |                |                |
|    | 5            | Active when CN1-    | 11 input signal is ON (c                       | closed).        |                      |               |                |                |
|    | 6            | Active when CN1-    | 12 input signal is ON (c                       | closed).        |                      |               |                |                |
|    | 7 to C       | The signal is alway | s inactive.                                    |                 |                      |               |                |                |
|    | D            | Active when CN1-    | Active when CN1-10 input signal is OFF (open). |                 |                      |               |                |                |
|    | E            | Active when CN1-    | l 1 input signal is OFF (                      | open).          |                      |               |                |                |
|    | F            | Active when CN1-    | 12 input signal is OFF (                       | (open).         | ·                    |               |                |                |

Speed Pos Trq

Speed Pos Trq

 $n.\square X \square \square$ 

 $n.X\square\square\square$ 

 $0 \ to \ F$ 

0 to F

# Parameter and Object Lists

# ◆ Pn512(2512h): Output Signal Inverse Settings

| Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 2    | 0000h to 1111h | _            | 0000h           | All                  | After restart | Setup          | 218            |

| Digit        | Meaning                                                                |
|--------------|------------------------------------------------------------------------|
| n.□□□X       | Output Signal Inversion for CN1-1 and CN1-2 Terminals  Speed Pos Trq   |
| 0<br>Default | The signal is not inverted.                                            |
| 1            | The signal is inverted.                                                |
| n.□□X□       | Output Signal Inversion for CN1-23 and CN1-24 Terminals  Speed Pos Trq |
| 0<br>Default | The signal is not inverted.                                            |
| 1            | The signal is inverted.                                                |
| n.□X□□       | Output Signal Inversion for CN1-25 and CN1-26 Terminals  Speed Pos Trq |
| 0<br>Default | The signal is not inverted.                                            |
| 1            | The signal is inverted.                                                |
| n.XDDD       | Reserved (Do not change.)                                              |

# ◆ Pn514(2514h): Output Signal Selections 4

| Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 2    | 0000h to 0666h | -            | 0000h           | All                  | After restart | Setup          | 471            |

| Digit        | Meaning                                                               |  |  |  |  |  |
|--------------|-----------------------------------------------------------------------|--|--|--|--|--|
| n.□□□X       | Reserved (Do not change.)                                             |  |  |  |  |  |
| n.□□X□       | Reserved (Do not change.)                                             |  |  |  |  |  |
| n.□X□□       | /PM (Preventative Maintenance Output) Signal Allocation Speed Pos Trq |  |  |  |  |  |
| 0<br>Default | Disabled (the above signal output is not used).                       |  |  |  |  |  |
| 1            | Output the signal from the CN1-1 or CN1-2 output terminal.            |  |  |  |  |  |
| 2            | Output the signal from the CN1-23 or CN1-24 output terminal.          |  |  |  |  |  |
| 3            | Output the signal from the CN1-25 or CN1-26 output terminal.          |  |  |  |  |  |
| 4            | Reserved (Do not use.)                                                |  |  |  |  |  |
| 5            | Reserved (Do not use.)                                                |  |  |  |  |  |
| 6            | Reserved (Do not use.)                                                |  |  |  |  |  |
| Other values | Disabled (the above signal output is not used).                       |  |  |  |  |  |
| n.X□□□       | Reserved (Do not change.)                                             |  |  |  |  |  |

#### ◆ Pn516(2516h): Input Signal Selections 7

| Size | Setting Range  | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
| 2    | 0000h to FFFFh | _            | 8888h           | All               | After restart | Setup          | 268            |

| Digit        | Meaning                                                                           |
|--------------|-----------------------------------------------------------------------------------|
| n.□□□X       | FSTP (Forced Stop Input) Signal Allocation Speed Pos Trq                          |
| 0            | Enable drive when CN1-13 input signal is ON (closed).                             |
| 1            | Enable drive when CN1-7 input signal is ON (closed).                              |
| 2            | Enable drive when CN1-8 input signal is ON (closed).                              |
| 3            | Enable drive when CN1-9 input signal is ON (closed).                              |
| 4            | Enable drive when CN1-10 input signal is ON (closed).                             |
| 5            | Enable drive when CN1-11 input signal is ON (closed).                             |
| 6            | Enable drive when CN1-12 input signal is ON (closed).                             |
| 7            | Set the signal to always prohibit drive (always force the motor to stop).         |
| 8<br>Default | Set the signal to always enable drive (always disable forcing the motor to stop). |
| 9            | Enable drive when CN1-13 input signal is OFF (open).                              |
| A            | Enable drive when CN1-7 input signal is OFF (open).                               |
| В            | Enable drive when CN1-8 input signal is OFF (open).                               |
| C            | Enable drive when CN1-9 input signal is OFF (open).                               |
| D            | Enable drive when CN1-10 input signal is OFF (open).                              |
| Е            | Enable drive when CN1-11 input signal is OFF (open).                              |
| F            | Enable drive when CN1-12 input signal is OFF (open).                              |
| n.□□X□       | Reserved (Do not change.)                                                         |
| n.□X□□       | Reserved (Do not change.)                                                         |
| n.X□□□       | Reserved (Do not change.)                                                         |

#### ◆ Pn518(2518h): Reserved (Do not change.)

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| -    | 1             | -            | _               | All                  | _            | _              | _              |

Speed Pos Trq

Speed Pos Trq

Speed Pos Trq

# ◆ Pn51B(251Bh): Motor-Load Position Deviation Overflow Detection Level

|   | Size | Setting Range   | Setting Unit     | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|---|------|-----------------|------------------|-----------------|----------------------|--------------|----------------|----------------|
| _ | 4    | 0 to 1073741824 | 1 reference unit | 1000            | Rotary               | Immediately  | Setup          | 489            |

#### ◆ Pn51E(251Eh): Position Deviation Overflow Warning Level

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 10 to 100     | 1%           | 100             | All               | Immediately  | Setup          | 321            |

Speed Pos Trq

|   | Pn520(2520h    | · Position          | Deviation | Overflow | Alarm I evel |
|---|----------------|---------------------|-----------|----------|--------------|
| • | 1 11020(202011 | <i>).</i> 1 OSILIOI | Deviation | OVEITION |              |

| Size | Setting Range   | Setting Unit     | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|-----------------|------------------|-----------------|-------------------|--------------|----------------|----------------|
| 4    | 1 to 1073741823 | 1 reference unit | 6116694         | All               | Immediately  | Setup          | 320,<br>438    |

#### ◆ Pn522(2522h): In-position Range

| Size | Setting Range   | Setting Unit     | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|-----------------|------------------|-----------------|----------------------|--------------|----------------|----------------|
| 4    | 0 to 1073741824 | 1 reference unit | 7               | All                  | Immediately  | Setup          | 224            |

#### ◆ Pn524(2524h): Near Signal Width

| Size | Setting Range   | Setting Unit     | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|-----------------|------------------|-----------------|-------------------|--------------|----------------|----------------|
| 4    | 1 to 1073741824 | 1 reference unit | 1073741824      | All               | Immediately  | Setup          | 226            |

#### ◆ Pn526(2526h): Position Deviation Overflow Alarm Level at Servo ON

| Size | Setting Range   | Setting Unit     | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|-----------------|------------------|-----------------|----------------------|--------------|----------------|----------------|
| 4    | 1 to 1073741823 | 1 reference unit | 6116694         | All                  | Immediately  | Setup          | 322            |

# ◆ Pn528(2528h): Position Deviation Overflow Warning Level at Servo ON

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 10 to 100     | 1%           | 100             | All               | Immediately  | Setup          | 322            |

#### ◆ Pn529(2529h): Speed Limit Level at Servo ON

| Size | Setting Range | Setting Unit        | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|---------------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 10000    | 1 min <sup>-1</sup> | 10000           | Rotary            | Immediately  | Setup          | 322            |

#### ◆ Pn52A(252Ah): Multiplier per Fully-closed Rotation

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 0 to 100      | 1%           | 20              | Rotary               | Immediately  | Tuning         | 489            |

#### ◆ Pn52B(252Bh): Overload Warning Level

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
| 2    | 1 to 100      | 1%           | 20              | All               | After restart | Setup          | 191            |

#### ◆ Pn52C(252Ch): Base Current Derating at Motor Overload Detection

| ineze(zezen): zaee ean en zeramig at meter e veneau zereenen |               |              |                 |                      |               |                |                |
|--------------------------------------------------------------|---------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| Size                                                         | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
| 2                                                            | 10 to 100     | 1%           | 100             | All                  | After restart | Setup          | 191            |

#### ◆ Pn530(2530h): Program Jogging-Related Selections

| Size | Setting Range  | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0000h to 0005h | -            | 0000h           | All               | Immediately  | Setup          | 301            |

| Digit        | Meaning                                                                                                                                                                                                                                   |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| n.□□□X       | Program Jogging Operation Pattern Speed Pos Trq                                                                                                                                                                                           |
| 0<br>Default | (Waiting time in Pn535 (2535h) → Forward by travel distance in Pn531 (2531h)) × Number of movements in Pn536 (2536h)                                                                                                                      |
| 1            | (Waiting time in Pn535 (2535h) → Reverse by travel distance in Pn531 (2531h)) × Number of movements in Pn536 (2536h)                                                                                                                      |
| 2            | (Waiting time in Pn535 (2535h) → Forward by travel distance in Pn531 (2531h)) × Number of movements in Pn536 (2536h) (Waiting time in Pn535 (2535h) → Reverse by travel distance in Pn531 (2531h)) × Number of movements in Pn536 (2536h) |
| 3            | (Waiting time in Pn535 (2535h) → Reverse by travel distance in Pn531 (2531h)) × Number of movements in Pn536 (2536h) (Waiting time in Pn535 (2535h) → Forward by travel distance in Pn531 (2531h)) × Number of movements in Pn536 (2536h) |
| 4            | (Waiting time in Pn535 (2535h) → Forward by travel distance in Pn531 (2531h) → Waiting time in Pn535 (2535h) → Reverse by travel distance in Pn531 (2531h)) × Number of movements in Pn536 (2536h)                                        |
| 5            | (Waiting time in Pn535 (2535h) → Reverse by travel distance in Pn531 (2531h) → Waiting time in Pn535 (2535h) → Forward by travel distance in Pn531 (2531h)) × Number of movements in Pn536 (2536h)                                        |
| n.□□X□       | Reserved (Do not change.)                                                                                                                                                                                                                 |
| n.□X□□       | Reserved (Do not change.)                                                                                                                                                                                                                 |
| n.X□□□       | Reserved (Do not change.)                                                                                                                                                                                                                 |

#### ◆ Pn531(2531h): Program Jogging Travel Distance

| Size | Setting Range   | Setting Unit     | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|-----------------|------------------|-----------------|-------------------|--------------|----------------|----------------|
| 4    | 1 to 1073741824 | 1 reference unit | 32768           | All               | Immediately  | Setup          | 301            |

Speed Pos Trq

#### ◆ Pn533(2533h): Program Jogging Movement Speed

| Size | Setting Range | Setting Unit                                                          | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|-----------------------------------------------------------------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 1 to 10000    | Rotary: 1 min <sup>-1</sup><br>Direct Drive: 0.1<br>min <sup>-1</sup> | 500             | Rotary            | Immediately  | Setup          | 301            |

#### ◆ Pn534(2534h): Program Jogging Acceleration/Deceleration Time

| S | ize | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|---|-----|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
|   | 2   | 2 to 10000    | 1 ms         | 100             | All                  | Immediately  | Setup          | 301            |

#### ◆ Pn535(2535h): Program Jogging Waiting Time

| Siz | e S | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|-----|-----|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2   |     | 0 to 10000    | 1 ms         | 100             | All                  | Immediately  | Setup          | 301            |

#### ◆ Pn536(2536h): Program Jogging Number of Movements

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 1000     | 1 time       | 1               | All               | Immediately  | Setup          | 301            |

|              | )(2540h): Maxir              |                |                 | A 11                 |                           | Speed Pos        |    |
|--------------|------------------------------|----------------|-----------------|----------------------|---------------------------|------------------|----|
| Size         | Setting Range                | Setting Unit   | Default Setting | Applicable<br>Motors | When Enabled              | Classification   | Re |
| 2            | 10 to 4000                   | 0.1 Hz         | 3000            | All                  | Immediately               | Tuning           |    |
| n550         | )(2550h): Analo              | og Monitor 1 O | ffset Voltage   |                      |                           | Speed Pos        |    |
| Size         | Setting Range                | Setting Unit   | Default Setting | Applicable<br>Motors | When Enabled              | Classification   | Re |
| 2            | -10000 to 10000              | 0.1 V          | 0               | All                  | Immediately               | Setup            | 4  |
| n551         | 1(2551h): Analo              | og Monitor 2 O | offset Voltage  |                      |                           | Speed Pos        |    |
| Size         | Setting Range                | Setting Unit   | Default Setting | Applicable<br>Motors | When Enabled              | Classification   | Re |
| 2            | -10000 to 10000              | 0.1 V          | 0               | All                  | Immediately               | Setup            |    |
| n552         | 2(2552h): Analo              | og Monitor 1 M | lagnification   | I                    |                           | Speed Pos        |    |
| Size         | Setting Range                | Setting Unit   | Default Setting | Applicable<br>Motors | When Enabled              | Classification   | R  |
| 2            | -10000 to 10000              | × 0.01         | 100             | All                  | Immediately               | Setup            |    |
| n553         | 3(2553h): Analo              | og Monitor 2 M | lagnification   |                      |                           | Speed Pos        |    |
| Size         | Setting Range                | Setting Unit   | Default Setting | Applicable<br>Motors | When Enabled              | Classification   | R  |
| 2            | -10000 to 10000              | × 0.01         | 100             | All                  | Immediately               | Setup            |    |
| n55 <i>A</i> | ۹(255Ah): Powe               | er Consumptio  | on Monitor Un   | it Time              |                           | Speed Pos        |    |
| Size         | Setting Range                | Setting Unit   | Default Setting | Applicable<br>Motors | When Enabled              | Classification   | R  |
| 2            | 1 to 1440                    | 1 min          | 1               | All                  | Immediately               | Setup            |    |
| n560         | 0(2560h): Resid              | lual Vibration | Detection Wid   | dth                  |                           | Speed Pos        |    |
|              | Setting Range                | Setting Unit   | Default Setting | Applicable Motors    | When Enabled              | Classification   | R  |
| Size         |                              |                |                 |                      |                           |                  |    |
| Size 2       | 1 to 3000                    | 0.1%           | 400             | All                  | Immediately               | Setup            |    |
| 2            | 1 to 3000<br>1(2561h): Overs |                |                 | All                  | Immediately               | Setup  Speed Pos |    |
|              |                              |                |                 | Applicable Motors    | Immediately  When Enabled |                  | F  |

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 1000     | 1%           | 100             | All               | Immediately  | Setup          | 357,<br>368    |

| • | ◆ Pn562(2562h): Setting Gain Ratio |               |              |                 |                      |              | Trq            |                |
|---|------------------------------------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
|   | Size                               | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|   | 2                                  | 10 to 100     | 1%           | 80              | All                  | Immediately  | Tuning         | 357,<br>368    |

| • | Pn580 | )(2580h): Zero | Clamping Lev | el              |                      |              | Speed Pos      | Trq            |
|---|-------|----------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
|   | Size  | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|   | 2     | 0 to 10000     | 1 mm/s       | 10              | Linear               | Immediately  | Setup          | _              |

◆ Pn581(2581h): Zero Speed Level

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 1 to 10000    | 1 mm/s       | 20              | Linear               | Immediately  | Setup          | 221            |

Speed Pos Trq

◆ Pn582(2582h): Speed Coincidence Detection Signal Output Width

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 100      | 1 mm/s       | 10              | Linear            | Immediately  | Setup          | 223            |

◆ Pn583(2583h): Brake Reference Output Speed Level

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 10000    | 1 mm/s       | 10              | Linear            | Immediately  | Setup          | 184            |

◆ Pn584(2584h): Speed Limit Level at Servo ON

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 10000    | 1 mm/s       | 10000           | Linear            | Immediately  | Setup          | 322            |

◆ Pn585(2585h): Program Jogging Movement Speed

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 1 to 10000    | 1 mm/s       | 50              | Linear            | Immediately  | Setup          | 301            |

◆ Pn586(2586h): Motor Running Cooling Ratio

| Size | Setting Range | Setting Unit                | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|-----------------------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 100      | 1% / Maximum<br>Motor Speed | 0               | Linear            | Immediately  | Setup          | -              |

◆ Pn587(2587h): Polarity Detection Execution Selection for Absolute Linear Encoder

| Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 0000h to 0001h | _            | 0000h           | Linear               | Immediately  | Setup          | 175            |

| Digit        | Meaning                                                                |
|--------------|------------------------------------------------------------------------|
| n.□□□X       | Polarity Detection Selection for Absolute Linear Encoder Speed Pos Trq |
| 0<br>Default | Do not detect polarity.                                                |
| 1            | Detect polarity.                                                       |
| n.□□X□       | Reserved (Do not change.)                                              |
| n.□X□□       | Reserved (Do not change.)                                              |
| n.X□□□       | Reserved (Do not change.)                                              |

◆ Pn589(2589h): SigmaLINK II Node Detection Time

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
| 2    | 100 to 10000  | 1 ms         | 1500            | All               | After restart | Setup          | -              |

# ◆ Pn590(2590h): P-OT (Forward Drive Prohibit Input) Signal Allocation

| Size | Setting Range  | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
| 2    | 0000h to 3149h | -            | 1007h           | All               | After restart | Setup          | 179,<br>217    |

| Digit          | Meaning                                               |
|----------------|-------------------------------------------------------|
| n.□XXX         | Allocated Pin Number Speed Pos Trq                    |
| 007<br>Default | Allocate the signal to CN1-7.                         |
| 008            | Allocate the signal to CN1-8.                         |
| 009            | Allocate the signal to CN1-9.                         |
| 010            | Allocate the signal to CN1-10.                        |
| 011            | Allocate the signal to CN1-11.                        |
| 012            | Allocate the signal to CN1-12.                        |
| 013            | Allocate the signal to CN1-13.                        |
| 100            | Allocate the signal to SigmaLINK II Sequence Input 0. |
| 101            | Allocate the signal to SigmaLINK II Sequence Input 1. |
| 102            | Allocate the signal to SigmaLINK II Sequence Input 2. |
| 103            | Allocate the signal to SigmaLINK II Sequence Input 3. |
| 104            | Allocate the signal to SigmaLINK II Sequence Input 4. |
| 105            | Allocate the signal to SigmaLINK II Sequence Input 5. |
| 106            | Allocate the signal to SigmaLINK II Sequence Input 6. |
| 107            | Allocate the signal to SigmaLINK II Sequence Input 7. |
| Other values   | Set the signal to always enable forward drive.        |
| n.X□□□         | Polarity Selection Speed Pos Trq                      |
| 0              | Set the signal to always enable forward drive.        |
| 1<br>Default   | Active when input signal is ON (closed).              |
| 2              | Active when input signal is OFF (open).               |
| 3              | Set the signal to always prohibit forward drive.      |

# ◆ Pn591(2591h): N-OT (Reverse Drive Prohibit Input) Signal Allocation

| Size | Setting Range  | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
| 2    | 0000h to 3149h | -            | 1008h           | All               | After restart | Setup          | 179,<br>217    |

| Digit          | Meaning                                               |
|----------------|-------------------------------------------------------|
| n.□XXX         | Allocated Pin Number Speed Pos Trq                    |
| 007            | Allocate the signal to CN1-7.                         |
| 008<br>Default | Allocate the signal to CN1-8.                         |
| 009            | Allocate the signal to CN1-9.                         |
| 010            | Allocate the signal to CN1-10.                        |
| 011            | Allocate the signal to CN1-11.                        |
| 012            | Allocate the signal to CN1-12.                        |
| 013            | Allocate the signal to CN1-13.                        |
| 100            | Allocate the signal to SigmaLINK II Sequence Input 0. |
| 101            | Allocate the signal to SigmaLINK II Sequence Input 1. |
| 102            | Allocate the signal to SigmaLINK II Sequence Input 2. |
| 103            | Allocate the signal to SigmaLINK II Sequence Input 3. |
| 104            | Allocate the signal to SigmaLINK II Sequence Input 4. |
| 105            | Allocate the signal to SigmaLINK II Sequence Input 5. |
| 106            | Allocate the signal to SigmaLINK II Sequence Input 6. |
| 107            | Allocate the signal to SigmaLINK II Sequence Input 7. |
| Other values   | Set the signal to always enable reverse drive.        |
| n.X□□□         | Polarity Selection Speed Pos Trq                      |
| 0              | Set the signal to always enable reverse drive.        |
| 1<br>Default   | Active when input signal is ON (closed).              |
| 2              | Active when input signal is OFF (open).               |
| 3              | Set the signal to always prohibit reverse drive.      |

# Parameter and Object Lists

#### 17

# ◆ Pn593(2593h): /Probe1 (Probe 1 Latch Input) Signal Allocation

| Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 2    | 0000h to 2149h | _            | 1010h           | All                  | After restart | Setup          | -              |

| Digit          | Meaning                                  |
|----------------|------------------------------------------|
| n.□XXX         | Allocated Pin Number Speed Pos Trq       |
| 010<br>Default | Allocate the signal to CN1-10.           |
| 011            | Allocate the signal to CN1-11.           |
| 012            | Allocate the signal to CN1-12.           |
| Other values   | The signal is always inactive.           |
| n.X□□□         | Polarity Selection Speed Pos Trq         |
| 0              | The signal is always inactive.           |
| 1<br>Default   | Active when input signal is ON (closed). |
| 2              | Active when input signal is OFF (open).  |

# ◆ Pn594(2594h): /Probe2 (Probe 2 Latch Input) Signal Allocation

| Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 2    | 0000h to 2149h | -            | 1011h           | All                  | After restart | Setup          | _              |

|                | 0000H to 2147H                 |                        | 101111 | 7 111 | 7 Htter restart | Setup     |     |
|----------------|--------------------------------|------------------------|--------|-------|-----------------|-----------|-----|
| Digit          |                                |                        | Meani  | ing   |                 |           |     |
| n.□XXX         | Allocated Pin Num              | nber                   |        |       |                 | Speed Pos | Trq |
| 010            | Allocate the signal t          | to CN1-10.             |        |       |                 |           |     |
| 011<br>Default | Allocate the signal t          | to CN1-11.             |        |       |                 |           |     |
| 012            | Allocate the signal t          | to CN1-12.             |        |       |                 |           |     |
| Other values   | The signal is always           | s inactive.            |        |       |                 |           |     |
| n.XDDD         | Polarity Selection             |                        |        |       |                 | Speed Pos | Trq |
| 0              | The signal is always inactive. |                        |        |       |                 |           |     |
| 1<br>Default   | Active when input s            | signal is ON (closed). |        |       |                 |           |     |
| 2              | Active when input s            | signal is OFF (open).  |        |       |                 |           |     |

# ◆ Pn595(2595h): /Home (Home Switch Input) Signal Allocation

| Size  | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|-------|----------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 2     | 0000h to 2149h | -            | 1012h           | All                  | After restart | Setup          | -              |
| Digit |                |              | Mean            | ing                  |               |                |                |

| Digit          | Meaning                                  |
|----------------|------------------------------------------|
| n.□XXX         | Allocated Pin Number Speed Pos Trq       |
| 010            | Allocate the signal to CN1-10.           |
| 011            | Allocate the signal to CN1-11.           |
| 012<br>Default | Allocate the signal to CN1-12.           |
| Other values   | The signal is always inactive.           |
| n.X□□□         | Polarity Selection Speed Pos Trq         |
| 0              | The signal is always inactive.           |
| 1<br>Default   | Active when input signal is ON (closed). |
| 2              | Active when input signal is OFF (open).  |

#### ◆ Pn597(2597h): FSTP (Forced Stop Input) Signal Allocation

|   | Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|---|------|----------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| _ | 2    | 0000h to 3049h | -            | 0000h           | All                  | After restart | Setup          | 268            |

|              | 0000110 304711        |                          | oooon                  | 7111            | 7 Htter restart | Бешр      | 200 |
|--------------|-----------------------|--------------------------|------------------------|-----------------|-----------------|-----------|-----|
| Digit        |                       | Meaning                  |                        |                 |                 |           |     |
| n.□XXX       | Allocated Pin Nun     | nber                     |                        |                 |                 | Speed Pos | Trq |
| 007          | Allocate the signal   | to CN1-7.                |                        |                 |                 |           |     |
| 008          | Allocate the signal   | to CN1-8.                |                        |                 |                 |           |     |
| 009          | Allocate the signal   | to CN1-9.                |                        |                 |                 |           |     |
| 010          | Allocate the signal   | to CN1-10.               |                        |                 |                 |           |     |
| 011          | Allocate the signal   | to CN1-11.               |                        |                 |                 |           |     |
| 012          | Allocate the signal   | to CN1-12.               |                        |                 |                 |           |     |
| 013          | Allocate the signal   | to CN1-13.               |                        |                 |                 |           |     |
| Other values | Set the signal to alv | vays enable drive (alwa  | ys disable forcing the | motor to stop). |                 |           |     |
| n.X□□□       | Polarity Selection    |                          |                        |                 |                 | Speed Pos | Trq |
| 0<br>Default | Set the signal to alv | vays enable drive (alway | ys disable forcing the | motor to stop). |                 |           |     |
| 1            | Enable drive when     | the input signal is ON ( | closed).               |                 |                 |           |     |
| 2            | Enable drive when     | the input signal is OFF  | (open).                |                 |                 |           |     |
| 3            | Set the signal to alv | vays prohibit drive (alw | ays force the motor to | stop).          |                 |           |     |

# ◆ Pn598(2598h): /P-CL (Forward External Torque Limit Input) Signal Allocation

| Size | Setting Range  | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
| 2    | 0000h to 3149h | -            | 0000h           | All               | After restart | Setup          | 217,<br>242    |

| Digit          | Meaning                                               |         |
|----------------|-------------------------------------------------------|---------|
| n.□XXX         | Allocated Pin Number Speed                            | Pos Trq |
| 000<br>Default | The signal is always inactive.                        |         |
| 007            | Allocate the signal to CN1-7.                         |         |
| 008            | Allocate the signal to CN1-8.                         |         |
| 009            | Allocate the signal to CN1-9.                         |         |
| 010            | Allocate the signal to CN1-10.                        |         |
| 011            | Allocate the signal to CN1-11.                        |         |
| 012            | Allocate the signal to CN1-12.                        |         |
| 013            | Allocate the signal to CN1-13.                        |         |
| 100            | Allocate the signal to SigmaLINK II Sequence Input 0. |         |
| 101            | Allocate the signal to SigmaLINK II Sequence Input 1. |         |
| 102            | Allocate the signal to SigmaLINK II Sequence Input 2. |         |
| 103            | Allocate the signal to SigmaLINK II Sequence Input 3. |         |
| 104            | Allocate the signal to SigmaLINK II Sequence Input 4. |         |
| 105            | Allocate the signal to SigmaLINK II Sequence Input 5. |         |
| 106            | Allocate the signal to SigmaLINK II Sequence Input 6. |         |
| 107            | Allocate the signal to SigmaLINK II Sequence Input 7. |         |
| Other values   | The signal is always inactive.                        |         |
| n.X□□□         | Polarity Selection Speed                              | Pos Trq |
| 0<br>Default   | The signal is always inactive.                        |         |
| 1              | Active when input signal is ON (closed).              |         |
| 2              | Active when input signal is OFF (open).               |         |
| 3              | The signal is always active.                          |         |

