

How-To-Do

Управление сервоприводом Sigma-5/7 через сеть EtherCAT

Базируется на руководстве OPL_SP7-LIB | SW90MS0MA V10.008 | en | 17-46

СОДЕРЖАНИЕ

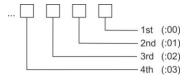
1.	Управление Sigma-5 через сеть EtherCAT	3
1.1.	Обзор	3
1.2.	Установка параметров сервопривода	3
1.3.	Использование VIPA SPEED7 Studio.	4
1.4.	Использование Siemens SIMATIC Manager	18
1.5.	Специальные блоки для управления приводом	37
2.	Применение Sigma-7S c EtherCAT	39
2.1.	Обзор	39
2.2.	Установка параметров сервопривода	39
2.3.	Использование VIPA SPEED7 Studio.	40
2.4.	Использование Siemens SIMATIC Manager	56
2.5.	Специальные блоки для управления приводом	75
3.	Применение Sigma-7W c EtherCAT	77
3.1.	Обзор	77
3.2.	Установка параметров сервопривода	77
3.3.	Использование VIPA SPEED7 Studio.	79
3.4.	Использование Siemens SIMATIC Manager	96
3.5.	Специальные блоки для управления приводом	116
4.	Блоки для управления осью	119
4.1.	Обзор	119
4.2.	Простые задачи управления движением	122
4.3.	Комплексные задачи управления движением – блоки PLCopen	126
5.	ErrorID – Дополнительная информация об ошибке	190
6.	Состояния оси и поведение выходов	197
6.1.	Состояния	197
6.2.	Смена заданий на перемещение оси	198
6.3.	Поведение входов и выходов	200

Управление Sigma-5 через EtherCAT > Установка параметров сервопривода

1. Управление Sigma-5 через сеть EtherCAT

1.1. Обзор

Предпосылки


- SPEED7 Studio с версии V1.6.1 ипи
- Siemens STEP7 версии V5.5 SP2, утилита SPEED7 EtherCAT Manager и библиотека Simple Motion Control
- Процессорный модуль 015-CEFNR00 со встроенным контроллером EtherCAT
- Сервопривод Sigma-5 с опциональной платой EtherCAT

Последовательность конфигурирования

- 1. Установка параметров сервопривода
 - Установка параметров осуществляется с помощью программного обеспечения Sigma Win+.
- 2. Конфигурирование аппаратных средств в среде VIPA SPEED7 Studio или Siemens SIMATIC Manager.
 - Конфигурирование модуля ЦПУ с фунционалом контроллера EtherCAT
 - Конфигурирование сервопривода Sigma-5 с платой EtherCAT.
 - Настройка соединения EtherCAT с помощью SPEED7 EtherCAT Manager.
- 3. Программирование в среде VIPA SPEED7 Studio или Siemens SIMATIC Manager.
 - Параметрирование блока *Init*, служащего для конфигурирования оси.
 - Параметрирование блока Kernel, используемого для связи с осью
 - Параметрирование блоков для реализации алгоритма движения.

1.2. Установка параметров сервопривода

Разряды управления

ВНИМАНИЕ!

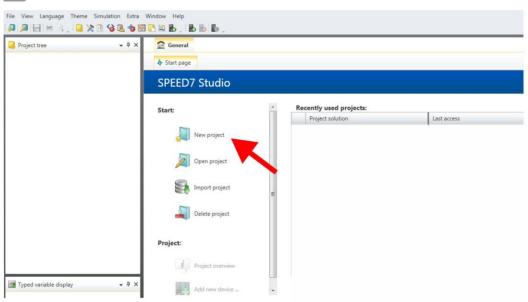
Перед вводом в эксплуатацию необходимо адаптировать сервопривод применительно к решаемой задаче с помощью программного обеспечения *Sigma Win+!* Дополнительную информацию можно найти в руководстве пользователя для используемого сервопривода.

Эти параметры должны быть заданы с помощью ПО Sigma Win+ для обеспечения их соответствия библиотеке Simple Motion Control.

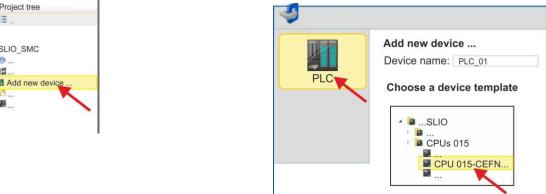
Sigma-5 (20-рязрядный энкодер)

Параметр Servopack	Адрес:разряд	Наименование	Значение
Pn205	(2205h)	Уставка многооборотного предела	65535
Pn20E	(220Eh)	Электронный коэффициент передачи (числитель)	1
Pn210	(2210h)	Электронный коэффициент передачи (знаменатель)	1
PnB02	(2701h:01)	Пользовательская единица позиции (числитель)	1
PnB04	(2701h:02)	Пользовательская единица позиции (знаменатель)	1
PnB06	(2702h:01)	Пользовательская единица скорости (числитель)	1
PnB08	(2702h:02)	Пользовательская единица скорости (знаменатель)	1

Параметр Servopack	Адрес:разряд	Наименование	Значение
PnB0A	(2703h:01)	Пользовательская единица ускорения (числитель)	1
PnB0C	(2703h:02)	Пользовательская единица ускорения (знаменатель)	1


Использование VIPA SPEED7 Studio 1.3.

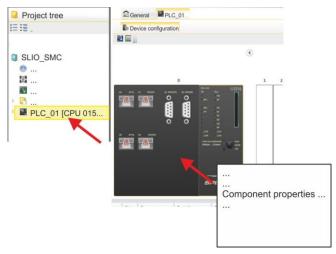
1.3.1. Конфигурирование аппаратных средств


Добавление модуля ЦПУ в проект

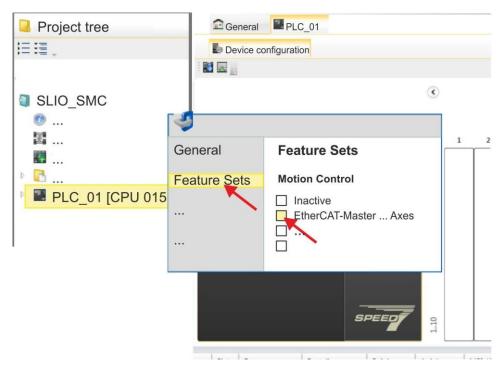
Используйте для конфигурирования SPEED7 Studio V1.6.1 и выше.

1. ▶ Запустите SPEED7 Studio.

- 2. Создайте новый проект на стартовой странице с помощью команды 'New project'.
 - ⇒ Новый проект создастся и будет отображаться в окне 'Devices and networking'.
- 3. N Кликните в дереве проекта Project tree по 'Add new device ...'.



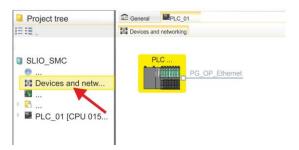
- ⇒ Откроется диалоговое окно выбора устройства.
- Выберите из 'Device templates' используемый процессорный модуль серии SLIO CPU 015-CEFNR00 и кликните по [OK].
 - ⇒ ЦПУ будет добавлен в раздел 'Devices and networking' и откроется окно 'Device configuration'.



Активирование функций управления движением

- 1. ▶ Кликните по ЦПУ и выберите 'Context menu → Components properties'.
 - ⇒ Откроется диалоговое окно свойств ЦПУ.

- **2.** Кликните по 'Feature Sets' и активируйте в 'Motion Control' параметр 'EtherCAT- Master... Axes'. Число осей не имеет значения в этом примере.
- **3.** Подтвердите ввод, кликнув по [OK].
 - ⇒Функции управления движением теперь доступны для использования в проекте.


ВНИМАНИЕ!

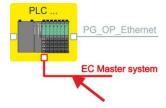
Обратите внимание, что всякий раз при изменении настройки набора функций система удаляет систему промышленной сети EtherCAT вместе с конфигурацией управления движением из проекта!

Конфигурирование порта Ethernet PG/OP

- 1. Упликните в дереве проекта Project tree по 'Devices and networking'.
 - ⇒ Вы получите графическое представление используемого ЦПУ.

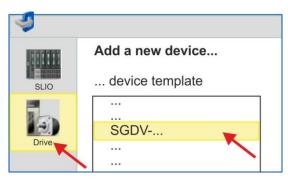
- 2. ▶ Кликните по изображению сети 'PG_OP_Ethernet'.
- 3. ▶ Выберите 'Context menu → Interface properties'.
 - ⇒ Откроется диалоговое окно. В нем необходимо ввести IP-адрес для порта Ethernet PG/OP. Предварительно необходимо получить у администратора сети допустимый IP-адрес.
- **4.** Подтвердите нажатием по [OK].
 - ⇒ Данные IP-адреса сохранятся в проекте и будут отображены в окне 'Local components' раздела 'Devices and networking'.

После загрузки проекта в используемый ЦПУ можно получить доступ к устройству через порт Ethernet PG/OP с использованием заданного для него IP-адреса.


Установка ESI-файла

Для того, чтобы привод Sigma-5 с интерфейсом EtherCAT мог быть настроен с помощью SPEED7 EtherCAT Manager, необходимо предварительно установить соответствующий файл ESI. Обычно SPEED7 Studio поставляется с текущими файлами ESI, поэтому этот этап может быть пропущен. Если файл ESI уже устарел, то актуальную его версию для сервопривода Sigma-5 с EtherCAT можно найти на сайте www.yaskawa.eu.com в разделе 'Service → Drives & Motion Software'.

- **1.** Загрузите файл ESI для используемого привода. При необходмости распакуйте его.
- 3. Откройте соответсвующее диалоговое окно, кликнув по 'Extra → Install device description (EtherCAT ESI)'.
- 4. В 'Source path' укажите нужный файл ESI и установите его, кликнув по [Install].
 - \Rightarrow Теперь устройство, описание которого содержит файл ESI, доступно для использования.


Добавление сервопривода *Sigma-5*

- 1. У Кликните в дереве проекта Project tree по 'Devices and networking'.
- 2. ▶ Кликните по 'EC-Mastersystem' и выберите 'Context menu → Add new device'.

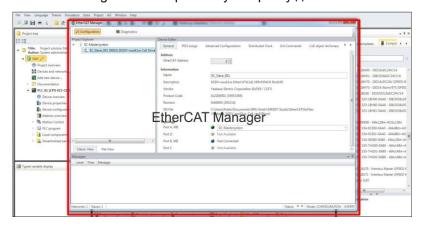
⇒ Откроется шаблон для выбора устройства EtherCAT.

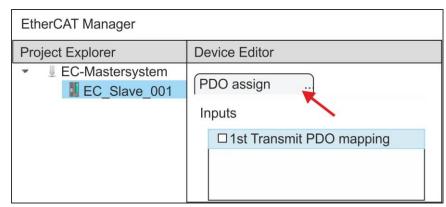
- 3. ь Выберите сервопривод Sigma-5:
 - SGDV-xxxxE5...
 - SGDV-xxxxE1...

Подтвердите выбор, кликнув по [OK]. Если нужный привод отсутствует в шаблоне, необходимо установить соответсвующий файл ESI, как описано выше.

⇒ Привод Sigma-5 подключен к сети EC-Mastersystem.

Конфигурирование сервопривода *Sigma-5*

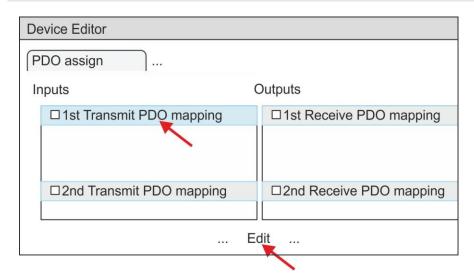

1. ▶ Кликните по 'EC-Mastersystem' и выберите 'Context menu → Bus system properties (expert)'.

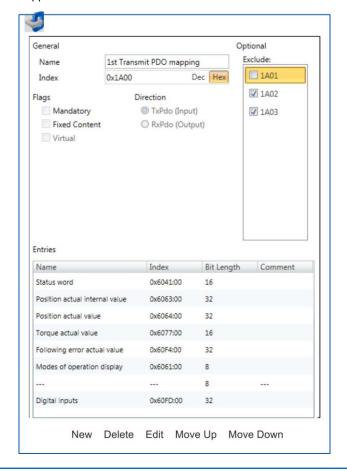

Возможность редактировать PDO есть только в 'Expert mode'! В противном случае кнопки скрыты.

⇒ Запускается SPEED7 EtherCAT Manager. С его помощью настраивается связь через EtherCAT с сервоприводом Sigma-5.

Для получения дополнительной информации об использовании SPEED7 EtherCAT Manager см. интерактивную справку для SPEED7 Studio.

2. В SPEED7 EtherCAT Manager кликните по ведомому устройству и в 'Device editor' выберите вкладку 'PDO assign'.


⇒В этом диалоговом окне отображается список всех PDO.


3. Выбрав соответствующее отображение PDO, затем можно перейти к редактированию PDO с помощью [Edit]. Выберите отображение '1st Transmit PDO mapping' и кликните по [Edit].

Обратите внимание, что из-за настроек по умолчанию некоторые PDO нельзя редактировать. Путем деактивации уже активированных PDO можно обеспечить возможность редактирования заблокированных PDO.

⇒ В ответ откроется диалоговое окно 'Edit PDO'. Пожалуйста, проверьте перечисленные там настройки PDO и при необходимости измените их нужным образом. Также обратите внимание на порядок записей в списке 'Entries' и дополните их соответственно.

Для редактирования содержимого списка *'Entries'* доступны следующие функции:

New

- Позволяет создать новую запись в диалоговом окне, выбрав соответствующую запись из каталога объектов 'CoE object dictionary' и сделать свои настройки. Создание записи подтверждается с помощью [OK], а сама запись включается в список.
- Delete
 - Позволяет удалить выбранную запись.
- Edit
 - Позволяет редактировать общие данные записи.
- Move Up/Down
 - Позволяет перемещать выбранную запись вверх или вниз по списку.

4. Выполните следующие настройки:

Inputs: 1st Transmit PDO 0x1A00

- General
 - Name: 1st Transmit PDO mapping
 - Index: 0x1A00
- Flags
 - Все отключено
- Direction
 - TxPdo (Input): активировано
- Exclude

Обратите внимание на эти параметры, в противном случае конфигурация PDO не может быть активирована одновременно!

- 1A01: деактивировано
- Entries

Name	Index	Bit length
Status word (Слово состояния)	0x6041:00	16 бит
Position actual internal value (внутреннее фактическое значение позиции)	0x6063:00	32 бита
Position actual value (Фактическое значение позиции)	0x6064:00	32 бита
Torque actual value (Фактическое значение момента)	0x6077:00	16 бит
Following error actual value (Фактическое значение ошибки рассогласования)	0x60F4:00	32 бита
Modes of operation display (Отображение режимов работы)	0x6061:00	8 бит
		8 бит
Digital inputs (Дискретные входы)	0x60FD:00	32 бита

5. Выберите отображение '2nd *Transmit PDO mapping*' и кликните по [Edit]. Выполните следующие настройки:

Inputs: 2nd Transmit PDO 0x1A01

- General
 - Name: 2nd Transmit PDO mapping
 - Index: 0x1A01
- Flags
 - Все отключено
- Direction
 - TxPdo (Input): активировано
- Exclude

Обратите внимание на эти параметры, в противном случае конфигурация PDO не может быть активирована одновременно!

- 1А00: деактивировано
- 1A02: деактивировано
- 1А03: деактивировано
- Entries

Name	Index	Bit length
Touch probe status (Состояние датчика касания)	0x60B9:00	16 бит
Touch probe 1 position value (Значение позиции датчика касания 1)	0x60BA:00	32 бита
Touch probe 2 position value (Значение позиции датчика касания 2)	0x60BC:00	32 бита
Velocity actual value (Фактическое значение скорости)	0x606C:00	32 бита

6. Выберите отображение *'1st Receive PDO mapping'* и кликните по [Edit]. Выполните следующие настройки:

Outputs: 1st Receive PDO 0x1600

- General
 - Name: 1st Receive PDO mapping
 - Index: 0x1600
- Flags
 - Все отключено
- Direction
 - RxPdo (Output): активировано
- Exclude

Обратите внимание на эти параметры, в противном случае конфигурация PDO не может быть активирована одновременно!

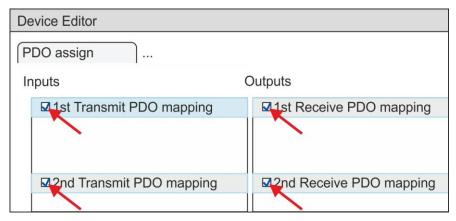
- 1601: деактивировано
- 1602: деактивировано
- 1603: деактивировано
- Entries

Name	Index	Bit length
Control word (Слово управления)	0x6040:00	16 бит
Target position (Целевая позиция)	0x607A:00	32 бита
Target velocity (Целевая скорость)	0x60FF:00	32 бита
Modes of operation (Режимы работы)	0x6060:00	8 бит
		8 бит
Touch probe function (Функция датчика касания)	0x60B8:00	16 бит

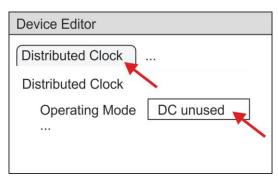
Закройте диалоговое окно 'Edit PDO' с помощью [OK].

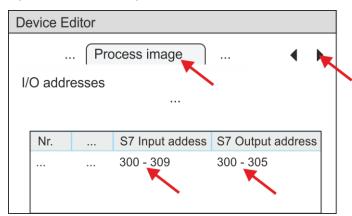
7. Выберите отображение '2nd *Receive PDO mapping*' и кликните по [Edit]. Выполните следующие настройки:

Outputs: 2nd Receive PDO 0x1601


- General
 - Name: 2nd Receive PDO mapping
 - Index: 0x1601
- Flags
 - Все отключено
- Direction
 - RxPdo (Output): активировано
- Exclude

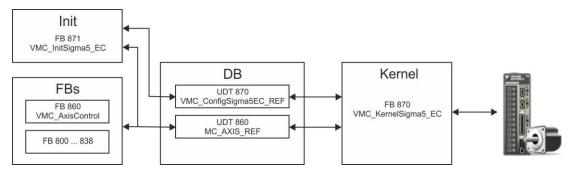
Обратите внимание на эти параметры, в противном случае конфигурация PDO не может быть активирована одновременно!


- 1600: деактивировано
- 1602: активировано
- 1603: активировано
- Entries
 - Profile velocity (профиль скорости): 0x6081:00 → 32 бита
 - Profile acceleration (профиль ускорения): 0x6083:00 → 32 бита
 - Profile deceleration (профиль замедления): 0x6084:00 → 32 бита


8. На вкладке *'PDO assign'* активируйте PDO 1 и 2 для входов и выходов. Все последующие PDO должны оставаться деактивированными. Если это невозможно, проверьте соответствующий PDO-параметр *'Exclude'*.

9. В 'Device Editor' утилиты SPEED7 EtherCAT Manager выберите вкладку 'Distributed clocks' и в ней задайте значение 'DC unused' для'Operating mode'.

- 10. В 'Device editor' с помощью клавиш со стрелкой выберите вкладку'Process image' и запишите следующие начальные адреса PDO для параметров блока FB 871 VMC_InitSigma5_EC:
 - "S7 Input address" → 'InputsStartAddressPDO'
 - 'S7 Output address' → 'OutputsStartAddressPDO'



11. При закрытии диалогового окна SPEED7 EtherCAT Manager с помощью [X], конфигурация передается в SPEED7 Studio.

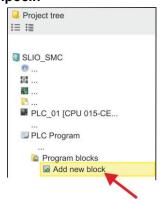
1.3.2. Прикладная программа

1.3.2.1. Структура программы

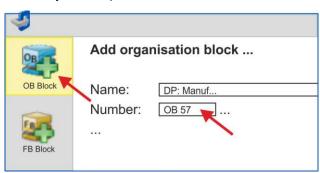
DB

Для каждой оси должен быть создан блок данных (*axis DB*), содержащий данные конфигурации и состояния. Блок данных состоит из следующих структур данных:

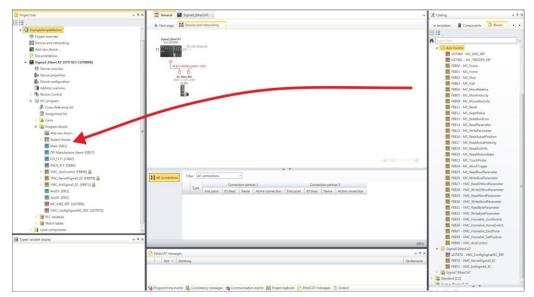
- UDT 870 VMC_ConfigSigma5EC_REF
 Структура данных описывает структуру конфигурации привода.
 Специфическая структура данных для Sigma-5 с EtherCAT.
- UDT 860 MC_AXIS_REF
 Структура данных описывает структуру параметров и данных о состоянии привода.


Универсальная структура данных для всех приводов и систем шин.

- FB 871 VMC_InitSigma5_EC
 - Блок инициализации (Init) используется для конфигурирования оси.
 - Специфический блок для Sigma-5 с EtherCAT.
 - Конфигурационные данные для инициализации должны храниться в блоке данных оси (*axis DB*).
- FB 870 VMC_KernelSigma5_EC
 - Этот основной (Kernel) блок связывается с приводом через соответствующий сетевой интерфейс, обрабатывает запросы пользователя и возвращает сообщения о состоянии.
 - Специфический блок для Sigma-5 с EtherCAT.
 - Обмен данными осуществляется с помощью блока данных оси (axis DB).
- FB 860 VMC AxisControl
 - Универсальный блок для всех приводов и систем шин.
 - Поддерживает простые команды движения и предоставляет все соответствующие сообщения о состоянии.
 - Обмен данными осуществляется с помощью блока данных оси (axis DB).
 - Управление движением оси и контроль ее состояния из системы визуализации могут быть реализованы через экземплярный блок данных.
 - В дополнение к FB 860 *VMC_AxisControl* возможно использование блоков *PLCopen.*
- FB 800 ... FB 838 *PLCopen*
 - Блоки PLCopen используются для программирования последовательности перемещений и запросов состояния.
 - Универсальные блоки для всех приводов и систем шин.



1.3.2.2. Программирование


Копирование блоков в проект

1. В менеджере проекта *Project tree* в разделе 'PLC program', 'Programming blocks' для используемого ЦПУ кликните по 'Add New block'.

- ⇒ В ответ откроется диалоговое окно 'Add block'.
- **2.** Выберите тип блока 'OB block' и последовательно добавьте блоки OB 57, OB 82 и OB 86 в свой проект.

- **3.** В закладке 'Catalog' откройте библиотеку 'Simple Motion Control' в разделе 'Blocks' и перетащите следующие блоки в раздел 'Program blocks' менеджера проекта Project tree:
 - Sigma-5 c EtherCAT:
 - UDT 870 VMC_ConfigSigma5EC_REF
 - FB 870 VMC_KernelSigma5_EC
 - FB 871 VMC_InitSigma5_EC
 - Axis Control
 - UDT 860 MC_AXIS_REF
 - Блоки для реализации требуемой последовательности перемещений

- Создание блока данных для оси (axis DB)
- 1. Добавьте в проект новый DB в качестве axis DB. В менеджере проекта Project tree в разделе 'PLC program', 'Programming blocks' для используемого ЦПУ кликните по 'Add New block, выберите тип блока'DB block' и задайте ему имя "Axis01". Номер для DB может быть задан любой, например, DB 10.
 - ⇒ Блок будет создан и затем откроется.

- 2. ▶ В блоке "Axis01" создайте переменную "Config" с типом UDT 870. Это специфические данные конфигурации оси.
 - В блоке "Axis01" создайте переменную "Axis" с типом UDT 860. Во время работы все рабочие данные оси хранятся здесь.

Axis01 [DB10]
Data block structure

Adr	Name	Data ty	рє
	Config	UDT	[870]
	Axis	UDT	[860]

OB 1

Конфигурирование оси

Откройте OB 1 и запрограммируйте следующие вызовы FB с соответствующими DB:

FB 871 - VMC_InitSigma5_EC, DB 871 ∜ Раздел 1.5.3 'FB 871 - VMC_InitSigma5_EC - Sigma-5 EtherCAT initialization' на стр. 37

В InputsStartAddressPDO или OutputsStartAddressPDO введите адрес из SPEED7 EtherCAT Manager. ⇔ 13

```
⇒ CALL "VMC InitSigma5 EC" , "DI InitSgm5ETC01"
  Enable
                        :="Init\overline{S}5EC1 Enable"
  LogicalAddress
  InputsStartAddressPDO :=300(EtherCAT-Man.:S7 Input address)
  OutputsStartAddressPDO:=300(EtherCAT-Man.:S7 Output
  address)
  EncoderType
                        :=1
  EncoderResolutionBits :=20
  FactorPosition :=1.048576e+006
  FactorVelocity :=1.048576e+006
FactorAcceleration :=1.048576e+002
  MaxAccelerationDrive :=1.500000e+002
  MaxDecelerationDrive :=1.500000e+002
  MaxPosition
                        :=1.048500e+003
  MinPosition
                        :=-1.048514e+003
  EnableMaxPosition :=TRUE
EnableMinPosition :=TRUE
  MinUserPosition
                       :="InitS5EC1 MinUserPos"
                        :="InitS5EC1 MaxUserPos"
  MaxUserPosition
  Valid
                        :="InitS5EC1 Valid"
                        :="InitS5EC1 Error"
  Error
                        :="InitS5EC1 ErrorID"
  ErrorID
  Config
                        :="Axis01".Config
  Axis
                         :="Axis01".Axis
```

Подключение блока Kernel для оси

Kernel обрабатывает пользовательские команды и затем пересылает их в привод через соответствующий сетевой интерфейс.

```
VMC_KernelSigma5_EC - Sigma-5 EtherCAT Kernel' на стр. 37

⇔ CALL "VMC_KernelSigma5_EC" , "DI_KernelSgm5ETC01"
Init :="KernelS5EC1_Init"
Config:="Axis01".Config
Axis :="Axis01".Axis
```

_ FB 870 - VMC_KernelSigma5_EC, DB 870 🤝 Раздел 1.5.2 'FB 870 -

Подключение блока для реализации последовательности перемещений

Для простоты здесь будет показано подключение блока FB 860 - VMC_AxisControl. Этот универсальный блок поддерживает простые команды движения и возвращает сообщения о состоянии. Входы и выходы могут быть индивидуально подключены. Пожалуйста, введите ссылку на соответствующие данные об оси в разделе 'Axis' блока axis DB.