# ◆ Pn599(2599h): /N-CL (Reverse External Torque Limit Input) Signal Allocation

| Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 2    | 0000h to 3149h | -            | 0000h           | All                  | After restart | Setup          | 217,<br>242    |

| Digit          | Meaning                                               |
|----------------|-------------------------------------------------------|
| n.□XXX         | Allocated Pin Number Speed Pos Trq                    |
| 000<br>Default | The signal is always inactive.                        |
| 007            | Allocate the signal to CN1-7.                         |
| 008            | Allocate the signal to CN1-8.                         |
| 009            | Allocate the signal to CN1-9.                         |
| 010            | Allocate the signal to CN1-10.                        |
| 011            | Allocate the signal to CN1-11.                        |
| 012            | Allocate the signal to CN1-12.                        |
| 013            | Allocate the signal to CN1-13.                        |
| 100            | Allocate the signal to SigmaLINK II Sequence Input 0. |
| 101            | Allocate the signal to SigmaLINK II Sequence Input 1. |
| 102            | Allocate the signal to SigmaLINK II Sequence Input 2. |
| 103            | Allocate the signal to SigmaLINK II Sequence Input 3. |
| 104            | Allocate the signal to SigmaLINK II Sequence Input 4. |
| 105            | Allocate the signal to SigmaLINK II Sequence Input 5. |
| 106            | Allocate the signal to SigmaLINK II Sequence Input 6. |
| 107            | Allocate the signal to SigmaLINK II Sequence Input 7. |
| Other values   | The signal is always inactive.                        |
| n.XDDD         | Polarity Selection Speed Pos Trq                      |
| 0<br>Default   | The signal is always inactive.                        |
| 1              | Active when input signal is ON (closed).              |
| 2              | Active when input signal is OFF (open).               |
| 3              | The signal is always active.                          |

# Parameter and Object Lists

#### ◆ Pn5B0(25B0h): /COIN (Positioning Completion Output) Signal Allocation

| Size | Setting Range  | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
| 2    | 0000h to 2039h | -            | 0000h           | All               | After restart | Setup          | 219,<br>224    |

| Digit        | Meaning                                |
|--------------|----------------------------------------|
| n.□XXX       | Allocated Pin Number Speed Pos Trq     |
| 001          | Allocate the signal to CN1-1.          |
| 023          | Allocate the signal to CN1-23.         |
| 025          | Allocate the signal to CN1-25.         |
| Other values | The signal is always inactive.         |
| n.X□□□       | Polarity Selection Speed Pos Trq       |
| 0<br>Default | The signal is always inactive.         |
| 1            | Output the above signal.               |
| 2            | Invert the above signal and output it. |

# ◆ Pn5B1(25B1h): /V-CMP (Speed Coincidence Detection Output) Signal Allocation

| Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 2    | 0000h to 2039h | _            | 0000h           | All                  | After restart | Setup          | 219,<br>223    |

| Digit        | Meaning                                |
|--------------|----------------------------------------|
| n.□XXX       | Allocated Pin Number Speed Pos Trq     |
| 001          | Allocate the signal to CN1-1.          |
| 023          | Allocate the signal to CN1-23.         |
| 025          | Allocate the signal to CN1-25.         |
| Other values | The signal is always inactive.         |
| n.X□□□       | Polarity Selection Speed Pos Trq       |
| 0<br>Default | The signal is always inactive.         |
| 1            | Output the above signal.               |
| 2            | Invert the above signal and output it. |

#### ◆ Pn5B2(25B2h): /TGON (Rotation Detection Output) Signal Allocation

| Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 2    | 0000h to 2039h | -            | 0000h           | All                  | After restart | Setup          | 219,<br>221    |

| Digit        | Meaning                                |
|--------------|----------------------------------------|
| n.□XXX       | Allocated Pin Number Speed Pos Trq     |
| 001          | Allocate the signal to CN1-1.          |
| 023          | Allocate the signal to CN1-23.         |
| 025          | Allocate the signal to CN1-25.         |
| Other values | The signal is always inactive.         |
| n.X□□□       | Polarity Selection Speed Pos Trq       |
| 0<br>Default | The signal is always inactive.         |
| 1            | Output the above signal.               |
| 2            | Invert the above signal and output it. |

# ◆ Pn5B3(25B3h): /S-RDY (Servo Ready Output) Signal Allocation

| Size | Setting Range  | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
| 2    | 0000h to 2039h | _            | 0000h           | All               | After restart | Setup          | 219,<br>222    |

| Digit        | Meaning                                |
|--------------|----------------------------------------|
| n.□XXX       | Allocated Pin Number Speed Pos Trq     |
| 001          | Allocate the signal to CN1-1.          |
| 023          | Allocate the signal to CN1-23.         |
| 025          | Allocate the signal to CN1-25.         |
| Other values | The signal is always inactive.         |
| n.XDDD       | Polarity Selection Speed Pos Trq       |
| 0<br>Default | The signal is always inactive.         |
| 1            | Output the above signal.               |
| 2            | Invert the above signal and output it. |

# Parameter and Object Lists

#### <u>5</u>

# ◆ Pn5B4(25B4h): /CLT (Torque Limit Detection Output) Signal Allocation

| Size | Setting Range  | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
| 2    | 0000h to 2039h | -            | 0000h           | All               | After restart | Setup          | 219,<br>245    |

| Digit        | Meaning                                |  |  |  |
|--------------|----------------------------------------|--|--|--|
| n.□XXX       | Allocated Pin Number Speed Pos Trq     |  |  |  |
| 001          | Allocate the signal to CN1-1.          |  |  |  |
| 023          | Allocate the signal to CN1-23.         |  |  |  |
| 025          | Allocate the signal to CN1-25.         |  |  |  |
| Other values | The signal is always inactive.         |  |  |  |
| n.X□□□       | Polarity Selection Speed Pos Trq       |  |  |  |
| 0<br>Default | The signal is always inactive.         |  |  |  |
| 1            | Output the above signal.               |  |  |  |
| 2            | Invert the above signal and output it. |  |  |  |

# ◆ Pn5B5(25B5h): /VLT (Speed Limit Detection Output) Signal Allocation

| Size | Setting Range  | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
| 2    | 0000h to 2039h | _            | 0000h           | All               | After restart | Setup          | 219,<br>227    |

| Digit        | Meaning                                |  |  |  |
|--------------|----------------------------------------|--|--|--|
| n.□XXX       | Allocated Pin Number Speed Pos Trq     |  |  |  |
| 001          | Allocate the signal to CN1-1.          |  |  |  |
| 023          | Allocate the signal to CN1-23.         |  |  |  |
| 025          | Allocate the signal to CN1-25.         |  |  |  |
| Other values | The signal is always inactive.         |  |  |  |
| n.X□□□       | Polarity Selection Speed Pos Trq       |  |  |  |
| 0<br>Default | The signal is always inactive.         |  |  |  |
| 1            | Output the above signal.               |  |  |  |
| 2            | Invert the above signal and output it. |  |  |  |

# ◆ Pn5B6(25B6h): /BK (Brake Output) Signal Allocation

| Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 2    | 0000h to 2039h | _            | 1001h           | All                  | After restart | Setup          | 185,<br>219    |

| Digit          | Meaning                                |  |  |  |
|----------------|----------------------------------------|--|--|--|
| n.□XXX         | Allocated Pin Number Speed Pos Trq     |  |  |  |
| 001<br>Default | Allocate the signal to CN1-1.          |  |  |  |
| 023            | Allocate the signal to CN1-23.         |  |  |  |
| 025            | Allocate the signal to CN1-25.         |  |  |  |
| Other values   | The signal is always inactive.         |  |  |  |
| n.X□□□         | Polarity Selection Speed Pos Trq       |  |  |  |
| 0              | The signal is always inactive.         |  |  |  |
| 1<br>Default   | Output the above signal.               |  |  |  |
| 2              | Invert the above signal and output it. |  |  |  |

# ◆ Pn5B7(25B7h): /WARN (Warning Output) Signal Allocation

| Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 2    | 0000h to 2039h | _            | 0000h           | All                  | After restart | Setup          | 219,<br>221    |

| Digit        | Meaning                                |  |  |  |
|--------------|----------------------------------------|--|--|--|
| n.□XXX       | Allocated Pin Number Speed Pos Trq     |  |  |  |
| 001          | Allocate the signal to CN1-1.          |  |  |  |
| 023          | Allocate the signal to CN1-23.         |  |  |  |
| 025          | Allocate the signal to CN1-25.         |  |  |  |
| Other values | The signal is always inactive.         |  |  |  |
| n.X□□□       | Polarity Selection Speed Pos Trq       |  |  |  |
| 0<br>Default | The signal is always inactive.         |  |  |  |
| 1            | Output the above signal.               |  |  |  |
| 2            | Invert the above signal and output it. |  |  |  |

# ◆ Pn5B8(25B8h): /NEAR (Near Output) Signal Allocation

| Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 2    | 0000h to 2039h | -            | 0000h           | All                  | After restart | Setup          | 219,<br>226    |

| Digit        | Meaning                                |  |  |  |
|--------------|----------------------------------------|--|--|--|
| n.□XXX       | Allocated Pin Number Speed Pos Trq     |  |  |  |
| 001          | Allocate the signal to CN1-1.          |  |  |  |
| 023          | Allocate the signal to CN1-23.         |  |  |  |
| 025          | Allocate the signal to CN1-25.         |  |  |  |
| Other values | The signal is always inactive.         |  |  |  |
| n.X□□□       | Polarity Selection Speed Pos Trq       |  |  |  |
| 0<br>Default | The signal is always inactive.         |  |  |  |
| 1            | Output the above signal.               |  |  |  |
| 2            | Invert the above signal and output it. |  |  |  |

# ◆ Pn5BC(25BCh): /PM (Preventative Maintenance Output) Signal Allocation

| Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 2    | 0000h to 2039h | _            | 0000h           | All                  | After restart | Setup          | 471            |

| Digit        | Meaning                                |  |  |  |  |  |  |
|--------------|----------------------------------------|--|--|--|--|--|--|
| n.□XXX       | Allocated Pin Number Speed Pos Tro     |  |  |  |  |  |  |
| 001          | Allocate the signal to CN1-1.          |  |  |  |  |  |  |
| 023          | Allocate the signal to CN1-23.         |  |  |  |  |  |  |
| 025          | Allocate the signal to CN1-25.         |  |  |  |  |  |  |
| Other values | The signal is always inactive.         |  |  |  |  |  |  |
| n.X□□□       | Polarity Selection Speed Pos Trq       |  |  |  |  |  |  |
| 0<br>Default | The signal is always inactive.         |  |  |  |  |  |  |
| 1            | Output the above signal.               |  |  |  |  |  |  |
| 2            | Invert the above signal and output it. |  |  |  |  |  |  |

◆ Pn5C3(25C3h): Error Detection Setting

| Size        | Setting Range             | Setting Unit                                                             | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer       |
|-------------|---------------------------|--------------------------------------------------------------------------|-----------------|----------------------|---------------|----------------|-------------|
| 2           | 0000h to 0011h            | -                                                                        | 0000h           | All                  | After restart | Setup          | 478         |
| Digit       | :                         |                                                                          | Mean            | ing                  |               |                |             |
| n.□□□       | X Error Detection Se      | elections                                                                |                 |                      |               | Speed Pos      | Trq         |
| 0<br>Defaul | Disable error detect      | ion.                                                                     |                 |                      |               |                |             |
| 1           | Enable error detecti      | on.                                                                      |                 |                      |               |                |             |
| n.00X       | Execution Selection       | on when Error Detect                                                     | ion Warning     |                      |               | Speed Pos      | Tro         |
| 0<br>Defaul | Stop error detection      | top error detection when A.905 (Error Detection Warning) occurs.         |                 |                      |               |                |             |
| 1           | Do not stop error de      | Oo not stop error detection when A.905 (Error Detection Warning) occurs. |                 |                      |               |                |             |
| n.□X□[      | Reserved (Do not          | eserved (Do not change.)                                                 |                 |                      |               |                |             |
| n.XDD[      | Reserved (Do not change.) |                                                                          |                 |                      |               |                |             |
|             | 4(25C4h): Erroi           |                                                                          | mple Data Se    |                      |               | Speed Pos      | Tro         |
| Size        | Setting Range             | Setting Unit                                                             | Default Setting | Applicable<br>Motors | When Enabled  | Classification | enc         |
| 2           | 0 to 10000                | 0.01%                                                                    | 2000            | All                  | Immediately   | Setup          | 478         |
| Pn5C        | 5(25C5h): Erro            | r Detection Sa                                                           | mple Data Se    | et 1 Judgr           | nent Level 1  | Speed Pos      | Tro         |
| Size        | Setting Range             | Setting Unit                                                             | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refe<br>enc |
| 2           | 0 to 10000                | _                                                                        | 1520            | All                  | Immediately   | Setup          | 478         |
| n5C         | 6(25C6h): Erro            | r Detection Sa                                                           | mple Data Se    | et 1 Warni           | ng Level 2    | Speed Pos      | Trq         |
| Size        | Setting Range             | Setting Unit                                                             | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refe<br>enc |
| 2           | 0 to 10000                | 0.01%                                                                    | 2000            | All                  | Immediately   | Setup          | 478         |
| Pn5C        | 7(25C7h): Erroi           | r Detection Sa                                                           | mple Data Se    | et 1 Judgr           | nent Level 2  | Speed Pos      | Tro         |
| Size        | Setting Range             | Setting Unit                                                             | Default Setting | Applicable Motors    | When Enabled  | Classification | Refe        |
| 2           | 0 to 10000                | -                                                                        | 1520            | All                  | Immediately   | Setup          | 478         |
| Pn5C        | 8(25C8h): Erro            | r Detection Sa                                                           | mple Data Se    | et 2 Warni           | ng Level 1    | Speed Pos      | Tro         |
| Size        | Setting Range             | Setting Unit                                                             | Default Setting | Applicable Motors    | When Enabled  | Classification | Refe        |
|             |                           |                                                                          |                 |                      |               |                |             |

| <b>♦</b> | Pn5C | 9(25C9h): Erro | r Detection Sa | mple Data Se    | et 2 Judgr           | nent Level 1 | Speed Pos      | Trq    |
|----------|------|----------------|----------------|-----------------|----------------------|--------------|----------------|--------|
|          | Size | Setting Range  | Setting Unit   | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer- |

0.01%

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 0 to 10000    | _            | 1520            | All                  | Immediately  | Setup          | 478            |

2000

All

Immediately

478

Setup

◆ Pn5CA(25CAh): Error Detection Sample Data Set 2 Warning Level 2 Speed Pos Applicable Motors Refer-Size **Setting Unit Default Setting** When Enabled Classification **Setting Range** ence 2 0 to 10000 0.01%2000 All 478 Immediately Setup

2

0 to 10000

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 0 to 10000    | _            | 1520            | All                  | Immediately  | Setup          | 478            |

#### ◆ Pn5D7(25D7h): Output Signal Inversion for Triggers at Preset Positions

| Size | Setting Range  | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|------|----------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 2    | 0000H to 01F7h | _            | 0000h           | All                  | After restart | Setup          | -              |

| Digit        | Meaning                                                                                     |     |
|--------------|---------------------------------------------------------------------------------------------|-----|
| n.□□□X       | High-Speed Output Signal Inverse Settings for Triggers at Preset Positions  Speed Positions | Trq |
| 0<br>Default | The signal is not inverted.                                                                 |     |
| 1            | Invert CN1-17, -18 (PAO) and output it.                                                     |     |
| 2            | Invert CN1-19, -20 (PBO) and output it.                                                     |     |
| 3            | Invert CN1-17, -18 (PAO) and CN1-19, -20 (PBO) and output them.                             |     |
| 4            | Invert CN1-21, -22 (PCO) and output it.                                                     |     |
| 5            | Invert CN1-17, -18 (PAO) and CN1-21, -22 (PCO) and output them.                             |     |
| 6            | Invert CN1-19, -20 (PBO) and CN1-21, -22 (PCO) and output them.                             |     |
| 7            | Invert CN1-17, -18 (PAO), CN1-19, -20 (PBO), and CN1-21, -22 (PCO) and output them.         |     |
| n.□□X□       | Normal Output Signal Inverse Settings for Triggers at Preset Positions 1  Speed Pos         | Trq |
| 0<br>Default | The signal is not inverted.                                                                 |     |
| 1            | Invert CN1-1, -2 (SO1) and output it.                                                       |     |
| 2            | Invert CN1-23, -24 (SO2) and output it.                                                     |     |
| 3            | Invert CN1-1, -2 (SO1) and CN1-23, -24 (SO2) and output them.                               |     |
| 4            | Invert CN1-25, -26 (SO3) and output it.                                                     |     |
| 5            | Invert CN1-1, -2 (SO1) and CN1-25, -26 (SO3) and output them.                               |     |
| 6            | Invert CN1-23, -24 (SO2) and CN1-25, -26 (SO3) and output them.                             |     |
| 7            | Invert CN1-1, -2 (SO1), CN1-23, -24 (SO2), and CN1-25, -26 (SO3) and output them.           |     |
| n.□X□□       | Reserved (Do not change.)                                                                   |     |
| n.X□□□       | Reserved (Do not change.)                                                                   |     |

#### ◆ Pn600(2600h): Regenerative Resistor Capacity

| Size | Setting Range                                            | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|----------------------------------------------------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to SERVOPACK's<br>maximum applicable<br>motor capacity | 10 W         | 0               | All               | Immediately  | Setup          | 207            |

# ◆ Pn601(2601h): Dynamic Brake Resistor Allowable Energy Consumption

| Si | ze | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled  | Classification | Refer-<br>ence |
|----|----|---------------|--------------|-----------------|----------------------|---------------|----------------|----------------|
| 2  | 2  | 0 to 65535    | 10 J         | 0               | All                  | After restart | Setup          | 1              |

Size

2

#### ◆ Pn603(2603h): Regenerative Resistance

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 65535    | 10 mΩ        | 0               | All               | Immediately  | Setup          | 207            |

#### ◆ Pn604(2604h): Dynamic Brake Resistance

**Setting Range** 

0 to 65535

| <br>            |                      |              |                |                |
|-----------------|----------------------|--------------|----------------|----------------|
| Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
| 0               | A 11                 | A G          | C-4            |                |

Speed Pos Trq

Speed Pos Tra

Speed Pos Trq

#### Pn61A(261Ah): Overheat Protection Selections

**Setting Unit** 

 $10~\text{m}\Omega$ 

|   | Size | Setting Range  | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|---|------|----------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
| - | 2    | 0000h to 0003h | -            | 0000h           | Linear            | After restart | Setup          | 271            |

| Digit        | Meaning                                                                                             |  |  |  |  |
|--------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|
| n.□□□X       | Overheat Protection Selections Speed Pos Trq                                                        |  |  |  |  |
| 0<br>Default | Disable overheat protection.                                                                        |  |  |  |  |
| 1            | Use overheat protection in the Yaskawa linear servomotor.                                           |  |  |  |  |
| 2            | Monitor a negative voltage input from a sensor attached to the machine and use overheat protection. |  |  |  |  |
| 3            | Monitor a positive voltage input from a sensor attached to the machine and use overheat protection. |  |  |  |  |
| n.□□X□       | Reserved (Do not change.)                                                                           |  |  |  |  |
| n.□X□□       | Reserved (Do not change.)                                                                           |  |  |  |  |
| n.X□□□       | Reserved (Do not change.)                                                                           |  |  |  |  |

#### ◆ Pn61B(261Bh): Overheat Alarm Level

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 500      | 0.01 V       | 250             | All               | Immediately  | Setup          | 273            |

Note

Valid only when Pn61A is set to  $n.\square\square\square2$  or  $n.\square\square\square3$  (enable overheat protection).

#### ◆ Pn61C(261Ch): Overheat Warning Level

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 2    | 0 to 100      | 1%           | 100             | All                  | Immediately  | Setup          | 273            |

Note:

Valid only when Pn61A is set to  $n.\Box\Box\Box 2$  or  $n.\Box\Box\Box 3$  (enable overheat protection).

#### ◆ Pn61D(261Dh): Overheat Alarm Filter Time

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| 2    | 0 to 65535    | 1 s          | 0               | All               | Immediately  | Setup          | 273            |

Note:

Valid only when Pn61A is set to n.□□□2 or n.□□□3 (enable overheat protection).

#### ◆ Pn621(2621h): Reserved (Do not change.)

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| _    | _             | -            | _               | All                  | 1            | -              | ı              |

| assification              | ence                         |
|---------------------------|------------------------------|
| _                         |                              |
|                           |                              |
| Speed Pos                 | Trq                          |
| lassification             | Refer-<br>ence               |
|                           | ence                         |
| _                         |                              |
| Speed Pos                 | Trq                          |
| Тоо                       |                              |
| lassification             | Refer-                       |
| ussinoution               | ence                         |
| _                         | _                            |
|                           |                              |
|                           |                              |
| Speed Pos                 | Trq                          |
| Speed Pos                 | Refer-                       |
|                           |                              |
|                           | Refer-                       |
|                           | Refer-                       |
|                           | Reference                    |
| assification  - Speed Pos | Reference                    |
| lassification             | Reference -                  |
| assification  - Speed Pos | Reference  Trq  Refer-       |
| assification  - Speed Pos | Reference  Trq  Refer-       |
| assification  - Speed Pos | Reference  Trq  Reference  - |

| <b>♦</b> | Pn622 | 2(2622h): Rese | rved (Do not c | hange.)         |                      |              | Speed Pos      | Trq            |
|----------|-------|----------------|----------------|-----------------|----------------------|--------------|----------------|----------------|
|          | Size  | Setting Range  | Setting Unit   | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|          |       | _              | _              | _               | Δ11                  | _            | _              |                |

◆ Pn623(2623h): Reserved (Do not change.)

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| 1    | 1             | -            | _               | All                  | _            | _              | _              |

◆ Pn624(2624h): Reserved (Do not change.)

| Si | ze | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|----|----|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| -  | -  | -             | _            | _               | All                  | -            | _              | _              |

◆ Pn625(2625h): Reserved (Do not change.)

| Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| _    | _             | -            | _               | All               | _            | -              | -              |

◆ Pn626(2626h): Reserved (Do not change.)

| Size  | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|-------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
| <br>1 | -             | _            | _               | All                  | 1            | _              | _              |

◆ Pn627(2627h): Reserved (Do not change.)

|   | Size | Setting Range | Setting Unit | Default Setting | Applicable Motors | When Enabled | Classification | Refer-<br>ence |
|---|------|---------------|--------------|-----------------|-------------------|--------------|----------------|----------------|
| - | -    | -             | -            | _               | All               | -            | _              | -              |

◆ Pn628(2628h): Reserved (Do not change.)

| Size | Setting Range | Setting Unit | Default Setting | Applicable<br>Motors | When Enabled | Classification | Refer-<br>ence |
|------|---------------|--------------|-----------------|----------------------|--------------|----------------|----------------|
|      | _             | -            | -               | All                  | _            | -              | _              |

# ◆ Pn660(2660h): Triggers at Preset Positions Switch

|   | Size | Setting Range  | Setting Unit | Default Setting | Applicable Motors | When Enabled  | Classification | Refer-<br>ence |
|---|------|----------------|--------------|-----------------|-------------------|---------------|----------------|----------------|
| - | 2    | 0000h to 2011h | -            | 0000h           | All               | After restart | Setup          | -              |

| Digit        | Meaning                                                      |
|--------------|--------------------------------------------------------------|
| n.□□□X       | Output Unit Setting Speed Pos Trq                            |
| 0<br>Default | Set the signal output width as a time $[\mu s]$ .            |
| 1            | Set the signal output width as a distance [reference units]. |
| n.□□X□       | Reserved (Do not change.)                                    |
| n.□X□□       | Reserved (Do not change.)                                    |
| n.X□□□       | Triggers at Preset Positions Selections Speed Pos Trq        |
| 0<br>Default | Disable triggers at preset positions.                        |
| 1            | Enable triggers at preset positions.                         |
| 2            | Reserved (Do not use.)                                       |

#### **Object List** 17.2

The following table lists the objects.

- Information Save the parameter data to object 1010h to save all of the current parameter data to EEPROM. If the objects are modified by the digital operator or SigmaWin+, the data will be directly saved in EEPROM.
  - The parameter numbers given in the table are the parameter numbers that are used with the digital operator and Sigma-Win+.
  - Refer to the following section for details on Pn000 to Pn6FF.