FB 860 - VMC_AxisControl, DB 860 ♥ Раздел 3.4.2.2 FB 860 - VMC_AxisControl - Control block axis control на стр. 122

```
CALL "VMC AxisControl" , "DI AxisControl01"
 AxisEnable :="AxCtrl1_AxisEnable"
AxisReset :="AxCtrl1_AxisReset"
HomeExecute :="AxCtrl1_HomeExecute"
HomePosition :="AxCtrl1_HomePosition"
StopExecute :="AxCtrl1_StopExecute"
 MvVelocityExecute:="AxCtrl1 MvVelExecute"
 MvRelativeExecute:="AxCtrl1 MvRelExecute"
 MvAbsoluteExecute:="AxCtrl1 MvAbsExecute"
 PositionDistance := "AxCtrl1 PositionDistance"
 JogAcceleration :="AxCtrl1_JogAcceleration"
 JogDeceleration :="AxCtrl1_JogDeceleration"
 JogDeceleration :="AxCtrll_JogDeceleration
AxisReady :="AxCtrll_AxisReady"
AxisEnabled :="AxCtrll_AxisEnabled"
AxisError :="AxCtrll_AxisError"
AxisErrorID :="AxCtrll_AxisErrorID"
DriveWarning :="AxCtrll_DriveWarning"
DriveError :="AxCtrll_DriveError"
DriveErrorID :="AxCtrll_DriveError"
IsHomed :="AxCtrll_IsHomed"

ModeOfOperation :="AyCtrll_ModeOfOperation"
 ModeOfOperation :="AxCtrl1 ModeOfOperation"
 PLCopenState :="AxCtrl1_PLCopenState"
ActualPosition :="AxCtrl1_ActualPosition"
 ActualVelocity :="AxCtrl1 ActualVelocity"
 CmdDone :="AxCtrl1_CmdDone"
CmdBusy :="AxCtrl1_CmdBusy"
CmdAborted :="AxCtrl1_CmdAborted"
CmdError :="AxCtrl1_CmdError"
CmdErrorID :="AxCtrl1_CmdErrorID"
                            :="AxCtrl1 CmdErrorID"
 DirectionPositive:="AxCtrl1_DirectionPos"
 DirectionNegative:="AxCtrl1 DirectionNeg"
 SWLimitMinActive := "AxCtrl1 SWLimitMinActive"
 SWLimitMaxActive :="AxCtrl1_SWLimitMaxActive"
 HWLimitMinActive := "AxCtrl1 HWLimitMinActive"
 HWLimitMaxActive :="AxCtrll_HWLimitMaxActive"
Axis :="Axis01".Axis
```


Для сложных задач движения можно использовать блоки PLCopen. Пожалуйста, задайте ссылку на соответствующие данные об оси в разделе 'Axis' блока данных оси (axis DB).

Теперь проект включает следующие компоненты:

- ОВ 1 Основной
- OB 57 DP Manufacturer Alarm
- OB 82 I/O FLT1
- OB 86 Rack_FLT
- FB 860 VMC AxisControl с экземплярным DB

- FB 870 VMC KernelSigma5 EC с экземплярным DB
- FB 871 VMC_InitSigma5_EC с экземплярным DB
- UDT 860 MC AXIS REF
- UDT 870 VMC ConfigSigma5EC REF

Последовательность действий

- **1.** Выполните команду *'Project → Compile all'* и загрузите проект в ЦПУ. Дополнительную информацию о процедуре загрузки можно найти в интерактивной справке по *SPEED7 Studio*.
 - ⇒ Теперь можно запустить прикладную программу на исполнение.

ВНИМАНИЕ!

Всегда соблюдайте указания по технике безопасности для используемого электропривода, особенно при вводе его в эксплуатацию!

- **2.** Прежде чем управлять осью, её необходимо инициализировать. Для этого вызовите блок *Init* FB 871 VMC_InitSigma5_EC c *Enable* = TRUE.
 - ⇒ Выход Valid возвращает значение TRUE. При возникновении ошибки ее можно идентифицировать с помощью ErrorID.

Необходимо вызвать блок *Init* ещё раз в случае загрузки нового блока данных оси (*axis DB*) или при изменении параметров блока *Init*.

Продолжайте только в том случае, если блок Init не сообщает об ошибке!

- 3. Убедитесь, что блок *Kernel* FB 870 VMC_KernelSigma5_EC вызывается периодически. Тем самым сигналы управления передаются в привод и принимаются сообщения о его состоянии.
- 4. Запрограммируйте приложение с помощью FB 860 VMC_AxisControl или с блоками PLCopen.

1.4. Использование Siemens SIMATIC Manager

1.4.1. Предпосылки

Обзор

- Используйте для работы пакет Siemens STEP7 версии V5.5 SP2 и выше.
- Конфигурирование ЦПУ серии SLIO выполняется в STEP 7 с помощью виртуального устройства PROFINET IO 'VIPA SLIO CPU'. Для реализации этого необходимо добавить 'VIPA SLIO CPU' в каталог оборудования с помощью соответствующего GSDML-файла.
- Конфигурирование контроллера EtherCAT выполняется в Siemens SIMATIC Manager с помощью виртуального устройства PROFINET IO 'EtherCAT network'. Для реализации этого необходимо добавить 'EtherCAT network' в каталог оборудования с помощью соответствующего GSDML-файла.
- Виртуальное устройство 'EtherCAT network' конфигурируется с помощью специальной утилиты SPEED7 EtherCAT Manager компании VIPA.
- Для конфигурирования привода в SPEED7 EtherCAT Manager требуется установка соответствующего файла ESI.

Установка устройства PROFINET IO 'VIPA SLIO System'

Установка устройств PROFINET IO 'VIPA SLIO CPU' выполняется в следующей последовательности:

- 1. ▶ Перейдите в сервисную зону сайта www.vipa.com.
- 2. Загрузите конфигурационный файл для используемого ЦПУ из раздела 'Config files →PROFINET'.
- 3. Распакуйте этот файл в рабочую папку.
- **4.** Запустите в SIMATIC Manager конфигуратор оборудования (Hardware Configurator).
- **5.** В Закройте все проекты.
- 6. ▶ Выберите 'Options →Install new GSD file'.
- 7. Перейдите в рабочую папку и установите требуемый файл GSDML.
 - ⇔После установки файла описания соответствующее устройство PROFINET IO может быть найдено в разделе 'PROFINET IO → Additional field devices →I/O →VIPA SLIO System'.

Установка устройства PROFINET IO EtherCAT network

Установка устройств PROFINET IO 'EtherCAT Network' в каталог оборудования выполняется в следующей последовательности:

- 1. Перейдите в сервисную зону сайта www.vipa.com
- 2. Загрузите файл GSDML для контроллера EtherCAT из раздела 'Config files → EtherCAT'.
- 3. Распакуйте этот файл в рабочую папку.
- **4.** Запустите в SIMATIC Manager конфигуратор оборудования (Hardware Configurator).
- **5. ** Закройте все проекты.
- 6. ▶ Выберите 'Options →Install new GSD file'.
- 7. Перейдите в рабочую папку и установите требуемый файл GSDML.
 - ⇒После установки файла описания устройство 'EtherCAT Network' может быть найдено в разделе 'PROFINET IO → Additional field devices → I/O → VIPA VIPA EtherCAT System'.

Установка SPEED7 EtherCAT Manager

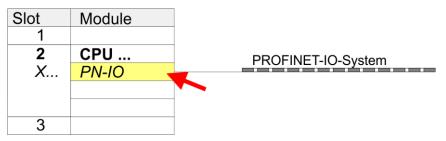
Конфигурирование виртуального устройства PROFINET IO *'EtherCAT network'* выполняется с помощью утилиты *SPEED7 EtherCAT Manager* компании VIPA. Её установочный файл может быть наден в сервисной зоне сайта www.vipa.com в разделе *'Service/Support* \rightarrow *Downloads* \rightarrow *SPEED7'*.

Установка утилиты осуществляется в следующей последовательности:

- 1.

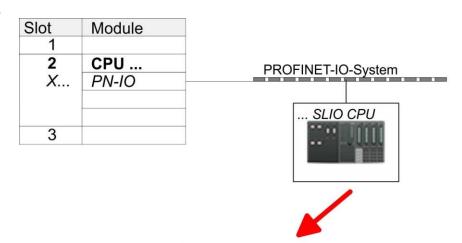
 Закройте Siemens SIMATIC Manager.
- 2. Перейдите в сервисную зону сайта www.vipa.com
- 3. Загрузите SPEED7 EtherCAT Manager на компьютер и распакуйте установочный файл.
- 4. Для установки утилиты запустите на исполнение файл EtherCATManager_v... .exe.
- 5. Выберите язык для установки.
- 6.

 Примите лицензионное соглашение.
- 7. Выберите папку для установки и запустите установку.
- 8. После установки необходимо перезагрузить компьютер.
 - ⇒Установка SPEED7 EtherCAT Manager завершена и теперь утилита может быть вызвана через контекстное меню Siemens SIMATIC Manager.


1.4.2. Конфигурирование аппаратных средств

Конфигурирование модуля ЦПУ в проекте

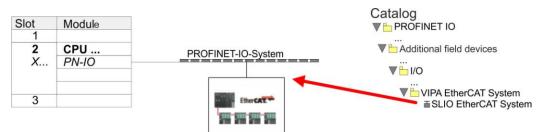
Slot	Module
1	
2	CPU 315-2 PN/DP
X1	MPI/DP
X2	PN-IO
X2	Port 1
X2	Port 2
3	


Для обеспечения совместимости с Siemens SIMATIC Manager необходимо выполнить следующие действия:

- 1. Создайте новый проект и запустите в нем конфигуратор оборудования HW Config.
- **2.** Установите в окно станции монтажную рейку Rail из каталога оборудования.
- 3. Установите в Slot 2 модуль CPU 315C-2 PN/DP (6ES7315-2EH14-0AB0 V3.2).
- **4.** Используйте субмодуль 'X1 MPI/DP' для настройки и подключения встроенного контроллера PROFIBUS-DP (соединитель X3).
- **5.** Используйте субмодуль *X2 PN-IO* для конфигурирования контроллера EtherCAT как устройства виртуальной сети PROFINET.
- **6.** ▶ Кликните по субмодулю '*PN-IO*' модуля ЦПУ.
- 7. ▶ Выберите 'Context menu → Insert PROFINET IO System'.

- **8.** Кликните по кнопке [New] для создания новой подсети Ethernet и задайте в соответствующих полях значения IP-адреса и маски сети.
- 9. ► Кликните по субмодулю 'PN-IO' модуля ЦПУ и с помощью 'Context menu → Properties' откройте диалоговое окно настройки свойств.
- **10.** Введите на вкладке *'General'* имя устройства в поле *'Device name'* . Имя устройства должно быть уникальным в рамках подсети Ethernet.

Slot	Module	Order number	
0	SLIO CPU	015	
X2	015		
1			
2			
3			

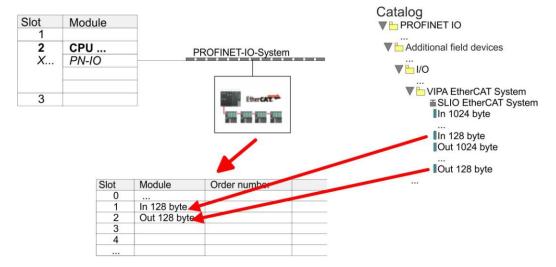

- 11. В каталоге оборудования перейдите в раздел 'PROFINET IO → Additional field devices → I/O → VIPA SLIO System' и подключите устройство '015-CFFNR00 CPU' к виртуальной сети PROFINET.
 - ⇒В таблице *Device overview* устройства PROFINET IO *'VIPA SLIO CPU'* модуль ЦПУ будет помещён в слот 0. Начиная со слота 1, можно размещать модули расширения системы SLIO.

Конфигурирование порта Ethernet PG/OP

Slot	Module	
1		
2 X	CPU	
X	PN-IO	
3		
4	343-1EX30 -	
5		

- 1. Для конфигурирования порта Ethernet PG/OP необходимо поместить в слот 4 стойки модуль Siemens CP 343-1 (SIMATIC 300 \ CP 300 \ Industrial Ethernet \CP 343-1 \ 6GK7 343-1EX30-0XE0 V3.0).
- **2.** Кликом по CP 343-1EX30 откройте диалоговое окно *'Properties'* и в нем задайте нужные IP-адрес, маску подсети и адрес шлюза. Предварительно необходимо получить у администратора сети допустимый IP-адрес.
- 3. Выберите для конфигурируемого СР нужную сеть из списка 'Subnet' или создайте новую, нажав кнопку [New]. Без подключения к подсети данные IP-адреса не устанавливаются!

Установка 'EtherCAT network'

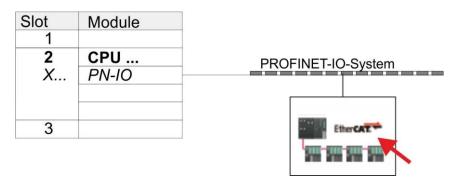

1. ▶ В каталоге оборудования перейдите в раздел 'PROFINET IO → Additional field devices → I/O → VIPA EtherCAT System' и подключите устройство 'SLIO EtherCAT System' к виртуальной сети PROFINET.

2. Кликните по вставленному устройству ввода-вывода *'EtherCAT Network'* и задайте области ввода и вывода, перетащив соответствующую область *'Out'* или *'In'* в слот.

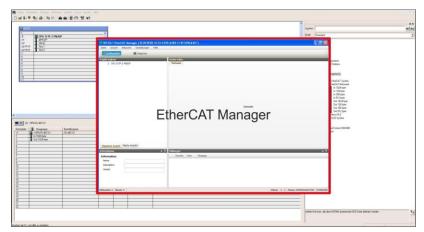
Создайте следующую области:

- In 128 byte
- Out 128 byte

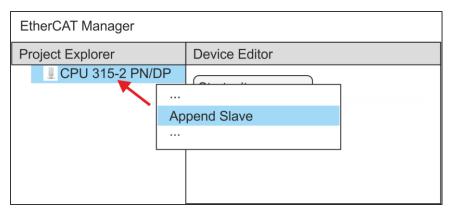
3. ▶ Выполните команду 'Station → Save and compile'.


Конфигурирование привода *Sigma-5* с EtherCAT

Конфигурирование привода осуществляется с помощью утилиты SPEED7 EtherCAT Manager.

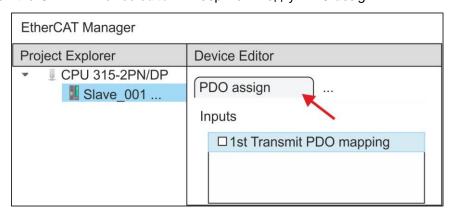


Перед вызовом SPEED7 EtherCAT Manager необходимо в обязательном порядке сохранить свой проект с помощью команды 'Station → Save and compile'.

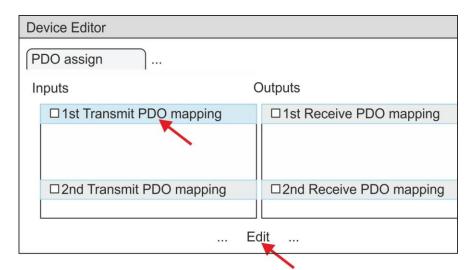

- 1. ▶ Кликните по вставленному устройству 'EtherCAT Network' и выберите 'Context menu → Start Device-Tool → SPEED7 EtherCAT Manager'.
 - ⇒ Запустится SPEED7 EtherCAT Manager. С его помощью настраивается связь через EtherCAT с сервоприводом Sigma-5.

Дополнительную информацию об использовании *SPEED7 EtherCAT Manager* можно найти в соответствующем руководстве или интерактивной справке утилиты.

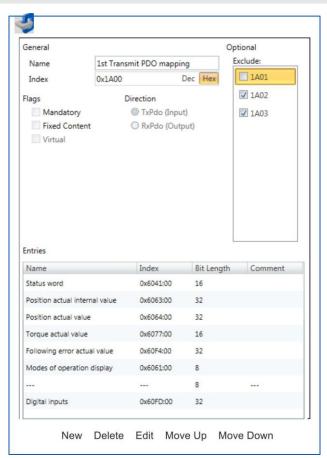
- 2. Для того, чтобы привод Sigma-5 с интерфейсом EtherCAT мог быть настроен с помощью SPEED7 EtherCAT Manager, необходимо предварительно установить соответствующий файл ESI. Файл ESI для Sigma-5 с EtherCAT можно найти на сайте www.yaskawa.eu.com в разделе 'Service → Drives & Motion Software'. Загрузите файл ESI для используемого привода. При необходмости распакуйте его.
- 3. ▶ В SPEED7 EtherCAT Manager с помощью команды 'File → ESI Manager' откройте диалоговое окно 'ESI Manager' .
- 4. В 'ESI Manager' кликниет по [Add File] и выберите нужный файл ESI. Командой [Open] файл ESI устанавливается в SPEED7 EtherCAT Manager.
- **5.** ы Закройте 'ESI Manager'.
 - ⇒ Теперь Sigma-5 с EtherCAT готов для конфигурирования.



- **6.** В EtherCAT Manager кликните по модулю ЦПУ и через *'Context menu*→ *Append Slave'* откройте диалоговое окно для добавления ведомого устройства EtherCAT.
 - ⇒Откроется диалоговое окно для выбора ведомого устройства EtherCAT.
- 7. Выберите привод *Sigma-5* с EtherCAT и подтвердите свой выбор с помощью кнопки [OK].
 - ⇒ Привод *Sigma-5* с EtherCAT подключится к ведущему устройству и будет готов для настройки.
- 9.
- Возможность редактировать PDO есть только в 'Expert mode'! В противном случае кнопки скрыты. Активирование 'Expert mode' позволяет перейти к расширенному редактированию.


Включение Expert mode осуществляется командой 'View > Expert'.

10. В SPEED7 EtherCAT Manager кликните по ведомому устройству Sigma-5 с EtherCAT и в 'Device editor' выберите вкладку 'PDO assign'.



⇒В этом диалоговом окне отображается список всех объектов PDO.

- **11.** Выбрав соответствующее отображение объектов PDO, затем можно перейти к редактированию PDO с помощью [Edit]. Выберите отображение '1st Transmit PDO mapping' и кликните по [Edit].
 - Обратите внимание, что из-за настроек по умолчанию некоторые PDO нельзя редактировать. Путем отключения уже активированных PDO можно обеспечить возможность редактирования заблокированных PDO.

⇒ В ответ откроется диалоговое окно 'Edit PDO'. Пожалуйста, проверьте перечисленные там настройки PDO и при необходимости измените их нужным образом. Также обратите внимание на порядок записей в списке 'Entries' и дополните их соответственно.

Для редактирования содержимого списка *'Entries'* доступны следующие функции:

New

- Позволяет создать новую запись в диалоговом окне, выбрав соответствующую запись из каталога объектов 'CoE object dictionary' и сделать свои настройки. Создание записи подтверждается с помощью [OK], а сама запись включается в список.
- Delete
 - Позволяет удалить выбранную запись.
- Edit
 - Позволяет редактировать общие данные записи.
- Move Up/Down
 - Позволяет перемещать выбранную запись вверх или вниз по списку.

12. Выполните следующие настройки:

Inputs: 1st Transmit PDO 0x1A00

- General
 - Name: 1st Transmit PDO mapping
 - Index: 0x1A00
- Flags
 - Все отключено
- Direction
 - TxPdo (Input): активировано
- Exclude

Обратите внимание на эти параметры, в противном случае конфигурация PDO не может быть активирована одновременно!

- 1A01: деактивировано
- Entries

Name	Index	Bit length
Status word (Слово состояния)	0x6041:00	16 бит
Position actual internal value (внутреннее фактическое значение позиции)	0x6063:00	32 бита
Position actual value (Фактическое значение позиции)	0x6064:00	32 бита
Torque actual value (Фактическое значение момента)	0x6077:00	16 бит
Following error actual value (Фактическое значение ошибки рассогласования)	0x60F4:00	32 бита
Modes of operation dis	0x6061:00	8 бит
		8 бит
Digital inputs (Дискретные входы)	0x60FD:00	32 бита

13. Выберите отображение '2nd *Transmit PDO mapping*' и кликните по [Edit]. Выполните следующие настройки:

Inputs: 2nd Transmit PDO 0x1A01

- General
 - Name: 2nd Transmit PDO mapping
 - Index: 0x1A01
- Flags
 - Все отключено
- Direction
 - TxPdo (Input): активировано
- Exclude

Обратите внимание на эти параметры, в противном случае конфигурация PDO не может быть активирована одновременно!

- 1A00: деактивировано1A02: деактивировано1A03: деактивировано
- Entries

Name	Index	Bit length
Touch probe status (Состояние датчика касания)	0x60B9:00	16 бит
Touch probe 1 position value (Значение позиции датчика касания 1)	0x60BA:00	32 бита
Touch probe 2 position value (Значение позиции датчика касания 2)	0x60BC:00	32 бита
Velocity actual value (Фактическое значение скорости)	0x606C:00	32 бита

14. Выберите отображение *'1st Receive PDO mapping'* и кликните по [Edit]. Выполните следующие настройки:

Outputs: 1st Receive PDO 0x1600

- General
 - Name: 1st Receive PDO mapping
 - Index: 0x1600
- Flags
 - Все отключено
- Direction
 - RxPdo (Output): активировано
- Exclude

Обратите внимание на эти параметры, в противном случае конфигурация PDO не может быть активирована одновременно!

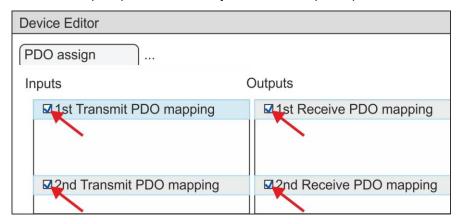
- 1601: деактивировано
- 1602: деактивировано
- 1603: деактивировано
- Entries

Name	Index	Bit length
Control word (Слово управления)	0x6040:00	16 бит
Target position (Целевая позиция)	0x607A:00	32 бита
Target velocity (Целевая скорость)	0x60FF:00	32 бита
Modes of operation (Режимы работы)	0x6060:00	8 бит
		8 бит
Touch probe function (Функция датчика касания)	0x60B8:00	16 бит

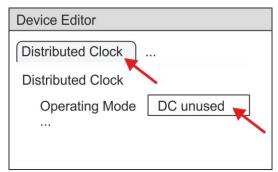
15. Выберите отображение '2nd *Receive PDO mapping*' и кликните по [Edit]. Выполните следующие настройки:

Outputs: 2nd Receive PDO 0x1601

- General
 - Name: 2nd Receive PDO mapping
 - Index: 0x1601
- Flags
 - Все отключено
- Direction
 - RxPdo (Output): активировано
- Exclude

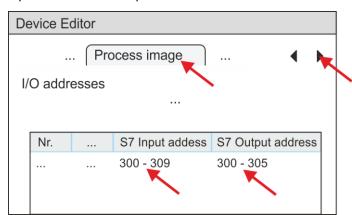

Обратите внимание на эти параметры, в противном случае конфигурация PDO не может быть активирована одновременно!

- 1600: деактивировано
- 1602: активировано
- 1603: активировано
- Entries

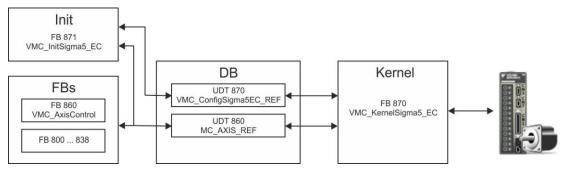

Name	Index	Bit length
Profile velocity (профиль скорости)	0x6081:00	32 бита
Profile acceleration (профиль разгона)	0x6083:00	32 бита
Profile deceleration (профиль замедления)	0x6084:00	32 бита

Закройте диалоговое окно 'Edit PDO' с помощью [OK].

16. На вкладке *'PDO assign'* активируйте PDO 1 и 2 для входов и выходов. Все последующие PDO должны оставаться деактивированными. Если это невозможно, проверьте соответствующий PDO-параметр *'Exclude'*.



17. В 'Device Editor' утилиты SPEED7 EtherCAT Manager выберите вкладку 'Distributed clocks' и в ней задайте значение 'DC unused' для'Operating mode'.


- 18. В 'Device editor' с помощью кнопок со стрелкой выберите вкладку 'Process image' и зафиксируйте следующие начальные адреса PDO для параметров блока FB 871 VMC_InitSigma5_ EC:
 - 'S7 Input address' → 'InputsStartAddressPDO'
 - S7 Output address' → 'OutputsStartAddressPDO'

- 19. При закрытии диалогового окна SPEED7 EtherCAT Manager с помощью [X], конфигурация передается в проект. Конфигурация сети EtherCAT всегда доступна для редактирования в среде SPEED7 EtherCAT Manager, поскольку она хранится в проекте.
- 20. Сохраните и скомпилируйте конфигурацию.

1.4.3. Прикладная программа

1.4.3.1. Структура программы

DB

Для каждой оси должен быть создан блок данных (*axis DB*), содержащий данные конфигурации и состояния. Блок данных состоит из следующих структур данных:

- UDT 870 VMC_ConfigSigma5EC_REF
 Структура данных описывает структуру конфигурации привода.
 Специфическая структура данных для Sigma-5 с EtherCAT.
- UDT 860 MC_AXIS_REF
 Структура данных описывает структуру параметров и данных о состоянии привода.
- Универсальная структура данных для всех приводов и систем шин.
- FB 871 VMC InitSigma5 EC
 - Блок инициализации (Init) используется для конфигурирования оси.
 - Специфический блок для Sigma-5 с EtherCAT.
 - Конфигурационные данные для инициализации должны храниться в блоке данных оси (axis DB).