Only the parameters listed in this section are displayed in SigmaWin+ and the digital operator.

| Index  | Subin-<br>dex | Name                               | Data<br>Type | Acc-<br>ess | PDO<br>Map-<br>ping | Saving<br>to<br>EEPRO-<br>M | Default<br>Value | Lower Limit | Upper Limit | Unit | Parame-<br>ter No. |
|--------|---------------|------------------------------------|--------------|-------------|---------------------|-----------------------------|------------------|-------------|-------------|------|--------------------|
| 1000h  | 0             | Device Type                        | UDINT        | RO          | No                  | No                          | 0x00020192       | _           | 1           | ı    | _                  |
| 1001h  | 0             | Error Register                     | USINT        | RO          | No                  | No                          | 1                | _           | 1           | ı    | _                  |
| 1008h  | 0             | Manufacturer Device<br>Name        | STRIN-<br>G  | RO          | No                  | No                          | 1                | _           | 1           | 1    | -                  |
| 100Ah  | 0             | Manufacturer Software<br>Version   | STRIN-<br>G  | RO          | No                  | No                          | _                | _           | _           | 1    | -                  |
|        | Store Parar   | neters                             |              |             |                     |                             |                  |             |             |      |                    |
|        | 0             | Largest subindex supported         | USINT        | RO          | No                  | No                          | 4                | _           | _           | _    | -                  |
| 1010h  | 1             | Save all parameters                | UDINT        | RW          | No                  | No                          | 0x00000001       | 0x00000000  | 0xFFFFFFF   | _    | PnC00              |
|        | 2             | Reserved                           | UDINT        | RW          | No                  | No                          | 0x00000001       | _           | ı           | ı    | _                  |
|        | 3             | Reserved                           | UDINT        | RW          | No                  | No                          | 0x00000001       | _           | 1           | ı    | _                  |
|        | 4             | Reserved                           | UDINT        | RW          | No                  | No                          | 0x00000001       | _           | 1           | ı    | _                  |
|        | Restore De    | fault Parameters                   |              |             |                     |                             |                  |             |             |      |                    |
|        | 0             | Largest subindex supported         | USINT        | RO          | No                  | No                          | 4                | _           | ı           | 1    | -                  |
| 1011h  | 1             | Restore all default parameters     | UDINT        | RW          | No                  | No                          | 0x00000001       | 0x00000000  | 0xFFFFFFF   | 1    | PnC08              |
|        | 2             | Reserved                           | UDINT        | RW          | No                  | No                          | 0x00000001       | _           | _           | _    | _                  |
|        | 3             | Reserved                           | UDINT        | RW          | No                  | No                          | 0x00000001       | _           | _           | _    | _                  |
|        | 4             | Reserved                           | UDINT        | RW          | No                  | No                          | 0x00000001       | _           | _           | _    | _                  |
|        | Identity Ob   | oject                              |              |             |                     |                             |                  |             |             |      |                    |
|        | 0             | Number of entries                  | USINT        | RO          | No                  | No                          | 4                | _           | _           | _    | _                  |
| 40401- | 1             | Vendor ID                          | UDINT        | RO          | No                  | No                          | 0x00000539       | _           | ı           | ı    | _                  |
| 1018h  | 2             | Product code                       | UDINT        | RO          | No                  | No                          | 0x02200901       | _           | 1           | ı    | _                  |
|        | 3             | Revision number                    | UDINT        | RO          | No                  | No                          | _                | _           | _           | -    | _                  |
|        | 4             | Serial number                      | UDINT        | RO          | No                  | No                          | 0x00000000       | _           | _           | _    | _                  |
|        | Sync Error    | Settings                           |              |             |                     |                             |                  |             |             |      |                    |
|        | 0             | Number of entries                  | USINT        | RO          | No                  | No                          | 2                | _           | _           | _    | _                  |
| 10F1h  | 1             | Reserved (Local Error<br>Reaction) | UDINT        | RW          | No                  | No                          | 0                | _           | _           | 1    | _                  |
|        | 2             | Sync error count limit             | UINT         | RW          | No                  | Yes                         | 9                | 0           | 15          | _    | PnCCC              |

|       |               |                               |              |             |                     |                             |                  |             | Continued   | nom pi | evious page.       |
|-------|---------------|-------------------------------|--------------|-------------|---------------------|-----------------------------|------------------|-------------|-------------|--------|--------------------|
| Index | Subin-<br>dex | Name                          | Data<br>Type | Acc-<br>ess | PDO<br>Map-<br>ping | Saving<br>to<br>EEPRO-<br>M | Default<br>Value | Lower Limit | Upper Limit | Unit   | Parame-<br>ter No. |
|       | 1st Receive   | e PDO Mapping                 |              |             |                     |                             |                  |             |             |        |                    |
|       | 0             | Number of objects in this PDO | USINT        | RW          | No                  | Yes                         | 8                | 0           | 16          | _      | PnCA0              |
|       | 1             | Mapping entry 1               | UDINT        | RW          | No                  | Yes                         | 0x60400010       | 0           | 0xFFFFFFF   | _      | PnC20              |
|       | 2             | Mapping entry 2               | UDINT        | RW          | No                  | Yes                         | 0x607A0020       | 0           | 0xFFFFFFF   | _      | PnC22              |
|       | 3             | Mapping entry 3               | UDINT        | RW          | No                  | Yes                         | 0x60FF0020       | 0           | 0xFFFFFFF   | -      | PnC24              |
|       | 4             | Mapping entry 4               | UDINT        | RW          | No                  | Yes                         | 0x60710010       | 0           | 0xFFFFFFF   | -      | PnC26              |
|       | 5             | Mapping entry 5               | UDINT        | RW          | No                  | Yes                         | 0x60720010       | 0           | 0xFFFFFFF   | -      | PnC28              |
|       | 6             | Mapping entry 6               | UDINT        | RW          | No                  | Yes                         | 0x60600008       | 0           | 0xFFFFFFF   | -      | PnC2A              |
| 1600h | 7             | Mapping entry 7               | UDINT        | RW          | No                  | Yes                         | 0x00000008       | 0           | 0xFFFFFFF   | _      | PnC2C              |
|       | 8             | Mapping entry 8               | UDINT        | RW          | No                  | Yes                         | 0x60B80010       | 0           | 0xFFFFFFF   | -      | PnC2E              |
|       | 9             | Mapping entry 9               | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | -      | PnC30              |
|       | 10            | Mapping entry 10              | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | -      | PnC32              |
|       | 11            | Mapping entry 11              | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | -      | PnC34              |
|       | 12            | Mapping entry 12              | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | _      | PnC36              |
|       | 13            | Mapping entry 13              | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | _      | PnC38              |
|       | 14            | Mapping entry 14              | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | ١      | PnC3A              |
|       | 15            | Mapping entry 15              | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | _      | PnC3C              |
|       | 16            | Mapping entry 16              | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | _      | PnC3E              |
|       | 2nd Receiv    | re PDO Mapping                |              |             |                     |                             |                  |             |             |        |                    |
|       | 0             | Number of objects in this PDO | USINT        | RW          | No                  | Yes                         | 2                | 0           | 16          | 1      | PnCA1              |
|       | 1             | Mapping entry 1               | UDINT        | RW          | No                  | Yes                         | 0x60400010       | 0           | 0xFFFFFFF   | ı      | PnC40              |
|       | 2             | Mapping entry 2               | UDINT        | RW          | No                  | Yes                         | 0x607A0020       | 0           | 0xFFFFFFF   | _      | PnC42              |
|       | 3             | Mapping entry 3               | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | ı      | PnC44              |
|       | 4             | Mapping entry 4               | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | -      | PnC46              |
|       | 5             | Mapping entry 5               | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | ı      | PnC48              |
|       | 6             | Mapping entry 6               | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | ı      | PnC4A              |
| 1601h | 7             | Mapping entry 7               | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | -      | PnC4C              |
|       | 8             | Mapping entry 8               | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | ı      | PnC4E              |
|       | 9             | Mapping entry 9               | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | ı      | PnC50              |
|       | 10            | Mapping entry 10              | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | ı      | PnC52              |
|       | 11            | Mapping entry 11              | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | ı      | PnC54              |
|       | 12            | Mapping entry 12              | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | _      | PnC56              |
|       | 13            | Mapping entry 13              | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | -      | PnC58              |
|       | 14            | Mapping entry 14              | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | -      | PnC5A              |
|       | 15            | Mapping entry 15              | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | -      | PnC5C              |
|       | 16            | Mapping entry 16              | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | _      | PnC5E              |
|       | •             | •                             | •            |             |                     | •                           |                  |             | C           |        | on next page.      |

| Index | Subin-<br>dex | Name                          | Data<br>Type | Acc- | PDO<br>Map-<br>ping | Saving<br>to<br>EEPRO-<br>M | Default<br>Value | Lower Limit | Upper Limit | Unit | Parame-<br>ter No. |
|-------|---------------|-------------------------------|--------------|------|---------------------|-----------------------------|------------------|-------------|-------------|------|--------------------|
|       | 3rd Receiv    | e PDO Mapping                 |              |      |                     |                             |                  |             |             |      |                    |
|       | 0             | Number of objects in this PDO | USINT        | RW   | No                  | No                          | 2                | 0           | 16          | -    | _                  |
|       | 1             | Mapping entry 1               | UDINT        | RW   | No                  | No                          | 0x60400010       | 0           | 0xFFFFFFF   | ١    | _                  |
|       | 2             | Mapping entry 2               | UDINT        | RW   | No                  | No                          | 0x60FF0020       | 0           | 0xFFFFFFF   | -    | -                  |
|       | 3             | Mapping entry 3               | UDINT        | RW   | No                  | No                          | 0                | 0           | 0xFFFFFFF   | _    | _                  |
|       | 4             | Mapping entry 4               | UDINT        | RW   | No                  | No                          | 0                | 0           | 0xFFFFFFF   | ı    | ı                  |
|       | 5             | Mapping entry 5               | UDINT        | RW   | No                  | No                          | 0                | 0           | 0xFFFFFFF   | _    | _                  |
|       | 6             | Mapping entry 6               | UDINT        | RW   | No                  | No                          | 0                | 0           | 0xFFFFFFF   | _    | _                  |
| 1602h | 7             | Mapping entry 7               | UDINT        | RW   | No                  | No                          | 0                | 0           | 0xFFFFFFF   | _    | _                  |
|       | 8             | Mapping entry 8               | UDINT        | RW   | No                  | No                          | 0                | 0           | 0xFFFFFFF   | _    | _                  |
|       | 9             | Mapping entry 9               | UDINT        | RW   | No                  | No                          | 0                | 0           | 0xFFFFFFF   | ı    | ı                  |
|       | 10            | Mapping entry 10              | UDINT        | RW   | No                  | No                          | 0                | 0           | 0xFFFFFFF   | _    | _                  |
|       | 11            | Mapping entry 11              | UDINT        | RW   | No                  | No                          | 0                | 0           | 0xFFFFFFF   | _    | _                  |
|       | 12            | Mapping entry 12              | UDINT        | RW   | No                  | No                          | 0                | 0           | 0xFFFFFFF   | _    | _                  |
|       | 13            | Mapping entry 13              | UDINT        | RW   | No                  | No                          | 0                | 0           | 0xFFFFFFF   | _    | -                  |
|       | 14            | Mapping entry 14              | UDINT        | RW   | No                  | No                          | 0                | 0           | 0xFFFFFFF   | _    | _                  |
|       | 15            | Mapping entry 15              | UDINT        | RW   | No                  | No                          | 0                | 0           | 0xFFFFFFF   | _    | -                  |
|       | 16            | Mapping entry 16              | UDINT        | RW   | No                  | No                          | 0                | 0           | 0xFFFFFFF   | -    | _                  |
|       | 4th Receiv    | e PDO Mapping                 |              |      |                     |                             |                  |             |             |      |                    |
|       | 0             | Number of objects in this PDO | USINT        | RW   | No                  | No                          | 2                | 0           | 16          | -    | _                  |
|       | 1             | Mapping entry 1               | UDINT        | RW   | No                  | No                          | 0x60400010       | 0           | 0xFFFFFFF   | ı    | 1                  |
|       | 2             | Mapping entry 2               | UDINT        | RW   | No                  | No                          | 0x60710010       | 0           | 0xFFFFFFF   | ı    | 1                  |
|       | 3             | Mapping entry 3               | UDINT        | RW   | No                  | No                          | 0                | 0           | 0xFFFFFFF   | ı    | ı                  |
|       | 4             | Mapping entry 4               | UDINT        | RW   | No                  | No                          | 0                | 0           | 0xFFFFFFF   | -    | _                  |
|       | 5             | Mapping entry 5               | UDINT        | RW   | No                  | No                          | 0                | 0           | 0xFFFFFFF   | -    | _                  |
|       | 6             | Mapping entry 6               | UDINT        | RW   | No                  | No                          | 0                | 0           | 0xFFFFFFF   | ı    | ı                  |
| 1603h | 7             | Mapping entry 7               | UDINT        | RW   | No                  | No                          | 0                | 0           | 0xFFFFFFF   | -    | -                  |
|       | 8             | Mapping entry 8               | UDINT        | RW   | No                  | No                          | 0                | 0           | 0xFFFFFFF   | -    | -                  |
|       | 9             | Mapping entry 9               | UDINT        | RW   | No                  | No                          | 0                | 0           | 0xFFFFFFF   | -    | -                  |
|       | 10            | Mapping entry 10              | UDINT        | RW   | No                  | No                          | 0                | 0           | 0xFFFFFFF   | -    | -                  |
|       | 11            | Mapping entry 11              | UDINT        | RW   | No                  | No                          | 0                | 0           | 0xFFFFFFF   | ı    | ı                  |
|       | 12            | Mapping entry 12              | UDINT        | RW   | No                  | No                          | 0                | 0           | 0xFFFFFFF   | -    | _                  |
|       | 13            | Mapping entry 13              | UDINT        | RW   | No                  | No                          | 0                | 0           | 0xFFFFFFF   | -    | -                  |
|       | 14            | Mapping entry 14              | UDINT        | RW   | No                  | No                          | 0                | 0           | 0xFFFFFFF   | _    | -                  |
|       | 15            | Mapping entry 15              | UDINT        | RW   | No                  | No                          | 0                | 0           | 0xFFFFFFF   | -    | -                  |
|       | 16            | Mapping entry 16              | UDINT        | RW   | No                  | No                          | 0                | 0           | 0xFFFFFFF   | _    | _                  |

|       |               |                               |              |             |                     | 0!                          |                  |             |             | iroin pi | evious page.       |
|-------|---------------|-------------------------------|--------------|-------------|---------------------|-----------------------------|------------------|-------------|-------------|----------|--------------------|
| Index | Subin-<br>dex | Name                          | Data<br>Type | Acc-<br>ess | PDO<br>Map-<br>ping | Saving<br>to<br>EEPRO-<br>M | Default<br>Value | Lower Limit | Upper Limit | Unit     | Parame-<br>ter No. |
|       | 1st Transm    | it PDO Mapping                | •            |             |                     |                             |                  |             |             |          |                    |
|       | 0             | Number of objects in this PDO | USINT        | RW          | No                  | Yes                         | 8                | 0           | 16          | _        | PnCA4              |
|       | 1             | Mapping entry 1               | UDINT        | RW          | No                  | Yes                         | 0x60410010       | 0           | 0xFFFFFFFF  | -        | PnC60              |
|       | 2             | Mapping entry 2               | UDINT        | RW          | No                  | Yes                         | 0x60640020       | 0           | 0xFFFFFFFF  | _        | PnC62              |
|       | 3             | Mapping entry 3               | UDINT        | RW          | No                  | Yes                         | 0x60770010       | 0           | 0xFFFFFFF   | -        | PnC64              |
|       | 4             | Mapping entry 4               | UDINT        | RW          | No                  | Yes                         | 0x60F40020       | 0           | 0xFFFFFFF   | -        | PnC66              |
|       | 5             | Mapping entry 5               | UDINT        | RW          | No                  | Yes                         | 0x60610008       | 0           | 0xFFFFFFF   | _        | PnC68              |
|       | 6             | Mapping entry 6               | UDINT        | RW          | No                  | Yes                         | 0x00000008       | 0           | 0xFFFFFFF   | -        | PnC6A              |
| 1A00h | 7             | Mapping entry 7               | UDINT        | RW          | No                  | Yes                         | 0x60B90010       | 0           | 0xFFFFFFF   | -        | PnC6C              |
|       | 8             | Mapping entry 8               | UDINT        | RW          | No                  | Yes                         | 0x60BA0020       | 0           | 0xFFFFFFF   | _        | PnC6E              |
|       | 9             | Mapping entry 9               | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | -        | PnC70              |
|       | 10            | Mapping entry 10              | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | -        | PnC72              |
|       | 11            | Mapping entry 11              | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | -        | PnC74              |
|       | 12            | Mapping entry 12              | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | _        | PnC76              |
|       | 13            | Mapping entry 13              | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | -        | PnC78              |
|       | 14            | Mapping entry 14              | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | _        | PnC7A              |
|       | 15            | Mapping entry 15              | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | _        | PnC7C              |
|       | 16            | Mapping entry 16              | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | -        | PnC7E              |
|       | 2nd Transn    | nit PDO Mapping               |              |             |                     |                             |                  |             |             |          |                    |
|       | 0             | Number of objects in this PDO | USINT        | RW          | No                  | Yes                         | 2                | 0           | 16          | -        | PnCA5              |
|       | 1             | Mapping entry 1               | UDINT        | RW          | No                  | Yes                         | 0x60410010       | 0           | 0xFFFFFFFF  | -        | PnC80              |
|       | 2             | Mapping entry 2               | UDINT        | RW          | No                  | Yes                         | 0x60640020       | 0           | 0xFFFFFFFF  | -        | PnC82              |
|       | 3             | Mapping entry 3               | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | ı        | PnC84              |
|       | 4             | Mapping entry 4               | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | ı        | PnC86              |
|       | 5             | Mapping entry 5               | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | ı        | PnC88              |
|       | 6             | Mapping entry 6               | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | ı        | PnC8A              |
| 1A01h | 7             | Mapping entry 7               | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | ı        | PnC8C              |
|       | 8             | Mapping entry 8               | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | ı        | PnC8E              |
|       | 9             | Mapping entry 9               | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | -        | PnC90              |
|       | 10            | Mapping entry 10              | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | _        | PnC92              |
|       | 11            | Mapping entry 11              | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | -        | PnC94              |
|       | 12            | Mapping entry 12              | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | -        | PnC96              |
|       | 13            | Mapping entry 13              | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | -        | PnC98              |
|       | 14            | Mapping entry 14              | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | _        | PnC9A              |
|       | 15            | Mapping entry 15              | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | -        | PnC9C              |
|       | 16            | Mapping entry 16              | UDINT        | RW          | No                  | Yes                         | 0                | 0           | 0xFFFFFFF   | _        | PnC9E              |
|       |               | •                             | •            |             |                     |                             |                  |             |             |          | n next nage        |

|       |               |                               |              |             |                     |                             |                  |             | Continued   | from pi  | evious page.       |
|-------|---------------|-------------------------------|--------------|-------------|---------------------|-----------------------------|------------------|-------------|-------------|----------|--------------------|
| Index | Subin-<br>dex | Name                          | Data<br>Type | Acc-<br>ess | PDO<br>Map-<br>ping | Saving<br>to<br>EEPRO-<br>M | Default<br>Value | Lower Limit | Upper Limit | Unit     | Parame-<br>ter No. |
|       | 3rd Transm    | nit PDO Mapping               | •            |             |                     |                             |                  |             |             |          |                    |
|       | 0             | Number of objects in this PDO | USINT        | RW          | No                  | No                          | 2                | 0           | 16          | 1        | 1                  |
|       | 1             | Mapping entry 1               | UDINT        | RW          | No                  | No                          | 0x60410010       | 0           | 0xFFFFFFF   | ı        | 1                  |
|       | 2             | Mapping entry 2               | UDINT        | RW          | No                  | No                          | 0x60640020       | 0           | 0xFFFFFFFF  | -        | -                  |
|       | 3             | Mapping entry 3               | UDINT        | RW          | No                  | No                          | 0                | 0           | 0xFFFFFFF   | ı        | -                  |
|       | 4             | Mapping entry 4               | UDINT        | RW          | No                  | No                          | 0                | 0           | 0xFFFFFFF   | ı        | 1                  |
|       | 5             | Mapping entry 5               | UDINT        | RW          | No                  | No                          | 0                | 0           | 0xFFFFFFF   | ı        | -                  |
|       | 6             | Mapping entry 6               | UDINT        | RW          | No                  | No                          | 0                | 0           | 0xFFFFFFF   | _        | -                  |
| 1A02h | 7             | Mapping entry 7               | UDINT        | RW          | No                  | No                          | 0                | 0           | 0xFFFFFFF   | _        | -                  |
|       | 8             | Mapping entry 8               | UDINT        | RW          | No                  | No                          | 0                | 0           | 0xFFFFFFF   | _        | -                  |
|       | 9             | Mapping entry 9               | UDINT        | RW          | No                  | No                          | 0                | 0           | 0xFFFFFFF   | -        | _                  |
|       | 10            | Mapping entry 10              | UDINT        | RW          | No                  | No                          | 0                | 0           | 0xFFFFFFF   | -        | _                  |
|       | 11            | Mapping entry 11              | UDINT        | RW          | No                  | No                          | 0                | 0           | 0xFFFFFFF   | ı        | _                  |
|       | 12            | Mapping entry 12              | UDINT        | RW          | No                  | No                          | 0                | 0           | 0xFFFFFFF   | _        | _                  |
|       | 13            | Mapping entry 13              | UDINT        | RW          | No                  | No                          | 0                | 0           | 0xFFFFFFFF  | ı        | _                  |
|       | 14            | Mapping entry 14              | UDINT        | RW          | No                  | No                          | 0                | 0           | 0xFFFFFFF   | _        | -                  |
|       | 15            | Mapping entry 15              | UDINT        | RW          | No                  | No                          | 0                | 0           | 0xFFFFFFF   | -        | _                  |
|       | 16            | Mapping entry 16              | UDINT        | RW          | No                  | No                          | 0                | 0           | 0xFFFFFFFF  | ı        | _                  |
|       | 4th Transm    | nit PDO Mapping               | •            | ,           |                     |                             |                  |             |             |          |                    |
|       | 0             | Number of objects in this PDO | USINT        | RW          | No                  | No                          | 3                | 0           | 16          | 1        | ı                  |
|       | 1             | Mapping entry 1               | UDINT        | RW          | No                  | No                          | 0x60410010       | 0           | 0xFFFFFFF   | ı        | 1                  |
|       | 2             | Mapping entry 2               | UDINT        | RW          | No                  | No                          | 0x60640020       | 0           | 0xFFFFFFF   | -        | _                  |
|       | 3             | Mapping entry 3               | UDINT        | RW          | No                  | No                          | 0x60770010       | 0           | 0xFFFFFFF   | _        | -                  |
|       | 4             | Mapping entry 4               | UDINT        | RW          | No                  | No                          | 0                | 0           | 0xFFFFFFF   | -        | _                  |
|       | 5             | Mapping entry 5               | UDINT        | RW          | No                  | No                          | 0                | 0           | 0xFFFFFFF   | -        | _                  |
|       | 6             | Mapping entry 6               | UDINT        | RW          | No                  | No                          | 0                | 0           | 0xFFFFFFF   | _        | _                  |
| 1A03h | 7             | Mapping entry 7               | UDINT        | RW          | No                  | No                          | 0                | 0           | 0xFFFFFFF   | _        | -                  |
|       | 8             | Mapping entry 8               | UDINT        | RW          | No                  | No                          | 0                | 0           | 0xFFFFFFF   | -        | _                  |
|       | 9             | Mapping entry 9               | UDINT        | RW          | No                  | No                          | 0                | 0           | 0xFFFFFFF   | _        | _                  |
|       | 10            | Mapping entry 10              | UDINT        | RW          | No                  | No                          | 0                | 0           | 0xFFFFFFF   | ı        | -                  |
|       | 11            | Mapping entry 11              | UDINT        | RW          | No                  | No                          | 0                | 0           | 0xFFFFFFF   | -        | -                  |
|       | 12            | Mapping entry 12              | UDINT        | RW          | No                  | No                          | 0                | 0           | 0xFFFFFFF   | -        | -                  |
|       | 13            | Mapping entry 13              | UDINT        | RW          | No                  | No                          | 0                | 0           | 0xFFFFFFF   | -        | -                  |
|       | 14            | Mapping entry 14              | UDINT        | RW          | No                  | No                          | 0                | 0           | 0xFFFFFFF   | -        | -                  |
|       | 15            | Mapping entry 15              | UDINT        | RW          | No                  | No                          | 0                | 0           | 0xFFFFFFF   | -        | -                  |
|       | 16            | Mapping entry 16              | UDINT        | RW          | No                  | No                          | 0                | 0           | 0xFFFFFFF   | _        | -                  |
|       | •             | 1                             | •            |             |                     | 1                           |                  |             | Con         | tinued o | n next page.       |

| Index | Subin-<br>dex | Name                                    | Data<br>Type | Acc- | PDO<br>Map-<br>ping | Saving<br>to<br>EEPRO-<br>M | Default<br>Value                             | Lower Limit | Upper Limit | Unit | Parame-<br>ter No. |
|-------|---------------|-----------------------------------------|--------------|------|---------------------|-----------------------------|----------------------------------------------|-------------|-------------|------|--------------------|
|       | Sync Mana     | ger Communication Type                  |              |      |                     |                             |                                              |             |             |      |                    |
|       | 0             | Number of used Sync<br>Manager channels | USINT        | RO   | No                  | No                          | 4                                            | ı           | ı           | 1    | _                  |
|       | 1             | Communication type sync manager 0       | USINT        | RO   | No                  | No                          | 1 (mailbox<br>receive (mas-<br>ter → slave)) | ı           | ı           | 1    | PnCB0              |
| 1C00h | 2             | Communication type sync manager 1       | USINT        | RO   | No                  | No                          | 2 (mailbox<br>send (slave →<br>master))      | ı           | ı           | 1    | PnCB1              |
|       | 3             | Communication type sync manager 2       | USINT        | RO   | No                  | No                          | 3 (process data output (master → slave))     | -           | -           | 1    | PnCB2              |
|       | 4             | Communication type sync manager 3       | USINT        | RO   | No                  | No                          | 4 (process data input (slave → master))      | ı           | I           | 1    | PnCB3              |
| 1C10h | 0             | Sync Manager PDO<br>Assignment 0        | USINT        | RO   | No                  | No                          | 0                                            | -           | -           | 1    | -                  |
| 1C11h | 0             | Sync Manager PDO<br>Assignment 1        | USINT        | RO   | No                  | No                          | 0                                            | _           | _           | 1    | _                  |
|       | Sync Mana     | ager PDO Assignment 2                   |              |      |                     |                             |                                              |             |             |      |                    |
|       | 0             | Number of assigned PDOs                 | USINT        | RO   | No                  | Yes                         | 1                                            | 0           | 2           | 1    | PnCB5              |
| 1C12h | 1             | Index of assigned<br>RxPDO 1            | UINT         | RW   | No                  | Yes                         | 0x1601                                       | 0x1600      | 0x1603      | 1    | PnCB6              |
|       | 2             | Index of assigned<br>RxPDO 2            | UINT         | RW   | No                  | Yes                         | 0x1600                                       | 0x1600      | 0x1603      | 1    | PnCB7              |
|       | Sync Mana     | ager PDO Assignment 3                   |              |      |                     |                             |                                              |             |             |      |                    |
|       | 0             | Number of assigned PDOs                 | USINT        | RO   | No                  | Yes                         | 1                                            | 0           | 2           | 1    | PnCBB              |
| 1C13h | 1             | Index of assigned TxPDO 1               | UINT         | RW   | No                  | Yes                         | 0x1A01                                       | 0x1A00      | 0x1A03      | 1    | PnCBC              |
|       | 2             | Index of assigned TxPDO 2               | UINT         | RW   | No                  | Yes                         | 0x1A00                                       | 0x1A00      | 0x1A03      | 1    | PnCBD              |