- FB 870 VMC_KernelSigma5_EC
 - Этот основной (*Kernel*) блок связывается с приводом через соответствующий сетевой интерфейс, обрабатывает запросы пользователя и возвращает сообщения о состоянии.
 - Специфический блок для Sigma-5 с EtherCAT.
 - Обмен данными осуществляется с помощью блока данных оси (axis DB).
- FB 860 VMC_AxisControl
 - Универсальный блок для всех приводов и систем шин.
 - Поддерживает простые команды движения и предоставляет все соответствующие сообщения о состоянии.
 - Обмен данными осуществляется с помощью блока данных оси (axis DB).
 - Управление движением оси и контроль ее состояния из системы визуализации могут быть реализованы через экземплярный блок данных.
 - В дополнение к FB 860 VMC_AxisControl возможно использование блоков PLCopen.
- FB 800 ... FB 838 PLCopen
 - Блоки PLCopen используются для программирования последовательности перемещений и запросов состояния.
 - Универсальные блоки для всех приводов и систем шин.

1.4.3.2. Программирование

Добавление библиотеки

- 1. Перейдите в сервисную зону сайта www.vipa.com.
- **2.** Загрузите библиотеку Simple Motion Control из раздела 'VIPA Lib' области загрузки.
- 3. ▶ Откройте диалоговое окно для выбора ZIP-файла с помощью 'File → Retrieve'.
- 4. Выберите нужный ZIP-файл и кликните по [Open].
- **5.** Укажите папку, в которой будут сохранены блоки, и запустите процесс распаковки, кликнув по [OK].

Копирование блоков в проект

- Откройте библиотеку после распаковки и перетащите следующие блоки в раздел 'Blocks' проекта:
 - Sigma-5 c EtherCAT:
 - UDT 870 VMC_ConfigSigma5EC_REF
 - FB 870 VMC_KernelSigma5_EC
 - FB 871 VMC_InitSigma5_EC
 - Axis Control
 - UDT 860 MC AXIS REF
 - Блоки для реализации требуемой последовательности перемещений

Создание ОВ прерываний

- 1. ▶ В проекте кликните по 'Blocks' и выберите 'Context menu → Insert new object → Organization block'.
 - ⇒ В ответ откроется диалоговое окно 'Properties Organization block'.
- 2. ▶ Добавьте блоки OB 57, OB 82 и OB 86 в свой проект.

Создание блока данных для оси (axis DB)

1. В проекте кликните по 'Blocks' и выберите 'Context menu → Insert new object → Data block'.

Задайте следующие параметры:

- Name and type
 - Имя для DB в поле 'Name' может быть задано любое, например, DB 10.
 - Установите для 'Type' значение 'Shared DB'.
- Symbolic name
 - Введите "Axis01".

Подтвердите ввод, кликнув по [OK].

- ⇒ Блок создан.
- 2. Двойным кликом откройте DB 10 "Axis01".
 - В блоке "Axis01" создайте переменную "Config" с типом UDT 870. Это специфические данные конфигурации оси.
 - В блоке "Axis01" создайте переменную "Axis" с типом UDT 860. Во время работы все рабочие данные оси хранятся здесь.

DB10

Address	Name	Тур	
		Struct	
:*(*.*)	Config	"VMC_ConfigSigma5EC_REF"	
	Axis	"MC_AXIS_REF	
		END STRUCT	

OB 1

Конфигурирование оси

Откройте OB 1 и запрограммируйте следующие вызовы FB с соответствующими DB:

```
—▶ FB 871 - VMC_InitSigma5_EC, DB 871 ∜Раздел 1.5.3 'FB 871 - VMC_InitSigma5_EC - Sigma-5 EtherCAT initialization' на стр. 37
```

В InputsStartAddressPDO или OutputsStartAddressPDO введите адрес из SPEED7 EtherCAT Manager. ∜⇒ 30

```
\Rightarrow CALL "VMC InitSigma5 EC" , "DI InitSgm5ETC01" Enable
         :="InitS5EC1 Enable"
  LogicalAddress
                         :=300
  InputsStartAddressPDO :=300 (EtherCAT-Man.: S7 Input
  address)
  OutputsStartAddressPDO:=300 (EtherCAT-Man.: S7 Output
  address)
  EncoderType
  EncoderResolutionBits :=20
  FactorPosition
                        :=1.048576e+006
  FactorVelocity
                        :=1.048576e+006
  FactorAcceleration :=1.048576e+002
  OffsetPosition
                        :=0.000000e+000
  MaxVelocityApp
                        :=5.000000e+001
  MaxAccelerationApp :=1.000000e+002
  MaxDecelerationApp :=1.000000e+002
                        :=6.000000e+001
  MaxVelocityDrive
  MaxAccelerationDrive :=1.500000e+002
  MaxDecelerationDrive :=1.500000e+002
  MaxPosition
                        :=1.048500e+003
                        :=-1.048514e+003
  MinPosition
  EnableMaxPosition :=TRUE
  EnableMinPosition
                        :=TRUE
  MinUserPosition
                         :="InitS5EC1 MinUserPos"
                         :="InitS5EC1_MaxUserPos"
:="InitS5EC1_Valid"
  MaxUserPosition
  Valid
                         :="InitS5EC1_Error"
:="InitS5EC1_ErrorID"
  Error
  ErrorID
                         :="Axis01".Config
  Config
                         :="Axis01".Axis
  Axis
```

Подключение блока Kernel для оси

Kernel обрабатывает пользовательские команды и затем пересылает их в привод через соответствующий сетевой интерфейс.

```
___ FB 870 - VMC_KernelSigma5_EC, DB 870 ∜Раздел 1.5.2 'FB 870 - 
VMC_KernelSigma5_EC - Sigma-5 EtherCAT Kernel' на стр. 37
```


Подключение блока для реализации последовательности перемещений

Для простоты здесь будет показано подключение блока FB 860 - VMC_AxisControl. Этот универсальный блок поддерживает простые команды движения и возвращает сообщения о состоянии. Входы и выходы могут быть индивидуально подключены. Пожалуйста, введите ссылку на соответствующие данные об оси в разделе 'Axis' блока axis DB.

FB 860 - VMC_AxisControl, DB 860 ♥ Раздел 4.2.2 'FB 860 - VMC_AxisControl - Control block axis control' на стр. 122

```
"VMC AxisControl" , "DI AxisControl01"
AxisEnable :="AxCtrll_AxisEnable"
AxisReset :="AxCtrll_AxisReset"
HomeExecute :="AxCtrll_HomeExecute"
HomePosition :="AxCtrl1_HomePosition"
StopExecute :="AxCtrl1_StopExecute"
MvVelocityExecute:="AxCtrl1 MvVelExecute"
MvRelativeExecute:="AxCtrl1 MvRelExecute"
MvAbsoluteExecute:="AxCtrl1 MvAbsExecute"
PositionDistance := "AxCtrl1 PositionDistance"
JogAcceleration :="AxCtrl1_JogAcceleration"
JogDeceleration :="AxCtrl1_JogDeceleration"
AxisReady :="AxCtrll_AxisReady"
AxisEnabled :="AxCtrll_AxisEnabled"
AxisError :="AxCtrll_AxisError"
AxisErrorID :="AxCtrll_AxisErrorID"
DriveWarning :="AxCtrll_DriveWarning"
DriveError :="AxCtrll_DriveError"
DriveErrorID :="AxCtrll_DriveError"
IsHomed :="AxCtrll_IsHomed"
ModeOfOperation :="AxCtrl1 ModeOfOperation"
PLCopenState :="AxCtrl1_PLCopenState"
ActualPosition :="AxCtrl1_ActualPosition"
ActualVelocity :="AxCtrl1 ActualVelocity"
CmdDone :="AxCtrl1_CmdDone"

CmdBusy :="AxCtrl1_CmdBusy"

CmdAborted :="AxCtrl1_CmdAborted"

CmdError :="AxCtrl1_CmdError"

CmdErrorID :="AxCtrl1_CmdError"
DirectionPositive:="AxCtrl1_DirectionPos"
DirectionNegative:="AxCtrl1 DirectionNeg"
SWLimitMinActive := "AxCtrl1_SWLimitMinActive"
SWLimitMaxActive :="AxCtrll_SWLimitMaxActive"
HWLimitMinActive :="AxCtrll_HWLimitMinActive"
HWLimitMaxActive :="AxCtrll_HWLimitMaxActive"
Axis :="Axis01".Axis
```


Для сложных задач движения можно использовать блоки PLCopen. Пожалуйста, задайте ссылку на соответствующие данные об оси в разделе 'Axis' блока axis DB.

Теперь проект включает следующие компоненты:

- ОВ 1 Основной
- OB 57 DP Manufacturer Alarm
- OB 82 I/O FLT1
- OB 86 Rack_FLT
- FB 860 VMC AxisControl с экземплярным DB

- FB 870 VMC KernelSigma5 EC с экземплярным DB
- FB 871 VMC_InitSigma5_EC с экземплярным DB
- UDT 860 MC AXIS REF
- UDT 870 VMC ConfigSigma5EC REF

Последовательность действий

1.

Перейдите в SIMATIC Manager и загрузите проект в ЦПУ.

Загрузка может производиться только из Siemens SIMATIC Manager, а не из конфигуратора оборудования (Hardware Configurator)!

Поскольку параметры ведомого устройства и модуля передаются с помощью объекта SDO или команды SDO init, конфигурация сохраняется неизменной до тех пор, пока не будет проведен сброс питания или не будут переданы новые параметры для тех же объектов SDO.

При выполнении полного сброса параметры ведомого устройства и модуля не сбрасываются!

⇒ Теперь можно запустить прикладную программу на исполнение.

ВНИМАНИЕ!

Всегда соблюдайте указания по технике безопасности для используемого электропривода, особенно при вводе его в эксплуатацию!

- **2.** Прежде чем управлять осью, её необходимо инициализировать. Для этого вызовите блок *Init* FB 871 VMC_InitSigma5_EC c *Enable* = TRUE.
 - ⇒ Выход *Valid* возвращает TRUE. При возникновении ошибки ее можно идентифицировать с помощью *ErrorID*.

Необходимо вызвать блок *Init* ещё раз в случае загрузки нового *axis DB* или при изменении параметров блока *Init*.

Продолжайте только в том случае, если блок Init не сообщает об ошибке!

- 3. Убедитесь, что блок *Kernel* FB 870 VMC_KernelSigma5_EC вызывается периодически. Тем самым сигналы управления передаются в привод и принимаются сообщения о его состоянии.
- 4. Запрограммируйте приложение с помощью FB 860 VMC_AxisControl или с блоками PLCopen.

1.4.4. Копирование проекта

Порядок выполнения

В примере станция 'Source' копируется и сохраняется как 'Target'.

- 1. Откройте аппартную конфигурацию модуля ЦПУ 'Source' и запустите SPEED7 EtherCAT Manager.
- **2.** В SPEED7 EtherCAT Manager командой 'File → Save as' сохраните конфигурацию в рабочей папке компьютера.

- 3. Saкройте SPEED7 EtherCAT Manager и конфигуратор оборудования.
- 4. Скопируйте станцию 'Source' с помощью Ctrl + C и вставьте как'Target' в проект с помощью Ctrl + V.
- 5. Выберите раздел 'Blocks' модуля ЦПУ 'Target' и удалите 'System data'.
- **6.** Откройте аппартную конфигурацию модуля ЦПУ *'Target'*. Модифицируйте данные IP-адреса или еще раз переподключите CPU или CP.
 - Перед вызовом SPEED7 EtherCAT Manager необходимо в обязательном порядке сохранить свой проект с помощью команды 'Station → Save and compile'.
- 7. ▶ Сохраните проект с помощью 'Station → Safe and compile'.
- 8.

 Saпустите SPEED7 EtherCAT Manager.
- **9.** Используйте команду *'File* → *Open'* для загрузки конфигурации из рабочей папки компьютера.
- **10.** Закройте SPEED7 EtherCAT Manager.
- 11. Сохраните и скомпилируйте конфигурацию.

Применение Sigma-5 с EtherCAT > Специальные блоки для управления приводом

1.5. Специальные блоки для управления приводом

1.5.1. UDT 870 - VMC_ConfigSigma5EC_REF - Sigma-5 EtherCAT Data structure axis configuration

Это определяемая пользователем структура данных, содержащая информацию о конфигурации оси. Этот блок UDT специально приспособлен для работы с сервоприводом *Sigma-5* через сеть EtherCAT.

1.5.2. FB 870 - VMC_KernelSigma5_EC - Sigma-5 EtherCAT Kernel

Описание

Этот блок преобразует команды управления осью сервопривода *Sigma-5* через сеть EtherCAT и обеспечивает обмен данными с приводом. Для каждой оси *Sigma-5* экземпляр этого FB должен вызываться циклически.

Имейте ввиду, что внутри этого блока содержится вызов SFC 238.

В SPEED7 Studio этот блок автоматически вставляется в проект.

B Siemens SIMATIC Manager блок SFC 238 необходимо скопировать в проект из библиотеки Motion Control Library.

Параметр	Тип переменной	Тип данных	Описание
Init	вход	BOOL (Двоичное значение)	По переходу 0-1 выполняется внутренний сброс блока. Выполнение текущих команд управления движением прерывается, а блок сам блок инициализируется.
Config	вход_выход	UDT870	Структура данных для передачи зависящих от оси конфигурационных данных в <i>AxisKernel</i> .
Axis	вход_выход	MC_AXIS_REF	Структура данных для передачи зависящей от оси информации в <i>AxisKernel</i> и блоки PLCopen.

1.5.3. FB 871 - VMC InitSigma5 EC - Sigma-5 EtherCAT initialization

Описание

Этот блок используется для настройки оси. Блок специально приспособлен для работы с сервоприводом Sigma-5, подключенным через сеть EtherCAT.

Параметр	Тип переменной	Тип данных	Описание
Config	вход_выход	UDT870	Структура данных для передачи зависящих от оси конфигурационных данных в <i>AxisKernel</i> .
Axis	вход_выход	MC_AXIS_REF	Структура данных для передачи зависящей от оси информации в <i>AxisKernel</i> и блоки PLCopen.
Enable	ВХОД	BOOL (Двоичное значение)	Выполнение инициализации
Logical address	вход	INT (Целое)	Начальный адрес входных данных PDO
InputsStartAddressPDO	вход	INT (Целое)	Начальный адрес входных PDO
OutputsStartAddressPDO	вход	INT (Целое)	Начальный адрес выходных PDO
EncoderType	вход	INT (Целое)	Тип энкодера ■ 1: Абсолютный энкодер ■ 2: Инкрементальный энкодер
EncoderResolutionBits	вход	INT (Целое)	Количество разрядов, соответствующее одному обороту энкодера. Значение по умолчанию: 20

Применение Sigma-5 с EtherCAT > Специальные блоки для управления приводом

Параметр	Тип переменной	Тип данных	Описание
FactorPosition	вход R	REAL (Вещественное число)	Коэффициент преобразования значения позиции из пользовательских единиц [u] в единицы привода [increments] и обратно.
			При этом: $p_{[increments]} = p_{[u]} x FactorPosition$
			Пожалуйста, учитывайте фактор, который может быть задан в приводе через объекты 0x2701: 1 и 0x2701: 2. Он должен быть равен 1.
Velocity Factor	вход	REAL (Вещественное число)	Коэффициент преобразования значения скорости из пользовательских единиц [u/s] в единицы привода [increments/s] и обратно.
			При этом: $v_{[increments/s]} = v_{[u/s]} x$ FactorVelocity
			Пожалуйста, учитывайте фактор, который может быть задан в приводе через объекты 0x2702: 1 и 0x2702: 2. Он должен быть равен 1.
FactorAcceleration	вход	REAL (Вещественное число)	Коэффициент преобразования значения ускорения из пользовательских единиц $[u/s^2]$ в единицы привода $[10^{-4}\mathrm{x}$ increments/ $s^2]$ и обратно.
			При этом: 10^{-4} x $a_{\text{[increments/s}^2]} = a_{\text{[u/s}^2]}$ x FactorAcceleration
			Пожалуйста, учитывайте фактор, который может быть задан в приводе через объекты 0x2703: 1 и 0x2703: 2. Он должен быть равен 1.
OffsetPosition	ВХОД	REAL (Вещественное число)	Смещение для нулевой позиции [u].
MaxVelocityApp	вход	REAL (Вещественное число)	Максимальная скорость приложения [u/s]. Входные значения команд проверяются на максимальное значение перед исполнением.
MaxAccelerationApp	вход	•	Максимальный разгон приложения [u/s²].
		число)	Входные значения команд проверяются на максимальное значение перед исполнением.
MaxDecelerationApp	ВХОД	REAL (Вещественное число)	Максимальное замедление приложения $[u/s^2]$.
		число)	Входные значения команд проверяются на максимальное значение перед исполнением.
MaxPosition	вход	REAL (Вещественное число)	Максимальное значение позиции для контроля программных ограничений [u].
MinPosition	ВХОД	REAL (Вещественное число)	Минимальное значение позиции для контроля программных ограничений [u].
EnableMaxPosition	вход	BOOL (Двоичное	Контроль максимальной позиции
		значение)	■ TRUE: Включает контроль максимальной позиции.
EnableMinPosition	вход	BOOL (Двоичное значение)	Контроль минимальной позиции
		ond formo	TRUE: Включает контроль минимальной позиции.
MinUserPosition	выход	REAL (Вещественное число)	Минимальная пользовательская позиция, основанная на минимальном значении датчика 0x80000000 и <i>FactorPosition</i> [u].
MaxUserPosition	выход	REAL (Вещественное число)	Максимальная пользовательская позиция, основанная на максимальном значении датчика 0x80000000 и <i>FactorPosition</i> [u].

Применение Sigma-7S с EtherCAT > Установка параметров сервопривода

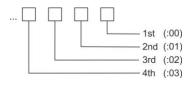
Параметр	Тип переменной	Тип данных	Описание
Valid	выход	BOOL (Двоичное значение)	Инициализация ■ TRUE: Инициализация выполнена
Error	выход	BOOL (Двоичное значение)	 Ошибка TRUE: Возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра ErrorID. Ось заблокирована.
ErrorID	выход	WORD (16-разрядное значение)	Дополнительная информация об ошибке

2. Применение Sigma-7S c EtherCAT

2.1. Обзор

Использование двухосевого сервопривода *Ч*> Глава 3 'Применение Sigma-7W с EtherCAT' на стр. 77.

Предпосылки


- SPEED7 Studio с версии V1.6.1 ипи
- Siemens STEP7 версии V5.5 SP2, утилита SPEED7 EtherCAT Manager и библиотека Simple Motion Control
- Процессорный модуль 015-CEFNR00 со встроенным контроллером EtherCAT
- Сервопривод Sigma-7S с опциональной платой EtherCAT

Последовательность конфигурирования

- 1. Установка параметров сервопривода
 - Установка параметров осуществляется с помощью программного обеспечения Sigma Win+.
- 2. Конфигурирование аппаратных средств в среде VIPA SPEED7 Studio или Siemens SIMATIC Manager.
 - Конфигурирование модуля ЦПУ с фунционалом контроллера EtherCAT
 - Конфигурирование сервопривода Sigma-7S с платой EtherCAT.
 - Настройка соединения EtherCAT с помощью SPEED7 EtherCAT Manager.
- 3. Программирование в среде VIPA SPEED7 Studio или Siemens SIMATIC Manager.
 - Параметрирование блока *Init*, служащего для конфигурирования оси.
 - Параметрирование блока Kernel, используемого для связи с осью.
 - Параметрирование блоков для реализации алгоритма движения.

2.2. Установка параметров сервопривода

Разряды управления

ВНИМАНИЕ!

Перед вводом в эксплуатацию необходимо адаптировать сервопривод применительно к решаемой задаче с помощью программного обеспечения *Sigma Win+*! Дополнительную информацию можно найти в руководстве пользователя для используемого сервопривода.

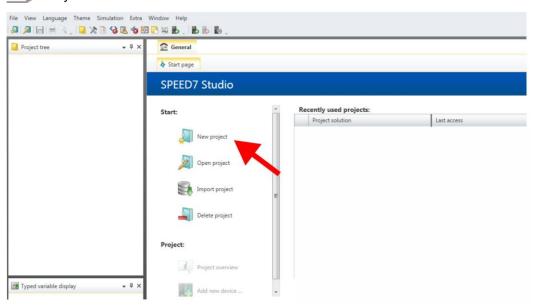
Применение Sigma-7S с EtherCAT > Установка параметров сервопривода

Эти параметры должны быть заданы с помощью Sigma Win+ для обеспечения их соответствия библиотеке Simple Motion Control.

Sigma-7S (24-рязрядный энкодер)

Параметр Servopack	Адрес:разряд	Name	Значение
Pn205	(2205h)	Уставка многооборотного предела	65535
Pn20E	(220Eh)	Электронный коэффициент передачи (числитель)	16
Pn210	(2210h)	Электронный коэффициент передачи (знаменатель)	1
PnB02	(2701h:01)	Пользовательская единица позиции (числитель)	1
PnB04	(2701h:02)	Пользовательская единица позиции (знаменатель)	1
PnB06	(2702h:01)	Пользовательская единица скорости (числитель)	1
PnB08	(2702h:02)	Пользовательская единица скорости (знаменатель)	1
PnB0A	(2703h:01)	Пользовательская единица ускорения (числитель)	1
PnB0C	(2703h:02)	Пользовательская единица ускорения (знаменатель)	1

2.3. Использование VIPA SPEED7 Studio

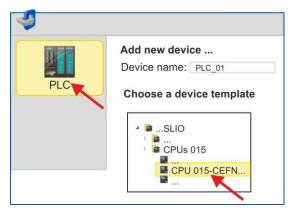

2.3.1. Конфигурирование аппаратных средств

Добавление модуля ЦПУ в проект

Используйте для конфигурирования SPEED7 Studio V1.6.1 и выше.

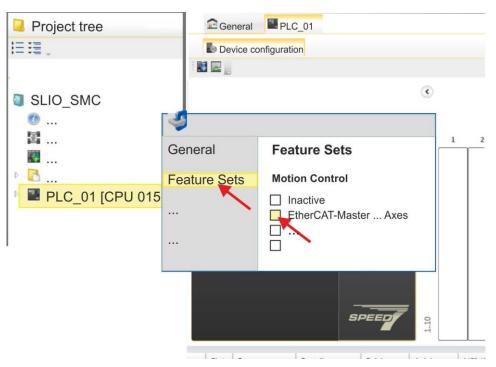
1.

 Запустите SPEED7 Studio.



- **2.** Создайте новый проект на стартовой странице с помощью команды 'New project' .
 - ⇒ Новый проект создается и будет отображаться в окне 'Devices and networking'.

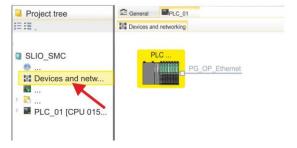
3. **»** Кликните в дереве проекта *Project tree* по 'Add new device ...'.


- ⇒ Откроется диалоговое окно выбора устройства.
- 4. Выберите из 'Device templates' используемый процессорный модуль серии SLIO CPU 015-CEFNR00 и кликните по [OK].
 - ⇒ ЦПУ будет добавлен в раздел 'Devices and networking' и откроется окно 'Device configuration'.

Активирование функций управления движением

- 1. ▶ Кликните по ЦПУ в 'Device configuration' и выберите 'Context menu → Components properties'.
 - ⇒ Откроется диалоговое окно свойств ЦПУ.

- **2.** Кликните по 'Feature Sets' и активируйте в 'Motion Control' параметр 'EtherCAT- Master... Axes'. Число осей не имеет значения в этом примере.
- 3. Подтвердите ввод, кликнув по [OK].
 - ⇒Функции управления движением теперь доступны для использования в проекте.



ВНИМАНИЕ!

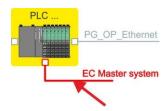
Обратите внимание, что всякий раз при изменении настройки набора функций система удаляет систему промышленной сети EtherCAT вместе с конфигурацией управления движением из проекта!

Конфигурирование порта Ethernet PG/OP

- 1. Кликните в дереве проекта Project tree по 'Devices and networking'.
 - ⇒ Вы получите графическое представление используемого ЦПУ.

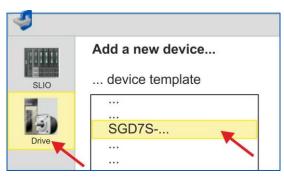
- 2. ▶ Кликните по изображению сети 'PG_OP_Ethernet'.
- 3. ▶ Выберите 'Context menu → Interface properties'.
 - ⇒ Откроется диалоговое окно. В нем необходимо ввести IP-адрес для порта Ethernet PG/OP. Предварительно необходимо получить у администратора сети допустимый IP-адрес.

- 4. Подтвердите нажатием по [OK].
 - ⇒ Данные IP-адреса сохранятся в проекте и будут отображены в окне 'Local components' раздела 'Devices and networking'.

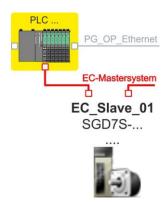

После загрузки проекта в используемый ЦПУ можно получить доступ к устройству через порт Ethernet PG/OP с использованием заданного для него IP-адреса.

Установка ESI-файла

Для того, чтобы привод Sigma-7 с интерфейсом EtherCAT мог быть настроен с помощью SPEED7 EtherCAT Manager, необходимо предварительно установить соответствующий файл ESI. Обычно SPEED7 Studio поставляется с текущими файлами ESI, поэтому этот этап может быть пропущен. Если файл ESI уже устарел, то актуальную его версию для сервопривода Sigma-7 с EtherCAT можно найти на сайте www.yaskawa.eu.com в разделе 'Service → Drives & Motion Software'.


- 1. Загрузите файл ESI для используемого привода. При необходмости распакуйте его
- 2. ▶ Перейдите в SPEED7 Studio.
- 3. Откройте соответсвующее диалоговое окно, кликнув по 'Extra → Install device description (EtherCAT ESI)'.
- 4. В 'Source path' укажите нужный файл ESI и установите его, кликнув по [Install].
 ⇒ Теперь устройство, описание которого содержит файл ESI, доступно для использования.
- 1. 🔊 Кликните в дереве проекта Project tree по 'Devices and networking'.
- 2. ▶ Кликните по 'EC-Mastersystem' и выберите 'Context menu → Add new device'.

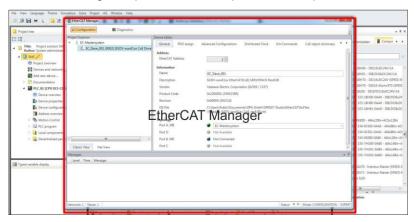
Добавление одноосевого сервопривода Sigma-7S


⇒ Откроется шаблон для выбора устройства EtherCAT.