|       |               |                                      |              |             |                     |                             |                  |             | Continued                 | nom pr | evious page        |
|-------|---------------|--------------------------------------|--------------|-------------|---------------------|-----------------------------|------------------|-------------|---------------------------|--------|--------------------|
| Index | Subin-<br>dex | Name                                 | Data<br>Type | Acc-<br>ess | PDO<br>Map-<br>ping | Saving<br>to<br>EEPRO-<br>M | Default<br>Value | Lower Limit | Upper Limit               | Unit   | Parame-<br>ter No. |
|       | Sync Mana     | ger 2 (process data output)          | ) Synchron   | nization    |                     |                             |                  |             |                           |        |                    |
|       | 0             | Number of synchronization parameters | USINT        | RO          | No                  | No                          | 32               | _           | -                         | 1      | _                  |
|       | 1             | Synchronization type                 | UINT         | RO          | No                  | No                          | 2                | -           | -                         | _      | PnCC0              |
|       | 2             | Cycle time                           | UDINT        | RO          | No                  | No                          |                  | -           | _                         | ns     | PnCC2              |
|       | 3             | Shift time                           | UDINT        | RW          | No                  | Yes                         | 62500            | 62500       | Sync0 event cycle - 62500 | ns     | PnCC4              |
|       | 4             | Synchronization types supported      | UINT         | RO          | No                  | No                          | 0x0025           | _           | -                         | _      | -                  |
|       | 5             | Minimum cycle time                   | UDINT        | RO          | No                  | No                          | 62500            | _           | _                         | ns     | -                  |
|       | 6             | Calc and copy time                   | UDINT        | RO          | No                  | No                          | 62500            | _           | -                         | ns     | -                  |
|       | 7             | Reserved (Minimum<br>Delay Time)     | UDINT        | RO          | No                  | No                          | 0                | _           | -                         | -      | -                  |
|       | 8             | Reserved (Get Cycle<br>Time)         | UINT         | RO          | No                  | No                          | 0                | _           | -                         | -      | -                  |
|       | 9             | Delay time                           | UDINT        | RO          | No                  | No                          | 0                | _           | -                         | ns     | -                  |
| 1C32h | 10            | Sync0 cycle time                     | UDINT        | RO          | No                  | No                          | _                | -           | -                         | -      | PnCC6              |
|       | 11            | SM event missed counter              | UINT         | RO          | No                  | No                          | -                | _           | -                         | _      | PnCC8              |
|       | 12            | Reserved (Cycle Time<br>Too Small)   | UINT         | RO          | No                  | No                          | 0                | -           | -                         | _      | ı                  |
|       | 13            | Reserved (Shift Time<br>Too Short)   | UINT         | RO          | No                  | No                          | 0                | _           | -                         | ı      | _                  |
|       | 14            | Reserved (RxPDO Tog-<br>gle Failed)  | UINT         | RO          | No                  | No                          | 0                | _           | _                         | ı      | _                  |
|       | 15            | Reserved (Minimum<br>Cycle Distance) | UDINT        | RO          | No                  | No                          | 0                | _           | _                         | ı      | _                  |
| -     | 16            | Reserved (Maximum<br>Cycle Distance) | UDINT        | RO          | No                  | No                          | 0                | _           | _                         | _      | _                  |
|       | 17            | Minimum SM SYNC distance             | UDINT        | RO          | No                  | No                          | _                | _           | _                         | -      | PnCD8              |
|       | 18            | Maximum SM SYNC distance             | UDINT        | RO          | No                  | No                          | _                | _           | _                         | -      | PnCD6              |
|       | 32            | Sync Error                           | BOOL         | RO          | No                  | No                          | 0                | -           | _                         | _      | _                  |

|                   |               |                                                        |              |             |                     |                             |                  |             | Continued                    | irom pr  | evious page.       |
|-------------------|---------------|--------------------------------------------------------|--------------|-------------|---------------------|-----------------------------|------------------|-------------|------------------------------|----------|--------------------|
| Index             | Subin-<br>dex | Name                                                   | Data<br>Type | Acc-<br>ess | PDO<br>Map-<br>ping | Saving<br>to<br>EEPRO-<br>M | Default<br>Value | Lower Limit | Upper Limit                  | Unit     | Parame-<br>ter No. |
|                   | Sync Mana     | ager 3 (process data input)                            | Synchroni    | zation      |                     |                             |                  |             |                              |          |                    |
|                   | 0             | Number of synchronization parameters                   | USINT        | RO          | No                  | No                          | 32               | _           | -                            | -        | _                  |
|                   | 1             | Synchronization type                                   | UINT         | RO          | No                  | No                          | _                | _           | _                            | _        | _                  |
|                   | 2             | Cycle time                                             | UDINT        | RO          | No                  | No                          | _                | _           | _                            | _        | _                  |
|                   | 3             | Shift time                                             | UDINT        | RW          | No                  | Yes                         | 0                | 0           | Sync0 event<br>cycle - 62500 | ns       | PnCCA              |
|                   | 4             | Synchronization types supported                        | UINT         | RO          | No                  | No                          | 0x0025           | _           | -                            | -        | _                  |
|                   | 5             | Minimum cycle time                                     | UDINT        | RO          | No                  | No                          | 62500            | _           | _                            | ns       | _                  |
|                   | 6             | Calc and copy time                                     | UDINT        | RO          | No                  | No                          | 62500            | _           | -                            | ns       | 1                  |
| 1C33h             | 7             | Reserved (Minimum<br>Delay Time)                       | UDINT        | RO          | No                  | No                          | 0                | _           | _                            | 1        | _                  |
|                   | 8             | Reserved (Get Cycle<br>Time)                           | UINT         | RO          | No                  | No                          | 0                | _           | ı                            | 1        | -                  |
|                   | 9             | Delay time                                             | UDINT        | RO          | No                  | No                          | 0                | _           | -                            | ١        | 1                  |
|                   | 10            | Sync0 cycle time                                       | UDINT        | RO          | No                  | No                          | _                | -           | _                            | _        | _                  |
|                   | 11            | SM event missed counter                                | UINT         | RO          | No                  | No                          | _                | _           | _                            | -        | _                  |
|                   | 12            | Reserved (Cycle Time<br>Too Small)                     | UINT         | RO          | No                  | No                          | 0                | _           | ı                            | 1        | ı                  |
|                   | 13            | Reserved (Shift Time<br>Too Short)                     | UINT         | RO          | No                  | No                          | 0                | _           | -                            | _        | -                  |
|                   | 14            | Reserved (RxPDO Tog-<br>gle Failed)                    | UINT         | RO          | No                  | No                          | 0                | -           | -                            | _        | -                  |
|                   | 32            | Sync Error                                             | BOOL         | RO          | No                  | No                          | 0                | _           | _                            | _        | 1                  |
| 2000h to<br>26FFh | 0             | SERVOPACK Parameter (Pn000 (2000h) -<br>Pn6FF (26FFh)) | _            | _           | -                   | -                           | -                | _           | -                            | -        | Pn000-<br>Pn6FF    |
| 2700h             | 0             | User Parameter<br>Configuration                        | UDINT        | RW          | No                  | No                          | 0                | 0           | 0xFFFFFFF                    | 1        | PnB00              |
|                   | Position Us   | ser Unit                                               |              |             |                     |                             |                  |             |                              |          |                    |
| 0=041             | 0             | Number of entries                                      | USINT        | RO          | No                  | No                          | 2                | _           | _                            | _        | _                  |
| 2701h             | 1             | Numerator                                              | UDINT        | RW          | No                  | Yes                         | 64               | 1           | 1073741824                   | _        | Pn20E              |
|                   | 2             | Denominator                                            | UDINT        | RW          | No                  | Yes                         | 1                | 1           | 1073741824                   | ١        | Pn210              |
|                   | Velocity Us   | ser Unit                                               |              |             |                     |                             |                  |             |                              |          |                    |
|                   | 0             | Number of entries                                      | USINT        | RO          | No                  | No                          | 2                | _           | _                            | _        | _                  |
| 2702h             | 1             | Numerator                                              | UDINT        | RW          | No                  | Yes                         | 64               | 1           | 1073741823                   | _        | PnB06              |
|                   | 2             | Denominator                                            | UDINT        | RW          | No                  | Yes                         | 1                | 1           | 1073741823                   | _        | PnB08              |
|                   | Acceleration  | on User Unit                                           |              |             |                     | ,                           |                  |             |                              |          |                    |
|                   | 0             | Number of entries                                      | USINT        | RO          | No                  | No                          | 2                | _           | _                            | _        | _                  |
| 2703h             | 1             | Numerator                                              | UDINT        | RW          | No                  | Yes                         | 64               | 1           | 1073741823                   | -        | PnB0A              |
|                   | 2             | Denominator                                            | UDINT        | RW          | No                  | Yes                         | 1                | 1           | 1073741823                   | _        | PnB0C              |
|                   |               | 1                                                      | I            |             | <u> </u>            | l .                         |                  | L           |                              | المستواد | on next page.      |

| Index | Subin-<br>dex | Name                                    | Data<br>Type | Acc- | PDO<br>Map-<br>ping | Saving<br>to<br>EEPRO-<br>M | Default<br>Value | Lower Limit | Upper Limit | Unit | Parameter No. |
|-------|---------------|-----------------------------------------|--------------|------|---------------------|-----------------------------|------------------|-------------|-------------|------|---------------|
|       | Torque Use    | er Unit                                 |              |      |                     |                             |                  | •           |             |      |               |
| 2704h | 0             | Number of entries                       | USINT        | RO   | No                  | No                          | 2                | _           | _           | ı    | -             |
| 2704n | 1             | Numerator                               | UDINT        | RW   | No                  | Yes                         | 1                | 1           | 1073741823  | 1    | PnB94         |
|       | 2             | Denominator                             | UDINT        | RW   | No                  | Yes                         | 10               | 1           | 1073741823  | ı    | PnB96         |
|       | SERVOPA       | CK Adjusting Command                    |              |      |                     |                             |                  |             |             |      |               |
|       | 0             | Number of entries                       | USINT        | RO   | No                  | No                          | 3                | _           | _           | ı    | -             |
| 2710h | 1             | Command                                 | STRIN-<br>G  | RW   | No                  | No                          | 0                | 0           | 0xFF        | -    | -             |
|       | 2             | Status                                  | USINT        | RO   | No                  | No                          | -                | -           | _           | -    | _             |
|       | 3             | Reply                                   | STRIN-<br>G  | RO   | No                  | No                          | -                | _           | -           | -    | -             |
|       | Interpolation | on Data Configuration for               | 1st Profile  |      |                     |                             |                  |             |             |      |               |
|       | 0             | Number of entries                       | USINT        | RO   | No                  | No                          | 9                | _           | -           | ı    | 1             |
|       | 1             | Maximum buffer size                     | UDINT        | RO   | No                  | No                          | 254              | _           | _           | ı    | 1             |
|       | 2             | Actual buffer size                      | UDINT        | RW   | No                  | No                          | 254              | _           | _           | ı    | 1             |
|       | 3             | Buffer organization                     | USINT        | RW   | No                  | No                          | 0                | 0           | 1           | ı    | PnCEC         |
| 2730h | 4             | Buffer position                         | UINT         | RW   | Yes                 | No                          | 1                | 1           | 254         | ı    | PnCED         |
|       | 5             | Size of data record                     | USINT        | WO   | No                  | No                          | 1                | 1           | 1           | -    | _             |
|       | 6             | Buffer clear                            | USINT        | WO   | No                  | No                          | 0                | 0           | 1           | -    | _             |
|       | 7             | Position data definition                | USINT        | RW   | Yes                 | No                          | 1                | 0           | 1           | -    | PnCEE         |
|       | 8             | Position data polarity                  | USINT        | RW   | Yes                 | No                          | 0                | 0           | 1           | -    | PnCEF         |
|       | 9             | Behavior after reaching buffer position | USINT        | RW   | Yes                 | No                          | 0                | 0           | 1           | -    | PnCF0         |
|       | Interpolation | on Data Configuration for               | 2nd Profile  | •    |                     |                             |                  |             |             |      |               |
|       | 0             | Number of entries                       | USINT        | RO   | No                  | No                          | 9                | -           | _           | -    | _             |
|       | 1             | Maximum buffer size                     | UDINT        | RO   | No                  | No                          | 254              | -           | _           | -    | _             |
|       | 2             | Actual buffer size                      | UDINT        | RW   | No                  | No                          | 254              | -           | _           | -    | _             |
|       | 3             | Buffer organization                     | USINT        | RW   | No                  | No                          | 0                | 0           | 1           | -    | PnCF1         |
| 2731h | 4             | Buffer position                         | UINT         | RW   | Yes                 | No                          | 1                | 1           | 254         | -    | PnCF2         |
|       | 5             | Size of data record                     | USINT        | WO   | No                  | No                          | 1                | 1           | 1           | -    | _             |
|       | 6             | Buffer clear                            | USINT        | WO   | No                  | No                          | 0                | 0           | 1           | ı    | -             |
|       | 7             | Position data definition                | USINT        | RW   | Yes                 | No                          | 1                | 0           | 1           | -    | PnCF3         |
|       | 8             | Position data polarity                  | USINT        | RW   | Yes                 | No                          | 0                | 0           | 1           | ı    | PnCF4         |
|       | 9             | Behavior after reaching buffer position | USINT        | RW   | Yes                 | No                          | 0                | 0           | 1           | -    | PnCF5         |
| 2732h | 0             | Interpolation Profile<br>Select         | USINT        | RW   | Yes                 | No                          | 0                | 0           | 1           | 1    | PnCF6         |

| Index | Subin-<br>dex | Name                                                                   | Data<br>Type | Acc-   | PDO<br>Map-<br>ping | Saving<br>to<br>EEPRO-<br>M | Default<br>Value | Lower Limit | Upper Limit | Unit                                                                  | Parame-<br>ter No. |
|-------|---------------|------------------------------------------------------------------------|--------------|--------|---------------------|-----------------------------|------------------|-------------|-------------|-----------------------------------------------------------------------|--------------------|
|       | Interpolation | on Data Read/Write Pointe                                              | r Position   | Monito | r                   |                             |                  |             |             |                                                                       |                    |
|       | 0             | Number of entries                                                      | USINT        | RO     | No                  | No                          | 2                | _           | _           | _                                                                     | _                  |
| 2741h | 1             | Interpolation data read pointer Position                               | UINT         | RO     | Yes                 | No                          | -                | 1           | 254         | -                                                                     | PnCF7              |
|       | 2             | Interpolation data write pointer Position                              | UINT         | RO     | Yes                 | No                          | -                | 1           | 254         | _                                                                     | PnCF8              |
|       | Sensing Da    | ata Monitor                                                            |              |        |                     |                             |                  |             |             |                                                                       |                    |
|       | 0             | Number of entries                                                      | USINT        | RO     | No                  | No                          | 21               | _           | _           | _                                                                     | -                  |
|       | 1             | Estimated vibration                                                    | DINT         | RO     | Yes                 | No                          | -                | -           | -           | Over-<br>speed<br>dete-<br>ction<br>spee-<br>d/<br>100-<br>000-<br>0h | ı                  |
|       | 2             | Estimated external disturbance torque                                  | DINT         | RO     | Yes                 | No                          | -                | -           | -           | Max-<br>imu-<br>m<br>tor-<br>que/<br>100-<br>000-<br>0h               | ı                  |
|       | 3             | Main circuit DC voltage                                                | INT          | RO     | Yes                 | No                          | -                | _           | -           | V                                                                     | -                  |
| 2770h | 4             | Un009: Accumulated<br>Load Ratio                                       | UINT         | RO     | No                  | No                          | 1                | _           | _           | %                                                                     | 1                  |
|       | 5             | Un00A: Regenerative<br>Load Ratio                                      | UINT         | RO     | No                  | No                          | -                | _           | _           | %                                                                     | -                  |
|       | 6             | Un078: Maximum<br>Value of Amplitude of<br>Estimated Vibration         | INT          | RO     | No                  | No                          | -                | -           | _           | min-1                                                                 | -                  |
|       | 7             | Un07A: Maximum<br>Value of Estimated<br>External Disturbance<br>Torque | INT          | RO     | No                  | No                          | ı                | -           | -           | %                                                                     | ı                  |
|       | 8             | Un07B: Minimum<br>Value of Estimated<br>External Disturbance<br>Torque | INT          | RO     | No                  | No                          | -                | -           | -           | %                                                                     | -                  |
|       | 9             | Un07C: Identified<br>Moment of Inertia Ratio                           | UDINT        | RO     | Yes                 | No                          | _                | _           | _           | _                                                                     | _                  |
|       | 10            | Un104: Number of<br>Serial Encoder Commu-<br>nications Errors          | UINT         | RO     | No                  | No                          | -                | -           | -           | Time                                                                  | –<br>on next page. |

Continued from previous page.

| Index | Subin-<br>dex | Name                                                 | Data<br>Type | Acc-<br>ess | PDO<br>Map-<br>ping | Saving<br>to<br>EEPRO-<br>M | Default<br>Value | Lower Limit | Upper Limit | Unit         | Parame-<br>ter No. |
|-------|---------------|------------------------------------------------------|--------------|-------------|---------------------|-----------------------------|------------------|-------------|-------------|--------------|--------------------|
|       | Sensing Da    | ata Monitor                                          |              |             |                     |                             |                  |             |             |              |                    |
|       | 11            | Un105: Settling Time                                 | UINT         | RO          | No                  | No                          | -                | -           | ı           | 0.1<br>ms    | _                  |
|       | 12            | Un106: Amount of<br>Overshoot                        | UDINT        | RO          | No                  | No                          | -                | _           | 1           | Pos.<br>unit | _                  |
|       | 13            | Un107: Residual Vibration Frequency                  | UINT         | RO          | No                  | No                          | -                | _           | 1           | 0.1<br>Hz    | _                  |
|       | 14            | Un108: Maximum Set-<br>tling Time                    | UINT         | RO          | No                  | No                          | -                | _           | ı           | 0.1<br>ms    | _                  |
| 07701 | 15            | Un109: Maximum<br>Amount of Overshoot                | UDINT        | RO          | No                  | No                          | -                | _           | -           | Pos.<br>unit | _                  |
| 2770h | 16            | Un145: Maximum<br>Value of Accumulated<br>Load Ratio | UINT         | RO          | No                  | No                          | -                | -           | -           | %            | -                  |
|       | 17            | Un14E: Margin until<br>Overload                      | INT          | RO          | Yes                 | No                          | -                | _           | _           | 0.01-        | _                  |
|       | 18            | Reserved                                             | UDINT        | RO          | Yes                 | No                          | -                | _           | -           | -            | -                  |
|       | 19            | Reserved                                             | UDINT        | RO          | Yes                 | No                          | _                | _           | -           | ı            | _                  |
|       | 20            | Error detection trace counter                        | UDINT        | RO          | No                  | No                          | -                | _           | _           | 1            | _                  |
|       | 21            | Error detection trace error rate                     | UDINT        | RO          | No                  | No                          | -                | _           | -           | _            | _                  |

| Index | Subin-<br>dex | Name                                                         | Data<br>Type | Acc- | PDO<br>Map-<br>ping | Saving<br>to<br>EEPRO-<br>M | Default<br>Value | Lower Limit | Upper Limit | Unit          | Parame-<br>ter No. |
|-------|---------------|--------------------------------------------------------------|--------------|------|---------------------|-----------------------------|------------------|-------------|-------------|---------------|--------------------|
|       | Sensing Da    | nta Monitor (Motor)                                          |              |      |                     |                             |                  |             |             |               |                    |
|       | 0             | Number of entries                                            | USINT        | RO   | No                  | No                          | 13               | _           | _           | _             | _                  |
|       | 1             | Un174: Temperature<br>Margin until Servomo-<br>tor Overheats | INT          | RO   | No                  | No                          | ı                | _           | -           | °C            | -                  |
|       | 2             | Un177: Encoder Dower                                         |              | RO   | No                  | No                          | -                | _           | -           | 100<br>ms     | -                  |
|       | 3             | Reserved                                                     | UINT         | RO   | No                  | No                          | -                | _           | _           | _             | _                  |
|       | 4             | Un17A: Encoder Power<br>Supply Voltage                       | INT          | RO   | No                  | No                          | -                | _           | -           | 0.01<br>V     | -                  |
|       | 5             | Un17B: Encoder Bat-<br>tery Voltage                          | UINT         | RO   | No                  | No                          | -                | _           | -           | 0.1 V         | -                  |
|       | 6             | Un181: Motor Total<br>Number of Rotations                    | UDINT        | RO   | No                  | No                          | -                | _           | _           | 100<br>rev    | -                  |
| 2771h | 7             | Un183: Maintenance<br>Prediction Monitor -<br>Bearings       | UINT         | RO   | No                  | No                          | ı                | -           | -           | 0.01-         | -                  |
|       | 8             | Un184: Maintenance<br>Prediction Monitor - Oil<br>Seal       | UINT         | RO   | No                  | No                          | ı                | _           | -           | 0.01-         | ı                  |
|       | 9             | Un190: Motor Vibration in X-Axis Direction                   | DINT         | RO   | Yes                 | No                          | -                | _           | -           | 0.00-<br>01 G | -                  |
|       | 10            | Un191: Motor Vibration in Y-Axis Direction                   | DINT         | RO   | Yes                 | No                          | ı                | _           | _           | 0.00-<br>01 G | -                  |
|       | 11            | Un192: Motor Vibration in Z-Axis Direction                   | DINT         | RO   | Yes                 | No                          | ı                | _           | _           | 0.00-<br>01 G | _                  |
|       | 12            | Un193: Motor Vibration<br>XYZ Composite Value                | UDINT        | RO   | Yes                 | No                          | -                | _           | -           | 0.00-<br>01 G | _                  |
|       | 13            | Un194: Maximum<br>Motor Vibration                            | UDINT        | RO   | No                  | No                          | -                | -           | -           | 0.00-<br>01 G | -                  |

|       |                         |                                                           |              |             |                     | Carrina                     |                  |             | Continued   | пош рі      | previous page      |  |  |  |
|-------|-------------------------|-----------------------------------------------------------|--------------|-------------|---------------------|-----------------------------|------------------|-------------|-------------|-------------|--------------------|--|--|--|
| Index | Subin-<br>dex           | Name                                                      | Data<br>Type | Acc-<br>ess | PDO<br>Map-<br>ping | Saving<br>to<br>EEPRO-<br>M | Default<br>Value | Lower Limit | Upper Limit | Unit        | Parame-<br>ter No. |  |  |  |
|       | Operation               | Status Monitor                                            |              |             |                     |                             |                  |             |             |             |                    |  |  |  |
|       | 0                       | Number of entries                                         | USINT        | RO          | No                  | No                          | 9                | -           | -           | _           | -                  |  |  |  |
|       | 1                       | Un025: SERVOPACK<br>Installation Environ-<br>ment Monitor | INT          | RO          | No                  | No                          | -                | -           | -           | %           | -                  |  |  |  |
|       | 2                       | ment Monitor                                              |              | RO          | No                  | No                          | -                | _           | -           | %           | -                  |  |  |  |
|       | 3                       | Un027: Built-in Fan<br>Remaining Life Ratio               | UINT         | RO          | No                  | No                          | -                | _           | _           | 0.01-<br>%  | -                  |  |  |  |
| 2772h | 4                       | Un028: Capacitor<br>Remaining Life Ratio                  | UINT         | RO          | No                  | No                          | -                | -           | -           | 0.01-<br>%  | -                  |  |  |  |
|       | 5                       | Un029: Surge Prevention Circuit Remaining<br>Life Ratio   | UINT         | RO          | No                  | No                          | -                | -           | -           | 0.01-       | -                  |  |  |  |
|       | 6                       | Un02A: Dynamic Brake<br>Circuit Remaining Life<br>Ratio   | UINT         | RO          | No                  | No                          | I                | _           | -           | 0.01-       | -                  |  |  |  |
|       | 7                       | Un032: Instantaneous<br>Power                             | INT          | RO          | No                  | No                          | -                | _           | -           | W           | -                  |  |  |  |
|       | 8                       | Un033: Power<br>Consumption                               | DINT         | RO          | No                  | No                          | -                | -           | -           | 0.001<br>Wh | -                  |  |  |  |
|       | 9                       | Un034: Cumulative<br>Power Consumption                    | DINT         | RO          | No                  | No                          | -                | -           | -           | Wh          | -                  |  |  |  |
|       | Σ-LINK II Response Data |                                                           |              |             |                     |                             |                  |             |             |             |                    |  |  |  |
|       | 0                       | Number of entries                                         | USINT        | RO          | No                  | No                          | 11               | -           | _           | _           | _                  |  |  |  |
|       | 1                       | Σ-LINK II response data                                   | UDINT        | RO          | Yes                 | No                          | _                | _           | _           | _           | _                  |  |  |  |
|       | 2                       | Σ-LINK II response data 2                                 | UDINT        | RO          | Yes                 | No                          | -                | -           | -           | -           | -                  |  |  |  |
|       | 3                       | Σ-LINK II response data 3                                 | UDINT        | RO          | Yes                 | No                          | -                | -           | -           | -           | _                  |  |  |  |
|       | 4                       | Σ-LINK II response data 4                                 | UDINT        | RO          | Yes                 | No                          | -                | -           | _           | ı           | _                  |  |  |  |
| 2773h | 5                       | Σ-LINK II response data 5                                 | UDINT        | RO          | Yes                 | No                          | -                | -           | _           | ı           | -                  |  |  |  |
|       | 6                       | Σ-LINK II response data 6                                 | UDINT        | RO          | Yes                 | No                          | -                | -           | _           | -           | -                  |  |  |  |
|       | 7                       | Σ-LINK II response data 7                                 | UDINT        | RO          | Yes                 | No                          | -                | -           | _           | -           | _                  |  |  |  |
|       | 8                       | Σ-LINK II response data 8                                 | UDINT        | RO          | Yes                 | No                          | -                | -           | -           | -           | -                  |  |  |  |
|       | 9                       | Σ-LINK II data status information                         | UDINT        | RO          | Yes                 | No                          | -                | -           | -           | -           | -                  |  |  |  |
|       | 10                      | Reserved                                                  | UDINT        | RO          | Yes                 | No                          | -                | _           | _           | -           | _                  |  |  |  |
|       | 11                      | Reserved                                                  | UDINT        | RO          | Yes                 | No                          | _                | _           | _           | -           | -                  |  |  |  |

| Continued from p |                         |                                                                 |              |             |                     |                             | evious page.     |             |             |              |                    |  |
|------------------|-------------------------|-----------------------------------------------------------------|--------------|-------------|---------------------|-----------------------------|------------------|-------------|-------------|--------------|--------------------|--|
| Index            | Subin-<br>dex           | Name                                                            | Data<br>Type | Acc-<br>ess | PDO<br>Map-<br>ping | Saving<br>to<br>EEPRO-<br>M | Default<br>Value | Lower Limit | Upper Limit | Unit         | Parame-<br>ter No. |  |
|                  | Σ-LINK II               | Command Data                                                    |              |             |                     |                             |                  |             |             |              |                    |  |
|                  | 0                       | Number of entries                                               | USINT        | RO          | No                  | No                          | 4                | _           | _           | -            | _                  |  |
|                  | 1                       | Σ-LINK II command data 1                                        | UDINT        | RW          | Yes                 | No                          | -                | 0h          | FFFFFFFFh   | -            | -                  |  |
| 2774h            | 2                       | Σ-LINK II command data 2                                        | UDINT        | RW          | Yes                 | No                          | -                | 0h          | FFFFFFFh    | 1            | -                  |  |
|                  | 3                       | Σ-LINK II command data 3                                        | UDINT        | RW          | Yes                 | No                          | -                | 0h          | FFFFFFFFh   | -            | -                  |  |
|                  | 4                       | Σ-LINK II command data 4                                        | UDINT        | RW          | Yes                 | No                          | -                | 0h          | FFFFFFFh    | 1            | _                  |  |
|                  | Position Re             | eference Filter                                                 |              |             |                     |                             |                  |             |             |              |                    |  |
|                  | 0                       | Number of entries                                               | USINT        | RO          | No                  | No                          | 2                | -           | _           | _            | _                  |  |
| 2775h            | 1                       | Movement Average<br>Time                                        | UINT         | RW          | No                  | Yes                         | 0                | 0           | 5100        | 0.1<br>ms    | PnBC4              |  |
|                  | 2                       | Reserved                                                        | UINT         | RW          | No                  | Yes                         | _                | -           | _           | _            | _                  |  |
| 2776h            | 0                       | Controlword_VenderS                                             | UINT         | RW          | Yes                 | No                          | _                | 0           | 0xFFFF      | _            | _                  |  |
|                  | Output Position Setting |                                                                 |              |             |                     |                             |                  |             |             |              |                    |  |
|                  | 0                       | Number of entries                                               | USINT        | RO          | No                  | No                          | 32               | _           | _           | _            | _                  |  |
| 2778h            | 1 to 6                  | Output Position1 to Output Position6                            | DINT         | RW          | Yes                 | No                          | 0                | -2147483648 | 2147483647  | Pos.<br>unit | _                  |  |
|                  | 7 to 32                 | Output Position7 to Output Position32                           | DINT         | RW          | No                  | No                          | 0                | -2147483648 | 2147483647  | Pos.<br>unit | -                  |  |
|                  | Output Function Setting |                                                                 |              |             |                     |                             |                  |             |             |              |                    |  |
| 2779h            | 0                       | Number of entries                                               | USINT        | RO          | No                  | No                          | 32               | -           | -           | _            | _                  |  |
|                  | 1 to 32                 | Output Function1 to<br>Output Function32                        | UDINT        | RW          | No                  | No                          | 0                | 0x00000000  | 0x00001282  | 1            | _                  |  |
|                  | Output Tim              | ne Setting                                                      |              |             |                     |                             |                  |             |             |              |                    |  |
| 277Ah            | 0                       | Number of entries                                               | USINT        | RO          | No                  | No                          | 32               | -           | _           | _            | _                  |  |
| 277741           | 1 to 32                 | Output Time1 to Output<br>Time32                                | UDINT        | RW          | No                  | No                          | 0                | 0           | 32767000    | μs           | -                  |  |
|                  | Output Dis              | tance Setting                                                   |              |             |                     |                             |                  |             |             |              |                    |  |
| 277Bh            | 0                       | Number of entries                                               | USINT        | RO          | No                  | No                          | 32               | -           | -           | _            | _                  |  |
|                  | 1 to 32                 | Output Distance1 to<br>Output Distance32                        | UDINT        | RW          | No                  | No                          | 0                | 0           | 0x7FFFFFF   | Pos.         | _                  |  |
|                  | Output Pos              | ition Correction Setting                                        |              |             |                     |                             |                  |             |             |              |                    |  |
|                  | 0                       | Number of entries                                               | USINT        | RO          | No                  | No                          | 32               | -           | _           | _            | _                  |  |
| 277Ch            | 1 to 32                 | Output Position Compensation1 to Output Position Compensation32 | DINT         | RW          | No                  | No                          | 0                | -2147483648 | 2147483647  | Pos.<br>unit | -                  |  |
|                  | Interpolation           | on Data Record for 1st Pro                                      | file         |             |                     |                             |                  |             |             |              |                    |  |
| 27C0h            | 0                       | Number of entries                                               | USINT        | RO          | No                  | No                          | 254              | _           | _           | -            | -                  |  |
|                  | 1 to 254                | 1st set-point to 254 set-<br>point                              | DINT         | RW          | No                  | No                          | 0                | -2147483648 | 2147483647  | 1            | _                  |  |
|                  |                         | Point                                                           |              |             |                     |                             |                  |             | -           | . 1          | n next nage.       |  |

\_ ' '

Continued from previous page.

|       |               |                                    |              |             | <b>DD</b> 0         | Saving            |                  | Continued from previou |             |              |                    |  |
|-------|---------------|------------------------------------|--------------|-------------|---------------------|-------------------|------------------|------------------------|-------------|--------------|--------------------|--|
| Index | Subin-<br>dex | Name                               | Data<br>Type | Acc-<br>ess | PDO<br>Map-<br>ping | to<br>EEPRO-<br>M | Default<br>Value | Lower Limit            | Upper Limit | Unit         | Parame-<br>ter No. |  |
|       | Interpolation | on Data Record for 2nd Pro         | ofile        |             |                     |                   |                  |                        |             |              |                    |  |
| 27C1h | 0             | Number of entries                  | USINT        | RO          | No                  | No                | 254              | _                      | _           | _            | _                  |  |
|       | 1 to 254      | 1st set-point to 254 set-<br>point | DINT         | RW          | No                  | No                | 0                | -2147483648            | 2147483647  | 1            | -                  |  |
| 27E0h | _             | Diag.Mode                          | UINT         | RW          | No                  | No                | 0                | 0                      | 0xFFFF      | -            | PnCFE              |  |
| 27E4h | -             | Absolute Encoder Origin Offset     | DINT         | RW          | No                  | Yes               | 0                | 0x80000000             | 0x7FFFFFFF  | ı            | PnB76              |  |
| 603Fh | 0             | Error Code                         | UINT         | RO          | Yes                 | No                | -                | _                      | _           | -            | PnB10              |  |
| 6040h | 0             | Controlword                        | UINT         | RW          | Yes                 | No                | 0                | 0                      | 0xFFFF      | _            | PnB11              |  |
| 6041h | 0             | Statusword                         | UINT         | RO          | Yes                 | No                | -                | _                      | _           | _            | PnB12              |  |
| 605Ah | 0             | Quick Stop Option<br>Code          | INT          | RW          | No                  | Yes               | 2                | 0                      | 4           | -            | PnB13              |  |
| 605Bh | 0             | Shutdown Option Code               | INT          | RW          | No                  | Yes               | 0                | 0                      | 1           | -            | PnB14              |  |
| 605Ch | 0             | Disable Operation<br>Option Code   | INT          | RW          | No                  | Yes               | 1                | 0                      | 1           | ı            | PnB15              |  |
| 605Dh | 0             | Halt Option Code                   | INT          | RW          | No                  | Yes               | 1                | -3                     | 3           | ı            | PnB16              |  |
| 605Eh | 0             | Fault Reaction Option<br>Code      | INT          | RW          | No                  | Yes               | 0                | 0                      | 0           | 1            | PnB17              |  |
| 6060h | 0             | Modes of Operation                 | SINT         | RW          | Yes                 | Yes               | 0                | 0                      | 10          | -            | PnB18              |  |
| 6061h | 0             | Modes of Operation<br>Display      | SINT         | RO          | Yes                 | No                | 0                | _                      | _           | ı            | PnB19              |  |
| 6062h | 0             | Position Demand Value              | DINT         | RO          | Yes                 | No                | _                | _                      | _           | Pos.<br>unit | PnB20              |  |
| 6063h | 0             | Position Actual Internal<br>Value  | DINT         | RO          | Yes                 | No                | _                | _                      | -           | Inc          | PnB22              |  |
| 6064h | 0             | Position Actual Value              | DINT         | RO          | Yes                 | No                | _                | _                      | -           | Pos.<br>unit | PnB24              |  |
| 6065h | 0             | Following Error<br>Window          | UDINT        | RW          | No                  | Yes               | 5242880          | 0                      | 1073741823  | Pos.<br>unit | PnB26              |  |
| 6066h | 0             | Following Error Time<br>Out        | UINT         | RW          | No                  | Yes               | 0                | 0                      | 65535       | ms           | PnB28              |  |
| 6067h | 0             | Position Window                    | UDINT        | RW          | No                  | Yes               | 30               | 0                      | 1073741823  | Pos.<br>unit | PnB2A              |  |
| 6068h | 0             | Position Window Time               | UINT         | RW          | No                  | Yes               | 0                | 0                      | 65535       | ms           | PnB2C              |  |
| 606Bh | 0             | Velocity Demand Value              | DINT         | RO          | Yes                 | No                | _                | _                      | -           | Vel.<br>unit | PnB2E              |  |
| 606Ch | 0             | Velocity Actual Value              | DINT         | RO          | Yes                 | No                | _                | _                      | -           | Vel.<br>unit | PnB30              |  |
| 606Dh | 0             | Velocity Window                    | UINT         | RW          | No                  | Yes               | 20000            | 0                      | 65535       | Vel.<br>unit | PnB32              |  |
| 606Eh | 0             | Velocity Window Time               | UINT         | RW          | No                  | Yes               | 0                | 0                      | 65535       | ms           | PnB34              |  |
| 6071h | 0             | Target Torque                      | INT          | RW          | Yes                 | No                | 0                | -32768                 | 32767       | Trq.<br>unit | PnB36              |  |
| 6072h | 0             | Max Torque                         | UINT         | RW          | Yes                 | No                | Motor max torque | 0                      | 65535       | Trq.<br>unit | PnB38              |  |
| 6074h | 0             | Torque Demand Value                | INT          | RO          | Yes                 | No                | _                | _                      | _           | Trq.<br>unit | PnB3A              |  |

|       | Continued from previous page |                                |              |             |                     |                             |                  |             |             |                                           |                    |
|-------|------------------------------|--------------------------------|--------------|-------------|---------------------|-----------------------------|------------------|-------------|-------------|-------------------------------------------|--------------------|
| Index | Subin-<br>dex                | Name                           | Data<br>Type | Acc-<br>ess | PDO<br>Map-<br>ping | Saving<br>to<br>EEPRO-<br>M | Default<br>Value | Lower Limit | Upper Limit | Unit                                      | Parame-<br>ter No. |
| 6076h | 0                            | Motor Rated Torque             | UDINT        | RO          | No                  | No                          | -                | -           | -           | mN-<br>m,<br>mN                           | PnB3C              |
| 6077h | 0                            | Torque Actual Value            | INT          | RO          | Yes                 | No                          | -                | -           | -           | Trq.<br>unit                              | PnB3E              |
| 6078h | 0                            | Current Actual Value           | INT          | RO          | Yes                 | No                          | -                | -           | -           | 1/<br>1000<br>of<br>rated<br>cur-<br>rent | -                  |
| 607Ah | 0                            | Target Position                | DINT         | RW          | Yes                 | No                          | 0                | -2147483648 | 2147483647  | Pos.                                      | PnB40              |
|       | Position Ra                  | ange Limit                     |              |             |                     |                             |                  |             |             |                                           |                    |
|       | 0                            | Number of entries              | USINT        | RO          | No                  | No                          | 2                | _           | _           | _                                         | _                  |
| 607Bh | 1                            | Min position range limit       | DINT         | RW          | Yes                 | Yes                         | 0                | -2147483648 | 0           | Pos.<br>unit                              | PnBBE              |
|       | 2                            | Max position range limit       | DINT         | RW          | Yes                 | Yes                         | 0                | 0           | 2147483647  | Pos.<br>unit                              | PnBC0              |
| 607Ch | -                            | Home Offset                    | DINT         | RW          | No                  | Yes                         | 0                | -536870912  | 536870911   | Pos.                                      | PnB46              |
|       | Software P                   | osition Limit                  |              |             |                     |                             |                  |             |             |                                           |                    |
|       | 0                            | Number of entries              | USINT        | RO          | No                  | No                          | 2                | _           | 1           | -                                         | 1                  |
| 607Dh | 1                            | Min position limit             | DINT         | RW          | No                  | Yes                         | 0                | -536870912  | 536870911   | Pos.<br>unit                              | PnB48              |
|       | 2                            | Max position limit             | DINT         | RW          | No                  | Yes                         | 0                | -536870912  | 536870911   | Pos.                                      | PnB4A              |
| 607Fh | 0                            | Max Profile Velocity           | UDINT        | RW          | Yes                 | Yes                         | 2147483647       | 0           | 4294967295  | Vel.<br>unit                              | PnB4C              |
| 6081h | 0                            | Profile Velocity               | UDINT        | RW          | Yes                 | Yes                         | 0                | 0           | 4294967295  | Vel.<br>unit                              | PnB4E              |
| 6082h | 0                            | End Velocity                   | UDINT        | RO          | Yes                 | No                          | 0                | 0           | 4294967295  | Vel.<br>unit                              | -                  |
| 6083h | 0                            | Profile Acceleration           | UDINT        | RW          | Yes                 | Yes                         | 1000             | 0           | 4294967295  | Acc.<br>unit                              | PnB50              |
| 6084h | 0                            | Profile Deceleration           | UDINT        | RW          | Yes                 | Yes                         | 1000             | 0           | 4294967295  | Acc.<br>unit                              | PnB52              |
| 6085h | 0                            | Quick Stop Deceleration        | UDINT        | RW          | Yes                 | Yes                         | 1000             | 0           | 4294967295  | Acc.<br>unit                              | PnB54              |
| 6086h | 0                            | Motion Profile Type            | INT          | RW          | Yes                 | Yes                         | 0                | -32768      | 32767       | _                                         | PnB98              |
| 6087h | 0                            | Torque Slope                   | UDINT        | RW          | Yes                 | Yes                         | 1000             | 0           | 4294967295  | Trq.<br>unit/s                            | PnB56              |
| 6098h | 0                            | Homing Method                  | SINT         | RW          | Yes                 | No                          | 37               | 0           | 37          | _                                         | PnB58              |
|       | Homing Sp                    | peeds                          |              |             |                     |                             |                  |             |             |                                           |                    |
|       | 0                            | Number of entries              | USINT        | RO          | No                  | No                          | 2                | _           | 1           | -                                         | ı                  |
| 6099h | 1                            | Speed during search for switch | UDINT        | RW          | Yes                 | Yes                         | 500000           | 0           | 4294967295  | Vel.<br>unit                              | PnB5A              |
|       | 2                            | Speed during search for zero   | UDINT        | RW          | Yes                 | Yes                         | 100000           | 0           | 4294967295  | Vel.<br>unit                              | PnB5C              |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | Continued from previous page.                    |                           |       |       |      |              |      |             |             |      |                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------|---------------------------|-------|-------|------|--------------|------|-------------|-------------|------|--------------------|
| Profile Jerk   USINT   RO   No   No   1   -   -   -   -   -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Index |                                                  | Name                      |       |       | Мар- | to<br>EEPRO- |      | Lower Limit | Upper Limit | Unit | Parame-<br>ter No. |
| O Number of entries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 609Ah | 0                                                | Homing Acceleration       | UDINT | RW    | Yes  | Yes          | 1000 | 0           | 4294967295  |      | PnB5E              |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | Profile Jerk                                     | (                         |       |       |      |              |      |             |             |      |                    |
| BOBOh   O   Position Offset   DINT   RW   Yes   No   O   Ox80000000   Ox7FFFFFFF   Pos.   Commit   C | 60A4h | 0                                                | Number of entries         | USINT | RO    | No   | No           | 1    | -           | _           | _    | _                  |
| BOBOH   0   Position Offset   DINT   RW   Yes   No   0   US.00000000   US.FFFFFF   Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 1                                                | Profile jerk1             | UDINT | RW    | No   | Yes          | 25   | 0           | 50          | %    | PnB9A              |
| 60B2h   0   Velocity Uriset   DiNT   RW   Yes   No   0   -2.14748.5648   214748.5642   unit   Prince                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60B0h | 0                                                | Position Offset           | DINT  | RW    | Yes  | No           | 0    | 0x80000000  | 0x7FFFFFFF  |      | -                  |
| 60B8h   0   Touch probe function   UINT   RW   Yes   No   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60B1h | 0                                                | Velocity Offset           | DINT  | RW    | Yes  | No           | 0    | -2147483648 | 2147483647  |      | PnB60              |
| Company   Comp | 60B2h | 0                                                | Torque Offset             | INT   | RW    | Yes  | No           | 0    | -32768      | 32767       |      | PnB62              |
| Company   Comp | 60B8h | 0                                                | Touch probe function      | UINT  | RW    | Yes  | No           | 0    | 0           | 0xFFFF      | _    | PnB64              |
| 60BBh   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60B9h | 0                                                | Touch Probe Status        | UINT  | RO    | Yes  | No           | _    | _           | _           | -    | PnB66              |
| Company   Comp | 60BAh | 0                                                |                           | DINT  | RO    | Yes  | No           | -    | _           | -           |      | PnB68              |
| Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60BBh | 0                                                |                           | DINT  | RO    | Yes  | No           | 1    | _           | _           |      | PnB72              |
| Occided   Occi | 60BCh | 0                                                |                           | DINT  | RO    | Yes  | No           | -    | _           | _           |      | PnB6A              |
| Interpolation Data Record   Interpolation Data Record   O   Number of entries   USINT   RO   No   No   1   -   -   -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60BDh | 0                                                | _                         | DINT  | RO    | Yes  | No           | 1    | _           | _           |      | PnB74              |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60C0h | 0                                                |                           | INT   | RW    | No   | No           | 0    | -3          | 0           | _    | PnB92              |
| Interpolation data record   DINT   RW   Yes   No   0   -2147483648   2147483647   Pos. unit   PnB7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | Interpolation                                    | on Data Record            |       |       |      |              |      |             |             |      |                    |
| 1   Interpolation data record   DINT   RW   Yes   No   0   -2147483648   2147483647   Pos. unit   PnB7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60C1h | 0                                                | Number of entries         | USINT | RO    | No   | No           | 1    | _           | _           | ı    | -                  |
| 0   Number of entries   USINT   RO   No   No   2         1   Interpolation time period value   USINT   RW   No   No   125   1   250   -   PnB6     2   Interpolation time index   SINT   RW   No   No   -6   -6   -3   -   PnB6     60E0h   0   Positive Torque Limit Value   UINT   RW   Yes   Yes   8000   0   65535   Trq. unit Value   UINT   RW   Yes   Yes   8000   0   65535   Trq. unit Value   PnB8     60E1h   0   Negative Torque Limit Value   UINT   RW   Yes   Yes   8000   0   65535   Trq. unit Value   PnB8     60E4h   0   Number of entries   USINT   RO   No   No   1   -   -   -   -     1   External encoder position   DINT   RO   Yes   Yes   0   -   -   Pos. unit   -60F2h   0   Position option code   UINT   RW   Yes   No   0   0   0   0   0   0     60F4h   0   Following Error Actual Value   DINT   RO   Yes   No   -   -     Pos. unit   PnB8   Coffee   Coffee   Position Demand Inter-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 1                                                | Interpolation data record | DINT  | RW    | Yes  | No           | 0    | -2147483648 | 2147483647  |      | PnB70              |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | Interpolation                                    | on Time Period            |       |       |      |              |      |             |             |      |                    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 0                                                | Number of entries         | USINT | RO    | No   | No           | 2    | _           | -           | ı    | -                  |
| 60E0h         0         Positive Torque Limit Value         UINT         RW         Yes         Yes         8000         0         65535         Trq. unit         PnB8           60E1h         0         Negative Torque Limit Value         UINT         RW         Yes         8000         0         65535         Trq. unit         PnB8           60E4h         0         Number of entries         USINT         RO         No         No         1         -         -         -         -         -           1         External encoder position         DINT         RO         Yes         Yes         0         -         -         -         Pos. unit         -           60F2h         0         Position option code         UINT         RW         Yes         No         -         -         -         Pos. unit         PnB8           60F4h         0         Position Demand Inter-DINT         RO         Yes         No         -         -         -         -         PnB8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60C2h | 1                                                |                           | USINT | RW    | No   | No           | 125  | 1           | 250         | ı    | PnB6E              |
| Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 2                                                | Interpolation time index  | SINT  | RW    | No   | No           | -6   | -6          | -3          | -    | PnB6F              |
| Additional Position Actual Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60E0h | 0                                                |                           | UINT  | RW    | Yes  | Yes          | 8000 | 0           | 65535       | -    | PnB80              |
| 60E4h         0         Number of entries         USINT         RO         No         No         1         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60E1h | 0                                                |                           | UINT  | RW    | Yes  | Yes          | 8000 | 0           | 65535       |      | PnB82              |
| 1 External encoder position DINT RO Yes Yes 0 Pos. unit -  60F2h 0 Position option code UINT RW Yes No 0 0 0xFFFF - PnBC  60F4h 0 Following Error Actual DINT RO Yes No Pos. unit PnB8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | Additional                                       | Position Actual Value     |       |       |      |              |      |             |             |      |                    |
| 1 External encoder position DINT RO Yes Yes 0 Pos. unit -  60F2h 0 Position option code UINT RW Yes No 0 0 0xFFFF - PnBC  60F4h 0 Following Error Actual Value DINT RO Yes No Pos. unit PnB8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 60E4h | 0                                                | Number of entries         | USINT | RO    | No   | No           | 1    | _           | _           | ı    | -                  |
| 60F4h 0 Following Error Actual DINT RO Yes No Post unit PnB8 unit PnB8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 1                                                |                           | DINT  | RO    | Yes  | Yes          | 0    | _           | _           |      | _                  |
| Value DINI RO Yes No unit PhB8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60F2h | 0 Position option code UINT RW Yes No 0 0 0xFFFF |                           | _     | PnBC2 |      |              |      |             |             |      |                    |
| 160ECh   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60F4h | Following Error Actua                            |                           | DINT  | RO    | Yes  | No           |      | _           | _           |      | PnB84              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60FCh | 0                                                |                           | DINT  | RO    | Yes  | No           | -    | _           | -           | Inc  | PnB86              |
| 60FDh 0 Digital Inputs UDINT RO Yes No PnB8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60FDh | 0                                                | Digital Inputs            | UDINT | RO    | Yes  | No           |      | _           | _           | _    | PnB88              |

| Index  | Subin-<br>dex | Name                          | Data<br>Type | Acc-<br>ess | PDO<br>Map-<br>ping | Saving<br>to<br>EEPRO-<br>M | Default<br>Value | Lower Limit | Upper Limit | Unit         | Parame-<br>ter No. |
|--------|---------------|-------------------------------|--------------|-------------|---------------------|-----------------------------|------------------|-------------|-------------|--------------|--------------------|
|        | Digital Out   | puts                          |              |             |                     |                             |                  |             |             |              |                    |
| 60FEh  | 0             | Number of entries             | USINT        | RO          | No                  | No                          | 2                | 1           | 1           | -            | _                  |
| OUFEII | 1             | Physical outputs              | UDINT        | RW          | Yes                 | No                          | 0                | 0           | 0xFFFFFFFF  | _            | PnB8A              |
|        | 2             | Bit mask                      | UDINT        | RW          | No                  | Yes                         | 0x000C0000       | 0           | 0xFFFFFFF   | -            | PnB8C              |
| 60FFh  | 0             | Target Velocity               | DINT         | RW          | Yes                 | No                          | 0                | -2147483648 | 2147483647  | Vel.<br>unit | PnB8E              |
| 6403h  | 0             | Motor Catalogue<br>Number     | STRIN-<br>G  | RO          | No                  | No                          | 1                | ı           | 1           | 1            | _                  |
| 6502h  | 0             | Supported Drive Modes         | UDINT        | RO          | No                  | No                          | 0x03ED           | -           | -           | -            | PnB90              |
|        | Position Ra   | ange Limit                    |              |             |                     |                             |                  |             |             |              |                    |
|        | 0             | Number of entries             | USINT        | RO          | No                  | No                          | 2                | 1           | 1           | -            | _                  |
| 687Bh  | 1             | Min position range limit      | DINT         | RW          | No                  | Yes                         | 0                | -2147483648 | 0           | Pos.<br>unit | PnBBE              |
|        | 2             | Max position range limit      | DINT         | RW          | No                  | Yes                         | 0                | 0           | 2147483647  | Pos.<br>unit | PnBC0              |
| F9F0h  | 0             | Manufacturer Serial<br>Number | STRIN-<br>G  | RO          | No                  | No                          | -                | -           | -           | -            | _                  |

# 17.3 SDO Abort Code List

The following table gives the SDO abort codes for SDO communications errors.

| Value         | Description                                                                                  |
|---------------|----------------------------------------------------------------------------------------------|
| 0x05 03 00 00 | Toggle bit did not change.                                                                   |
| 0x05 04 00 00 | SDO protocol timeout                                                                         |
| 0x05 04 00 01 | Client/server command specifier is not valid or is unknown.                                  |
| 0x05 04 00 05 | Out of memory                                                                                |
| 0x06 01 00 00 | Unsupported access to an object                                                              |
| 0x06 01 00 01 | Attempt to read to a write-only object                                                       |
| 0x06 01 00 02 | Attempt to write to a read-only object                                                       |
| 0x06 01 00 03 | The entry was not written because the subindex was a value other than 0                      |
| 0x06 01 00 04 | The object cannot be accessed through complete access                                        |
| 0x06 02 00 00 | The object does not exist in the object directory.                                           |
| 0x06 04 00 41 | The object cannot be mapped to the PDO.                                                      |
| 0x06 04 00 42 | The number and length of the objects to be mapped would exceed the PDO length.               |
| 0x06 04 00 43 | General parameter incompatibility                                                            |
| 0x06 04 00 47 | General internal incompatibility in the device                                               |
| 0x06 06 00 00 | Access failed due to a hardware error.                                                       |
| 0x06 07 00 10 | Data type does not match: length of service parameter does not match.                        |
| 0x06 07 00 12 | Data type does not match: service parameter too long.                                        |
| 0x06 07 00 13 | Data type does not match: service parameter too short.                                       |
| 0x06 09 00 11 | Subindex does not exist.                                                                     |
| 0x06 09 00 30 | Value range of parameter was exceeded (only for write access).                               |
| 0x06 09 00 31 | Value of parameter that was written is too high.                                             |
| 0x06 09 00 32 | Value of parameter that was written is too low.                                              |
| 0x06 09 00 36 | The maximum value is less than the minimum value.                                            |
| 0x08 00 00 00 | General error                                                                                |
| 0x08 00 00 20 | Data cannot be transferred or stored to the application.                                     |
| 0x08 00 00 21 | Data cannot be transferred or stored to the application because of local control.            |
| 0x08 00 00 22 | Data cannot be transferred or stored to the application because of the present device state. |
| 0x08 00 00 23 | The object does not exist in the object directory.                                           |

# 17.4 Parameter Recording Table

Use the following table to record the settings of the parameters.