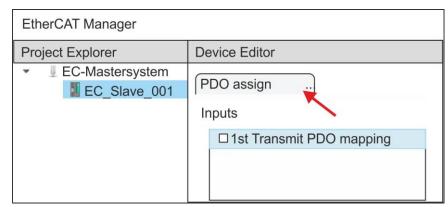
- 3. Выберите сервопривод Sigma-7:
 - SGD7S-xxxAA0...
 - SGD7S-xxxDA0...
 - SGD7S-xxxxA0...

Подтвердите выбор, кликнув по [OK]. Если нужный привод отсутствует в шаблоне, необходимо установить соответсвующий файл ESI, как описано выше.

⇒ Привод Sigma-7 подключен к сети EC-Mastersystem.



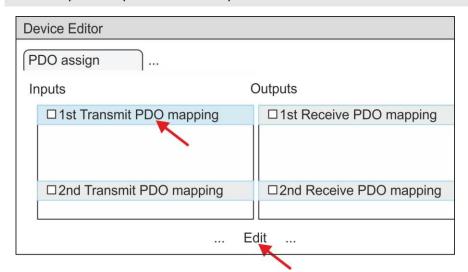
Конфигурирование одноосевого сервопривода *Sigma-7S*

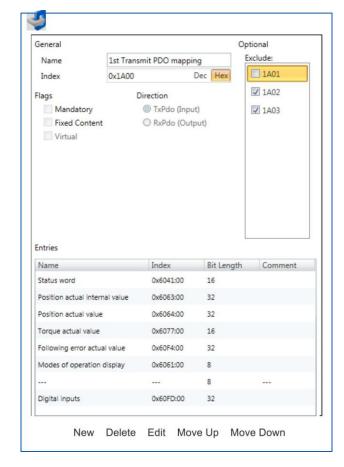


- 1. Кликните по 'EC-Mastersystem' и выберите 'Context menu
 - → Bus system properties (expert)'.
 - Возможность редактировать PDO есть только в 'Expert mode'! В противном случае кнопки скрыты.
 - ⇒ Запустится SPEED7 EtherCAT Manager. С его помощью настраивается связь через EtherCAT с сервоприводом Sigma-7.

Для получения дополнительной информации об использовании SPEED7 EtherCAT Manager обратитесь к интерактивной справке для SPEED7 Studio.

B SPEED7 EtherCAT Manager кликните по ведомому устройству и в'Device editor' выберите вкладку 'PDO assign'.


⇒В открывшемся диалоговом окне отображается список всех объектов PDO.


3. Выбрав соответствующее отображение PDO, затем можно перейти к редактированию PDO с помощью [Edit]. Выберите отображение *'1st Transmit PDO mapping'* и кликните по [Edit].

Обратите внимание, что из-за настроек по умолчанию некоторые PDO нельзя редактировать. Путем отключения уже активированных PDO можно обеспечить возможность редактирования заблокированных PDO.

⇒ В ответ откроется диалоговое окно 'Edit PDO'. Пожалуйста, проверьте перечисленные там настройки PDO и при необходимости измените их нужным образом. Также обратите внимание на порядок записей в списке 'Entries' и дополните их соответственно.

Для редактирования содержимого списка 'Entries' доступны следующие функции:

- New
 - Позволяет создать новую запись в диалоговом окне, выбрав соответствующую запись из каталога объектов 'CoE object dictionary' и сделать свои настройки. Создание записи подтверждается с помощью [OK], а сама запись включается в список.
- Delete
 - Позволяет удалить выбранную запись.
- Edit
 - Позволяет редактировать общие данные записи.
- Move Up/Down
 - Позволяет перемещать выбранную запись вверх или вниз по списку.

4. Выполните следующие настройки:

Inputs: 1st Transmit PDO 0x1A00

- General
 - Name: 1st Transmit PDO mapping
 - Index: 0x1A00
- Flags
 - Все отключено
- Direction
 - TxPdo (Input): активировано
- Exclude

Обратите внимание на эти параметры, в противном случае конфигурация PDO не может быть активирована одновременно!

- 1A01: деактивировано
- Entries

Name	Index	Bit length
Status word (Слово состояния)	0x6041:00	16 бит
Position actual internal value (внутреннее фактическое значение позиции)	0x6063:00	32 бита
Position actual value (Фактическое значение позиции)	0x6064:00	32 бита
Torque actual value (Фактическое значение момента)	0x6077:00	16 бит
Following error actual value (Фактическое значение ошибки рассогласования)	0x60F4:00	32 бита
Modes of operation display (Отображение режимов работы)	0x6061:00	8 бит
		8 бит
Digital inputs (Дискретные входы)	0x60FD:00	32 бита

5. Выберите отображение *'2nd Transmit PDO mapping'* и кликните по [Edit]. Выполните следующие настройки:

Inputs: 2nd Transmit PDO 0x1A01

- General
 - Name: 2nd Transmit PDO mapping
 - Index: 0x1A01
- Flags
 - Все отключено
- Direction
 - TxPdo (Input): активировано
- Exclude

Обратите внимание на эти параметры, в противном случае конфигурация PDO не может быть активирована одновременно!

- 1А00: деактивировано
- 1A02: деактивировано
- 1A03: деактивировано
- Entries

Name	Index	Bit length
Touch probe status (Состояние датчика касания)	0x60B9:00	16 бит
Touch probe 1 position value (Значение позиции датчика касания 1)	0x60BA:00	32 бита
Touch probe 2 position value (Значение позиции датчика касания 2)	0x60BC:00	32 бита
Velocity actual value (Фактическое значение скорости)	0x606C:00	32 бита

6. Выберите отображение *'1st Receive PDO mapping'* и кликните по [Edit]. Выполните следующие настройки:

Outputs: 1st Receive PDO 0x1600

- General
 - Name: 1st Receive PDO mapping
 - Index: 0x1600
- Flags
 - Все отключено
- Direction
 - RxPdo (Output): активировано
- Exclude

Обратите внимание на эти параметры, в противном случае конфигурация PDO не может быть активирована одновременно!

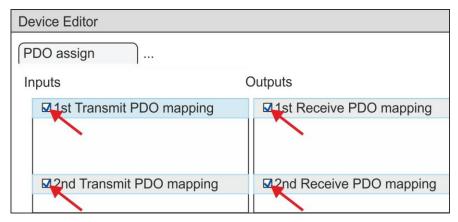
- 1601: деактивировано1602: деактивировано
- 1603: деактивировано
- Entries

Name	Index	Bit length
Control word (Слово управления)	0x6040:00	16 бит
Target position (Целевая позиция)	0x607A:00	32 бита
Target velocity (Целевая скорость)	0x60FF:00	32 бита
Modes of operation (Режимы работы)	0x6060:00	8 бит
		8 бит
Touch probe function (Функция датчика касания)	0x60B8:00	16 бит

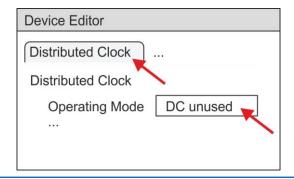
7. Выберите отображение '2nd Receive PDO mapping' и кликните по [Edit]. Выполните следующие настройки:

Outputs: 2nd Receive PDO 0x1601

- General
 - Name: 2nd Receive PDO mapping
 - Index: 0x1601
- Flags
 - Все отключено
- Direction
 - RxPdo (Output): активировано
- Exclude

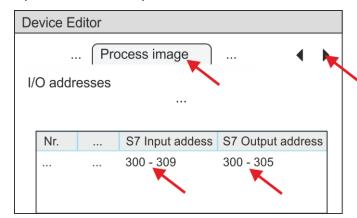

Обратите внимание на эти параметры, в противном случае конфигурация PDO не может быть активирована одновременно!

- 1600: деактивировано
- 1602: активировано
- 1603: активировано
- Entries

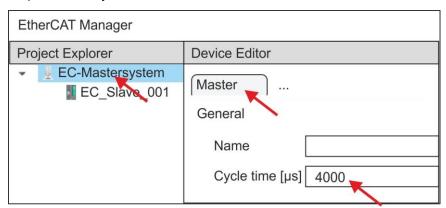

Name	Index	Bit length
Profile velocity (профиль скорости)	0x6081:00	32 бита
Profile acceleration (профиль разгона)	0x6083:00	32 бита
Profile deceleration (профиль замедления)	0x6084:00	32 бита

Закройте диалоговое окно 'Edit PDO' с помощью [OK].

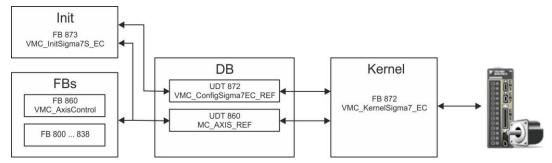
8. На вкладке *'PDO assign'* активируйте PDO 1 и 2 для входов и выходов. Все последующие PDO должны оставаться деактивированными. Если это невозможно, проверьте соответствующий PDO-параметр *'Exclude'*.



9. В 'Device Editor' утилиты SPEED7 EtherCAT Manager выберите вкладку 'Distributed clocks' и в ней задайте значение 'DC unused' для 'Operating mode'.



- 10. В 'Device editor' с помощью кнопок со стрелкой выберите вкладку 'Process image' и зафиксируйте следующие начальные адреса PDO для параметров блока FB 873 VMC_InitSigma7S_ EC:
 - "S7 Input address" → 'InputsStartAddressPDO'
 - "S7 Output address" → "OutputsStartAddressPDO"


11. В SPEED7 EtherCAT Manager кликните по 'EC-Mastersystem' и в 'Device editor' выберите вкладку 'Master'.

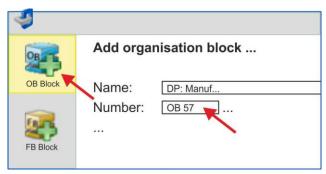
- ⇒ Для приводов Sigma-7S (400 B) (SGD7S-xxxDA0 ... и SGD7S-xxxxA0 ...) установите время цикла не менее 4 мс. В противном случае оставьте его значение равным 1 мс.
- 12. При закрытии диалогового окна SPEED7 EtherCAT Manager с помощью [X], конфигурация передается в SPEED7 Studio.

2.3.2. Прикладная программа

2.3.2.1. Структура программы

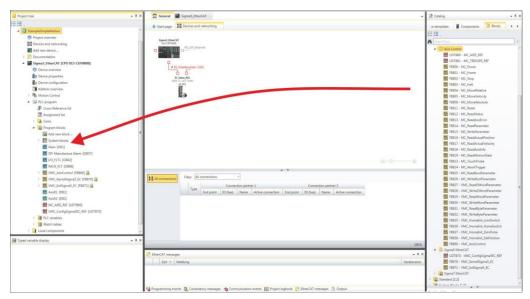

DB

Для каждой оси должен быть создан блок данных (axis DB), содержащий данные конфигурации и состояния. Блок данных состоит из следующих структур данных:


- UDT 872 VMC_ConfigSigma7EC_REF
 Структура данных описывает структуру конфигурации привода.
 Специфическая структура данных для Sigma-7 с EtherCAT.
- UDT 860 MC_AXIS_REF
 Структура данных описывает структуру параметров и данных о состоянии привода.
 - Универсальная структура данных для всех приводов и систем шин.
- FB 873 VMC_InitSigma7S_EC
 - Блок инициализации (Init) используется для конфигурирования оси.
 - Специфический блок для Sigma-7S c EtherCAT.
 - Конфигурационные данные для инициализации должны храниться в блоке данных оси (axis DB).
- FB 872 VMC_KernelSigma7_EC
 - Этот основной (Kernel) блок связывается с приводом через соответствующий сетевой интерфейс, обрабатывает запросы пользователя и возвращает сообщения о состоянии.
 - Специфический блок для Sigma-7 с EtherCAT.
 - Обмен данными осуществляется с помощью блока данных оси (axis DB).
- FB 860 VMC AxisControl
 - Универсальный блок для всех приводов и систем шин.
 - Поддерживает простые команды движения и предоставляет все соответствующие сообщения о состоянии.
 - Обмен данными осуществляется с помощью блока данных оси (axis DB).
 - Управление движением оси и контроль ее состояния из системы визуализации могут быть реализованы через экземплярный блок данных.
 - В дополнение к FB 860 VMC_AxisControl возможно использование блоков PLCopen.
- FB 800 ... FB 838 PLCopen
 - Блоки PLCopen используются для программирования последовательности перемещений и запросов состояния.
 - Универсальные блоки для всех приводов и систем шин.

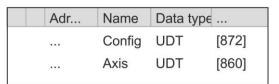
2.3.2.2. Программирование

Копирование блоков в проект



1. В менеджере проекта *Project tree* в разделе *'PLC program'*, *'Programming blocks'* для используемого ЦПУ кликните по *'Add New block'*.

- ⇒ В ответ откроется диалоговое окно 'Add block'.
- **2.** Выберите тип блока 'OB block' и последовательно добавьте блоки OB 57, OB 82 и OB 86 в свой проект.



- **3.** В закладке 'Catalog' откройте библиотеку 'Simple Motion Control' в разделе 'Blocks' и перетащите следующие блоки в раздел 'Program blocks' менеджера проекта Project tree:
 - Sigma-7 c EtherCAT:
 - UDT 872 VMC_ConfigSigma7EC_REF
 - FB 872 VMC_KernelSigma7_EC
 - FB 873 VMC_InitSigma7S_EC
 - Axis Control
 - UDT 860 MC AXIS REF
 - Блоки для реализации требуемой последовательности перемещений

Создание блока данных для оси (axis DB)

- 1. Добавьте в проект новый DB в качестве axis DB. В менеджере проекта Project tree в разделе 'PLC program', 'Programming blocks' для используемого ЦПУ кликните по 'Add New block', выберите тип блока 'DB block' и задайте ему имя "Axis01". Номер для DB может быть задан любой, например, DB 99.
 - ⇒ Блок будет создан и затем откроется.
- 2. В блоке "Axis01" создайте переменную "Config" с типом UDT 872. Это специфические конфигурационные данные оси.
 - В блоке "Axis01" создайте переменную "Axis" с типом UDT 860. Во время работы все рабочие данные оси хранятся здесь.

Axis01 [DB10]
Data block structure

OB 1

Конфигурирование оси

Откройте OB 1 и запрограммируйте следующие вызовы FB с соответствующими DB:

—▶ FB 873 - VMC_InitSigma7S_EC, DB 873 ∜ Раздел 2.5.3 'FB 873 - VMC_InitSigma7S_EC - Sigma-7S EtherCAT initialization' на стр. 75

В InputsStartAddressPDO или OutputsStartAddressPDO введите адрес из SPEED7 EtherCAT Manager. ∜⇒ 51

```
⇒ CALL "VMC InitSigma7S EC" , "DI InitSgm7SETC01"
                          :="InitS7SEC1 Enable"
  Enable
                          :=300
  LogicalAddress
   InputsStartAddressPDO :=300 (EtherCAT-Man.: S7 Input
  OutputsStartAddressPDO:=300 (EtherCAT-Man.: S7 Output
  address)
  EncoderType
                          :=1
  EncoderResolutionBits :=20
  FactorPosition :=1.048576e+006
FactorVelocity :=1.048576e+006
  FactorAcceleration :=1.048576e+002
  OffsetPosition
MaxVelocityApp
                         :=0.000000e+000
                         :=5.000000e+001
  MaxAccelerationApp :=1.000000e+002
MaxDecelerationApp :=1.000000e+002
  MaxVelocityDrive
                        :=6.000000e+001
  MaxAccelerationDrive :=1.500000e+002
  MaxDecelerationDrive :=1.500000e+002
  MaxPosition
                         :=1.048500e+003
  MinPosition
                         :=-1.048514e+003
  EnableMaxPosition
                         :=TRUE
  EnableMinPosition
                         :=TRUE
  MinUserPosition
                         :="InitS7SEC1 MinUserPos"
  MaxUserPosition
                         :="InitS7SEC1_MaxUserPos"
  Valid
                          :="InitS7SEC1_Valid"
  Error
                          :="InitS7SEC1_Error"
                          :="InitS7SEC1_ErrorID"
  ErrorID
  Config
                          :="Axis01".Config
  Axis
                          :="Axis01".Axis
```

Подключение блока Kernel для оси

Блок *Kernel* обрабатывает пользовательские команды и затем пересылает их в привод через соответствующий сетевой интерфейс.

```
___ FB 872 - VMC_KernelSigma7_EC, DB 872 ∜ Раздел 2.5.2 'FB 872 - VMC_KernelSigma7_EC - Sigma-7 EtherCAT Kernel' на стр. 75
```


Параметрирование блока для реализации последовательности перемещений

Для простоты здесь будет показано параметрирование блока FB 860 - VMC_AxisControl. Этот универсальный блок поддерживает простые команды движения и возвращает сообщения о состоянии. Входы и выходы могут быть индивидуально параметрированы. Пожалуйста, введите ссылку на соответствующие данные об оси в разделе 'Axis' блока axis DB.

____ FB 860 - VMC_AxisControl, DB 860 ♥ Раздел 4.2.2 'FB 860 - VMC_AxisControl - Control block axis control' на стр. 122

```
CALL "VMC AxisControl" , "DI AxisControl01"
 AxisEnable :="AxCtrl1_AxisEnable"
AxisReset :="AxCtrl1_AxisReset"
HomeExecute :="AxCtrl1_HomeExecute"
HomePosition :="AxCtrl1_HomePosition"
StopExecute :="AxCtrl1_StopExecute"
 MvVelocityExecute:="AxCtrl1 MvVelExecute"
 MvRelativeExecute:="AxCtrl1 MvRelExecute"
 MvAbsoluteExecute:="AxCtrl1 MvAbsExecute"
 PositionDistance := "AxCtrl1 PositionDistance"
 JogAcceleration :="AxCtrl1_JogAcceleration"

JogDeceleration :="AxCtrl1_JogDeceleration"
 AxisReady :="AxCtrll_AxisReady"
AxisEnabled :="AxCtrll_AxisEnabled"
AxisError :="AxCtrll_AxisError"
AxisErrorID :="AxCtrll_AxisErrorID"
DriveWarning :="AxCtrll_DriveWarning"
DriveError :="AxCtrll_DriveError"
DriveErrorID :="AxCtrll_DriveError"
IsHomed :="AxCtrll_IsHomed"
 ModeOfOperation :="AxCtrl1 ModeOfOperation"
 PLCopenState :="AxCtrl1_PLCopenState"
ActualPosition :="AxCtrl1_ActualPosition"
 ActualVelocity :="AxCtrl1 ActualVelocity"
 CmdDone :="AxCtrl1_CmdDone"

CmdBusy :="AxCtrl1_CmdBusy"

CmdAborted :="AxCtrl1_CmdAborted"

CmdError :="AxCtrl1_CmdError"

CmdErrorID :="AxCtrl1_CmdError"
 DirectionPositive:="AxCtrl1_DirectionPos"
 DirectionNegative:="AxCtrl1 DirectionNeg"
 SWLimitMinActive := "AxCtrl1_SWLimitMinActive"
 SWLimitMaxActive :="AxCtrl1_SWLimitMaxActive"
 HWLimitMinActive :="AxCtrll_HWLimitMinActive"
HWLimitMaxActive :="AxCtrll_HWLimitMaxActive"
Axis :="Axis01".Axis
```


Для сложных задач движения можно использовать блоки PLCopen.

Пожалуйста, задайте ссылку на соответствующие данные об оси в разделе 'Axis' блока axis DB.

Теперь проект включает следующие компоненты (блоки):

- ОВ 1 Основной
- OB 57 DP Manufacturer Alarm
- OB 82 I/O FLT1
- OB 86 Rack_FLT
- FB 860 VMC AxisControl с экземплярным DB

- FB 872 VMC KernelSigma7 EC с экземплярным DB
- FB 873 VMC_InitSigma7S_EC с экземплярным DB
- UDT 860 MC_AXIS_REF
- UDT 872 VMC ConfigSigma7EC REF

Последовательность действий

- **1.** Выполните команду *'Project → Compile all'* и загрузите проект в ЦПУ. Дополнительную информацию о процедуре загрузки можно найти в интерактивной справке по *SPEED7 Studio*.
 - ⇒ Теперь можно запустить прикладную программу на исполнение.

ВНИМАНИЕ!

Всегда соблюдайте указания по технике безопасности для используемого электропривода, особенно при вводе его в эксплуатацию!

- **2.** Прежде чем управлять осью, её необходимо инициализировать. Для этого вызовите блок *Init* FB 873 VMC_InitSigma7S_EC со значением *Enable* = TRUE.
 - ⇒ Выход *Valid* возвращает значение TRUE. При возникновении ошибки ее можно идентифицировать с помощью *ErrorID*.

Необходимо вызвать блок *Init* ещё раз в случае загрузки нового *axis DB* или при изменении параметров блока *Init*.

Продолжайте только в том случае, если блок Init не сообщает об ошибке!

- 3. Убедитесь, что блок *Kernel* FB 872 VMC_KernelSigma7_EC вызывается периодически. Тем самым сигналы управления передаются в привод и принимаются сообщения о его состоянии.
- **4.** Запрограммируйте приложение с помощью FB 860 VMC_AxisControl или с блоками PLCopen.

2.4. Использование Siemens SIMATIC Manager

2.4.1. Предпосылки

Обзор

- Используйте для работы пакет Siemens STEP7 версии V5.5 SP2 и выше.
- Конфигурирование ЦПУ серии SLIO выполняется в STEP 7 с помощью виртуального устройства PROFINET IO 'VIPA SLIO CPU'. Для реализации этого необходимо добавить 'VIPA SLIO CPU' в каталог оборудования с помощью соответствующего GSDML-файла.
- Конфигурирование контроллера EtherCAT выполняется в Siemens SIMATIC Manager с помощью виртуального устройства PROFINET IO 'EtherCAT network'. Для реализации этого необходимо добавить 'EtherCAT network' в каталог оборудования с помощью соответствующего GSDML-файла.
- Виртуальное устройство 'EtherCAT network' конфигурируется с помощью специальной утилиты SPEED7 EtherCAT Manager компании VIPA.
- Для конфигурирования привода в SPEED7 EtherCAT Manager требуется установка соответствующего файла ESI.

Установка устройства PROFINET IO 'VIPA SLIO System'

Установка устройств PROFINET IO 'VIPA SLIO CPU' выполняется в следующей последовательности:

- **1.** Перейдите в сервисную зону сайта www.vipa.com.
- 3. Распакуйте этот файл в рабочую папку.
- **4.** Запустите в SIMATIC Manager конфигуратор оборудования (Hardware Configurator).
- 5. 🔊 Закройте все проекты.
- 6. ▶ Выберите 'Options →Install new GSD file'.
- 7. Перейдите в рабочую папку и установите требуемый файл GSDML.
 - \Rightarrow После установки файла описания соответствующее устройство PROFINET IO может быть найдено в разделе *'PROFINET IO* \Rightarrow Additional field devices \Rightarrow I/O \Rightarrow VIPA SLIO System'.

Установка устройства PROFINET IO 'EtherCAT network'

Установка устройств PROFINET IO 'EtherCAT Network' в каталог оборудования выполняется в следующей последовательности:

- 1. Перейдите в сервисную зону сайта www.vipa.com.
- 3. Распакуйте этот файл в рабочую папку.
- **4.** Запустите в SIMATIC Manager конфигуратор оборудования (Hardware Configurator).
- **5. ** Закройте все проекты.
- 6. ▶ Выберите 'Options →Install new GSD file'.
- 7.
 Перейдите в рабочую папку и установите требуемый файл GSDML.
 - ⇔После установки файла описания устройство *'EtherCAT Network'* может быть найдено в разделе *'PROFINET IO* → *Additional field devices* → *I/O* → *VIPA VIPA EtherCAT System'*.

Установка SPEED7 EtherCAT Manager

Конфигурирование виртуального устройства PROFINET IO *'EtherCAT network'* выполняется с помощью утилиты *SPEED7 EtherCAT Manager* компании VIPA. Её установочный файл может быть наден в сервисной зоне сайта www.vipa.com в разделе *'Service/Support* \rightarrow *Downloads* \rightarrow *SPEED7'*.

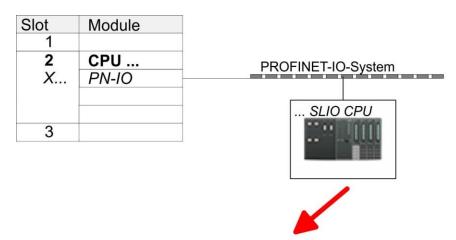
Установка утилиты осуществляется в следующей последовательности:

- 1.

 Закройте Siemens SIMATIC Manager.
- 2. Перейдите в сервисную зону сайта www.vipa.com
- 3. Загрузите SPEED7 EtherCAT Manager на компьютер и распакуйте установочный файл.
- 4. Для установки утилиты запустите на исполнение файл EtherCATManager_v... .exe.
- 5. Выберите язык для установки.
- 6.
 Примите лицензионное соглашение.
- 7. Выберите папку для установки и запустите установку.
- 8.
 После установки необходимо перезагрузить компьютер.
 - ⇒Установка SPEED7 EtherCAT Manager завершена и теперь утилита может быть вызвана через контекстное меню Siemens SIMATIC Manager.

2.4.2. Конфигурирование аппаратных средств

Конфигурирование модуля ЦПУ в проекте

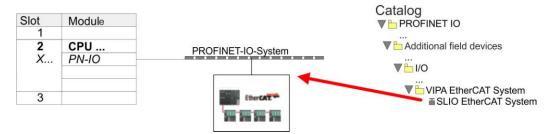

Slot	Module
1	
2	CPU 315-2 PN/DP
X1	MPI/DP
X2	PN-IO
X2	Port 1
X2	Port 2
3	

Для обеспечения совместимости с Siemens SIMATIC Manager необходимо выполнить следующие действия:

- 1. Создайте новый проект и запустите в нем конфигуратор оборудования HW Config.
- 2. Установите в окно станции монтажную рейку Rail из каталога оборудования.
- 3. Установите в Slot 2 модуль CPU 315C-2 PN/DP (6ES7315-2EH14-0AB0 V3.2).
- **4.** Используйте субмодуль 'X1 MPI/DP' для настройки и подключения встроенного контроллера PROFIBUS-DP (соединитель X3).
- **5.** Используйте субмодуль 'X2 PN-IO' для конфигурирования контроллера EtherCAT как устройства виртуальной сети PROFINET.
- **6.** ▶ Кликните по субмодулю *'PN-IO'* модуля ЦПУ.
- 7. ▶ Выберите 'Context menu → Insert PROFINET IO System'.

- **8.** Кликните по кнопке [New] для создания новой подсети Ethernet и задайте в соответствующих полях значения IP-адреса и маски сети.
- **9.** Кликните по субмодулю *'PN-IO'* модуля ЦПУ и с помощью *'Context menu* → *Properties'* откройте диалоговое окно настройки свойств.
- **10.** Введите на вкладке *'General'* имя устройства в поле *'Device name'*. Имя устройства должно быть уникальным в рамках подсети Ethernet.

Slot	Module	Order number	
0	SLIO CPU	015	
X2	015		
1			
2			
3			


- В каталоге оборудования перейдите в раздел 'PROFINET IO → Additional field devices → I/O → VIPA SLIO System' и подключите устройство '015-CFFNR00 CPU' к виртуальной сети PROFINET.
 - ⇒В таблице *Device overview* устройства PROFINET IO *'VIPA SLIO CPU'* модуль ЦПУ будет помещён в слот 0. Начиная со слота 1, можно размещать модули расширения системы SLIO.

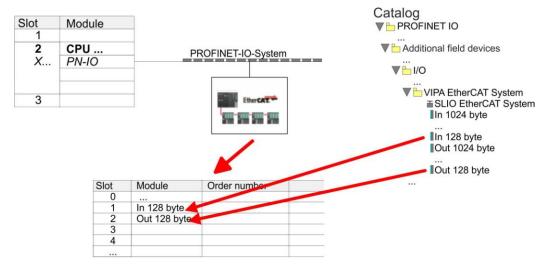
Конфигурирование порта Ethernet PG/OP

Slot	Module	
1		
2 X	CPU	
X	PN-IO	
3		
4	343-1EX30 -	
5		

Установка 'EtherCAT network'

- 1. Для конфигурирования порта Ethernet PG/OP необходимо поместить в слот 4 стойки модуль Siemens CP 343-1 (SIMATIC 300 \ CP 300 \ Industrial Ethernet \CP 343-1 \ 6GK7 343-1EX30-0XE0 V3.0).
- **2.** Кликом по CP 343-1EX30 откройте диалоговое окно *'Properties'* и в нем задайте нужные IP-адрес, маску подсети и адрес шлюза. Предварительно необходимо получить у администратора сети допустимый IP-адрес.
- 3. Выберите для конфигурируемого СР нужную сеть из списка 'Subnet' или создайте новую, нажав кнопку [New]. Без подключения к подсети данные IP-адреса не устанавливаются!

1. ▶ В каталоге оборудования перейдите в раздел 'PROFINET IO → Additional field devices → I/O → VIPA EtherCAT System' и подключите устройство 'SLIO EtherCAT System' к виртуальной сети PROFINET.

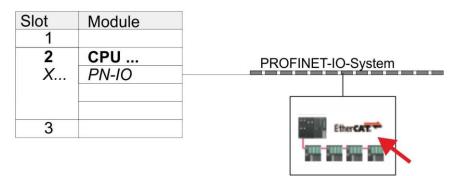


Применение Sigma-7W с EtherCAT > Установка параметров сервопривода

2. Кликните по вставленному устройству ввода-вывода *'EtherCAT Network'* и задайте области ввода и вывода, перетащив из каталога соответствующую область *'Out'* или *'In'* в слот.

Создайте следующую области:

- In 128 byte
- Out 128 byte

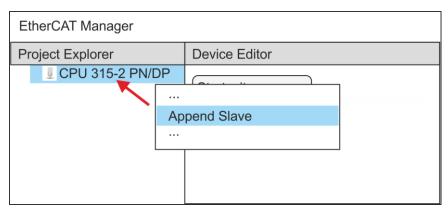

3. ▶ Выполните команду 'Station → Save and compile'.

Конфигурирование привода *Sigma-7S* с EtherCAT

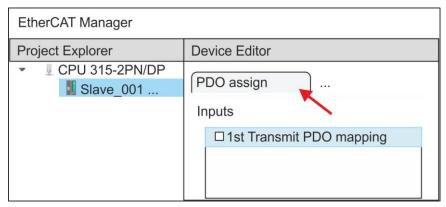
Конфигурирование привода осуществляется с помощью утилиты SPEED7 EtherCAT Manager.

Перед вызовом SPEED7 EtherCAT Manager необходимо в обязательном порядке сохранить свой проект с помощью команды 'Station → Save and compile'.

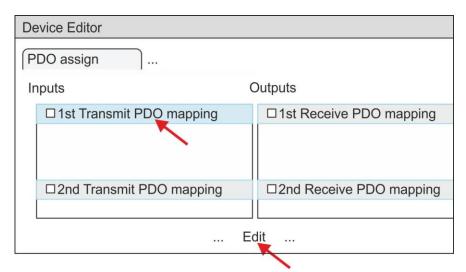
- 1. ▶ Кликните по вставленному устройству 'EtherCAT Network' и выберите 'Context menu → Start Device-Tool → SPEED7 EtherCAT Manager'.
 - ⇒ Запустится SPEED7 EtherCAT Manager. С его помощью настраивается связь через EtherCAT с сервоприводом Sigma-7S.


Дополнительную информацию об использовании SPEED7 EtherCAT Manager можно найти в соответствующем руководстве или интерактивной справке утилиты.

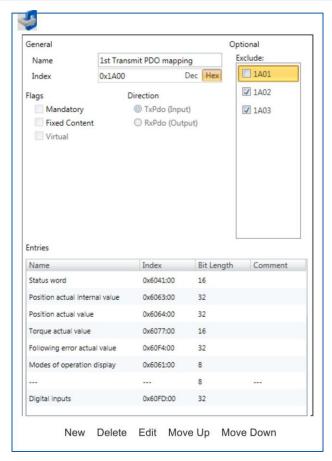
- 2. Для того, чтобы привод Sigma-7S с интерфейсом EtherCAT мог быть настроен с помощью SPEED7 EtherCAT Manager, необходимо предварительно установить соответствующий файл ESI. Файл ESI для Sigma-7S с EtherCAT можно найти на сайте www.yaskawa.eu.com в разделе 'Service → Drives & Motion Software'. Загрузите файл ESI для используемого привода. При необходмости распакуйте его.
- 3. ▶ В SPEED7 EtherCAT Manager с помощью команды 'File → ESI Manager' откройте диалоговое окно 'ESI Manager'.
- 4. В 'ESI Manager' кликниет по [Add File] и выберите нужный файл ESI. Командой [Open] файл ESI устанавливается в SPEED7 EtherCAT Manager.
- **5.** ы Закройте 'ESI Manager'.
 - ⇒ Теперь привод Sigma-7S с EtherCAT готов для конфигурирования.


Применение Sigma-7W с EtherCAT > Установка параметров сервопривода

- **6.** В EtherCAT Manager кликните по модулю ЦПУ и через *'Context menu*→ *Append Slave'* откройте диалоговое окно для добавления ведомого устройства EtherCAT.
 - ⇒Откроется диалоговое окно для выбора ведомого устройства EtherCAT.
- 7. Выберите привод Sigma-7S с EtherCAT и подтвердите свой выбор с помощью кнопки [OK].
 - ⇒ Привод *Sigma-7S* с EtherCAT подключится к ведущему устройству и будет готов для настройки.
- 9.
- Возможность редактировать PDO есть только в 'Expert mode'! В противном случае кнопки скрыты. Активирование 'Expert mode' позволяет перейти к расширенному редактированию.


Включение Expert mode осуществляется командой 'View > Expert'.

B SPEED7 EtherCAT Manager кликните по ведомому устройству Sigma-7S с EtherCAT и в 'Device editor' выберите вкладку 'PDO assign'.



⇒В открывшемся диалоговом окне отображается список всех объектов PDO.

- **11.** Выбрав соответствующее отображение объектов PDO, затем можно перейти к редактированию PDO с помощью [Edit]. Выберите отображение *'1st Transmit PDO mapping'* и кликните по [Edit].
 - Обратите внимание, что из-за настроек по умолчанию некоторые PDO нельзя редактировать. Путем отключения уже активированных PDO можно обеспечить возможность редактирования заблокированных PDO.

⇒ В ответ откроется диалоговое окно 'Edit PDO'. Пожалуйста, проверьте перечисленные там настройки PDO и при необходимости измените их нужным образом. Также обратите внимание на порядок записей в списке 'Entries' и дополните их соответственно.

Применение Sigma-7W с EtherCAT > Установка параметров сервопривода

Для редактирования содержимого списка 'Entries' доступны следующие функции:

New

- Позволяет создать новую запись в диалоговом окне, выбрав соответствующую запись из каталога объектов 'CoE object dictionary' и сделать свои настройки. Создание записи подтверждается с помощью [OK], а сама запись включается в список.
- Delete
 - Позволяет удалить выбранную запись.
- Edit
 - Позволяет редактировать общие данные записи.
- Move Up/Down
 - Позволяет перемещать выбранную запись вверх или вниз по списку.

12. Выполните следующие настройки:

Inputs: 1st Transmit PDO 0x1A00

- General
 - Name: 1st Transmit PDO mapping
 - Index: 0x1A00
- Flags
 - Все отключено
- Direction
 - TxPdo (Input): активировано
- Exclude

Обратите внимание на эти параметры, в противном случае конфигурация PDO не может быть активирована одновременно!

- 1A01: деактивировано
- Entries

Name	Index	Bit length
Status word (Слово состояния)	0x6041:00	16 бит
Position actual internal value (внутреннее фактическое значение позиции)	0x6063:00	32 бита
Position actual value (Фактическое значение позиции)	0x6064:00	32 бита
Torque actual value (Фактическое значение момента)	0x6077:00	16 бит
Following error actual value (Фактическое значение ошибки рассогласования)	0x60F4:00	32 бита
Modes of operation display (Отображение режимов работы)	0x6061:00	8 бит
		8 бит
Digital inputs (Дискретные входы)	0x60FD:00	32 бита

Bыберите отображение '2nd *Transmit PDO mapping*' и кликните по [Edit]. Выполните следующие настройки:

Inputs: 2nd Transmit PDO 0x1A01

- General
 - Name: 2nd Transmit PDO mapping
 - Index: 0x1A01
- Flags
 - Все отключено
- Direction
 - TxPdo (Input): активировано
- Exclude

Обратите внимание на эти параметры, в противном случае конфигурация PDO не может быть активирована одновременно!

- 1A00: деактивировано1A02: деактивировано
- 1А03: деактивировано
- Entries

Name	Index	Bit length
Touch probe status (Состояние датчика касания)	0x60B9:00	16 бит
Touch probe 1 position value (Значение позиции датчика касания 1)	0x60BA:00	32 бита
Touch probe 2 position value (Значение позиции датчика касания 2)	0x60BC:00	32 бита
Velocity actual value (Фактическое значение скорости)	0x606C:00	32 бита

14. Выберите отображение '1st Receive PDO mapping' и кликните по [Edit]. Выполните следующие настройки:

Outputs: 1st Receive PDO 0x1600

- General
 - Name: 1st Receive PDO mapping
 - Index: 0x1600
- Flags
 - Все отключено
- Direction
 - RxPdo (Output): активировано
- Exclude

Обратите внимание на эти параметры, в противном случае конфигурация PDO не может быть активирована одновременно!

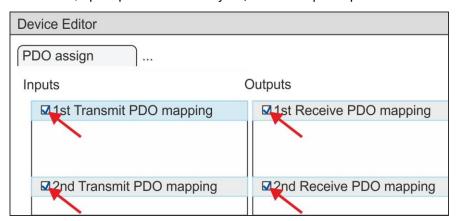
- 1601: деактивировано
- 1602: деактивировано
- 1603: деактивировано
- Entries

Name	Index	Bit length
Control word (Слово управления)	0x6040:00	16 бит
Target position (Целевая позиция)	0x607A:00	32 бита
Target velocity (Целевая скорость)	0x60FF:00	32 бита
Modes of operation (Режимы работы)	0x6060:00	8 бит
		8 бит
Touch probe function (Функция датчика касания)	0x60B8:00	16 бит

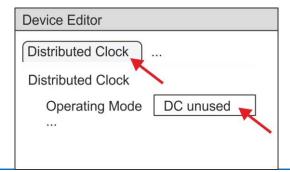
15. Выберите отображение '2nd *Receive PDO mapping*' и кликните по [Edit]. Выполните следующие настройки:

Outputs: 2nd Receive PDO 0x1601

- General
 - Name: 2nd Receive PDO mapping
 - Index: 0x1601
- Flags
 - Все отключено
- Direction
 - RxPdo (Output): активировано
- Exclude

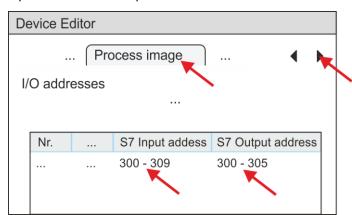

Обратите внимание на эти параметры, в противном случае конфигурация PDO не может быть активирована одновременно!

- 1600: деактивировано
- 1602: активировано
- 1603: активировано
- Entries

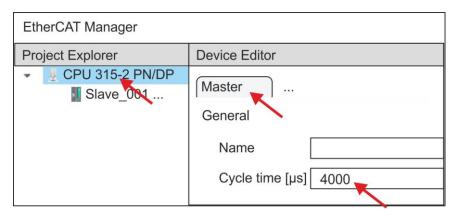

Name	Index	Bit length
Profile velocity (профиль скорости)	0x6081:00	32 бита
Profile acceleration (профиль разгона)	0x6083:00	32 бита
Profile deceleration (профиль замедления)	0x6084:00	32 бита

Закройте диалоговое окно 'Edit PDO' с помощью [OK].

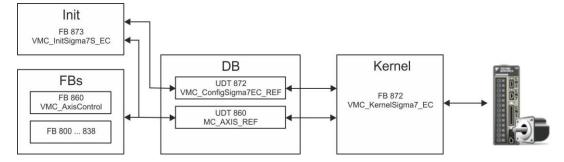
16. На вкладке *'PDO assign'* активируйте PDO 1 и 2 для входов и выходов. Все последующие PDO должны оставаться деактивированными. Если это невозможно, проверьте соответствующий PDO-параметр *'Exclude'*.



17. В 'Device Editor' утилиты SPEED7 EtherCAT Manager выберите вкладку 'Distributed clocks' и в ней задайте значение 'DC unused' для'Operating mode'.



- 18. В 'Device editor' с помощью кнопок со стрелкой выберите вкладку 'Process image' и зафиксируйте следующие начальные адреса PDO для параметров блока FB 873 VMC_InitSigma7S_ EC:
 - S7 Input address' → 'InputsStartAddressPDO'
 - S7 Output address' → 'OutputsStartAddressPDO'


19. В SPEED7 EtherCAT Manager кликните по модулю CPU и выберите вкладку 'Master' в 'Device editor'.

- ⇒ Для приводов Sigma-7S (400 B) (SGD7S-xxxDA0 ... и SGD7S-xxxxA0 ...) установите время цикла не менее 4 мс. В противном случае оставьте его значение равным 1 мс.
- **20.** При закрытии диалогового окна *SPEED7 EtherCAT Manager* с помощью [X], конфигурация передается в проект. Конфигурация сети EtherCAT всегда доступна для редактирования в *SPEED7 EtherCAT Manager*, поскольку она хранится в проекте.
- 21. Сохраните и скомпилируйте конфигурацию.

2.4.3. Прикладная программа

2.4.3.1. Структура программы

DB

Для каждой оси должен быть создан блок данных (axis DB), содержащий данные конфигурации и состояния. Блок данных состоит из следующих структур данных:

- UDT 872 VMC_ConfigSigma7EC_REF
 Структура данных описывает структуру конфигурации привода.
 Специфическая структура данных для Sigma-7 с EtherCAT.
- UDT 860 MC_AXIS_REF
 Структура данных описывает структуру параметров и данных о состоянии привода.

Универсальная структура данных для всех приводов и систем шин.

- FB 873 VMC InitSigma7S EC
 - Блок инициализации (Init) используется для конфигурирования оси.
 - Специфический блок для Sigma-7S с EtherCAT.
 - Конфигурационные данные для инициализации должны храниться в блоке данных оси (axis DB).
- FB 872 VMC KernelSigma7 EC
 - Этот основной (Kernel) блок связывается с приводом через соответствующий сетевой интерфейс, обрабатывает запросы пользователя и возвращает сообщения о состоянии.
 - Специфический блок для Sigma-7 с EtherCAT.
 - Обмен данными осуществляется с помощью блока данных оси (axis DB).
- FB 860 VMC AxisControl
 - Универсальный блок для всех приводов и систем шин.
 - Поддерживает простые команды движения и предоставляет все соответствующие сообщения о состоянии.
 - Обмен данными осуществляется с помощью блока данных оси (axis DB).
 - Управление движением оси и контроль ее состояния из системы визуализации могут быть реализованы через экземплярный блок данных.
 - В дополнение к FB 860 VMC_AxisControl возможно использование блоков PLCopen.
- FB 800 ... FB 838 PLCopen
 - Блоки PLCopen используются для программирования последовательности перемещений и запросов состояния.
 - Универсальные блоки для всех приводов и систем шин.

2.4.3.2. Программирование

Добавление библиотеки

- 1. ▶ Перейдите в сервисную зону сайта www.vipa.com.
- **2.** Загрузите библиотеку Simple Motion Control из раздела VIPA Lib' области загрузки.
- 3. ▶ Откройте диалоговое окно для выбора ZIP-файла с помощью 'File → Retrieve'.
- 4. Выберите нужный ZIP-файл и кликните по [Open].
- **5.** Укажите папку, в которой будут сохранены блоки, и запустите процесс распаковки, кликнув по [OK].

Копирование блоков в проект

- Откройте библиотеку после распаковки и перетащите следующие блоки в раздел 'Blocks' проекта:
 - Sigma-7S c EtherCAT:
 - UDT 872 VMC_ConfigSigma7EC_REF
 - FB 872 VMC_KernelSigma7_EC
 - FB 873 VMC_InitSigma7S_EC
 - Axis Control
 - UDT 860 MC AXIS REF
 - Блоки для реализации требуемой последовательности перемещений

Создание ОВ прерываний

- 1. ▶ В проекте кликните по 'Blocks' и выберите 'Context menu → Insert new object → Organization block'.
 - ⇒ В ответ откроется диалоговое окно 'Properties Organization block'.
- 2. D Добавьте блоки OB 57, OB 82 и OB 86 в свой проект.

Создание блока данных для оси (axis DB)

В проекте кликните по 'Blocks' и выберите 'Context menu → Insert new object → Data block'.

Задайте следующие параметры:

- Name and type
 - Имя для DB в поле 'Name' может быть задано любое, например, DB 10.
 - Установите для 'Туре' значение 'Shared DB'.
- Symbolic name
 - Введите "Axis01".

Подтвердите ввод, кликнув по [OK].

- ⇒ Блок создан.
- 2. Двойным кликом откройте DB 10 "Axis01".
 - В блоке "Axis01" создайте переменную "Config" с типом UDT 872. Это специфические конфигурационные данные оси.
 - В блоке "Axis01" создайте переменную "Axis" с типом UDT 860. Во время работы все рабочие данные оси хранятся здесь.

DB10

Address	Name	Туре	
		Struct	
(***)	Config	"VMC_ConfigSigma7EC_REF"	
	Axis	"MC_AXIS_REF	
		END_STRUCT	

OB₁

Конфигурирование оси

Откройте OB 1 и запрограммируйте следующие вызовы FB с соответствующими DB:

FB 873 - VMC_InitSigma7S_EC, DB 873 ∜ Раздел 2.5.3 'FB 873 - VMC_InitSigma7S_EC - Sigma-7S EtherCAT initialization' на стр. 75

В InputsStartAddressPDO или OutputsStartAddressPDO введите адрес из SPEED7 EtherCAT Manager. ∜⇒ 68

```
⇒ CALL "VMC InitSigma7S EC" , "DI InitSgm7SETC01"
                             :="InitS7SEC1 Enable"
   Enable
                             :=300
   LogicalAddress
   InputsStartAddressPDO :=300(EtherCAT-Man:S7 Input address)
   OutputsStartAddressPDO:=300(EtherCAT-Man:S7 Output address)
   EncoderType
                             :=1
   EncoderResolutionBits :=20
   FactorPosition :=1.048576e+006
FactorVelocity :=1.048576e+006
  FactorAcceleration:
OffsetPosition :=0.000000e+uuu
MaxVelocityApp :=5.000000e+001
MaxAccelerationApp :=1.000000e+002
MaxDecelerationApp :=1.000000e+002
:=6.000000e+001
   FactorAcceleration :=1.048576e+002
   MaxAccelerationDrive :=1.500000e+002
   MaxDecelerationDrive :=1.500000e+002
   MaxPosition
                             :=1.048500e+003
   MinPosition
                             :=-1.048514e+003
   EnableMaxPosition
EnableMinPosition
                            :=TRUE
                            :=TRUE
   MinUserPosition
                             :="InitS5EC1 MinUserPos"
   MaxUserPosition
                             :="InitS5EC1_MaxUserPos"
                             :="InitS5EC1_Valid"
   Valid
   Error
                             :="InitS5EC1 Error"
   ErrorID
                             :="InitS5EC1 ErrorID"
   Config
                             :="Axis01".Config
   Axis
                              :="Axis01".Axis
```

Подключение блока Kernel для оси

Блок *Kernel* обрабатывает пользовательские команды и затем пересылает их в привод через соответствующий сетевой интерфейс.

```
___ FB 872 - VMC_KernelSigma7_EC, DB 872 ♥ Раздел 2.5.2 'FB 872 - VMC_KernelSigma7_EC - Sigma-7 EtherCAT Kernel' на стр. 75
```


Параметрирование блока для реализации последовательности перемещений

Для простоты здесь будет показано параметрирование блока FB 860 - VMC_AxisControl. Этот универсальный блок поддерживает простые команды движения и возвращает сообщения о состоянии. Входы и выходы могут быть индивидуально параметрированы. Пожалуйста, введите ссылку на соответствующие данные об оси в разделе 'Axis' блока axis DB.

FB 860 - VMC_AxisControl, DB 860 ♥ Раздел 4.2.2 'FB 860 - VMC_AxisControl - Control block axis control' на стр. 122

```
"VMC AxisControl" , "DI AxisControl01"
AxisEnable :="AxCtrll_AxisEnable"
AxisReset :="AxCtrll_AxisReset"
HomeExecute :="AxCtrl1 AxIsReset"
:="AxCtrl1 HomeExecute"
MvVelocityExecute:="AxCtrl1 MvVelExecute"
MvRelativeExecute:="AxCtrl1 MvRelExecute"
MvAbsoluteExecute:="AxCtrl1 MvAbsExecute"
PositionDistance := "AxCtrl1 PositionDistance"
JogAcceleration :="AxCtrl1_JogAcceleration"
JogDeceleration :="AxCtrl1_JogDeceleration"
AxisReady :="AxCtrll_AxisReady"
AxisEnabled :="AxCtrll_AxisEnabled"
AxisError :="AxCtrll_AxisError"
AxisErrorID :="AxCtrll_AxisErrorID"
DriveWarning :="AxCtrll_DriveWarning"
DriveError :="AxCtrll_DriveError"
DriveErrorID :="AxCtrll_DriveError"
IsHomed :="AxCtrll_IsHomed"
ModeOfOperation :="AxCtrl1 ModeOfOperation"
PLCopenState :="AxCtrl1_PLCopenState"
ActualPosition :="AxCtrl1_ActualPosition"
ActualVelocity :="AxCtrl1 ActualVelocity"
CmdDone :="AxCtrl1_CmdDone"

CmdBusy :="AxCtrl1_CmdBusy"

CmdAborted :="AxCtrl1_CmdAborted"

CmdError :="AxCtrl1_CmdError"

CmdErrorID :="AxCtrl1_CmdError"
DirectionPositive:="AxCtrl1_DirectionPos"
DirectionNegative:="AxCtrl1 DirectionNeg"
SWLimitMinActive := "AxCtrl1_SWLimitMinActive"
SWLimitMaxActive :="AxCtrll_SWLimitMaxActive"
HWLimitMinActive :="AxCtrll_HWLimitMinActive"
HWLimitMaxActive :="AxCtrll_HWLimitMaxActive"
Axis :="Axis01".Axis
```


Для сложных задач движения можно использовать блоки PLCopen. Пожалуйста, задайте ссылку на соответствующие данные об оси в разделе 'Axis' блока axis DB.

Теперь проект включает следующие компоненты (блоки):

- ОВ 1 Основной
- OB 57 DP Manufacturer Alarm
- OB 82 I/O FLT1
- OB 86 Rack_FLT
- FB 860 VMC AxisControl с экземплярным DB

- FB 872 VMC KernelSigma7 EC с экземплярным DB
- FB 873 VMC InitSigma7S EC с экземплярным DB
- UDT 860 MC AXIS REF
- UDT 872 VMC ConfigSigma7EC REF

Последовательность действий

1.

Перейдите в SIMATIC Manager и загрузите проект в ЦПУ.

Загрузка может производиться только из Siemens SIMATIC Manager, а не из конфигуратора оборудования (Hardware Configurator)!

Поскольку параметры ведомого устройства и модуля передаются с помощью объекта SDO или команды SDO init, конфигурация сохраняется неизменной до тех пор, пока не будет проведен сброс питания или не будут переданы новые параметры для тех же объектов SDO.

При выполнении полного сброса параметры ведомого устройства и модуля не сбрасываются!

⇒ Теперь можно запустить прикладную программу на исполнение.

ВНИМАНИЕ!

Всегда соблюдайте указания по технике безопасности для используемого электропривода, особенно при вводе его в эксплуатацию!

- **2.** Прежде чем управлять осью, её необходимо инициализировать. Для этого вызовите блок *Init* FB 873 VMC_InitSigma7S_EC с *Enable* = TRUE.
 - ⇒ Выход *Valid* возвращает значение TRUE. При возникновении ошибки ее можно идентифицировать с помощью *ErrorID*.