| -                | D ( 1)             |  |  |                                        |               |
|------------------|--------------------|--|--|----------------------------------------|---------------|
| Parameter No.    | Default<br>Setting |  |  | Name                                   | When Enabled  |
| Pn000<br>(2000h) | 0000h              |  |  | Basic Function Selections 0            | After restart |
| Pn001<br>(2001h) | 0000h              |  |  | Application Function Selections 1      | After restart |
| Pn002<br>(2002h) | 0011h              |  |  | Application Function Selections 2      | After restart |
| Pn006<br>(2006h) | 0002h              |  |  | Application Function Selections 6      | Immediately   |
| Pn007<br>(2007h) | 0000h              |  |  | Application Function Selections 7      | Immediately   |
| Pn008<br>(2008h) | 4000h              |  |  | Application Function Selections 8      | After restart |
| Pn009<br>(2009h) | 0040h              |  |  | Application Function Selections 9      | After restart |
| Pn00A<br>(200Ah) | 0001h              |  |  | Application Function Selections A      | After restart |
| Pn00B<br>(200Bh) | 0000h              |  |  | Application Function Selections B      | After restart |
| Pn00C<br>(200Ch) | 0040h              |  |  | Application Function Selections C      | After restart |
| Pn00D<br>(200Dh) | 0000h              |  |  | Application Function Selections D      | After restart |
| Pn00E<br>(200Eh) | 0000h              |  |  | Application Function Selections E      | After restart |
| Pn00F<br>(200Fh) | 0000h              |  |  | Application Function Selections F      | After restart |
| Pn021<br>(2021h) | 0000h              |  |  | Reserved (Do not change.)              | _             |
| Pn022<br>(2022h) | 0000h              |  |  | Application Function Selections 22     | After restart |
| Pn02F<br>(202Fh) | 0000h              |  |  | Application Function Selections 2F     | After restart |
| Pn040<br>(2040h) | 0000h              |  |  | Reserved (Do not change.)              | _             |
| Pn050<br>(2050h) | 00000000h          |  |  | SigmaLINK II Response Data Selection 1 | After restart |
| Pn052<br>(2052h) | 00000000h          |  |  | SigmaLINK II Response Data Selection 2 | After restart |
| Pn054<br>(2054h) | 00000000h          |  |  | SigmaLINK II Response Data Selection 3 | After restart |
| Pn056<br>(2056h) | 00000000h          |  |  | SigmaLINK II Response Data Selection 4 | After restart |
| Pn058<br>(2058h) | 00000000h          |  |  | SigmaLINK II Response Data Selection 5 | After restart |
| Pn05A<br>(205Ah) | 00000000h          |  |  | SigmaLINK II Response Data Selection 6 | After restart |
| Pn05C<br>(205Ch) | 00000000h          |  |  | SigmaLINK II Response Data Selection 7 | After restart |

| Parameter<br>No. | Default<br>Setting |  |  | Name                                                   | When Enabled  |
|------------------|--------------------|--|--|--------------------------------------------------------|---------------|
| Pn05E<br>(205Eh) | 00000000h          |  |  | SigmaLINK II Response Data Selection 8                 | After restart |
| Pn080<br>(2080h) | 0000h              |  |  | Application Function Selections 80                     | After restart |
| Pn081<br>(2081h) | 0000h              |  |  | Application Function Selections 81                     | After restart |
| Pn090<br>(2090h) | 00000000h          |  |  | SigmaLINK II Command Data Selection 1                  | After restart |
| Pn092<br>(2092h) | 00000000h          |  |  | SigmaLINK II Command Data Selection 2                  | After restart |
| Pn094<br>(2094h) | 00000000h          |  |  | SigmaLINK II Command Data Selection 3                  | After restart |
| Pn096<br>(2096h) | 00000000h          |  |  | SigmaLINK II Command Data Selection 4                  | After restart |
| Pn0B1<br>(20B1h) | 0000h              |  |  | SigmaLINK II Sequence Input Allocation 1               | After restart |
| Pn0B2<br>(20B2h) | 0000h              |  |  | SigmaLINK II Sequence Input Allocation 2               | After restart |
| Pn0B5<br>(20B5h) | 0000h              |  |  | SigmaLINK II Sequence Output<br>Allocation 1           | After restart |
| Pn0DA<br>(20DAh) | 0000h              |  |  | SigmaLINK II Semi-closed Encoder<br>Selection          | After restart |
| Pn0DB<br>(20DBh) | 0101h              |  |  | SigmaLINK II Fully-closed Encoder<br>Selection         | After restart |
| Pn0DC<br>(20DCh) | 0000h              |  |  | SigmaLINK II Node Change Detection Condition Selection | After restart |
| Pn0DD<br>(20DDh) | 0110h              |  |  | SigmaLINK II I/O Device Error<br>Detection Selection   | After restart |
| Pn100<br>(2100h) | 400                |  |  | Speed Loop Gain                                        | Immediately   |
| Pn101<br>(2101h) | 2000               |  |  | Speed Loop Integral Time Constant                      | Immediately   |
| Pn102<br>(2102h) | 400                |  |  | Position Loop Gain                                     | Immediately   |
| Pn103<br>(2103h) | 100                |  |  | Moment of Inertia Ratio                                | Immediately   |
| Pn104<br>(2104h) | 400                |  |  | Second Speed Loop Gain                                 | Immediately   |
| Pn105<br>(2105h) | 2000               |  |  | Second Speed Loop Integral Time<br>Constant            | Immediately   |
| Pn106<br>(2106h) | 400                |  |  | Second Position Loop Gain                              | Immediately   |
| Pn109<br>(2109h) | 0                  |  |  | Feedforward                                            | Immediately   |
| Pn10A<br>(210Ah) | 0                  |  |  | Feedforward Filter Time Constant                       | Immediately   |
| Pn10B<br>(210Bh) | 0000h              |  |  | Gain Application Selections                            | -             |
| Pn10C<br>(210Ch) | 200                |  |  | Mode Switching Level for Torque<br>Reference           | Immediately   |

| Parameter<br>No. | Default<br>Setting |                              | Name                               | when Enabled |
|------------------|--------------------|------------------------------|------------------------------------|--------------|
| Pn10D<br>(210Dh) | 0                  | Mode Switch<br>Reference     | ning Level for Speed               | Immediately  |
| Pn10E<br>(210Eh) | 0                  | Mode Switch<br>Acceleration  | ning Level for                     | Immediately  |
| Pn10F<br>(210Fh) | 0                  | Mode Switch<br>Deviation     | ning Level for Position            | Immediately  |
| Pn11F<br>(211Fh) | 0                  | Position Inte                | gral Time Constant                 | Immediately  |
| Pn121<br>(2121h) | 100                | Friction Con                 | npensation Gain                    | Immediately  |
| Pn122<br>(2122h) | 100                | Second Frict                 | ion Compensation Gain              | Immediately  |
| Pn123<br>(2123h) | 0                  | Friction Con                 | npensation Coefficient             | Immediately  |
| Pn124<br>(2124h) | 0                  | Friction Com<br>Correction   | npensation Frequency               | Immediately  |
| Pn125<br>(2125h) | 100                | Friction Com<br>Correction   | npensation Gain                    | Immediately  |
| Pn131<br>(2131h) | 0                  | Gain Switchi                 | ing Time 1                         | Immediately  |
| Pn132<br>(2132h) | 0                  | Gain Switchi                 | ing Time 2                         | Immediately  |
| Pn135<br>(2135h) | 0                  | Gain Switchi                 | ing Waiting Time 1                 | Immediately  |
| Pn136<br>(2136h) | 0                  | Gain Switchi                 | ing Waiting Time 2                 | Immediately  |
| Pn139<br>(2139h) | 0000h              | Automatic G                  | ain Switching Selections           | Immediately  |
| Pn13D<br>(213Dh) | 2000               | Current Gain                 | Level                              | Immediately  |
| Pn140<br>(2140h) | 0100h              | Model Follow<br>Selections   | wing Control-Related               | Immediately  |
| Pn141<br>(2141h) | 500                | Model Follow                 | wing Control Gain                  | Immediately  |
| Pn142<br>(2142h) | 1000               | Model Follow<br>Correction   | wing Control Gain                  | Immediately  |
| Pn143<br>(2143h) | 1000               | Model Follor<br>Forward Dire | wing Control Bias in the           | Immediately  |
| Pn144<br>(2144h) | 1000               | Model Follov<br>Reverse Dire | wing Control Bias in the           | Immediately  |
| Pn145<br>(2145h) | 500                | Vibration Su                 | ppression 1 Frequency A            | Immediately  |
| Pn146<br>(2146h) | 700                | Vibration Su                 | ppression 1 Frequency B            | Immediately  |
| Pn147<br>(2147h) | 1000               |                              | wing Control Speed<br>Compensation | Immediately  |
| Pn148<br>(2148h) | 500                | Second Mod<br>Gain           | el Following Control               | Immediately  |
| Pn149<br>(2149h) | 1000               | Second Mod<br>Gain Correct   | el Following Control<br>ion        | Immediately  |

| Parameter<br>No. | Default<br>Setting |  |  | Name                                                     | When Enabled  |
|------------------|--------------------|--|--|----------------------------------------------------------|---------------|
| Pn14A<br>(214Ah) | 800                |  |  | Vibration Suppression 2 Frequency                        | Immediately   |
| Pn14B<br>(214Bh) | 100                |  |  | Vibration Suppression 2 Correction                       | Immediately   |
| Pn14F<br>(214Fh) | 0030h              |  |  | Control-Related Selections                               | After restart |
| Pn160<br>(2160h) | 0010h              |  |  | Anti-Resonance Control-Related<br>Selections             | Immediately   |
| Pn161<br>(2161h) | 1000               |  |  | Anti-Resonance Frequency                                 | Immediately   |
| Pn162<br>(2162h) | 100                |  |  | Anti-Resonance Gain Correction                           | Immediately   |
| Pn163<br>(2163h) | 0                  |  |  | Anti-Resonance Damping Gain                              | Immediately   |
| Pn164<br>(2164h) | 0                  |  |  | Anti-Resonance Filter Time Constant<br>1 Correction      | Immediately   |
| Pn165<br>(2165h) | 0                  |  |  | Anti-Resonance Filter Time Constant 2 Correction         | Immediately   |
| Pn166<br>(2166h) | 0                  |  |  | Anti-Resonance Damping Gain 2                            | Immediately   |
| Pn170<br>(2170h) | 1401h              |  |  | Tuning-less Function-Related<br>Selections               | -             |
| Pn173<br>(2173h) | 0000h              |  |  | Load Fluctuation Compensation Control-Related Selections | Immediately   |
| Pn174<br>(2174h) | 400                |  |  | Load Fluctuation Compensation Control Response Level     | Immediately   |
| Pn181<br>(2181h) | 0                  |  |  | Mode Switching Level for Speed<br>Reference              | Immediately   |
| Pn182<br>(2182h) | 0                  |  |  | Mode Switching Level for<br>Acceleration                 | Immediately   |
| Pn205<br>(2205h) | 65535              |  |  | Multiturn Limit                                          | After restart |
| Pn207<br>(2207h) | 0010h              |  |  | Position Control Function Selections                     | After restart |
| Pn20A<br>(220Ah) | 32768              |  |  | Number of External Encoder Scale<br>Pitches              | After restart |
| Pn20E<br>(220Eh) | 64                 |  |  | Electronic Gear Ratio (Numerator)                        | After restart |
| Pn210<br>(2210h) | 1                  |  |  | Electronic Gear Ratio (Denominator)                      | After restart |
| Pn212<br>(2212h) | 2048               |  |  | Number of Encoder Output Pulses                          | After restart |
| Pn21D<br>(221Dh) | 0080h              |  |  | Encoder Resolution Setting                               | After restart |
| Pn22A<br>(222Ah) | 0000h              |  |  | Fully-closed Control Selections                          | After restart |
| Pn230<br>(2230h) | 0000h              |  |  | Position Control Expansion Function<br>Selections        | After restart |
| Pn231<br>(2231h) | 0                  |  |  | Backlash Compensation Value                              | Immediately   |

| Parameter No.    | Default<br>Setting |  | Name                                                       | When Enabled  |
|------------------|--------------------|--|------------------------------------------------------------|---------------|
| Pn233<br>(2233h) | 0                  |  | Backlash Compensation Time<br>Constant                     | Immediately   |
| Pn281<br>(2281h) | 20                 |  | Encoder Output Resolution                                  | After restart |
| Pn282<br>(2282h) | 0                  |  | Linear Encoder Scale Pitch                                 | After restart |
| Pn304<br>(2304h) | 500                |  | Jogging Speed                                              | Immediately   |
| Pn305<br>(2305h) | 0                  |  | Soft Start Acceleration Time                               | Immediately   |
| Pn306<br>(2306h) | 0                  |  | Soft Start Deceleration Time                               | Immediately   |
| Pn307<br>(2307h) | 0                  |  | Speed Reference Filter Time<br>Constant                    | Immediately   |
| Pn308<br>(2308h) | 0                  |  | Speed Feedback Filter Time Constant                        | Immediately   |
| Pn30A<br>(230Ah) | 0                  |  | Deceleration Time for Servo OFF and Forced Stops           | Immediately   |
| Pn30C<br>(230Ch) | 0                  |  | Speed Feedforward Average Movement Time                    | Immediately   |
| Pn310<br>(2310h) | 0000h              |  | Vibration Detection Selections                             | Immediately   |
| Pn311<br>(2311h) | 100                |  | Vibration Detection Sensitivity                            | Immediately   |
| Pn312<br>(2312h) | 50                 |  | Vibration Detection Level                                  | Immediately   |
| Pn316<br>(2316h) | 10000              |  | Maximum Motor Speed                                        | After restart |
| Pn324<br>(2324h) | 300                |  | Moment of Inertia Calculation Starting Level               | Immediately   |
| Pn383<br>(2383h) | 50                 |  | Jogging Speed                                              | Immediately   |
| Pn384<br>(2384h) | 10                 |  | Vibration Detection Level                                  | Immediately   |
| Pn385<br>(2385h) | 50                 |  | Maximum Motor Speed                                        | After restart |
| Pn401<br>(2401h) | 100                |  | First Stage First Torque Reference<br>Filter Time Constant | Immediately   |
| Pn402<br>(2402h) | 800                |  | Forward Torque Limit                                       | Immediately   |
| Pn403<br>(2403h) | 800                |  | Reverse Torque Limit                                       | Immediately   |
| Pn404<br>(2404h) | 100                |  | Forward External Torque Limit                              | Immediately   |
| Pn405<br>(2405h) | 100                |  | Reverse External Torque Limit                              | Immediately   |
| Pn406<br>(2406h) | 800                |  | Emergency Stop Torque                                      | Immediately   |
| Pn407<br>(2407h) | 10000              |  | Speed Limit during Torque Control                          | Immediately   |

| Parameter No.    | Default<br>Setting |  | Name                                                          | When Enabled |
|------------------|--------------------|--|---------------------------------------------------------------|--------------|
| Pn408<br>(2408h) | 0000h              |  | Torque-Related Function Selections                            | _            |
| Pn409<br>(2409h) | 5000               |  | First Stage Notch Filter Frequency                            | Immediately  |
| Pn40A<br>(240Ah) | 70                 |  | First Stage Notch Filter Q Value                              | Immediately  |
| Pn40B<br>(240Bh) | 0                  |  | First Stage Notch Filter Depth                                | Immediately  |
| Pn40C<br>(240Ch) | 5000               |  | Second Stage Notch Filter Frequency                           | Immediately  |
| Pn40D<br>(240Dh) | 70                 |  | Second Stage Notch Filter Q Value                             | Immediately  |
| Pn40E<br>(240Eh) | 0                  |  | Second Stage Notch Filter Depth                               | Immediately  |
| Pn40F<br>(240Fh) | 5000               |  | Second Stage Second Torque Reference Filter Frequency         | Immediately  |
| Pn410<br>(2410h) | 50                 |  | Second Stage Second Torque Reference Filter Q Value           | Immediately  |
| Pn412<br>(2412h) | 100                |  | First Stage Second Torque Reference<br>Filter Time Constant   | Immediately  |
| Pn416<br>(2416h) | 0000h              |  | Torque-Related Function Selections 2                          | Immediately  |
| Pn417<br>(2417h) | 5000               |  | Third Stage Notch Filter Frequency                            | Immediately  |
| Pn418<br>(2418h) | 70                 |  | Third Stage Notch Filter Q Value                              | Immediately  |
| Pn419<br>(2419h) | 0                  |  | Third Stage Notch Filter Depth                                | Immediately  |
| Pn41A<br>(241Ah) | 5000               |  | Fourth Stage Notch Filter Frequency                           | Immediately  |
| Pn41B<br>(241Bh) | 70                 |  | Fourth Stage Notch Filter Q Value                             | Immediately  |
| Pn41C<br>(241Ch) | 0                  |  | Fourth Stage Notch Filter Depth                               | Immediately  |
| Pn41D<br>(241Dh) | 5000               |  | Fifth Stage Notch Filter Frequency                            | Immediately  |
| Pn41E<br>(241Eh) | 70                 |  | Fifth Stage Notch Filter Q Value                              | Immediately  |
| Pn41F<br>(241Fh) | 0                  |  | Fifth Stage Notch Filter Depth                                | Immediately  |
| Pn423<br>(2423h) | 0002h              |  | Speed Ripple Compensation<br>Selections                       | -            |
| Pn424<br>(2424h) | 50                 |  | Torque Limit at Main Circuit Voltage<br>Drop                  | Immediately  |
| Pn425<br>(2425h) | 100                |  | Release Time for Torque Limit at<br>Main Circuit Voltage Drop | Immediately  |
| Pn426<br>(2426h) | 0                  |  | Torque Feedforward Average Movement Time                      | Immediately  |
| Pn427<br>(2427h) | 0                  |  | Speed Ripple Compensation Enable<br>Speed                     | Immediately  |

| Parameter No.    | Default<br>Setting |             | Name                                                 | When Enabled  |
|------------------|--------------------|-------------|------------------------------------------------------|---------------|
| Pn428<br>(2428h) | 0001h              |             | put Torque Compensation ections                      | After restart |
| Pn456<br>(2456h) | 15                 | Swe         | eep Torque Reference Amplitude                       | Immediately   |
| Pn460<br>(2460h) | 0101h              | Note        | ch Filter Adjustment Selections 1                    | Immediately   |
| Pn475<br>(2475h) | 0000h              |             | vity Compensation-Related ections                    | After restart |
| Pn476<br>(2476h) | 0                  | Grav        | vity Compensation Torque                             | Immediately   |
| Pn480<br>(2480h) | 10000              | Spec        | ed Limit during Force Control                        | Immediately   |
| Pn481<br>(2481h) | 400                | Pola        | arity Detection Speed Loop Gain                      | Immediately   |
| Pn482<br>(2482h) | 3000               |             | arity Detection Speed Loop Inte-<br>Time             | Immediately   |
| Pn483<br>(2483h) | 30                 | Forv        | ward Force Limit                                     | Immediately   |
| Pn484<br>(2484h) | 30                 | Rev         | erse Force Limit                                     | Immediately   |
| Pn485<br>(2485h) | 20                 | Pola        | arity Detection Reference Speed                      | Immediately   |
| Pn486<br>(2486h) | 25                 |             | arity Detection Reference Accelion/Deceleration Time | Immediately   |
| Pn487<br>(2487h) | 0                  | Pola<br>Tim | arity Detection Constant Speed                       | Immediately   |
| Pn488<br>(2488h) | 100                | Pola<br>Tim | arity Detection Reference Waiting ae                 | Immediately   |
| Pn48E<br>(248Eh) | 10                 | Pola        | arity Detection Range                                | Immediately   |
| Pn490<br>(2490h) | 100                | Pola        | arity Detection Load Level                           | Immediately   |
| Pn495<br>(2495h) | 100                |             | arity Detection Confirmation<br>ce Reference         | Immediately   |
| Pn498<br>(2498h) | 10                 | Pola<br>Ran | arity Detection Allowable Error<br>ge                | Immediately   |
| Pn49F<br>(249Fh) | 0                  |             | ed Ripple Compensation Enable<br>ed (Linear)         | Immediately   |
| Pn501<br>(2501h) | 10                 | Zero        | o Clamping Level                                     | Immediately   |
| Pn502<br>(2502h) | 20                 | Rota        | ation Detection Level                                | Immediately   |
| Pn503<br>(2503h) | 10                 |             | ed Coincidence Detection Signal<br>put Width         | Immediately   |
| Pn506<br>(2506h) | 0                  | Bral<br>Tim | ke Reference-Servo OFF Delay                         | Immediately   |
| Pn507<br>(2507h) | 100                | Bral        | ke Reference Output Speed Level                      | Immediately   |
| Pn508<br>(2508h) | 50                 | Serv<br>Tim | vo OFF-Brake Command Waiting                         | Immediately   |

| Parameter No.    | Default<br>Setting |  |  | Name                                                        | When Enabled  |
|------------------|--------------------|--|--|-------------------------------------------------------------|---------------|
| Pn509<br>(2509h) | 20                 |  |  | Momentary Power Interruption Hold<br>Time                   | Immediately   |
| Pn50A<br>(250Ah) | 1881h              |  |  | Input Signal Selections 1                                   | After restart |
| Pn50B<br>(250Bh) | 8882h              |  |  | Input Signal Selections 2                                   | After restart |
| Pn50E<br>(250Eh) | 0000h              |  |  | Output Signal Selections 1                                  | After restart |
| Pn50F<br>(250Fh) | 0100h              |  |  | Output Signal Selections 2                                  | After restart |
| Pn510<br>(2510h) | 0000h              |  |  | Output Signal Selections 3                                  | After restart |
| Pn511<br>(2511h) | 6543h              |  |  | Input Signal Selections 5                                   | After restart |
| Pn512<br>(2512h) | 0000h              |  |  | Output Signal Inverse Settings                              | After restart |
| Pn514<br>(2514h) | 0000h              |  |  | Output Signal Selections 4                                  | After restart |
| Pn516<br>(2516h) | 8888h              |  |  | Input Signal Selections 7                                   | After restart |
| Pn518<br>(2518h) | -                  |  |  | Reserved (Do not change.)                                   | _             |
| Pn51B<br>(251Bh) | 1000               |  |  | Motor-Load Position Deviation Over-<br>flow Detection Level | Immediately   |
| Pn51E<br>(251Eh) | 100                |  |  | Position Deviation Overflow Warning<br>Level                | Immediately   |
| Pn520<br>(2520h) | 6116694            |  |  | Position Deviation Overflow Alarm<br>Level                  | Immediately   |
| Pn522<br>(2522h) | 7                  |  |  | In-position Range                                           | Immediately   |
| Pn524<br>(2524h) | 10737418-<br>24    |  |  | Near Signal Width                                           | Immediately   |
| Pn526<br>(2526h) | 6116694            |  |  | Position Deviation Overflow Alarm<br>Level at Servo ON      | Immediately   |
| Pn528<br>(2528h) | 100                |  |  | Position Deviation Overflow Warning<br>Level at Servo ON    | Immediately   |
| Pn529<br>(2529h) | 10000              |  |  | Speed Limit Level at Servo ON                               | Immediately   |
| Pn52A<br>(252Ah) | 20                 |  |  | Multiplier per Fully-closed Rotation                        | Immediately   |
| Pn52B<br>(252Bh) | 20                 |  |  | Overload Warning Level                                      | After restart |
| Pn52C<br>(252Ch) | 100                |  |  | Base Current Derating at Motor<br>Overload Detection        | After restart |
| Pn530<br>(2530h) | 0000h              |  |  | Program Jogging-Related Selections                          | Immediately   |
| Pn531<br>(2531h) | 32768              |  |  | Program Jogging Travel Distance                             | Immediately   |
| Pn533<br>(2533h) | 500                |  |  | Program Jogging Movement Speed                              | Immediately   |

| Parameter        | Default |  | Name                                                               | rom previous page. When Enabled |
|------------------|---------|--|--------------------------------------------------------------------|---------------------------------|
| No.              | Setting |  | Name                                                               | Wileli Ellableu                 |
| Pn534<br>(2534h) | 100     |  | Program Jogging Acceleration/Deceleration Time                     | Immediately                     |
| Pn535<br>(2535h) | 100     |  | Program Jogging Waiting Time                                       | Immediately                     |
| Pn536<br>(2536h) | 1       |  | Program Jogging Number of<br>Movements                             | Immediately                     |
| Pn540<br>(2540h) | 3000    |  | Maximum Search Gain                                                | Immediately                     |
| Pn550<br>(2550h) | 0       |  | Analog Monitor 1 Offset Voltage                                    | Immediately                     |
| Pn551<br>(2551h) | 0       |  | Analog Monitor 2 Offset Voltage                                    | Immediately                     |
| Pn552<br>(2552h) | 100     |  | Analog Monitor 1 Magnification                                     | Immediately                     |
| Pn553<br>(2553h) | 100     |  | Analog Monitor 2 Magnification                                     | Immediately                     |
| Pn55A<br>(255Ah) | 1       |  | Power Consumption Monitor Unit<br>Time                             | Immediately                     |
| Pn560<br>(2560h) | 400     |  | Residual Vibration Detection Width                                 | Immediately                     |
| Pn561<br>(2561h) | 100     |  | Overshoot Detection Level                                          | Immediately                     |
| Pn562<br>(2562h) | 80      |  | Setting Gain Ratio                                                 | Immediately                     |
| Pn580<br>(2580h) | 10      |  | Zero Clamping Level                                                | Immediately                     |
| Pn581<br>(2581h) | 20      |  | Zero Speed Level                                                   | Immediately                     |
| Pn582<br>(2582h) | 10      |  | Speed Coincidence Detection Signal<br>Output Width                 | Immediately                     |
| Pn583<br>(2583h) | 10      |  | Brake Reference Output Speed Level                                 | Immediately                     |
| Pn584<br>(2584h) | 10000   |  | Speed Limit Level at Servo ON                                      | Immediately                     |
| Pn585<br>(2585h) | 50      |  | Program Jogging Movement Speed                                     | Immediately                     |
| Pn586<br>(2586h) | 0       |  | Motor Running Cooling Ratio                                        | Immediately                     |
| Pn587<br>(2587h) | 0000h   |  | Polarity Detection Execution Selection for Absolute Linear Encoder | Immediately                     |
| Pn589<br>(2589h) | 1500    |  | SigmaLINK II Node Detection Time                                   | After restart                   |
| Pn590<br>(2590h) | 1007h   |  | P-OT (Forward Drive Prohibit Input)<br>Signal Allocation           | After restart                   |
| Pn591<br>(2591h) | 1008h   |  | N-OT (Reverse Drive Prohibit Input)<br>Signal Allocation           | After restart                   |
| Pn593<br>(2593h) | 1010h   |  | /Probe1 (Probe 1 Latch Input) Signal<br>Allocation                 | After restart                   |
| Pn594<br>(2594h) | 1011h   |  | /Probe2 (Probe 2 Latch Input) Signal<br>Allocation                 | After restart                   |