Необходимо вызвать блок *Init* ещё раз в случае загрузки нового *axis DB* или при изменении параметров блока *Init*.

Продолжайте только в том случае, если блок Init не сообщает об ошибке!

- 3. Убедитесь, что блок *Kernel* FB 872 VMC_KernelSigma7_EC вызывается периодически. Тем самым сигналы управления передаются в привод и принимаются сообщения о его состоянии.
- 4. Запрограммируйте приложение с помощью FB 860 VMC_AxisControl или с блоками PLCopen.

2.4.4. Копирование проекта

Порядок выполнения

В примере станция 'Source' копируется и сохраняется как 'Target'.

- 1. Откройте аппартную конфигурацию модуля ЦПУ 'Source' и запустите SPEED7 EtherCAT Manager.
- **2.** В SPEED7 EtherCAT Manager командой 'File → Save as' сохраните конфигурацию в рабочей папке компьютера.

- 3. Sakpoйте SPEED7 EtherCAT Manager и конфигуратор оборудования.
- 4. Скопируйте станцию 'Source' с помощью Ctrl + C и вставьте как'Target' в проект с помощью Ctrl + V.
- 5. Выберите раздел 'Blocks' модуля ЦПУ 'Target' и удалите 'System data'.
- **6.** Откройте аппартную конфигурацию модуля ЦПУ *'Target'*. Модифицируйте данные IP-адреса или еще раз переподключите CPU или CP.
 - Перед вызовом SPEED7 EtherCAT Manager необходимо в обязательном порядке сохранить свой проект с помощью команды 'Station → Save and compile'.
- 7. ▶ Сохраните проект с помощью 'Station → Safe and compile'.
- 8.

 Saпустите SPEED7 EtherCAT Manager.
- **9.** Используйте команду *'File* → *Open'* для загрузки конфигурации из рабочей папки компьютера.
- **10.** Закройте SPEED7 EtherCAT Manager.
- 11. Сохраните и скомпилируйте конфигурацию.

Применение Sigma-7S c EtherCAT > Специальные блоки для управления приводом

2.5. Специальные блоки для управления приводом

2.5.1. UDT 872 - VMC_ConfigSigma7EC_REF - Sigma-7 EtherCAT Data structure axis configuration

Это определяемая пользователем структура данных, содержащая информацию о конфигурации оси. Этот блок UDT специально приспособлен для работы с сервоприводом *Sigma-7*, подключаемым через сеть EtherCAT.

2.5.2. FB 872 - VMC_KernelSigma7_EC - Sigma-7 EtherCAT Kernel

Описание

Этот блок преобразует команды управления осью сервопривода *Sigma-7* через сеть EtherCAT и обеспечивает обмен данными с приводом. Для каждой оси *Sigma-7* экземпляр этого FB вызывается циклически.

Имейте ввиду, что внутри этого блока содержится вызов SFC 238.

В SPEED7 Studio этот блок автоматически вставляется в проект.

B Siemens SIMATIC Manager блок SFC 238 необходимо скопировать в проект из библиотеки Motion Control Library.

Параметр	Тип переменной	Тип данных	Описание
Init	вход	ВООL (Двоичное значение)	По переходу 0-1 выполняется внутренний сброс блока. Выполнение текущих команд управления движением прерывается, а блок сам блок инициализируется.
Config	вход_выход	UDT872	Структура данных для передачи зависящих от оси конфигурационных данных в <i>AxisKernel</i> .
Axis	вход_выход	MC_AXIS_REF	Структура данных для передачи зависящей от оси информации в <i>AxisKernel</i> и блоки PLCopen.

2.5.3. FB 873 - VMC_InitSigma7S_EC - Sigma-7S EtherCAT Initialization

Описание

Этот блок используется для конфигурирования оси. Блок специально приспособлен для работы с сервоприводом Sigma-7, подключенным через сеть EtherCAT.

Параметр	Тип переменной	Тип данных	Описание
Config	вход_выход	UDT872	Структура данных для передачи зависящих от оси конфигурационных данных в <i>AxisKernel</i> .
Axis	вход_выход	MC_AXIS_REF	Структура данных для передачи зависящей от оси информации в <i>AxisKernel</i> и блоки PLCopen.
Enable	ВХОД	BOOL (Двоичное значение)	Выполнение инициализации
Logical address	вход	INT (Целое)	Начальный адрес входных данных PDO
InputsStartAddressPDO	вход	INT (Целое)	Начальный адрес входных PDO
OutputsStartAddressPDO	вход	INT (Целое)	Начальный адрес выходных PDO
EncoderType	вход	INT (Целое)	Тип энкодера ■ 1: Абсолютный энкодер ■ 2: Инкрементальный энкодер
EncoderResolutionBits	ВХОД	INT (Целое)	Количество разрядов, соответствующее одному обороту энкодера. Значение по умолчанию: 20

Применение Sigma-7S с EtherCAT > Специальные блоки для управления приводом

Параметр	Тип переменной	Тип данных	Описание
FactorPosition	вход	REAL (Вещественное число)	позиции из пользовательских единиц [u] в единицы привода [приращения] и обратно.
			При этом: $p_{\text{[increments]}} = p_{\text{[u]}} x FactorPosition$
			Пожалуйста, учитывайте фактор, который может быть задан в приводе через объекты 0x2701: 1 и 0x2701: 2. Он должен быть равен 1.
Velocity Factor	вход	REAL (Вещественное число)	Коэффициент преобразования значения скорости из пользовательских единиц [u/s] в единицы привода [increments/s] и обратно.
			При этом: $V_{[increments/s]} = V_{[u/s]} \times FactorVelocity$
			Пожалуйста, учитывайте фактор, который может быть задан в приводе через объекты 0x2702: 1 и 0x2702: 2. Он должен быть равен 1.
FactorAcceleration	вход	REAL (Вещественное число)	Коэффициент преобразования значения ускорения из пользовательских единиц $[u/s^2]$ в единицы привода $[10^{-4}\mathrm{x}$ increments/s²] и обратно.
			При этом: 10^{-4} x $a_{\text{fincrements/s}^2}$] = $a_{\text{fu/s}^2}$] x FactorAcceleration
			Пожалуйста, учитывайте фактор, который может быть задан в приводе через объекты 0x2703: 1 и 0x2703: 2. Он должен быть равен 1.
OffsetPosition	ВХОД	REAL (Вещественное число)	Смещение для нулевой позиции [u].
MaxVelocityApp	вход	REAL (Вещественное	Максимальная скорость приложения [u/s].
		число)	Входные значения команд проверяются на максимальное значение перед исполнением.
MaxAccelerationApp	вход	REAL (Вещественное	Максимальный разгон приложения $[u/s^2]$.
		число)	Входные значения команд проверяются на максимальное значение перед исполнением.
MaxDecelerationApp	вход	REAL (Вещественное	Максимальное замедление приложения $[u/s^2]$.
		число)	Входные значения команд проверяются на максимальное значение перед исполнением.
MaxPosition	вход	REAL (Вещественное число)	Максимальное значение позиции для контроля программных ограничений [u].
MinPosition	вход	REAL (Вещественное число)	Минимальное значение позиции для контроля программных ограничений [u].
EnableMaxPosition	вход	BOOL (Двоичное	Контроль максимальной позиции
		значение)	■ TRUE: Включает контроль максимальной позиции.
EnableMinPosition	вход	ВООС (Двоичное	Контроль минимальной позиции
		значение)	■ TRUE: Включает контроль минимальной позиции.
MinUserPosition	выход	REAL (Вещественное число)	Минимальная пользовательская позиция, основанная на минимальном значении датчика 0x80000000 и <i>FactorPosition</i> [u].
MaxUserPosition	выход	REAL (Вещественное число)	Максимальная пользовательская позиция, основанная на максимальном значении датчика 0x80000000 и <i>FactorPosition</i> [u].

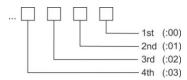
Применение Sigma-7W с EtherCAT > Установка параметров сервопривода

Параметр	Тип переменной	Тип данных	Описание
Valid	выход	BOOL (Двоичное значение)	Инициализация ■ TRUE: Инициализация выполнена
Ошибка	выход	BOOL (Двоичное значение)	 Ошибка TRUE: Возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра <i>ErrorID</i>. Ось заблокирована.
ErrorID	выход	WORD (16-разрядное значение)	Дополнительная информация об ошибке

3. Применение Sigma-7W c EtherCAT

3.1. Обзор

Предпосылки


- SPEED7 Studio с версии V1.6.1
- Siemens STEP7 версии V5.5 SP2, утилита SPEED7 EtherCAT Manager и библиотека Simple Motion Control.
- Процессорный модуль 015-СЕFNR00 со встроенным контроллером EtherCAT.
- Двухосевой сервопривод Sigma-7W с опциональной платой EtherCAT.

Последовательность конфигурирования

- 1. Установка параметров сервопривода
 - Установка параметров осуществляется с помощью программного обеспечения Sigma Win+.
- 2. Конфигурирование аппаратных средств в среде VIPA SPEED7 Studio или Siemens SIMATIC Manager.
 - Конфигурирование модуля ЦПУ с фунционалом ведущего устройства EtherCAT.
 - Конфигурирование двухосевого сервопривода Sigma-7W с интерфейсом EtherCAT.
 - Настройка соединения EtherCAT с помощью SPEED7 EtherCAT Manager.
- 3. Программирование в среде VIPA SPEED7 Studio или Siemens SIMATIC Manager.
 - Блок *Init* для конфигурирования двухосевого сервопривода.
 - Блок Kernel для связи с одной осью.
 - Параметрирование блоков для реализации последовательности перемещений.

3.2. Установка параметров сервопривода

Разряды управления

ВНИМАНИЕ!

Перед вводом в эксплуатацию необходимо адаптировать сервопривод применительно к решаемой задаче с помощью программного обеспечения *Sigma Win+*! Дополнительную информацию можно найти в руководстве пользователя для используемого сервопривода.

Применение Sigma-7W с EtherCAT > Установка параметров сервопривода

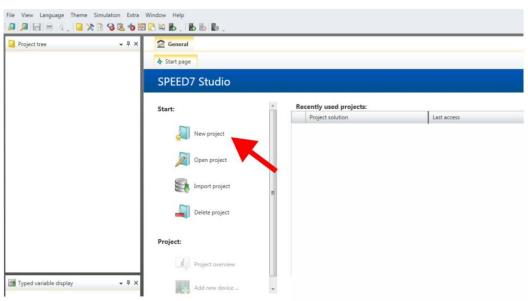
Эти параметры должны быть заданы с помощью Sigma Win+ для обеспечения их соответствия библиотеке Simple Motion Control.

Ось 1 - Module 1 (24-рязрядный энкодер)

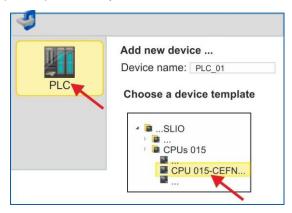
Параметр Servopack	Адрес:разряд	Name	Значение
Pn205	(2205h)	Уставка многооборотного предела	65535
Pn20E	(220Eh)	Электронный коэффициент передачи (числитель)	16
Pn210	(2210h)	Электронный коэффициент передачи (знаменатель)	1
PnB02	(2701h:01)	Пользовательская единица позиции (числитель)	1
PnB04	(2701h:02)	Пользовательская единица позиции (знаменатель)	1
PnB06	(2702h:01)	Пользовательская единица скорости (числитель)	1
PnB08	(2702h:02)	Пользовательская единица скорости (знаменатель)	1
PnB0A	(2703h:01)	Пользовательская единица ускорения (числитель)	1
PnB0C	(2703h:02)	Пользовательская единица ускорения (знаменатель)	1

Ось 2 - Модуль 2 (24-рязрядный энкодер)

Параметр Servopack	Адрес:разряд	Name	Значение
Pn205	(2A05h)	Уставка многооборотного предела	65535
Pn20E	(2A0Eh)	Электронный коэффициент передачи (числитель)	16
Pn210	(2A10h)	Электронный коэффициент передачи (знаменатель)	1
PnB02	(2F01h:01)	Пользовательская единица позиции (числитель)	1
PnB04	(2F01h:02)	Пользовательская единица позиции (знаменатель)	1
PnB06	(2F02h:01)	Пользовательская единица скорости (числитель)	1
PnB08	(2F02h:02)	Пользовательская единица скорости (знаменатель)	1
PnB0A	(2F03h:01)	Пользовательская единица ускорения (числитель)	1
PnB0C	(2F03h:02)	Пользовательская единица ускорения (знаменатель)	1


3.3. Использование VIPA SPEED7 Studio

3.3.1. Конфигурирование аппаратных средств

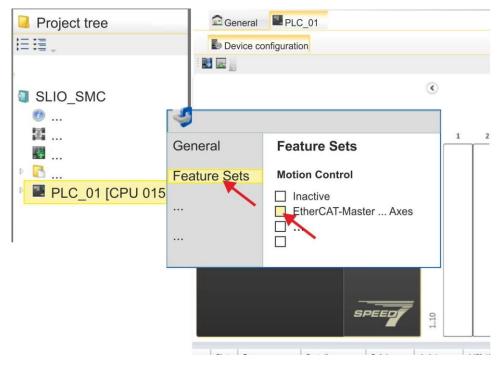

Добавление модуля ЦПУ в проект

Используйте для конфигурирования SPEED7 Studio V1.6.1 и выше.

1. ▶ Запустите SPEED7 Studio.

- 2. Создайте новый проект на стартовой странице с помощью команды 'New project'.
 - ⇒ Новый проект создается и будет отображаться в окне 'Devices and networking'.
- 3. ▶ Кликните в дереве проекта Project tree по 'Add new device ...'.

- ⇒ Откроется диалоговое окно выбора устройства.
- **4.** Выберите из 'Device templates' используемый процессорный модуль серии SLIO CPU 015-CEFNR00 и кликните по [OK].
 - ⇒ ЦПУ будет добавлен в раздел 'Devices and networking' и откроется окно 'Device configuration'.

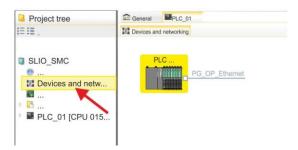


Активирование функций управления движением

- 1. ▶ Кликните по ЦПУ в 'Device configuration' и выберите 'Context menu → Components properties'.
 - ⇒ Откроется диалоговое окно свойств ЦПУ.

- 2. Кликните по 'Feature Sets' и активируйте в 'Motion Control' параметр 'EtherCAT- Master... Axes'. Число осей не имеет значения в этом примере.
- **3.** Подтвердите ввод, кликнув по [OK].
 - ⇒Функции управления движением теперь доступны для использования в проекте.

ВНИМАНИЕ!


Обратите внимание, что всякий раз при изменении настройки набора функций система удаляет систему промышленной сети EtherCAT вместе с конфигурацией управления движением из проекта!

Конфигурирование порта Ethernet PG/OP

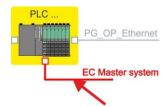
- 1.

 Кликните в дереве проекта Project tree по 'Devices and networking'.
 - ⇒ Вы получите графическое представление используемого ЦПУ.

- 2. Кликните по изображению сети 'PG_OP_Ethernet'.
- 3. ▶ Выберите 'Context menu → Interface properties'.
 - ⇒ Откроется диалоговое окно. В нем необходимо ввести IP-адрес для порта Ethernet PG/OP. Предварительно необходимо получить у администратора сети допустимый IP-адрес.
- **4.** Подтвердите нажатием по [OK].
 - ⇒ Данные IP-адреса сохранятся в проекте и будут отображены в окне 'Local components' раздела 'Devices and networking'.

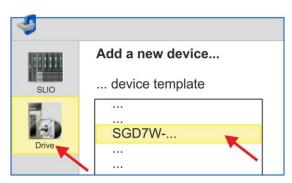
После загрузки проекта в используемый ЦПУ можно получить доступ к устройству через порт Ethernet PG/OP с использованием заданного для него IP-адреса.

Установка ESI-файла


Для того, чтобы привод Sigma-7 с интерфейсом EtherCAT мог быть настроен с помощью SPEED7 EtherCAT Manager, необходимо предварительно установить соответствующий файл ESI. Обычно SPEED7 Studio поставляется с текущими файлами ESI, поэтому этот этап может быть пропущен. Если файл ESI уже устарел, то актуальную его версию для сервопривода Sigma-7 с EtherCAT можно найти на сайте www.yaskawa.eu.com в разделе 'Service → Drives & Motion Software'.

- 1. Загрузите файл ESI для используемого привода. При необходмости распакуйте его.
- 2.
 Перейдите в SPEED7 Studio.
- 3. Откройте соответсвующее диалоговое окно, кликнув по 'Extra → Install device description (EtherCAT ESI)'.
- 4. В 'Source path' укажите нужный файл ESI и установите его, кликнув по [Install].
 - \Rightarrow Теперь устройство, описание которого содержит файл ESI, доступно для использования.

Добавление двухосевого привода Sigma-7W


- 1.

 Кликните в дереве проекта Project tree по 'Devices and networking'.
- 2. ▶ Кликните по 'EC-Mastersystem' и выберите 'Context menu → Add new device'.

⇒ Откроется шаблон для выбора устройства EtherCAT.

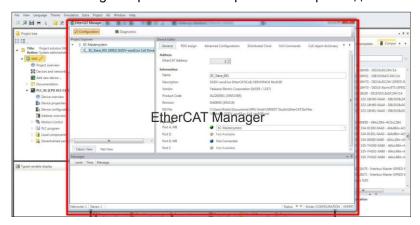
- 3. **Выберите двухосевой сервопривод** Sigma-7W:
 - SGD7W-xxxxA0 ...

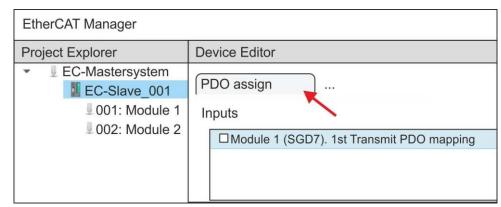
Подтвердите выбор, кликнув по [OK]. Если нужный привод отсутствует в шаблоне, необходимо установить соответсвующий файл ESI, как описано выше.

⇒ Двухосевой привод *Sigma-7W* подключен к сети EC-Mastersystem.

Конфигурирование двухосевого сервопривода Sigma-7W

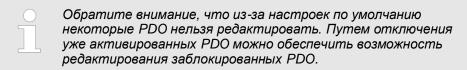
1.

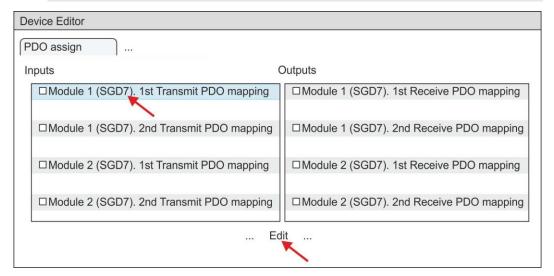

Кликните по 'EC-Mastersystem' и выберите 'Context menu → Bus system properties (expert)'.


Возможность редактировать PDO есть только в 'Expert mode'! В противном случае кнопки скрыты.

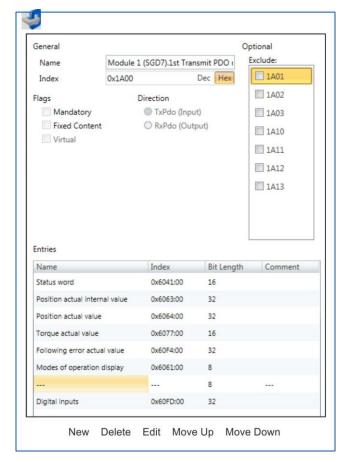
⇒ Запустится SPEED7 EtherCAT Manager. С его помощью настраивается связь через EtherCAT с двухосевым сервоприводом Sigma-7W.

Для получения дополнительной информации об использовании SPEED7 EtherCAT Manager обратитесь к интерактивной справке для SPEED7 Studio.


B SPEED7 EtherCAT Manager кликните по ведомому устройству и в'Device editor' выберите вкладку 'PDO assign'.



⇒В открывшемся диалоговом окне отображается список всех объектов PDO для 'Module 1' (ось 1) и 'Module 2' (ось 2).



3. Выбрав соответствующее отображение PDO, затем можно перейти к редактированию PDO с помощью [Edit]. Выберите отображение 'Module 1 (SGD7). 1st Transmit PDO mapping' и кликните по [Edit].

⇒ В ответ откроется диалоговое окно 'Edit PDO'. Пожалуйста, проверьте перечисленные там настройки PDO и при необходимости измените их нужным образом. Также обратите внимание на порядок записей в списке 'Entries' и дополните их соответственно.

Для редактирования содержимого списка *'Entries'* доступны следующие функции:

- New
 - Позволяет создать новую запись в диалоговом окне, выбрав соответствующую запись из каталога объектов 'CoE object dictionary' и сделать свои настройки. Создание записи подтверждается с помощью [OK], а сама запись включается в список.
- Delete
 - Позволяет удалить выбранную запись.
- Edit
 - Позволяет редактировать общие данные записи.
- Move Up/Down
 - Позволяет перемещать выбранную запись вверх или вниз по списку.

4. Выполните следующие настройки для Transmit PDO:

Inputs: 1st Transmit PDO

Module 1 (SGD7). 1st Transmit PDO mapping	Module 2 (SGD7). 1st Transmit PDO mapping		
Name: Module 1 (SGD7). 1st Transmit PDO mapping	Name: Module 2 (SGD7). 1st Transmit PDO mapping		
Index: 0x1A00	Index: 0x1A10		
Flags: Все отключено			
Direction TxPdo (Input): активировано			
Exclude: 1A01: деактивировано	1А11: деактивировано		
Обратите внимание на эти параметры, в противном случае конфигурация PDO не может быть активирована одновременно!			

Записи	Module 1 (ось 1)	Module 2 (ось 2)	Разрядность
Name	Index	Index	
Status word (Слово состояния)	0x6041:00	0x6841:00	16 бит
Position actual internal value (Внутреннее фактическое значение позиции)	0x6063:00	0x6863:00	32 бита
Position actual value (Фактическое значение позиции)	0x6064:00	0x6864:00	32 бита
Torque actual value (Фактическое значение момента)	0x6077:00	0x6877:00	16 бит
Following error actual value (Фактическое значение ошибки рассогласования)	0x60F4:00	0x68F4:00	32 бита
Modes of operation display (Отображение режимов работы)	0x6061:00	0x6861:00	8 бит
			8 бит
Digital inputs (Дискретные входы)	0x60FD:00	0x68FD:00	32 бита

Inputs: 2nd Transmit PDO

скорости)

mpater and transmit 20	
Module 1 (SGD7). 2nd Transmit PDO mapping	Module 2 (SGD7). 2nd Transmit PDO mapping
Name: Module 1 (SGD7). 2nd Transmit PDO mapping	Name: Module 2 (SGD7). 2nd Transmit PDO mapping
Index: 0x1A01	Index: 0x1A11
Flags: Все отключено	
Direction TxPdo (Input): активировано	
Exclude: 1A00, 1A02, 1A03: деактивировано	1А10, 1А12, 1А13: деактивировано
Обратите внимание на эти параметры, в противном слу- одновременно!	нае конфигурация PDO не может быть активирована

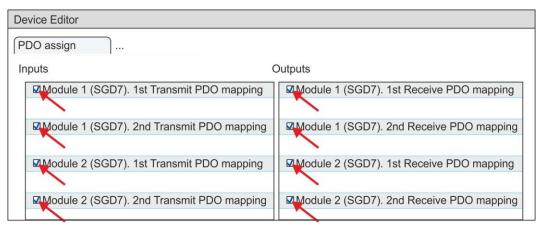
Записи	Module 1 (ось 1)	Module 2 (ось 2)	Разрядность
Name	Index	Index	
Touch probe status (Состояние датчика касания)	0x60B9:00	0x68B9:00	16 бит
Touch probe 1 position value (Значение позиции датчика касания 1)	0x60BA:00	0x68BA:00	32 бита
Touch probe 2 position value (Значение позиции датчика касания 2)	0x60BC:00	0x68BC:00	32 бита
Velocity actual value (Фактическое значение	0x606C:00	0x686C:00	32 бита

5. Выполните следующие настройки для Receive PDO:

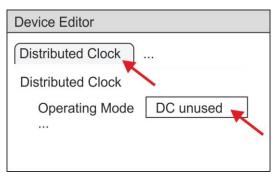
Outputs: 1st Receive PDO

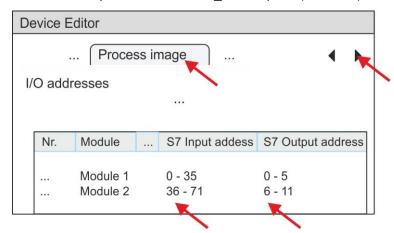
Module 1 (SGD7). 1st Receive PDO	Module 2 (SGD7). 1st Receive PDO		
Name: Module 1 (SGD7). 1st Receive PDO mapping	Name: Module 2 (SGD7). 1st Receive PDO mapping		
Index: 0x1600	Index: 0x1610		
Flags: Все отключено			
Direction RxPdo (Output): активировано			
Exclude: 1601, 1602, 1603: деактивировано	1611, 1612, 1613: деактивировано		
Обратите внимание на эти параметры, в противном случае конфигурация PDO не может быть активирована одновременно!			

Записи	Module 1 (ось 1)	Module 2 (ось 2)	Разрядность
Name	Index	Index	
Control word (Слово управления)	0x6040:00	0x6840:00	16 бит
Target position (Целевая позиция)	0x607A:00	0x687A:00	32 бита
Target velocity (Целевая скорость)	0x60FF:00	0x68FF:00	32 бита
Modes of operation (Режимы работы)	0x6060:00	0x6860:00	8 бит
			8 бит
Touch probe function (Функция датчика касания)	0x60B8:00	0x68B8:00	16 бит

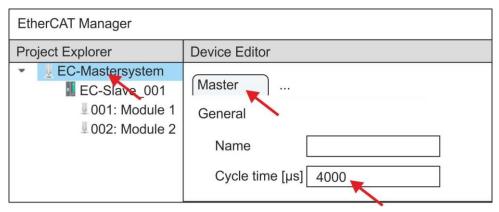

Outputs: 2nd Receive PDO

Module 1 (SGD7). 2nd Receive PDO	Module 2 (SGD7). 2nd Receive PDO	
Name: Module 1 (SGD7). 2nd Receive PDO mapping	Name: Module 2 (SGD7). 2nd Receive PDO mapping	
Index: 0x1601	Index: 0x1611	
Flags: Все отключено		
Direction RxPdo (Output): активировано		
Exclude: 1600, 1602, 1603: деактивировано	1610, 1612, 1613: деактивировано	
Обратите внимание на эти параметры, в противном случае конфигурация PDO не может быть активирована одновременно!		

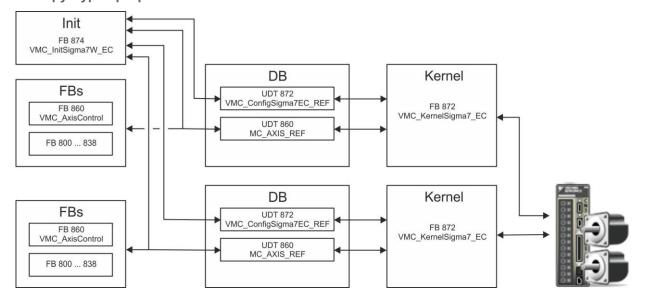

Записи	Module 1 (ось 1)	Module 2 (ось 2)	Разрядность
Name	Index	Index	
Profile velocity (профиль скорости)	0x6081:00	0x6881:00	32 бита
Profile acceleration (профиль разгона)	0x6083:00	0x6883:00	32 бита
Profile deceleration (профиль замедления)	0x6084:00	0x6884:00	32 бита


6. На вкладке 'PDO assign' для 'Module 1' и 'Module 2' активируйте PDO 1 и 2 для входов и выходов. Все последующие PDO должны оставаться деактивированными. Если это невозможно, проверьте соответствующий PDO-параметр 'Exclude'.

7. В 'Device Editor' утилиты SPEED7 EtherCAT Manager выберите вкладку 'Distributed clocks' и в ней задайте значение 'DC unused' для 'Operating mode'.



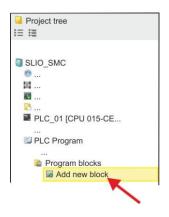
- **8.** В *'Device editor'* с помощью кнопок со стрелкой выберите вкладку *'Process image'* и зафиксируйте следующие начальные адреса PDO для параметров блока FB 874 VMC_InitSigma7W_ EC:
 - Module 1: 'S7 Input address' → 'M1_PdoInputs' (здесь 0)
 - Module 2: 'S7 Input address' → 'M2_PdoInputs' (здесь 36)
 - Module 1: 'S7 Output address' → 'M1_PdoOutputs' (здесь 0)
 - Module 2: 'S7 Output address' → 'M2_PdoOutputs' (здесь 36)


9. В SPEED7 EtherCAT Manager кликните по 'EC-Mastersystem' и в 'Device editor' выберите вкладку 'Master' .

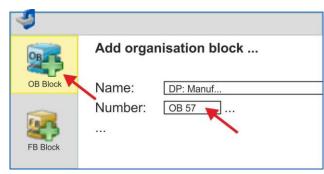
- ⇒ Для приводов Sigma-7W (400 B) установите время цикла не менее 4 мс.
- **10.** При закрытии диалогового окна SPEED7 EtherCAT Manager с помощью [X], конфигурация передается в SPEED7 Studio.

3.3.2. Прикладная программа

3.3.2.1. Структура программы

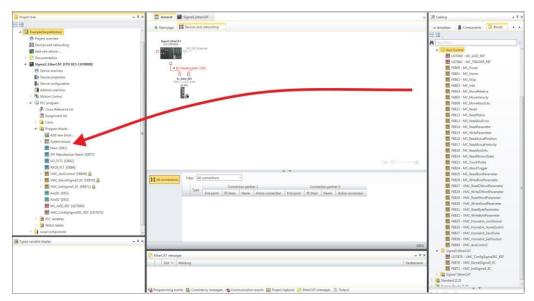

DB

Для каждой оси должен быть создан блок данных (axis DB), содержащий данные конфигурации и состояния. Блок данных состоит из следующих структур данных:


- UDT 872 VMC_ConfigSigma7EC_REF
 Структура данных описывает структуру конфигурации привода.
 Специфическая структура данных для Sigma-7 с EtherCAT.
- UDT 860 MC_AXIS_REF
 Структура данных описывает структуру параметров и данных о состоянии привода.
 - Универсальная структура данных для всех приводов и систем шин.
- FB 874 VMC InitSigma7W EC
 - Блок инициализации (Init) используется для конфигурирования двухосевого сервопривода.
 - Специфический блок для Sigma-7W с EtherCAT.
 - Конфигурационные данные для инициализации должны храниться в блоке данных оси (*axis DB*).
- FB 872 VMC KernelSigma7 EC
 - Этот основной (Kernel) блок связывается с приводом через соответствующий сетевой интерфейс, обрабатывает запросы пользователя и возвращает сообщения о состоянии.
 - Блок FB 872 VMC_KernelSigma7_EC должен быть вызван для каждой оси.
 - Специфический блок для Sigma-7 с EtherCAT.
 - Обмен данными осуществляется с помощью блока данных оси (axis DB).
- FB 860 VMC_AxisControl
 - Универсальный блок для всех приводов и систем шин.
 - Блок FB 860 VMC AxisControl должен быть вызван для каждой оси.
 - Поддерживает простые команды движения и предоставляет все соответствующие сообщения о состоянии.
 - Обмен данными осуществляется с помощью блока данных оси (axis DB).
 - Управление движением оси и контроль ее состояния из системы визуализации могут быть реализованы через экземплярный блок данных.
 - В дополнение к FB 860 VMC_AxisControl возможно использование блоков PLCopen.
- FB 800 ... FB 838 PLCopen
 - Блоки PLCopen используются для программирования последовательности перемещений и запросов состояния.
 - Блоки PLCopen должны быть вызваны для каждой оси.

3.3.2.2. Программирование

Копирование блоков в проект



■ В менеджере проекта Project tree в разделе 'PLC program', 'Programming blocks' для используемого ЦПУ кликните по 'Add New block'.

- ⇒ В ответ откроется диалоговое окно 'Add block'.
- **2.** Выберите тип блока 'OB block' и последовательно добавьте блоки OB 57, OB 82 и OB 86 в свой проект.

- **3.** В закладке 'Catalog' откройте библиотеку 'Simple Motion Control' в разделе 'Blocks' и перетащите следующие блоки в раздел 'Program blocks' менеджера проекта Project tree:
 - Sigma-7 c EtherCAT:
 - UDT 872 VMC_ConfigSigma7EC_REF
 - FB 872 VMC_KernelSigma7_EC
 - FB 874 VMC_InitSigma7W_EC
 - Axis Control
 - UDT 860 MC AXIS REF
 - Блоки для реализации требуемой последовательности перемещений

Создание блока данных оси (axis DB) для 'Module 1'

- 1. Добавьте в проект новый DB в качестве axis DB. В менеджере проекта Project tree в разделе 'PLC program', 'Programming blocks' для используемого ЦПУ кликните по 'Add New block', выберите тип блока 'DB block' и задайте ему имя "Axis01". Номер для DB может быть задан любой, например, DB 10.
 - ⇒ Блок будет создан и затем откроется.
- 2. В блоке "Axis01" создайте переменную "Config" с типом UDT 872. Это специфические конфигурационные данные оси.
 - В блоке "Axis01" создайте переменную "Axis" с типом UDT 860. Во время работы все рабочие данные оси хранятся здесь.

Axis01 [DB10]
Data block structure

Add	dr Name	Data ty	/pe
	Config	UDT	[872]
	Axis	UDT	[860]

Создание блока данных оси (axis DB) для *'Module 2'*

- 1. Добавьте в проект еще один DB в качестве *axis DB* и задайте ему имя "Axis02". Номер для DB может быть задан любой, например, DB 11.
 - ⇒ Блок будет создан и затем откроется.

- 2. В блоке "Axis02" создайте переменную "Config" с типом UDT 872. Это специфические конфигурационные данные оси.
 - В блоке "Axis02" создайте переменную "Axis" с типом UDT 860. Во время работы все рабочие данные оси хранятся здесь.

Axis02 [DB11]
Data block structure

Addr	Name	Data ty	ре
	Config	UDT	[872]
	Axis	UDT	[860]

OB 1

Конфигурирование двойной оси

Откройте OB 1 и запрограммируйте следующие вызовы FB с соответствующими DB:

___ FB 874 - VMC_InitSigma7W_EC, DB 874 ∜ Раздел 3.5.3 'FB 874 - VMC_InitSigma7W_EC - Sigma-7W EtherCAT initialization' на стр. 116

В *M1/M2_PdoInputs, а также в M1/M2_PdoOutputs* введите адреса из *SPEED7 EtherCAT Manager* для соответствующей оси. ∜ 88

```
⇒ CALL "VMC InitSigma7W EC" , "DI InitSgm7WETC01"
  Enable
                          :=TRUE
  LogicalAddress
                          :=0
  M1 PdoInputs
                          :=0 (EtherCAT-Manager
                              Module1: S7 Input address)
  M1 PdoOutputs
                          :=0 (EtherCAT-Manager
                              Module1: S7 Output address)
  M1 EncoderType
                          :=2
  M1 EncoderResolutionBits :=20
  M1 FactorVelocity
                         :=1.048576e+006
  M1_FactorAcceleration :=1.048576e+002
  M1_OffsetPosition
M1_MaxVelocityApp
                        :=0.000000e+000
                         :=5.000000e+001
  M1 MaxVelocityDrive :=6.000000e+001
  M1 MaxAccelerationDrive :=1.500000e+002
  M1 MaxDecelerationDrive :=1.500000e+002
  M1 MaxPosition
                         :=1.048500e+003
  M1 MinPosition
                         :=-1.048514e+003
  M1_EnableMaxPosition :=TRUE
  M1 EnableMinPosition
                         :=TRUE
                         :=36 (EtherCAT-Manager
  M2 PdoInputs
                              Module2: S7 Input address)
  M2 PdoInputs
                          :=36 (EtherCAT-Manager
                              Module2: S7 Output address)
                          :=2
  M2_EncoderType
     EncoderResolutionBits :=20
    FactorPosition
                          :=1.048576e+006
  M2_FactorVelocity
M2_FactorAcceleration :=1.048576e+UUZ
:=0.000000e+000
  M2 FactorVelocity
  M2_OffsetPosition
  M2 MaxVelocityApp
                         :=5.000000e+001
  M2 MaxAccelerationApp :=1.000000e+002
  M2_MaxDecelerationApp :=1.000000e+002
  M2 MaxVelocityDrive
                         :=6.000000e+001
  M2 MaxAccelerationDrive :=1.500000e+002
  M2 MaxDecelerationDrive :=1.500000e+002
  M2_MaxPosition :=1.048500e+003
  M2 MinPosition
                         :=-1.048514e+003
                        :=TRUE
  M2 EnableMaxPosition
                         :=TRUE
  M2 EnableMinPosition
                         :=-1000.0
  M1 MinUserPosition
                         :=1000.0
  M1 MaxUserPosition
                         :=-1000.0
  M2 MinUserPosition
                         :=1000.0
  M2 MaxUserPosition
  Valid
                         :="InitS7WEC1 Valid"
  Error
                          :="InitS7WEC1 Error"
```


Подключение блока Kernel для соответствующей оси Блок *Kernel* обрабатывает пользовательские команды и затем пересылает их в привод через соответствующий сетевой интерфейс.

FB 872 - VMC_KernelSigma7_EC, DB 872 для оси 1
FB 872 - VMC_KernelSigma7_EC, DB 1872 для оси 2 ♥ Раздел 2.5.2 'FB 872 - VMC_KernelSigma7_EC - Sigma-7 EtherCAT Kernel' на стр. 75

CALL "VMC_KernelSigma7_EC", DB 872
Init :="KernelS7WEC1_Init"
Config:="Axis01".Config
Axis :="Axis01".Axis

CALL "VMC_KernelSigma7_EC", DB 1872
Init :="KernelS7WEC2_Init"
Config:="Axis02".Config
Axis :="Axis02".Axis

Параметрирование блока для реализации последовательности перемещений

Для простоты здесь будет показано параметрирование блока FB 860 - VMC_AxisControl. Этот универсальный блок поддерживает простые команды движения и возвращает сообщения о состоянии. Входы и выходы могут быть индивидуально параметрированы. Пожалуйста, введите ссылку на соответствующие данные об оси в разделе 'Axis' блока axis DB.

FB 860 - VMC_AxisControl, DB 860 ♥ Раздел 4.2.2 'FB 860 - VMC_AxisControl - Control block axis control' на стр. 122

```
\Rightarrow
              CALL "VMC AxisControl" , "DI AxisControl01"
               AxisEnable :="AxCtrl1_AxisEnable"
AxisReset :="AxCtrl1_AxisReset"
HomeExecute :="AxCtrl1_HomeExecute"
HomePosition :="AxCtrl1_HomePosition"
StopExecute :="AxCtrl1_StopExecute"
                MvVelocityExecute:="AxCtrl1 MvVelExecute"
                MvRelativeExecute:="AxCtrl1 MvRelExecute"
                MvAbsoluteExecute:="AxCtrl1 MvAbsExecute"
                PositionDistance := "AxCtrl1 PositionDistance"
               JogAcceleration :="AxCtrl1_JogAcceleration"
                JogDeceleration :="AxCtrl1_JogDeceleration"
               AxisReady :="AxCtrll_AxisReady"
AxisEnabled :="AxCtrll_AxisEnabled"
AxisError :="AxCtrll_AxisError"
AxisErrorID :="AxCtrll_AxisErrorID"
DriveWarning :="AxCtrll_DriveWarning"
DriveError :="AxCtrll_DriveError"
DriveErrorID :="AxCtrll_DriveError"
IsHomed :="AxCtrll_IsHomed"
                ModeOfOperation :="AxCtrl1 ModeOfOperation"
                PLCopenState :="AxCtrl1_PLCopenState"
ActualPosition :="AxCtrl1_ActualPosition"
                ActualVelocity :="AxCtrl1_ActualVelocity"
                CmdDone :="AxCtrl1_CmdDone"

CmdBusy :="AxCtrl1_CmdBusy"

CmdAborted :="AxCtrl1_CmdAborted"

CmdError :="AxCtrl1_CmdError"

CmdErrorID :="AxCtrl1_CmdErrorID"
                DirectionPositive:="AxCtrl1_DirectionPos"
                DirectionNegative:="AxCtrl1 DirectionNeg"
                SWLimitMinActive := "AxCtrl1_SWLimitMinActive"
                SWLimitMaxActive :="AxCtrll_SWLimitMaxActive"
HWLimitMinActive :="AxCtrll_HWLimitMinActive"
                HWLimitMaxActive := "AxCtrll HWLimitMaxActive"
                                             :="Axis...".Axis
                Axis
```

Для Axis введите значение "Axis01" для оси 1 и "Axis02" для оси 2.

Для реализации сложных задач движения можно использовать блоки PLCopen. Пожалуйста, введите ссылку на соответствующие данные об оси в разделе Axis блока axis DB.

Теперь проект включает следующие компоненты (блоки):

- ОВ 1 Основной
- OB 57 DP Manufacturer Alarm
- OB 82 I/O FLT1
- OB 86 Rack_FLT

- FB 860 VMC AxisControl с экземплярным DB
- FB 872 VMC_KernelSigma7_EC с экземплярным DB
- FB 874 VMC InitSigma7W EC с экземплярным DB
- UDT 860 MC AXIS REF
- UDT 872 VMC_ConfigSigma7EC_REF

Последовательность действий

- **1.** Выполните команду *'Project → Compile all'* и загрузите проект в ЦПУ. Дополнительную информацию о процедуре загрузки можно найти в интерактивной справке по *SPEED7 Studio*.
 - ⇒ Теперь можно запустить прикладную программу на исполнение.

ВНИМАНИЕ!

Всегда соблюдайте указания по технике безопасности для используемого электропривода, особенно при вводе его в эксплуатацию!

- **2.** Прежде чем управлять двухосевым сервоприводом, его необходимо инициализировать. Для этого вызовите блок *Init* FB 874 VMC_InitSigma7W_EC со значеним *Enable* = TRUE.
 - ⇒ Выход *Valid* возвращает TRUE. При возникновении ошибки ее можно идентифицировать с помощью *ErrorID*.

Необходимо вызвать блок *Init* ещё раз в случае загрузки нового *axis DB* или при изменении параметров блока *Init*.

Продолжайте только в том случае, если блок Init не сообщает об ошибке!

- 3. Убедитесь, что блок *Kernel* FB 872 VMC_KernelSigma7_EC вызывается периодически. Тем самым сигналы управления передаются в привод и принимаются сообщения о его состоянии.
- 4. Запрограммируйте приложение для каждой оси с использованием FB 860 VMC_AxisControl или блоков PLCopen.

3.4. Использование Siemens SIMATIC Manager

3.4.1. Предпосылки

Обзор

- Используйте для работы пакет Siemens STEP7 версии V5.5 SP2 и выше.
- Конфигурирование ЦПУ серии SLIO выполняется в STEP 7 с помощью виртуального устройства PROFINET IO 'VIPA SLIO CPU'. Для реализации этого необходимо добавить 'VIPA SLIO CPU' в каталог оборудования с помощью соответствующего GSDML-файла.
- Конфигурирование контроллера EtherCAT выполняется в Siemens SIMATIC Manager с помощью виртуального устройства PROFINET IO 'EtherCAT network'. Для реализации этого необходимо добавить 'EtherCAT network' в каталог оборудования с помощью соответствующего GSDML-файла.
- Виртуальное устройство 'EtherCAT network' конфигурируется с помощью специальной утилиты SPEED7 EtherCAT Manager компании VIPA.
- Для конфигурирования привода в SPEED7 EtherCAT Manager требуется установка соответствующего файла ESI.

Установка устройства PROFINET IO 'VIPA SLIO System'

Установка устройств PROFINET IO 'VIPA SLIO CPU' выполняется в следующей последовательности:

- **1.** Перейдите в сервисную зону сайта www.vipa.com.
- 2. ▶ Загрузите конфигурационный файл для используемого ЦПУ из раздела *'Config files →PROFINET'*.
- 3. распакуйте этот файл в рабочую папку.
- **4.** Запустите в SIMATIC Manager конфигуратор оборудования (Hardware Configurator).
- **5.** В Закройте все проекты.
- 6. ▶ Выберите 'Options →Install new GSD file'.
- 7. Перейдите в рабочую папку и установите требуемый файл GSDML.
 - □ После установки файла описания соответствующее устройство PROFINET IO может быть найдено в разделе 'PROFINET IO → Additional field devices → I/O → VIPA SLIO System'.

Установка устройства PROFINET IO 'EtherCAT network'

Установка устройств PROFINET IO 'EtherCAT Network' в каталог оборудования выполняется в следующей последовательности:

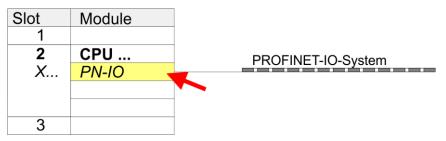
- 1. Перейдите в сервисную зону сайта www.vipa.com.
- 3. распакуйте этот файл в рабочую папку.
- **4.** Запустите в SIMATIC Manager конфигуратор оборудования (Hardware Configurator).
- **5. ** Закройте все проекты.
- 6. ▶ Выберите 'Options →Install new GSD file'.
- 7.
 Перейдите в рабочую папку и установите требуемый файл GSDML.
 - ⇒ После установки файла описания устройство 'EtherCAT Network' может быть найдено в разделе 'PROFINET IO → Additional field devices → I/O → VIPA VIPA EtherCAT System'.

Установка SPEED7 EtherCAT Manager

Конфигурирование виртуального устройства PROFINET IO *'EtherCAT network'* выполняется с помощью утилиты *SPEED7 EtherCAT Manager* компании VIPA. Её установочный файл может быть наден в сервисной зоне сайта www.vipa.com в разделе *'Service/Support* → *Downloads* → *SPEED7'*.

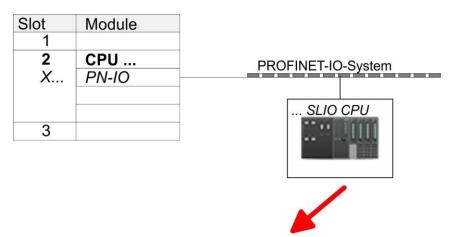
Установка утилиты осуществляется в следующей последовательности:

- 1. 3акройте Siemens SIMATIC Manager.
- 2. Перейдите в сервисную зону сайта www.vipa.com
- 3. Загрузите SPEED7 EtherCAT Manager на компьютер и распакуйте установочный файл.
- 4. Для установки утилиты запустите на исполнение файл EtherCATManager_v... .exe.
- 5. Выберите язык для установки.
- 6.
 Примите лицензионное соглашение.
- 7. Выберите папку для установки и запустите установку.
- 8.
 После установки необходимо перезагрузить компьютер.
 - ⇒ Установка SPEED7 EtherCAT Manager завершена и теперь утилита может быть вызвана через контекстное меню Siemens SIMATIC Manager.


3.4.2. Конфигурирование аппаратных средств

Конфигурирование модуля ЦПУ в проекте

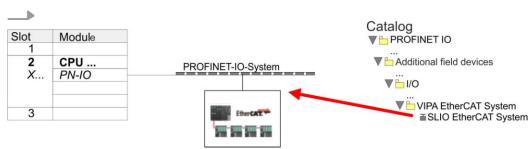
Slot	Module
1	
2	CPU 315-2 PN/DP
X1	MPI/DP
X2	PN-IO
X2	Port 1
X2	Port 2
3	


Для обеспечения совместимости с Siemens SIMATIC Manager необходимо выполнить следующие действия:

- 1. Создайте новый проект и запустите в нем конфигуратор оборудования HW Config.
- 2. Установите в окно станции монтажную рейку Rail из каталога оборудования.
- 3. ▶ Установите в Slot 2 модуль CPU 315C-2 PN/DP (6ES7315-2EH14-0AB0 V3.2).
- 4. Используйте субмодуль 'X1 MPI/DP' для настройки и подключения встроенного контроллера PROFIBUS-DP (соединитель X3).
- **5.** Используйте субмодуль *X2 PN-IO* для конфигурирования контроллера EtherCAT как устройства виртуальной сети PROFINET.
- 6. ▶ Кликните по субмодулю 'PN-IO' модуля ЦПУ.
- 7. ▶ Выберите 'Context menu → Insert PROFINET IO System'.

- 8. Кликните по кнопке [New] для создания новой подсети Ethernet и задайте в соответствующих полях значения IP-адреса и маски сети.
- 9. ► Кликните по субмодулю *'PN-IO'* модуля ЦПУ и с помощью *'Context menu* → *Properties'* откройте диалоговое окно настройки свойств.
- 10. Введите на вкладке 'General' имя устройства в поле 'Device name'. Имя устройства должно быть уникальным в рамках подсети Ethernet.

Slot	Module	Order number	
0	SLIO CPU	015	
X2	015		
1			
2			
3			


- В каталоге оборудования перейдите в раздел 'PROFINET IO → Additional field devices → I/O → VIPA SLIO System' и подключите устройство '015-CFFNR00 CPU' к виртуальной сети PROFINET.
 - ⇒ В таблице Device overview устройства PROFINET IO 'VIPA SLIO CPU' модуль ЦПУ будет помещён в слот 0. Начиная со слота 1, можно размещать модули расширения системы SLIO.

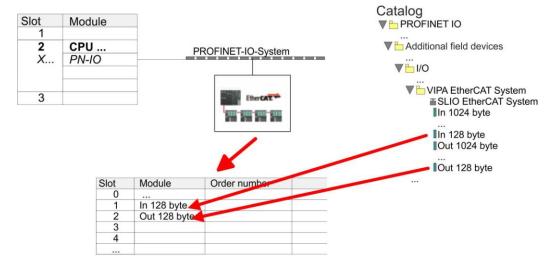
Конфигурирование порта Ethernet PG/OP

Slot	Module	
1		
2 X	CPU	
X	PN-IO	
3		
4	343-1EX30 -	
5		

- 1. Для конфигурирования порта Ethernet PG/OP необходимо поместить в слот 4 стойки модуль Siemens CP 343-1 (SIMATIC 300 \ CP 300 \ Industrial Ethernet \CP 343-1 \ 6GK7 343-1EX30-0XE0 V3.0).
- **2.** Кликом по CP 343-1EX30 откройте диалоговое окно *'Properties'* и в нем задайте нужные IP-адрес, маску подсети и адрес шлюза. Предварительно необходимо получить у администратора сети допустимый IP-адрес.
- 3. Выберите для конфигурируемого СР нужную сеть из списка *'Subnet'* или создайте новую, нажав кнопку [New]. Без подключения к подсети данные IP-адреса не устанавливаются!

Установка 'EtherCAT network'

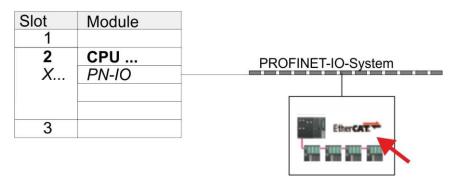
1.


В каталоге оборудования перейдите в раздел 'PROFINET IO → Additional field devices → I/O → VIPA EtherCAT System' и подключите устройство 'SLIO EtherCAT System' к виртуальной сети PROFINET.

2. Кликните по вставленному устройству ввода-вывода *'EtherCAT Network'* и задайте области ввода и вывода, перетащив из каталога соответствующую область *'Out'* или *'In'* в слот.

Создайте следующую области:

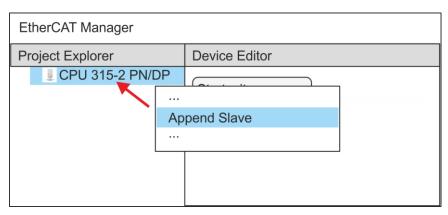
- In 128 byte
- Out 128 byte


3. ▶ Выполните команду 'Station → Save and compile'.