| Parameter<br>No. | Default<br>Setting |  | Name                                                             | When Enabled  |
|------------------|--------------------|--|------------------------------------------------------------------|---------------|
| Pn595<br>(2595h) | 1012h              |  | /Home (Home Switch Input) Signal<br>Allocation                   | After restart |
| Pn597<br>(2597h) | 0000h              |  | FSTP (Forced Stop Input) Signal<br>Allocation                    | After restart |
| Pn598<br>(2598h) | 0000h              |  | /P-CL (Forward External Torque<br>Limit Input) Signal Allocation | After restart |
| Pn599<br>(2599h) | 0000h              |  | /N-CL (Reverse External Torque<br>Limit Input) Signal Allocation | After restart |
| Pn5B0<br>(25B0h) | 0000h              |  | /COIN (Positioning Completion Output) Signal Allocation          | After restart |
| Pn5B1<br>(25B1h) | 0000h              |  | /V-CMP (Speed Coincidence Detection Output) Signal Allocation    | After restart |
| Pn5B2<br>(25B2h) | 0000h              |  | /TGON (Rotation Detection Output)<br>Signal Allocation           | After restart |
| Pn5B3<br>(25B3h) | 0000h              |  | /S-RDY (Servo Ready Output) Signal<br>Allocation                 | After restart |
| Pn5B4<br>(25B4h) | 0000h              |  | /CLT (Torque Limit Detection Output) Signal Allocation           | After restart |
| Pn5B5<br>(25B5h) | 0000h              |  | /VLT (Speed Limit Detection Output)<br>Signal Allocation         | After restart |
| Pn5B6<br>(25B6h) | 1001h              |  | /BK (Brake Output) Signal<br>Allocation                          | After restart |
| Pn5B7<br>(25B7h) | 0000h              |  | /WARN (Warning Output) Signal<br>Allocation                      | After restart |
| Pn5B8<br>(25B8h) | 0000h              |  | /NEAR (Near Output) Signal<br>Allocation                         | After restart |
| Pn5BC<br>(25BCh) | 0000h              |  | /PM (Preventative Maintenance Output) Signal Allocation          | After restart |
| Pn5C3<br>(25C3h) | 0000h              |  | Error Detection Setting                                          | After restart |
| Pn5C4<br>(25C4h) | 2000               |  | Error Detection Sample Data Set 1<br>Warning Level 1             | Immediately   |
| Pn5C5<br>(25C5h) | 1520               |  | Error Detection Sample Data Set 1<br>Judgment Level 1            | Immediately   |
| Pn5C6<br>(25C6h) | 2000               |  | Error Detection Sample Data Set 1<br>Warning Level 2             | Immediately   |
| Pn5C7<br>(25C7h) | 1520               |  | Error Detection Sample Data Set 1<br>Judgment Level 2            | Immediately   |
| Pn5C8<br>(25C8h) | 2000               |  | Error Detection Sample Data Set 2<br>Warning Level 1             | Immediately   |
| Pn5C9<br>(25C9h) | 1520               |  | Error Detection Sample Data Set 2<br>Judgment Level 1            | Immediately   |
| Pn5CA<br>(25CAh) | 2000               |  | Error Detection Sample Data Set 2<br>Warning Level 2             | Immediately   |
| Pn5CB<br>(25CBh) | 1520               |  | Error Detection Sample Data Set 2<br>Judgment Level 2            | Immediately   |
| Pn5D7<br>(25D7h) | 0000h              |  | Output Signal Inversion for Triggers at Preset Positions         | After restart |
| Pn600<br>(2600h) | 0                  |  | Regenerative Resistor Capacity                                   | Immediately   |

| _                |                    |  |  | Continued i                                            | rom previous page. |
|------------------|--------------------|--|--|--------------------------------------------------------|--------------------|
| Parameter No.    | Default<br>Setting |  |  | Name                                                   | When Enabled       |
| Pn601<br>(2601h) | 0                  |  |  | Dynamic Brake Resistor Allowable<br>Energy Consumption | After restart      |
| Pn603<br>(2603h) | 0                  |  |  | Regenerative Resistance                                | Immediately        |
| Pn604<br>(2604h) | 0                  |  |  | Dynamic Brake Resistance                               | After restart      |
| Pn61A<br>(261Ah) | 0000h              |  |  | Overheat Protection Selections                         | After restart      |
| Pn61B<br>(261Bh) | 250                |  |  | Overheat Alarm Level                                   | Immediately        |
| Pn61C<br>(261Ch) | 100                |  |  | Overheat Warning Level                                 | Immediately        |
| Pn61D<br>(261Dh) | 0                  |  |  | Overheat Alarm Filter Time                             | Immediately        |
| Pn621<br>(2621h) | _                  |  |  | Reserved (Do not change.)                              | -                  |
| Pn622<br>(2622h) | _                  |  |  | Reserved (Do not change.)                              | -                  |
| Pn623<br>(2623h) | _                  |  |  | Reserved (Do not change.)                              | -                  |
| Pn624<br>(2624h) | _                  |  |  | Reserved (Do not change.)                              | -                  |
| Pn625<br>(2625h) | _                  |  |  | Reserved (Do not change.)                              | -                  |
| Pn626<br>(2626h) | _                  |  |  | Reserved (Do not change.)                              | -                  |
| Pn627<br>(2627h) | _                  |  |  | Reserved (Do not change.)                              | -                  |
| Pn628<br>(2628h) | _                  |  |  | Reserved (Do not change.)                              | _                  |
| Pn660<br>(2660h) | 0000h              |  |  | Triggers at Preset Positions Switch                    | After restart      |

# **Appendices**

Provides information on interpreting LED indicators and panel displays and tables of corresponding SER-VOPACK and SigmaWin+ function names.

| 18.1 | Interpreting LED Displays                                     | 804 |
|------|---------------------------------------------------------------|-----|
|      | 18.1.1 RUN                                                    | 804 |
|      | 18.1.2 ERR                                                    | 804 |
|      | 18.1.3 L/A A, L/A B                                           | 805 |
| 18.2 | Interpreting Panel Displays                                   | 806 |
|      | 18.2.1 Interpreting Status Displays                           | 806 |
|      | 18.2.2 Alarm and Warning Displays                             | 806 |
|      | 18.2.3 Hard Wire Base Block Active Display                    | 806 |
|      | 18.2.4 Overtravel Display                                     | 806 |
|      | 18.2.5 Forced Stop Display                                    | 807 |
| 18.3 | Corresponding SERVOPACK and SigmaWin+ Function Names          | 808 |
|      | 18.3.1 Corresponding SERVOPACK Utility Function Names         | 808 |
|      | 18.3.2 Corresponding SERVOPACK Monitor Display Function Names | 809 |

# 18.1 Interpreting LED Displays

This diagram shows details of the EtherCAT communications LED indicators. The illumination patterns conform to the indicator specifications published by ETG.



## 18.1.1 RUN

The RUN indicator shows the status of EtherCAT communications.

|              | LED Indicator        | Description                                                              |
|--------------|----------------------|--------------------------------------------------------------------------|
| Status       | Pattern              | Description                                                              |
| Off          | Constantly off.      | EtherCAT communications are in INIT state.                               |
| Blinking     | On Off 200 ms 200 ms | EtherCAT communications are in PRE-OPERA-TIONAL state.                   |
| Single flash | On 1000 ms 200 ms    | EtherCAT communications are in SAFE-OPERA-TIONAL state.                  |
| On           | Constantly on.       | EtherCAT communications are in OPERATIONAL state.                        |
| Flickering   | On Off               | EtherCAT communications have been started but are not yet in INIT state. |

## 18.1.2 ERR

The ERR indicator shows the error status of EtherCAT communications.

|              | LED Indicator        | Description                                                                                     |  |
|--------------|----------------------|-------------------------------------------------------------------------------------------------|--|
| Status       | Pattern              | Description                                                                                     |  |
| Off          | Constantly off.      | The EtherCAT communications are in working condition.                                           |  |
| Flickering   | On Off               | Booting error was detected.                                                                     |  |
| Blinking     | On Off 200 ms 200 ms | State change commanded by master is impossible due to register or object settings.              |  |
| Single flash | On 1000 ms 200 ms    | Synchronization error, the EtherCAT network module enters SAFE-OPERATIONAL state automatically. |  |

|                 | LED Indicator  | Description                                                  |
|-----------------|----------------|--------------------------------------------------------------|
| Status          | Pattern        | Description                                                  |
| Double<br>flash | On             | An application (Sync Manager) watchdog timeout has occurred. |
| On              | Constantly on. | A PDI watchdog timeout has occurred.                         |

# 18.1.3 L/A A, L/A B

The L/A A and L/A B indicators show whether communications cables are connected to the CN6A and CN6B connectors and whether communications are active. The L/A A indicator shows the status of the CN6A connector, and the L/A B indicator shows the status of the CN6B connector.

|            | LED Indicator   | D                                                                                              |
|------------|-----------------|------------------------------------------------------------------------------------------------|
| Status     | Pattern         | Description                                                                                    |
| Off        | Constantly off. | A communications cable is not physically connected.  An EtherCAT controller is not started up. |
| Flickering | On Off          | Data are being exchanged.                                                                      |
| On         | Constantly on.  | A communications cable is physically connected, but no data being exchanged.                   |

# 18.2 Interpreting Panel Displays

You can check the Servo Drive status on the panel display of the SERVOPACK.

Also, if an alarm or warning occurs, the alarm or warning number will be displayed.



If the displayed characters cannot be recognized, turn the SERVOPACK power OFF and ON again.

If this does not resolve the problem, check the items shown below.

Check the input signals on the [Status] monitor of the SigmaWin+.
 Refer to the following section for details.
 (1) Operating Procedure on page 454

• Check if anything around the SERVOPACK is generating noise.

If the problem is still not resolved after checking the above items, the SERVOPACK may be faulty.

# 18.2.1 Interpreting Status Displays

The status is displayed as described below.

| Display | Description                                                                                                                                                                                                                              | Display | Description                                                                    |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------|
| 8       | /TGON (Rotation Detection Output) Signal Display  Lit if the servomotor speed is higher than the setting of Pn502 or Pn581 and not lit if the speed is lower than the setting. (The default setting is 20 min <sup>-1</sup> or 20 mm/s.) | 8       | Reference Input Display Lit while a reference is being input.                  |
| 8       | Base Block Display Lit during the base block state (servo OFF). Not lit while the servo is ON.                                                                                                                                           | 8.      | Control Power Supply ON Display Lit while the control power is being supplied. |

# 18.2.2 Alarm and Warning Displays

If there is an alarm or warning, the display will change in the following order.

Example: Alarm A.020

Status 
$$\longrightarrow$$
 Not lit.  $\longrightarrow$  Not lit.  $\longrightarrow$ 

# 18.2.3 Hard Wire Base Block Active Display

If a hard wire base block (HWBB) is active, the display will change in the following order.

Status 
$$\longrightarrow$$
 Not lit.  $\longrightarrow$  H  $\longrightarrow$  Not lit.  $\longrightarrow$  Display  $\longrightarrow$  Not lit.  $\longrightarrow$  Not lit.  $\longrightarrow$  Not lit.  $\longrightarrow$ 

# 18.2.4 Overtravel Display

If overtravel has occurred, the display will change in the following order.

⑤ Forward Overtravel (P-OT)Status Display → P

| 2 | Reverse Overtravel (N-OT) |
|---|---------------------------|
|   | ➤ Status Display—— □      |



During a forced stop, the following display will appear.

Status 
$$\longrightarrow$$
 Not lit.  $\longrightarrow$  F  $\longrightarrow$  Not lit.  $\longrightarrow$  S  $\longrightarrow$  Not lit.  $\longrightarrow$  Not lit

# 18.3 Corresponding SERVOPACK and SigmaWin+ Function Names

This section gives the names and numbers of the utility functions and monitor display functions used by the SER-VOPACKs and the names used by the SigmaWin+.

# 18.3.1 Corresponding SERVOPACK Utility Function Names

| SigmaWin+                  |                             |        | SERVOPACK                                                                |  |
|----------------------------|-----------------------------|--------|--------------------------------------------------------------------------|--|
| Button in [Menu]<br>Window | Function Name               | Fn No. | Function Name                                                            |  |
|                            | Initialize                  | Fn005  | Initialize Parameters                                                    |  |
|                            | Software Reset              | Fn030  | Software Reset                                                           |  |
|                            | Setup Wizard                | _      | _                                                                        |  |
|                            | I/O Signal Allocation       | _      | _                                                                        |  |
| Basic Functions            |                             | Fn011  | Display Servomotor Model                                                 |  |
|                            |                             | Fn012  | Display Software Version                                                 |  |
|                            | Product Information         | Fn01E  | Display SERVOPACK and Servomotor IDs                                     |  |
|                            |                             | Fn01F  | Display Servomotor ID from Feedback Option<br>Module                     |  |
|                            | Reset Absolute Encoder      | Fn008  | Reset Absolute Encoder                                                   |  |
|                            | Multi-turn Limit Setup      | Fn013  | Multiturn Limit Setting after A.CC0 (Multiturn Limit Disagreement) Alarm |  |
| Encoder Setting            | Search Origin               | Fn003  | Origin Search                                                            |  |
|                            | Zero Point Position Setting | Fn020  | Set Absolute Linear Encoder Origin                                       |  |
|                            | Polarity Detection          | Fn080  | Polarity Detection                                                       |  |
|                            | Motor Parameter Scale Write | _      | _                                                                        |  |
|                            | Display Alarm               | Fn000  | Display Alarm History                                                    |  |
|                            |                             | Fn006  | Clear Alarm History                                                      |  |
| Troubleshooting            |                             | Fn014  | Reset Option Module Configuration Error                                  |  |
|                            | Alarm Trace                 | _      | _                                                                        |  |
|                            | Reset Motor Type Alarm      | Fn021  | Reset Motor Type Alarm                                                   |  |
| On and in                  | Jog                         | Fn002  | Jog                                                                      |  |
| Operation                  | Program JOG Operation       | Fn004  | Jog Program                                                              |  |
|                            | Trace                       | _      | _                                                                        |  |
| Manitan                    | Real Time Trace             | _      | _                                                                        |  |
| Monitor                    | Monitor                     | _      | _                                                                        |  |
|                            | Life Monitor                | _      | _                                                                        |  |

| SigmaWin+                  |                                                            | SERVOPACK |                                                          |
|----------------------------|------------------------------------------------------------|-----------|----------------------------------------------------------|
| Button in [Menu]<br>Window | Function Name                                              | Fn No.    | Function Name                                            |
|                            | Tuning - Autotuning without Host<br>Reference              | Fn201     | Advanced Autotuning without Reference                    |
|                            | Tuning - Autotuning with Host<br>Reference                 | Fn202     | Advanced Autotuning with Reference                       |
|                            | Tuning - Custom Tuning                                     | Fn203     | One-Parameter Tuning                                     |
| Tuning                     | Tuning - Custom Tuning - Adjust Anti-<br>resonance Control | Fn204     | Adjust Anti-resonance Control                            |
|                            | Tuning - Custom Tuning - Vibration<br>Suppression          | Fn205     | Vibration Suppression                                    |
|                            | System Tuning                                              | _         | _                                                        |
|                            | Response Level Setting                                     | Fn200     | Tuning-less Level Setting                                |
|                            | Edit Online Parameters                                     | _         | _                                                        |
|                            | Mechanical Analysis                                        | _         | _                                                        |
| Discussiis                 | Easy FFT                                                   | Fn206     | Easy FFT                                                 |
| Diagnostic                 | Ripple Compensation                                        | _         | _                                                        |
|                            | Online Vibration Monitor                                   | _         | _                                                        |
|                            |                                                            | Fn00C     | Adjust Analog Monitor Output Offset                      |
|                            | Adjust the Analog Monitor Output                           | Fn00D     | Adjust Analog Monitor Output Gain                        |
|                            | A direct the Motor Comment Detection Sie                   | Fn00E     | Autotune Motor Current Detection Signal Offset           |
|                            | Adjust the Motor Current Detection Signal Offsets          | Fn00F     | Manually Adjust Motor Current Detection Signal<br>Offset |
| Others                     | Initialize Vibration Detection Level                       | Fn01B     | Initialize Vibration Detection Level                     |
|                            | Parameter Converter                                        | _         |                                                          |
|                            | SERVOPACK Axis Name Setting                                | _         |                                                          |
|                            | Write Prohibited Setting                                   | Fn010     | Write Prohibition Setting                                |
|                            | Motor Parameter SERVOPACK Write                            | _         | _                                                        |

# 18.3.2 Corresponding SERVOPACK Monitor Display Function Names

| SigmaWin+ Button in [Menu] Window: [Monitor] - [Operation]                                                                                                                                                                                     | SERVOPACK |                                                                                                                                                                                                                                                                                                  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Name [Unit]                                                                                                                                                                                                                                    | Un No.    | Name [Unit]                                                                                                                                                                                                                                                                                      |  |
| Motor Speed [min <sup>-1</sup> ]                                                                                                                                                                                                               | Un000     | Motor Speed [min-1]                                                                                                                                                                                                                                                                              |  |
| Speed Reference [min-1]                                                                                                                                                                                                                        | Un001     | Speed Reference [min-1]                                                                                                                                                                                                                                                                          |  |
| Torque Reference [%]                                                                                                                                                                                                                           | Un002     | Torque Reference [%] (percentage of rated torque)                                                                                                                                                                                                                                                |  |
| Rotary servomotors: Rotational Angle 1 [encoder pulses] (number of encoder pulses from origin within one encoder rotation)     Linear servomotors: Electrical Angle 1 [linear encoder pulses] (linear encoder pulses from the polarity origin) | Un003     | Rotary servomotors: Rotational Angle 1 [encoder pulses]     (number of encoder pulses from origin within one encoder rotation displayed in decimal)     Linear servomotors: Electrical Angle 1 [linear encoder pulses]     (linear encoder pulses from the polarity origin displayed in decimal) |  |

|                                                                                                                                                                                               |          | Continued from previous page.                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SigmaWin+ Button in [Menu] Window: [Monitor] - [Operation]                                                                                                                                    |          | SERVOPACK                                                                                                                                                                 |
| Name [Unit]                                                                                                                                                                                   | Un No.   | Name [Unit]                                                                                                                                                               |
| Rotary servomotors: Rotational Angle 2 [deg] (electrical angle from origin within one encoder rotation)  Linear servomotors: Electrical Angle 2 [deg] (electrical angle from polarity origin) | Un004    | Rotary servomotors: Rotational Angle 2 [deg] (electrical angle from polarity origin) Linear servomotors: Electrical Angle 2 [deg] (electrical angle from polarity origin) |
| Input Reference Pulse Speed [min-1]                                                                                                                                                           | Un007    | Input Reference Pulse Speed [min-1] (displayed only during position control)                                                                                              |
| Position Deviation [reference units]                                                                                                                                                          | Un008    | Position Deviation [reference units] (displayed only during position control)                                                                                             |
| Accumulated Load Ratio [%]                                                                                                                                                                    | Un009    | Accumulated Load Ratio [%] (percentage of rated torque: effective torque in cycles of 10 seconds)                                                                         |
| Regenerative Load Ratio [%]                                                                                                                                                                   | Un00A    | Regenerative Load Ratio [%] (percentage of processable regenerative power: regenerative power consumption in cycles of 10 seconds)                                        |
| Dynamic Brake Resistor Power Consumption [%]                                                                                                                                                  | Un00B    | Dynamic Brake Resistor Power Consumption [%] (percentage of processable power at DB activation: displayed in cycles of 10 seconds)                                        |
| Input Reference Pulse Counter [reference units]                                                                                                                                               | Un00C    | Input Reference Pulse Counter [reference units]                                                                                                                           |
| Feedback Pulse Counter [encoder pulses]                                                                                                                                                       | Un00D    | Feedback Pulse Counter [encoder pulses]                                                                                                                                   |
| Fully-closed Loop Feedback Pulse Counter [external encoder resolution]                                                                                                                        | Un00E    | Fully-closed Loop Feedback Pulse Counter [external encoder resolution]                                                                                                    |
| Upper Limit Setting of Motor Maximum Speed/Upper<br>Limit Setting of Encoder Output Resolution                                                                                                | Un010 */ | Upper Limit Setting of Motor Maximum Speed/Upper<br>Limit Setting of Encoder Output Resolution                                                                            |
| Total Operation Time [100 ms]                                                                                                                                                                 | Un012    | Total Operation Time [100 ms]                                                                                                                                             |
| Feedback Pulse Counter [reference units]                                                                                                                                                      | Un013    | Feedback Pulse Counter [reference units]                                                                                                                                  |
| Overheat Protection Input [0.01 V]                                                                                                                                                            | Un02F    | Overheat Protection Input [0.01 V]                                                                                                                                        |
| Current Backlash Compensation Value [0.1 reference units]                                                                                                                                     | Un030    | Current Backlash Compensation Value [0.1 reference units]                                                                                                                 |
| Backlash Compensation Value Setting Limit [0.1 reference units]                                                                                                                               | Un031    | Backlash Compensation Value Setting Limit [0.1 reference units]                                                                                                           |
| Power Consumption [W]                                                                                                                                                                         | Un032    | Power Consumption [W]                                                                                                                                                     |
| Consumed Power [0.001 Wh]                                                                                                                                                                     | Un033    | Consumed Power [0.001 Wh]                                                                                                                                                 |
| Cumulative Power Consumption [Wh]                                                                                                                                                             | Un034    | Cumulative Power Consumption [Wh]                                                                                                                                         |
| Absolute Encoder Multiturn Data                                                                                                                                                               | Un040    | Absolute Encoder Multiturn Data                                                                                                                                           |
| Position within One Rotation of Absolute Encoder [encoder pulses]                                                                                                                             | Un041    | Position within One Rotation of Absolute Encoder [encoder pulses]                                                                                                         |
| Lower Bits of Absolute Encoder Position [encoder pulses]                                                                                                                                      | Un042    | Lower Bits of Absolute Encoder Position [encoder pulses]                                                                                                                  |
| Upper Bits of Absolute Encoder Position [encoder pulses]                                                                                                                                      | Un043    | Upper Bits of Absolute Encoder Position [encoder pulses]                                                                                                                  |
| Lower Bits of External Absolute Encoder Position<br>[encoder pulses]                                                                                                                          | Un054    | Lower Bits of External Absolute Encoder Position<br>[encoder pulses]                                                                                                      |
| Upper Bits of External Absolute Encoder Position [encoder pulses]                                                                                                                             | Un055    | Upper Bits of External Absolute Encoder Position [encoder pulses]                                                                                                         |
| Maximum Value of Amplitude of Estimated Vibration [min-1]                                                                                                                                     | Un078    | Maximum Value of Amplitude of Estimated Vibration [min-1]                                                                                                                 |
| Estimated External Disturbance Torque [%]                                                                                                                                                     | Un079    | Estimated External Disturbance Torque [%]                                                                                                                                 |
|                                                                                                                                                                                               |          | Continued on next page                                                                                                                                                    |

| SigmaWin+                                                  | Continued from previous page. |                                                            |  |
|------------------------------------------------------------|-------------------------------|------------------------------------------------------------|--|
| Button in [Menu] Window: [Monitor] - [Operation]           | SERVOPACK                     |                                                            |  |
| Name [Unit]                                                | Un No.                        | Name [Unit]                                                |  |
| Maximum Value of Estimated External Disturbance Torque [%] | Un07A                         | Maximum Value of Estimated External Disturbance Torque [%] |  |
| Minimum Value of Estimated External Disturbance Torque [%] | Un07B                         | Minimum Value of Estimated External Disturbance Torque [%] |  |
| Identified Moment of Inertia Ratio [%]                     | Un07C                         | Identified Moment of Inertia Ratio [%]                     |  |
| Maximum Identified Moment of Inertia Ratio [%]             | Un088                         | Maximum Identified Moment of Inertia Ratio [%]             |  |
| Minimum Identified Moment of Inertia Ratio [%]             | Un089                         | Minimum Identified Moment of Inertia Ratio [%]             |  |
| Number of Serial Encoder Communications Errors [times]     | Un104                         | Number of Serial Encoder Communications Errors [times]     |  |
| Settling Time [0.1 ms]                                     | Un105                         | Settling Time [0.1 ms]                                     |  |
| Amount of Overshoot [reference units]                      | Un106                         | Amount of Overshoot [reference units]                      |  |
| Residual Vibration Frequency [0.1 Hz]                      | Un107                         | Residual Vibration Frequency [0.1 Hz]                      |  |
| Maximum Settling Time [0.1 ms]                             | Un108                         | Maximum Settling Time [0.1 ms]                             |  |
| Maximum Amount of Overshoot [reference units]              | Un109                         | Maximum Amount of Overshoot [reference units]              |  |
| Estimated Vibration [min-1]                                | Un10C                         | Estimated Vibration [min-1]                                |  |
| Margin until Regenerative Overload [0.01%]                 | Un13C                         | Margin until Regenerative Overload [0.01%]                 |  |
| Margin until Undervoltage [V]                              | Un13E                         | Margin until Undervoltage [V]                              |  |
| Margin until Overvoltage [V]                               | Un13F                         | Margin until Overvoltage [V]                               |  |
| Maximum Value of Accumulated Load Ratio [%]                | Un145                         | Maximum Value of Accumulated Load Ratio [%]                |  |
| Margin until Overload [0.01 %]                             | Un14E                         | Margin until Overload [0.01 %]                             |  |
| Temperature Margin until SERVOPACK Overheats [°C]          | Un173                         | Temperature Margin until SERVOPACK Overheats [°C]          |  |
| Temperature Margin until Servomotor Overheats [°C]         | Un174                         | Temperature Margin until Servomotor Overheats [°C]         |  |
| Encoder Power Supplied Time [100 ms]                       | Un177                         | Encoder Power Supplied Time [100 ms]                       |  |
| Encoder Power Supply Voltage [0.01 V]                      | Un17A                         | Encoder Power Supply Voltage [0.01 V]                      |  |
| Encoder Battery Voltage [0.1 V]                            | Un17B                         | Encoder Battery Voltage [0.1 V]                            |  |
| Motor Total Number of Rotations [100 rev]                  | Un181                         | Motor Total Number of Rotations [100 rev]                  |  |
| Maintenance Prediction Monitor - Bearings                  | Un183                         | Maintenance Prediction Monitor - Bearings                  |  |
| Maintenance Prediction Monitor - Oil Seal                  | Un184                         | Maintenance Prediction Monitor - Oil Seal                  |  |
| Motor Vibration in X-Axis Direction [0.0001 G]             | Un190                         | Motor Vibration in X-Axis Direction [0.0001 G]             |  |
| Motor Vibration in Y-Axis Direction [0.0001 G]             | Un191                         | Motor Vibration in Y-Axis Direction [0.0001 G]             |  |
| Motor Vibration in Z-Axis Direction [0.0001 G]             | Un192                         | Motor Vibration in Z-Axis Direction [0.0001 G]             |  |
| Motor Vibration XYZ Composite Value [0.0001 G]             | Un193                         | Motor Vibration XYZ Composite Value [0.0001 G]             |  |
| Maximum Motor Vibration [0.0001 G]                         | Un194                         | Maximum Motor Vibration [0.0001 G]                         |  |
| Σ-LINK II Response Data 1                                  | Un1A0                         | Σ-LINK II Response Data 1                                  |  |
| Σ-LINK II Response Data 2                                  | Un1A1                         | Σ-LINK II Response Data 2                                  |  |
| Σ-LINK II Response Data 3                                  | Un1A2                         | Σ-LINK II Response Data 3                                  |  |
| Σ-LINK II Response Data 4                                  | Un1A3                         | Σ-LINK II Response Data 4                                  |  |
| Σ-LINK II Response Data 5                                  | Un1A4                         | Σ-LINK II Response Data 5                                  |  |
| Σ-LINK II Response Data 6                                  | Un1A5                         | Σ-LINK II Response Data 6                                  |  |
| Σ-LINK II Response Data 7                                  | Un1A6                         | Σ-LINK II Response Data 7                                  |  |

Continued on next page.

18

| SigmaWin+ Button in [Menu] Window: [Monitor] - [Operation] | SERVOPACK |                           |  |
|------------------------------------------------------------|-----------|---------------------------|--|
| Name [Unit]                                                | Un No.    | Name [Unit]               |  |
| Σ-LINK II Response Data 8                                  | Un1A7     | Σ-LINK II Response Data 8 |  |
| Σ-LINK II Command Data 1                                   | Un1C0     | Σ-LINK II Command Data 1  |  |
| Σ-LINK II Command Data 2                                   | Un1C1     | Σ-LINK II Command Data 2  |  |
| Σ-LINK II Command Data 3                                   | Un1C2     | Σ-LINK II Command Data 3  |  |
| Σ-LINK II Command Data 4                                   | Un1C3     | Σ-LINK II Command Data 4  |  |
| Σ-LINK II Data Status                                      | Un1CC     | Σ-LINK II Data Status     |  |
| Σ-LINK II Data Status                                      | Un1CD     | Σ-LINK II Data Status     |  |
| Σ-LINK II Data Status                                      | Un1CE     | Σ-LINK II Data Status     |  |
| Σ-LINK II Data Status                                      | Un1CF     | Σ-LINK II Data Status     |  |

<sup>\*1</sup> You can use Un010 to monitor the upper limit setting for the maximum motor speed or the upper limit setting for the encoder output resolution.

You can monitor the upper limit of Pn281 (Encoder Output Resolution) for the current Pn385 (Maximum Motor Speed), or you can monitor the upper limit of the maximum motor speed setting for the current encoder output resolution setting. Select which signal to monitor with Pn080 =  $n.X \square \square \square$  (Calculation Method for Maximum Speed or Encoder Output Pulses).

- If  $Pn080 = n.0 \square \square \square$ , Pn281 (Encoder Output Resolution) that can be set is displayed.
- If  $Pn080 = n.1 \square \square \square$ , Pn385 (Maximum Motor Speed) that can be set is displayed in mm/s.

| SigmaWin+<br>Button in [Menu] Window: [Monitor] - [Status] | SERVOPACK          |                                                                |  |
|------------------------------------------------------------|--------------------|----------------------------------------------------------------|--|
| Name [Unit]                                                | Un No. Name [Unit] |                                                                |  |
| Active Gain Monitor                                        | Un014              | Active Gain Monitor (gain settings 1 = 1, gain settings 2 = 2) |  |
| Safety I/O Signal Monitor                                  | Un015              | Safety I/O Signal Monitor                                      |  |

| SigmaWin+<br>Button in [Menu] Window: [Monitor] - [I/O] | SERVOPACK |                                          |
|---------------------------------------------------------|-----------|------------------------------------------|
| Name [Unit]                                             | Un No.    | Name [Unit]                              |
| Input Signal Monitor                                    | Un005     | Input Signal Monitor                     |
| Output Signal Monitor                                   | Un006     | Output Signal Monitor                    |
| Σ-LINK II Sequence Input Signal Monitor                 | Un1C8     | Σ-LINK II Sequence Input Signal Monitor  |
| Σ-LINK II Sequence Output Signal Monitor                | Un1CA     | Σ-LINK II Sequence Output Signal Monitor |

| SigmaWin+ Button in [Menu] Window: [Service Life]             | SERVOPACK |                                                   |
|---------------------------------------------------------------|-----------|---------------------------------------------------|
| Name [Unit]                                                   | Un No.    | Name [Unit]                                       |
| Installation Environment Monitor - SERVOPACK                  | Un025     | SERVOPACK Installation Environment Monitor [%]    |
| Installation Environment Monitor – Servomotor */              | Un026     | Servomotor Installation Environment Monitor [%]   |
| Service Life Prediction Monitor – Built-in Fan                | Un027     | Built-in Fan Remaining Life Ratio [%]             |
| Service Life Prediction Monitor – Capacitor                   | Un028     | Capacitor Remaining Life Ratio [%]                |
| Service Life Prediction Monitor – Surge Prevention<br>Circuit | Un029     | Surge Prevention Circuit Remaining Life Ratio [%] |
| Service Life Prediction Monitor – Dynamic Brake Circuit       | Un02A     | Dynamic Brake Circuit Remaining Life Ratio [%]    |
| Maintenance Prediction Monitor - Bearings                     | Un183     | Maintenance Prediction Monitor - Bearings         |
| Maintenance Prediction Monitor - Oil Seal                     | Un184     | Maintenance Prediction Monitor - Oil Seal         |

- \*1 This applies to the following motors. The display will show 0 for all other models.
  - SGMXJ, SGMXA, SGMXP, SGMXG, SGM7M, SGM7D, SGM7E, SGM7F

| SigmaWin+ Button in [Menu] Window: [Product Information] | SERVOPACK |                                                                              |
|----------------------------------------------------------|-----------|------------------------------------------------------------------------------|
| Name [Unit]                                              | Un No.    | Name [Unit]                                                                  |
| W. D. L.                                                 | Un084     | Linear Encoder Pitch (Scale pitch = $Un084 \times 10^{Un085}$ [pm])          |
| Motor - Resolution                                       | Un085     | Linear Encoder Pitch Exponent (Scale pitch = $Un084 \times 10^{Un085}$ [pm]) |

| SigmaWin+ Button in [Menu] Window: [Trace] | SERVOPACK |                         |
|--------------------------------------------|-----------|-------------------------|
| Name [Unit]                                | Un No.    | Name [Unit]             |
| Main Circuit DC Voltage                    | Un023     | Main Circuit DC Voltage |

The following Un numbers are not displayed as monitors in SigmaWin+.

| SERVOPACK          |                                          |  |  |
|--------------------|------------------------------------------|--|--|
| Un No. Name [Unit] |                                          |  |  |
| Un011              | Polarity Sensor Signal Monitor           |  |  |
| Un020              | Motor Rated Speed [min <sup>-1</sup> ]   |  |  |
| Un021              | Maximum Motor Speed [min <sup>-1</sup> ] |  |  |

#### current gain level setting .......422 Index Cyclic Sync Torque Mode......571 Cyclic Synchronous Position Mode......563, 633 Α DC mode......547–548 wiring example......121–122 AC power supply input DC reactors detecting errors in HWBB signal......528 alarm reset possibility......652 ALM ......220 ALM (Servo Alarm Output) signal .......220 diagnostic tool .......444 digital I/O signals......642 digital inputs/outputs......573, 642 Digital Outputs (60FEh)......642 DINT......540 autotuning without a host reference......349 dynamic brake applied......188 EDM1.....531 replacing the battery......649 EDM1 (external device monitor)......531 emergency message ......550 /CLT......245 event event cycle.......599 synchronization event ......547 example of PDO data exchange timing in DC mode .......548 external torque limits ......242 Fault Reaction Option Code (605Eh)......618 connecting a safety function device......535

Feedforward......359

FG .......112, 137

| first rotational coordinate                                   | L                                                                         |      |
|---------------------------------------------------------------|---------------------------------------------------------------------------|------|
| FMMU                                                          | last rotational coordinate                                                | 84   |
| Following Error Actual Value (60F4h)                          | LED indicator                                                             | 73   |
| Following Error Time Out (6066h)                              | line driver output circuit                                                | 42   |
| Following Error Window (6065h)                                | linear encoder                                                            |      |
| forcing the motor to stop                                     | connection example1                                                       | 28   |
| forward direction                                             | feedback resolution                                                       |      |
| free-run mode                                                 | setting scale pitch1                                                      |      |
| friction compensation359, 418                                 | linear servomotor                                                         |      |
| fully-closed system482                                        | list of alarms6.                                                          |      |
|                                                               | list of parameters                                                        |      |
| G                                                             | list of warnings                                                          |      |
| Gain Switching415                                             | load level                                                                |      |
| Gr.1 alarm                                                    | 1044 10401                                                                |      |
| Gr.2 alarm                                                    | M                                                                         |      |
| gravity compensation                                          | mailbox                                                                   | 73   |
| grounding111                                                  | main circuit cable.                                                       |      |
|                                                               | manual tuning4                                                            |      |
| Н                                                             | Manufacturer interpolation data configuration for 1st profile             |      |
| Halt Option Code (605Dh)617                                   | (2730h)                                                                   | :28  |
| hard wire base block (HWBB)525–526                            | Manufacturer Interpolation Data Configuration for 2 <sup>nd</sup> Profile | _ (  |
| detecting errors in HWBB signal                               | (2731h)                                                                   | 20   |
| HWBB signal specifications                                    | Manufacturer Serial Number (F9F0h)                                        |      |
| recovery method                                               | Max Profile Velocity (607Fh)                                              |      |
| holding brake                                                 | Max. Torque (6072h)                                                       |      |
| Home Offset (607Ch)                                           | maximum motor speed                                                       |      |
| homing                                                        | mechanical analysis                                                       |      |
| Homing Acceleration (609Ah)                                   | mode switching (changing between P and PI control)4                       |      |
| Homing Method (6098h)                                         | modes of operation                                                        |      |
| homing mode                                                   | Modes of Operation (6060h)                                                |      |
| Homing Speeds (6099h)                                         | Modes of Operation Display (6061h)                                        |      |
| HWBB                                                          | moment of inertia estimation with a host reference3-                      |      |
| HWBB signal specifications                                    | moment of inertia estimation with a host reference                        |      |
| HWBB state                                                    | momentary power interruption hold time                                    |      |
| recovery method                                               | monitor factor                                                            |      |
| /HWBB1145                                                     |                                                                           |      |
| /HWBB2                                                        | Motor Catalogue Number (6403h)                                            | ,44  |
| /IIW DD2143                                                   | motor current detection signal                                            |      |
| I                                                             | automatic adjustment                                                      |      |
| I-P control                                                   | manual adjustment                                                         |      |
| input signal                                                  | offset adjustment                                                         |      |
| allocation216                                                 | motor direction setting                                                   | 0.   |
| internal block diagram                                        |                                                                           |      |
| internal torque limits                                        | Motor Rated Torque (6076h)                                                |      |
| interpolation                                                 | multiturn limit                                                           |      |
| interpolation position reference                              | multiturn limit disagreement                                              | . د. |
| interpolation position reference cycle                        | N                                                                         |      |
| I/O signals                                                   |                                                                           |      |
| I/O signal                                                    | N-CL                                                                      |      |
| allocation                                                    | /N-CL (Reverse External Torque Limit Input) signal2                       |      |
|                                                               | N-OT                                                                      |      |
| I/O signals function                                          | N-OT (Reverse Drive Prohibit Input) signal                                |      |
| monitor                                                       | /NEAR                                                                     |      |
| name                                                          | /NEAR (Near Output) signal                                                |      |
|                                                               | Negative Torque Limit Value (60E1h)                                       |      |
| Wiring example                                                | noise filter wiring and connection precautions                            |      |
| INT                                                           | noise filters                                                             |      |
| Interpolated Position Mode                                    | notch filters4                                                            | 32   |
| Interpolation data read/write pointer position monitor        | 0                                                                         |      |
| (2741h)                                                       | 0                                                                         |      |
| Interpolation Data Record (60C1h)                             | object directory5                                                         |      |
| Interpolation data record for 1st profile (27C0h)             | object directory list5                                                    |      |
| Interpolation data record for 2 <sup>nd</sup> profile (27C1h) | object list                                                               |      |
| Interpolation profile select (2732h)                          | operation for momentary power interruptions                               |      |
| Interpolation Submode Select (60C0h)                          | operation monitor4                                                        |      |
| Interpolation Time Period (60C2h)                             | origin search                                                             |      |
| I                                                             | Output distance setting (277Bh)6                                          |      |
| J                                                             | output function                                                           |      |
| jogging operation                                             | Output function setting (2779h)60                                         | 09   |

| output phase form                                      |          | Profile Torque Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 570 |
|--------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| output position                                        |          | Profile Velocity (6081h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| Output position correction setting (277Ch)             |          | Profile Velocity Mode56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| Output position setting (2778h)                        | 609      | program jogging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| output signal                                          | 210      | operation pattern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 301 |
| allocation                                             |          | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| Output time setting (277Ah)                            |          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 621 |
| overheat protection                                    |          | Quick Stop command                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| overheat protection input                              |          | quick stop Deceleration (6063h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| overload alarm                                         | 191      | Quick Stop Option Code (605Ah)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| overload detection level motor                         | 101      | Quick Stop Option Code (605An)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 010 |
| overload warnings                                      |          | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| overtravel                                             |          | reactor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| alarm                                                  |          | DC reactor connection terminal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 115 |
| behavior selection after overtravel release            |          | reactors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| warning                                                |          | wiring DC reactors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 125 |
| warming                                                |          | Receive PDO Mapping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| P                                                      |          | reception event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| P control                                              | 435      | reference unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 193 |
| /P-CL                                                  | 242      | regenerative resistor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 207 |
| /P-CL (Forward External Torque Limit Input) signal .   | 242      | connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 124 |
| P-OT                                                   |          | regenerative resistor capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| P-OT (Forward Drive Prohibit Input) signal             | 178      | resetting the option module configuration error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| PAO                                                    | 233, 487 | reverse direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 486 |
| parameter                                              |          | risk assessment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| classification                                         | 154      | rotary servomotor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| initialize settings                                    | 160      | rotational coordinate system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| parameters for numeric settings                        |          | block diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 283 |
| parameters for selecting functions                     |          | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| setting procedure                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 222 |
| write prohibition setting                              |          | /S-RDY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| parameter recording table                              |          | /S-RDY (Servo Ready Output) signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 222 |
| PBO                                                    |          | safety function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 522 |
| PCO                                                    |          | connection example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| PDO mapping                                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| default setting                                        |          | safety functionssafety function input circuits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| object directory list                                  |          | safety function signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| setting procedure                                      |          | Safety Functions Safety |     |
| PDO mapping objects                                    |          | scale pitch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| photocoupler input circuitsphotocoupler output circuit |          | selecting the phase sequence for a linear servomotor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|                                                        |          | selecting torque limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| physical layerPI control                               |          | self-configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| polarity detection                                     |          | SEMI F47 function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| polarity sensor                                        |          | Sensing Data Monitor (2770h, 2771h, 2772h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| Position Actual Internal Value (6063h)                 |          | serial converter unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| Position Actual Value (6064h)                          |          | servo drive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| Position Demand Internal Value (60FCh)                 |          | servo gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 429 |
| Position Demand Value (6062h)                          |          | servo lock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| position integral                                      |          | servo OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30  |
| position loop gain                                     |          | servo ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30  |
| Position Offset (60B0h)                                |          | servo system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30  |
| Position Option Code (60F2h)                           |          | servomotor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30  |
| Position Range Limit (607Bh)                           |          | servomotor stopping method for alarms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 189 |
| position reference unit                                |          | servomotor stopping method for servo OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 188 |
| Position User Unit (2701h)                             |          | SERVOPACK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| Position Window (6067h)                                |          | inspections and part replacement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| Position Window Time (6068h)                           |          | part name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| positioning completion width                           |          | ratings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| Positive Torque Limit Value (60E0h)                    |          | specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| Precautions for Safety Functions                       |          | status display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| preventative maintenance items                         |          | setting the origin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| process data                                           | 73       | setting the position deviation overflow alarm level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 320 |
| Profile Acceleration (6083h)                           | 621      | setting the position deviation overflow alarm level at servo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 222 |
| Profile Deceleration (6084h)                           |          | ŌN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| profile position mode                                  | 556, 620 | setup parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                        |          | SG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13/ |

| Shutdown Option Code (605Bh)                 |       |
|----------------------------------------------|-------|
| SigmaWin+                                    | . 30  |
| signal allocation                            | 214   |
| single-phase, 200-VAC power supply input     |       |
| setting                                      | 163   |
| wiring example                               | 121   |
| sink circuits                                | 141   |
| SINT                                         | 540   |
| Slave Information IF                         | . 73  |
| SLO1 to SLO4                                 |       |
| SO1 to SO3                                   | 516   |
| soft start                                   | 287   |
| software limit                               | 240   |
| Software Position Limit (607Dh)              |       |
| software reset                               |       |
| source circuits                              |       |
| speed detection method selection             |       |
| speed limit during torque control            |       |
| speed loop gain                              |       |
| speed loop integral time constant            |       |
| speed reference                              | 731   |
| filter                                       | 288   |
| speed reference unit                         |       |
| spring opener                                |       |
| state machine control commands               |       |
|                                              |       |
| status monitor                               |       |
| Statusword (6041h)                           |       |
| stopping by applying the dynamic brake       |       |
| storage humidity                             |       |
| storage temperature                          |       |
| STRING                                       |       |
| Supported Drive Modes (6502h)                |       |
| surrounding air humidity                     |       |
| surrounding air temperature                  |       |
| Switching Condition A                        |       |
| Sync Error Settings (10F1h)                  |       |
| sync manager communication objects           |       |
| Sync Manager Communication Type (1C00h)      |       |
| Sync Manager PDO Assignment (1C10h to 1C13h) |       |
| Sync Manager Synchronization (1C32h, 1C33h)  |       |
| SYNC0 event                                  |       |
| synchronization event                        | 547   |
| synchronization with distributed clocks      | 547   |
| SyncManager                                  | . 73  |
|                                              |       |
| T                                            |       |
| Target Position (607Ah)                      | 620   |
| Target Torque (6071h)                        | 636   |
| Target Velocity (60FFh)                      | 635   |
| test without a motor                         | 308   |
| /TGON                                        |       |
| /TGON (Rotation Detection Output) signal     |       |
| TH                                           |       |
| three-phase, 200-VAC power supply input      |       |
| setting                                      |       |
| wiring example                               |       |
| Torque Actual Value (6077h)                  |       |
| Torque Demand Value (6074h)                  |       |
| torque limit                                 |       |
| torque limit function                        |       |
| torque limits                                |       |
| Torque Offset (60B2h)                        |       |
| torque efference filter                      |       |
| torque reference unit                        |       |
| Torque Slope (6087h)                         |       |
| Torque User Unit (2704h)                     |       |
| touch probe                                  |       |
|                                              | 11.17 |

| touch probetouch probe                             | . 574 |
|----------------------------------------------------|-------|
| touch probe                                        |       |
| example of execution procedure                     | . 57: |
| Touch Probe 1 Negative Edge (60BBh)                | . 640 |
| Touch Probe 1 Position Edge (60BAh)                | . 640 |
| Touch Probe 2 Negative Edge (60BDh)                | . 64  |
| Touch Probe 2 Position Edge (60BCh)                |       |
| Touch Probe Function (60B8h)                       |       |
| Touch Probe Status (60B9h)                         |       |
| Transmit PDO Mapping                               |       |
| trial operation                                    |       |
| trial operation with EtherCAT (CoE) communications | . 298 |
| trigger event                                      |       |
| triggers at preset positions                       |       |
| outline                                            | . 274 |
| troubleshooting alarms                             |       |
| troubleshooting warnings                           |       |
| tuning parameter                                   |       |
| Tuning-less Function.                              |       |
| tuning-less function                               | . 52  |
| load level                                         | 326   |
| response level                                     |       |
| response level                                     | . 520 |
| U                                                  |       |
| UDINT                                              | 540   |
| UINT                                               |       |
| USINT                                              |       |
|                                                    |       |
| V                                                  |       |
| /V-CMP                                             | . 223 |
| /V-CMP (Speed Coincidence Detection Output) signal |       |
| Velocity Actual Value (606Ch)                      |       |
| Velocity Demand Value (606Bh)                      |       |
| Velocity Offset (60B1h)                            |       |
| Velocity User Unit (2702h)                         |       |
| Velocity Window (606Dh)                            |       |
| Velocity Window Time (606Eh)                       |       |
| vibration detection level iInitialization          |       |
| vibration detection level setting                  |       |
| vibration suppression                              |       |
| /VLT                                               |       |
| /VLT (Speed Limit Detection Output) signal         |       |
| 7 VLI (Speed Liniit Detection Output) signar       | . 22  |
| W                                                  |       |
| /WARN                                              | 22    |
| /WARN (Warning Output) signal                      |       |
| writing parameters                                 |       |
| P. P           |       |
| Z                                                  |       |
| zero clamping                                      | . 188 |
| zero-speed stopping                                |       |
| 1 11 0                                             |       |

## **Revision History**

The date of publication, revision code, revision number, and web revision number are given at the bottom right of the back cover. Refer to the following example.

Revision number

Revision code — Web revision number

MANUAL NO. SIEP C710812 02A <0>-0

Published in Japan August 2021

— Date of publication

| Date of<br>Publication | Rev.<br>Code | Rev. No. | Web Rev.<br>No. | Section                                | Revised Contents                                                                                |
|------------------------|--------------|----------|-----------------|----------------------------------------|-------------------------------------------------------------------------------------------------|
| February 2023          | D            | <3>      | 0               | 8.8.5                                  | Deletion: Operating procedure for multi-axis simultaneous tuning                                |
|                        |              |          |                 | Chapters 14, 15, 17                    | Revision: Information on the touch probe                                                        |
|                        |              |          |                 | All chapters                           | Partly revised.                                                                                 |
|                        |              |          |                 | Back cover                             | Revision: Address                                                                               |
| April 2022             | С            | <2>      | 0               | All chapters                           | Addition: Information on SGDXS-590A, and -780A                                                  |
|                        |              |          |                 |                                        | Addition: Information on SGMXA-15 to -70, SGMXP, SGMXG-03, -05, -1A, -1E, and SGM7M             |
|                        |              |          |                 |                                        | Partly revised.                                                                                 |
|                        |              |          |                 | 6.15, 15.5.7,<br>15.5.10 to<br>15.5.14 | Addition: Triggers at preset positions                                                          |
| December 2021          | В            | <1>      | 0               | 5.10.4                                 | Addition: Overtravel alarms                                                                     |
|                        |              |          |                 | 6.15                                   | Addition: Rotational coordinate system                                                          |
|                        |              |          |                 | 8.5.4                                  | Addition: When the travel distance is less than 0.25 rotations (2.5 mm for a linear servomotor) |
|                        |              |          |                 | 8.8.5                                  | Addition: Operating procedure for multi-axis simultaneous tuning                                |
|                        |              |          |                 | 8.12                                   | Addition: Speed ripple compensation                                                             |
|                        |              |          |                 | 11.8                                   | Addition: Changing detection conditions of alarms related to Σ-LINK II                          |
|                        |              |          |                 | All chapters                           | Partly revised.                                                                                 |
| August 2021            | A            | <0>      | 0               | -                                      | First edition                                                                                   |

### Σ-X-Series AC Servo Drive

# Σ-XS SERVOPACK with EtherCAT Communications References

# **Product Manual**

#### IRUMA BUSINESS CENTER (SOLUTION CENTER)

480, Kamifujisawa, Iruma, Saitama, 358-8555, Japar Phone: +81-4-2962-5151 Fax: +81-4-2962-6138 www.yaskawa.co.jp

#### YASKAWA AMERICA, INC.

2121, Norman Drive South, Waukegan, IL 60085, U.S.A. Phone: +1-800-YASKAWA (927-5292) or +1-847-887-7000 Fax: +1-847-887-7310 www.yaskawa.com

#### YASKAWA ELÉTRICO DO BRASIL LTDA.

777, Avenida Piraporinha, Diadema, São Paulo, 09950-000, Brasil Phone: +55-11-3585-1100 Fax: +55-11-3585-1187 www.yaskawa.com.br

#### YASKAWA EUROPE GmbH

Hauptstraβe 185, 65760 Eschborn, Germany Phone: +49-6196-569-300 Fax: +49-6196-569-398 www.yaskawa.eu.com E-mail: info@yaskawa.eu.com

#### YASKAWA ELECTRIC KOREA CORPORATION

18F, Hi Investment & Securities Building, 66 Yeoui-daero, Yeongdeungpo-gu, Seoul, 07325, Korea Phone: +82-2-784-7844 Fax: +82-2-784-8495 www.yaskawa.co.kr

YASKAWA ASIA PACIFIC PTE. LTD. 30A, Kallang Place, #06-01, 339213, Singapore Phone: +65-6282-3003 Fax: +65-6289-3003 www.yaskawa.com.sg

YASKAWA ELECTRIC (THAILAND) CO., LTD.
59, 1F-5F, Flourish Building, Soi Ratchadapisek 18, Ratchadapisek Road, Huaykwang, Bangkok, 10310, Thailand Phone: +66-2-017-0099 Fax: +66-2-017-0799 www.yaskawa.co.th

### YASKAWA ELECTRIC (CHINA) CO., LTD.

22F, Link Square 1, No.222, Hubin Road, Shanghai, 200021, China Phone: +86-21-5385-2200 Fax: +86-21-5385-3299 www.vaskawa.com.cn

YASKAWA ELECTRIC (CHINA) CO., LTD. BEIJING OFFICE Room 1011, Tower W3 Oriental Plaza, No.1, East Chang An Avenue, Dong Cheng District, Beijing, 100738, China Phone: +86-10-8518-4086 Fax: +86-10-8518-4082

### YASKAWA ELECTRIC TAIWAN CORPORATION

12F, No. 207, Section 3, Beishin Road, Shindian District, New Taipei City 23143, Taiwan Phone: +886-2-8913-1333 Fax: +886-2-8913-1513 or +886-2-8913-1519 www.vaskawa.com.tw



YASKAWA ELECTRIC CORPORATION

In the event that the end user of this product is to be the military and said product is to be employed in any weapons systems or the manufacture thereof, the export will fall under the relevant regulations as stipulated in the Foreign Exchange and Foreign Trade Regulations. Therefore, be sure to follow all procedures and submit all relevant documentation according to any and all rules, regulations and

Specifications are subject to change without notice for ongoing product modifications and

© 2021 YASKAWA Electric Corporation