Конфигурирование двухосевого сервопривода Sigma-7W с EtherCAT

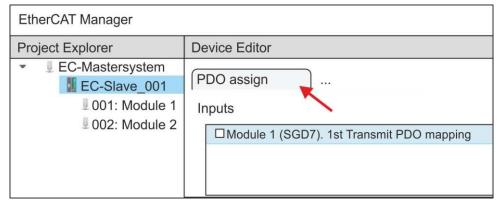
Конфигурирование двухосевого сервопривода осуществляется с помощью утилиты SPEED7 EtherCAT Manager.

Перед вызовом SPEED7 EtherCAT Manager необходимо в обязательном порядке сохранить свой проект с помощью команды 'Station → Save and compile'.


- **12.** Кликните по вставленному устройству *'EtherCAT Network'* и выберите *'Context menu* → Start Device-Tool → SPEED7 EtherCAT Manager'.
 - ⇒ Запустится SPEED7 EtherCAT Manager. С его помощью настраивается связь с двухосевым сервоприводом Sigma-7W через EtherCAT.

Дополнительную информацию об использовании *SPEED7 EtherCAT Manager* можно найти в соответствующем руководстве или интерактивной справке утилиты.

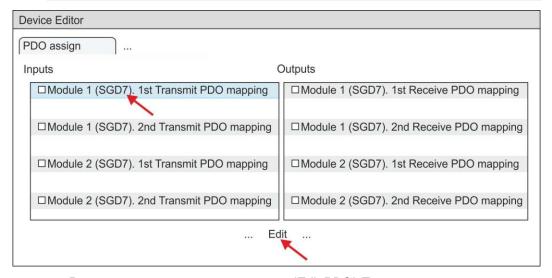
- **4.** В SPEED7 EtherCAT Manager с помощью команды 'File → ESI Manager' откройте диалоговое окно 'ESI Manager'.
- **5.** В *'ESI Manager'* кликниет по [Add File] и выберите нужный файл ESI. Командой [Open] файл ESI устанавливается в *SPEED7 EtherCAT Manager*.
- **6.** ▶ Закройте 'ESI Manager'.
 - ⇒ Теперь привод Sigma-7W с EtherCAT готов для конфигурирования.

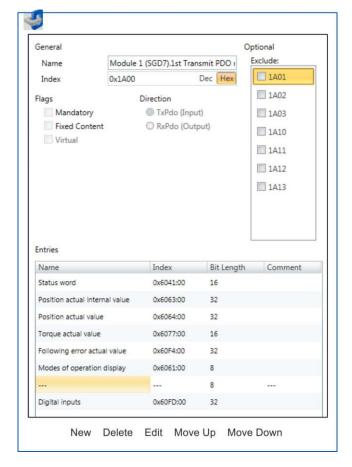


- **7.** В *EtherCAT Manager* кликните по модулю ЦПУ и через *'Context menu* → *Append Slave'* откройте диалоговое окно для добавления ведомого устройства EtherCAT.
 - ⇒ Откроется диалоговое окно для выбора ведомого устройства EtherCAT.
- **8.** Выберите двухосевой привод *Sigma-7W* с EtherCAT и подтвердите свой выбор с помощью кнопки [OK].
 - \Rightarrow Двухосевой сервопривод *Sigma-TW* с EtherCAT подключится к ведущему устройству и будет готов для настройки.
- 9.
- Возможность редактировать PDO есть только в 'Expert mode'! В противном случае кнопки скрыты. Активирование 'Expert mode' позволяет перейти к расширенному редактированию.

Включение Expert mode осуществляется командой 'View > Expert'.

10. В SPEED7 EtherCAT Manager кликните по ведомому устройству Sigma-7W с интерфейсом EtherCAT и в 'Device editor' выберите вкладку 'PDO assign'.


⇒ В открывшемся диалоговом окне отображается список всех объектов PDO.


11. Выбрав соответствующее отображение PDO, затем можно перейти к редактированию PDO с помощью [Edit]. Выберите отображение 'Module 1 (SGD7). 1st Transmit PDO mapping' и кликните по [Edit].

Обратите внимание, что из-за настроек по умолчанию некоторые PDO нельзя редактировать. Путем отключения уже активированных PDO можно обеспечить возможность редактирования заблокированных PDO.

В ответ откроется диалоговое окно 'Edit PDO'. Пожалуйста, проверьте перечисленные там настройки PDO и при необходимости измените их нужным образом. Также обратите внимание на порядок записей в списке 'Entries' и дополните их соответственно.

Для редактирования содержимого списка *'Entries'* доступны следующие функции:

- New
 - Позволяет создать новую запись в диалоговом окне, выбрав соответствующую запись из каталога объектов 'CoE object dictionary' и сделать свои настройки. Создание записи подтверждается с помощью [OK], а сама запись включается в список.
- Delete
 - Позволяет удалить выбранную запись.
- Edit
 - Позволяет редактировать общие данные записи.
- Move Up/Down
 - Позволяет перемещать выбранную запись вверх или вниз по списку.

12. Выполните следующие настройки для Transmit PDO:

Inputs: 1st Transmit PDO

Module 1 (SGD7). 1st Transmit PDO mapping	Module 2 (SGD7). 1st Transmit PDO mapping	
Name: Module 1 (SGD7). 1st Transmit PDO mapping	Name: Module 2 (SGD7). 1st Transmit PDO mapping	
Index: 0x1A00	Index: 0x1A10	
Flags: Все отключено		
Direction TxPdo (Input): активировано		
Exclude: 1A01: деактивировано	1А11: деактивировано	
Обратите внимание на эти параметры, в противном случае конфигурация PDO не может быть активирована одновременно!		

Записи	Module 1 (ось 1)	Module 2 (ось 2)	Разрядность
Name	Index	Index	
Status word (Слово состояния)	0x6041:00	0x6841:00	16 бит
Position actual internal value (Внутреннее фактическое значение позиции)	0x6063:00	0x6863:00	32 бита
Position actual value (Фактическое значение позиции)	0x6064:00	0x6864:00	32 бита
Torque actual value (Фактическое значение момента)	0x6077:00	0x6877:00	16 бит
Following error actual value (Фактическое значение ошибки рассогласования)	0x60F4:00	0x68F4:00	32 бита
Modes of operation display (Отображение режимов работы)	0x6061:00	0x6861:00	8 бит
			8 бит
Digital inputs (Дискретные входы)	0x60FD:00	0x68FD:00	32 бита

Inputs: 2nd Transmit PDO

Module 1 (SGD7). 2nd Transmit PDO mapping	Module 2 (SGD7). 2nd Transmit PDO mapping	
Name: Module 1 (SGD7). 2nd Transmit PDO mapping	Name: Module 2 (SGD7). 2nd Transmit PDO mapping	
Index: 0x1A01	Index: 0x1A11	
Flags: Все отключено		
Direction TxPdo (Input): активировано		
Exclude: 1A00, 1A02, 1A03: деактивировано	1А10, 1А12, 1А13: деактивировано	
Обратите внимание на эти параметры, в противном случае конфигурация PDO не может быть активирована одновременно!		

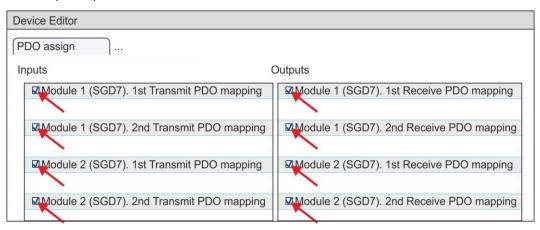
Записи	Module 1 (ось 1)	Module 2 (ось 2)	Разрядность
Name	Index	Index	
Touch probe status (Состояние датчика касания)	0x60B9:00	0x68B9:00	16 бит
Touch probe 1 position value (Значение позиции датчика касания 1)	0x60BA:00	0x68BA:00	32 бита
Touch probe 2 position value (Значение позиции датчика касания 2)	0x60BC:00	0x68BC:00	32 бита
Velocity actual value (Фактическое значение скорости)	0x606C:00	0x686C:00	32 бита

13. Выполните следующие настройки для Receive PDO:

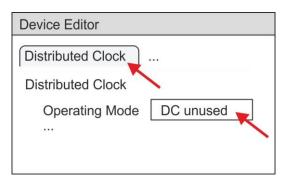
Outputs: 1st Receive PDO

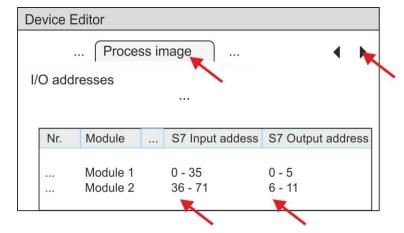
Module 1 (SGD7). 1st Receive PDO	Module 2 (SGD7). 1st Receive PDO	
Name: Module 1 (SGD7). 1st Receive PDO mapping	Name: Module 2 (SGD7). 1st Receive PDO mapping	
Index: 0x1600	Index: 0x1610	
Flags: Все отключено		
Direction RxPdo (Output): активировано		
Exclude: 1601, 1602, 1603: деактивировано	1611, 1612, 1613: деактивировано	
Обратите внимание на эти параметры, в противном случае конфигурация PDO не может быть активирована одновременно!		

Записи	Module 1 (ось 1)	Module 2 (ось 2)	Разрядность
Name	Index	Index	
Control word (Слово управления)	0x6040:00	0x6840:00	16 бит
Target position (Целевая позиция)	0x607A:00	0x687A:00	32 бита
Target velocity (Целевая скорость)	0x60FF:00	0x68FF:00	32 бита
Modes of operation (Режимы работы)	0x6060:00	0x6860:00	8 бит
			8 бит
Touch probe function (Функция датчика касания)	0x60B8:00	0x68B8:00	16 бит

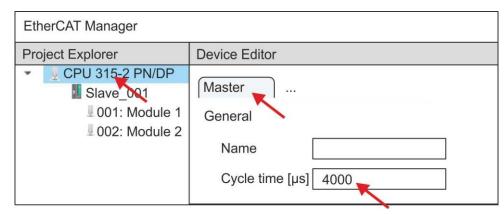

Outputs: 2nd Receive PDO

Module 1 (SGD7). 2nd Receive PDO	Module 2 (SGD7). 2nd Receive PDO			
Name: Module 1 (SGD7). 2nd Receive PDO mapping	Name: Module 2 (SGD7). 2nd Receive PDO mapping			
Index: 0x1601	Index: 0x1611			
Flags: Все отключено				
Direction RxPdo (Output): активировано				
Exclude: 1600, 1602, 1603: деактивировано	1610, 1612, 1613: деактивировано			
Обратите внимание на эти параметры, в противном случае конфигурация PDO не может быть активирована одновременно!				

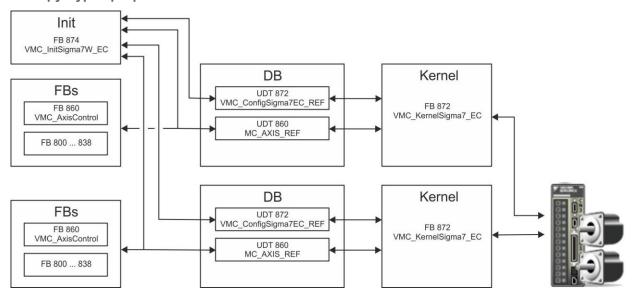

Записи	Module 1 (ось 1)	Module 2 (ось 2)	Разрядность
Name	Index	Index	
Profile velocity (профиль скорости)	0x6081:00	0x6881:00	32 бита
Profile acceleration (профиль разгона)	0x6083:00	0x6883:00	32 бита
Profile deceleration (профиль замедления)	0x6084:00	0x6884:00	32 бита


14. На вкладке *'PDO assign'* для *'Module 1'* и *'Module 2'* активируйте PDO 1 и 2 для входов и выходов. Все последующие PDO должны оставаться деактивированными. Если это невозможно, проверьте соответствующий PDO-параметр 'Exclude'.

15. В 'Device Editor' утилиты SPEED7 EtherCAT Manager выберите вкладку 'Distributed clocks' и в ней задайте значение 'DC unused' для 'Operating mode'.



- **16.** В 'Device editor' с помощью кнопок со стрелкой выберите вкладку 'Process image' и зафиксируйте следующие начальные адреса PDO для параметров блока FB 874 VMC_InitSigma7W_ EC:
 - Module 1: 'S7 Input address' → 'M1_PdoInputs' (здесь 0)
 - Module 2: 'S7 Input address' → 'M2_PdoInputs' (здесь 36)
 - Module 1: 'S7 Output address' → 'M1_PdoOutputs' (здесь 0)
 - Module 2: 'S7 Output address' → 'M2 PdoOutputs' (здесь 36)


17. В SPEED7 EtherCAT Manager кликните по модулю CPU и выберите вкладку 'Master' в 'Device editor'.

- ⇒ Для приводов Sigma-7W (400 B) установите время цикла не менее 4 мс.
- 18. При закрытии диалогового окна SPEED7 EtherCAT Manager с помощью [X], конфигурация передается в проект. Конфигурация сети EtherCAT всегда доступна для редактирования в SPEED7 EtherCAT Manager, поскольку она хранится в проекте.
- 19. Сохраните и скомпилируйте конфигурацию.

3.4.3. Прикладная программа

3.4.3.1. Структура программы

DB

Для каждой оси должен быть создан блок данных (*axis DB*), содержащий данные конфигурации и состояния. Блок данных состоит из следующих структур данных:

UDT 872 - VMC_ConfigSigma7EC_REF

Структура данных описывает структуру конфигурации привода.

Специфическая структура данных для Sigma-7 с EtherCAT.

- UDT 860 - MC AXIS REF

Структура данных описывает структуру параметров и данных о состоянии привода.

Универсальная структура данных для всех приводов и систем шин.

- FB 874 VMC_InitSigma7W_EC
- Блок инициализации (Init) используется для конфигурирования двухосевого сервопривода.
- Специфический блок для Sigma-7W с EtherCAT.
- Конфигурационные данные для инициализации должны храниться в блоке данных оси (axis DB).
- FB 872 VMC_KernelSigma7_EC
- Этот основной *(Kernel)* блок связывается с приводом через соответствующий сетевой интерфейс, обрабатывает запросы пользователя и возвращает сообщения о состоянии.
- Блок FB 872 VMC_KernelSigma7_EC должен быть вызван для каждой оси.
- Специфический блок для Sigma-7 с EtherCAT.
- Обмен данными осуществляется с помощью блока данных оси (axis DB).
- FB 860 VMC AxisControl
- Универсальный блок для всех приводов и систем шин.
- Блок FB 860 VMC AxisControl должен быть вызван для каждой оси.
- Поддерживает простые команды движения и предоставляет все соответствующие сообщения о состоянии.
- Обмен данными осуществляется с помощью блока данных оси (axis DB).
- Управление движением оси и контроль ее состояния из системы визуализации могут быть реализованы через экземплярный блок данных.
- В дополнение к FB 860 VMC_AxisControl возможно использование блоков PLCopen.
- FB 800 ... FB 838 PLCopen
- Блоки PLCopen используются для программирования последовательности перемещений и запросов состояния.
- Блоки PLCopen должны быть вызваны для каждой оси.

3.4.3.2. Программирование

Добавление библиотеки

- 1. ▶ Перейдите в сервисную зону сайта www.vipa.com.
- **2.** Загрузите библиотеку Simple Motion Control из раздела 'VIPA Lib' области загрузки.
- 3. ▶ Откройте диалоговое окно для выбора ZIP-файла с помощью 'File → Retrieve'.
- 4. Выберите нужный ZIP-файл и кликните по [Open].
- **5.** Укажите папку, в которой будут сохранены блоки, и запустите процесс распаковки, кликнув по [OK].

Копирование блоков в проект

- Откройте библиотеку после распаковки и перетащите следующие блоки в раздел 'Blocks' проекта:
 - *Sigma-7W c* EtherCAT:
 - UDT 872 VMC ConfigSigma7EC REF
 - FB 872 VMC KernelSigma7 EC
 - FB 874 VMC_InitSigma7W_EC
 - Axis Control
 - UDT 860 MC_AXIS_REF
 - Блоки для реализации требуемой последовательности перемещений

Создание ОВ прерываний

- 1. ▶ В проекте кликните по 'Blocks' и выберите 'Context menu → Insert new object → Organization block'.
 - ⇒ В ответ откроется диалоговое окно 'Properties Organization block'.
- 2. D Добавьте блоки OB 57, OB 82 и OB 86 в свой проект.

Создание блока данных оси (axis DB) для 'Module 1' В проекте кликните по 'Blocks' и выберите 'Context menu → Insert new object → Data block'.

Задайте следующие параметры:

- Name and type
 - Имя для DB в поле 'Name' может быть задано любое, например, DB 10.
 - Установите для 'Туре' значение 'Shared DB'.
- Symbolic name
 - Введите "Axis01".

Подтвердите выбор, кликнув по [OK].

- ⇒ Блок создан.
- 2. ▶ Двойным кликом откройте DB 10 "Axis01".
 - В блоке "Axis01" создайте переменную "Config" с типом UDT 872. Это специфические конфигурационные данные оси.
 - В блоке "Axis01" создайте переменную "Axis" с типом UDT 860. Во время работы все рабочие данные оси хранятся здесь.

DB10

Address	Name	Туре	
		Struct	
***)	Config	"VMC_ConfigSigma7EC_REF"	
	Axis	"MC_AXIS_REF	
		END STRUCT	

Создание блока данных оси (axis DB) для 'Module 2'

- 1. Добавьте в проект еще один DB в качестве *axis DB* и задайте ему имя "Axis02". Номер для DB может быть задан любой, например, DB 11.
 - ⇒ Блок создан.
- 2. ▶ Двойным кликом откройте DB 11 "Axis02".
 - В блоке "Axis02" создайте переменную "Config" с типом UDT 872. Это специфические конфигурационные данные оси.
 - В блоке "Axis02" создайте переменнуюсоздать "Axis" с типом UDT 860. Во время работы все рабочие данные оси хранятся здесь.

DB 11

Address	Name	Туре	
		Struct	
	Config	"VMC_ConfigSigma7EC_REF"	
***	Axis	"MC_AXIS_REF	
		END STRUCT	

OB 1

Конфигурирование двойной оси

Откройте OB 1 и запрограммируйте следующие вызовы FB с соответствующими DB:

___ FB 874 - VMC_InitSigma7W_EC, DB 874 ♀ Раздел 3.5.3 'FB 874 - VMC_InitSigma7W_EC - Sigma-7W EtherCAT initialization' на стр. 116

В *M1/M2_PdoInputs, а также в M1/M2_PdoOutputs* введите адреса из *SPEED7 EtherCAT Manager* для соответствующей оси. ♥ *107*

```
⇒ CALL "VMC InitSigma7W EC" , "DI InitSgm7WETC01"
  Enable
                          :=TRUE
  LogicalAddress
                          :=0
  M1 PdoInputs
                          :=0 (EtherCAT-Manager
                               Module1: S7 Input address)
  M1 PdoOutputs
                          :=0 (EtherCAT-Manager
                               Module1: S7 Output address)
                          :=2
  M1 EncoderType
  M1 EncoderResolutionBits :=20
  M1 FactorPosition
                         :=1.048576e+006
                         :=1.048576e+006
  M1 FactorVelocity
  M1 FactorAcceleration
                         :=1.048576e+002
  M1_OffsetPosition
M1_MaxVelocityApp
                         :=0.000000e+000
                         :=5.000000e+001
  M1_MaxAccelerationApp :=1.000000e+002
  M1 MaxAccelerationDrive :=1.500000e+002
  M1 MaxDecelerationDrive :=1.500000e+002
  M1_MaxPosition
                         :=1.048500e+003
  M1 MinPosition
                         :=-1.048514e+003
                         :=TRUE
  M1 EnableMaxPosition
  M1 EnableMinPosition
                          :=TRUE
  M2 PdoInputs
                          :=36 (EtherCAT-Manager
                               Module2: S7 Input address)
  M2 PdoInputs
                          :=36 (EtherCAT-Manager
                               Module2: S7 Output address)
  M2 EncoderType
                          :=2
  M2 EncoderResolutionBits :=20
  M2_FactorPosition :=1.048576e+006
  M2 FactorVelocity
                         :=1.048576e+006
  M2 FactorAcceleration :=1.048576e+002
  M2 OffsetPosition
                         :=0.000000e+000
  M2 MaxVelocityApp
                         :=5.000000e+001
  M2 MaxAccelerationApp :=1.000000e+002
  M2 MaxDecelerationApp
                         :=1.000000e+002
  M2 MaxVelocityDrive
                         :=6.000000e+001
  M2 MaxAccelerationDrive :=1.500000e+002
  M2 MaxDecelerationDrive :=1.500000e+002
  M2 MaxPosition :=1.048500e+003
  M2 MinPosition
                         :=-1.048514e+003
                         :=TRUE
  M2 EnableMaxPosition
  M2 EnableMinPosition
                          :=TRUE
  M1_MinUserPosition
                          :=-1000.0
  M1 MaxUserPosition
                          :=1000.0
  M2 MinUserPosition
                          :=-1000.0
  M2 MaxUserPosition
                          :=1000.0
  Valid
                          :="InitS7WEC1 Valid"
```

:="InitS7WEC1 Error"

Error

Подключение блока Kernel для соответствующей оси Блок *Kernel* обрабатывает пользовательские команды и затем пересылает их в привод через соответствующий сетевой интерфейс.

FB 872 - VMC_KernelSigma7_EC, DB 872 для оси 1
FB 872 - VMC_KernelSigma7_EC, DB 1872 для оси 2 ∜ Раздел 2.5.2 'FB 872 - VMC_KernelSigma7_EC - Sigma-7 EtherCAT Kernel' на стр. 75

CALL "VMC_KernelSigma7_EC", DB 872
Init :="KernelS7WEC1_Init"
Config:="Axis01".Config
Axis :="Axis01".Axis

CALL "VMC_KernelSigma7_EC", DB 1872
Init :="KernelS7WEC2_Init"
Config:="Axis02".Config
Axis :="Axis02".Axis

Параметрирование блока для реализации последовательности перемещений

Для простоты здесь будет показано параметрирование блока FB 860 - VMC_AxisControl. Этот универсальный блок поддерживает простые команды движения и возвращает сообщения о состоянии. Входы и выходы могут быть индивидуально параметрированы. Пожалуйста, введите ссылку на соответствующие данные об оси в разделе 'Axis' блока axis DB.

FB 860 - VMC_AxisControl, DB 860 ♥ Раздел 4.2.2 'FB 860 - VMC_AxisControl - Control block axis control' на стр. 122

```
CALL "VMC AxisControl" , "DI AxisControl01"
  AxisEnable :="AxCtrl1_AxisEnable"
AxisReset :="AxCtrl1_AxisReset"
HomeExecute :="AxCtrl1_HomeExecute"
HomePosition :="AxCtrl1_HomePosition"
StopExecute :="AxCtrl1_StopExecute"
   MvVelocityExecute:="AxCtrl1 MvVelExecute"
   MvRelativeExecute:="AxCtrl1 MvRelExecute"
   MvAbsoluteExecute:="AxCtrl1 MvAbsExecute"
    PositionDistance := "AxCtrl1 PositionDistance"
   Velocity :="AxCtrl1_Velocity"

Acceleration :="AxCtrl1_Acceleration"

Deceleration :="AxCtrl1_Deceleration"

JogPositive :="AxCtrl1_JogPositive"

JogNegative :="AxCtrl1_JogNegative"

JogVelocity :="AxCtrl1_JogVelocity"

JogNegation :="AxCtrl1_JogVelocity"

JogNegation :="AxCtrl1_JogNegative"

JogNegation :="AxCtrl1_JogNegative"

JogNegation :="AxCtrl1_JogNegative"

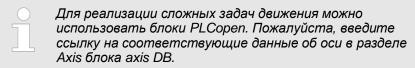
JogNegation :="AxCtrl1_JogNegative"

JogNegation :="AxCtrl1_JogNegative"

JogNegation :="AxCtrl1_JogNegative"

JogNegation := "AxCtrl1_JogNegative"

JogNegation := "AxCtrl1_JogNegative"
    JogAcceleration :="AxCtrl1_JogAcceleration"
    JogDeceleration :="AxCtrl1_JogDeceleration"
  AxisReady :="AxCtrll_AxisReady"
AxisEnabled :="AxCtrll_AxisEnabled"
AxisError :="AxCtrll_AxisError"
AxisErrorID :="AxCtrll_AxisErrorID"
DriveWarning :="AxCtrll_DriveWarning"
DriveError :="AxCtrll_DriveError"
DriveErrorID :="AxCtrll_DriveError"
IsHomed :="AxCtrll_IsHomed"
   ModeOfOperation :="AxCtrl1 ModeOfOperation"
   PLCopenState :="AxCtrl1_PLCopenState"
ActualPosition :="AxCtrl1_ActualPosition"
   ActualVelocity :="AxCtrl1_ActualVelocity"
   CmdDone :="AxCtrl1_CmdDone"


CmdBusy :="AxCtrl1_CmdBusy"

CmdAborted :="AxCtrl1_CmdAborted"

CmdError :="AxCtrl1_CmdError"

CmdErrorID :="AxCtrl1_CmdError"
    DirectionPositive:="AxCtrl1_DirectionPos"
    DirectionNegative:="AxCtrl1 DirectionNeg"
    SWLimitMinActive := "AxCtrl1_SWLimitMinActive"
   SWLimitMaxActive :="AxCtrll_SWLimitMaxActive"
HWLimitMinActive :="AxCtrll_HWLimitMinActive"
HWLimitMaxActive :="AxCtrll_HWLimitMaxActive"
                                                                             :="Axis...".Axis
    Axis
```

Для Axis введите значение "Axis01" для оси 1 и "Axis02" для оси 2.

Теперь проект включает следующие компоненты:

- ОВ 1 Основной
- OB 57 DP Manufacturer Alarm
- OB 82 I/O FLT1
- OB 86 Rack_FLT

- FB 860 VMC AxisControl с экземплярным DB
- FB 872 VMC_KernelSigma7_EC с экземплярным DB
- FB 874 VMC_InitSigma7W_EC с экземплярным DB
- UDT 860 MC AXIS REF
- UDT 872 VMC_ConfigSigma7EC_REF

Последовательность действий

1.

Перейдите в SIMATIC Manager и загрузите проект в ЦПУ.

Загрузка может производиться только из Siemens SIMATIC Manager, а не из конфигуратора оборудования (Hardware Configurator)!

Поскольку параметры ведомого устройства и модуля передаются с помощью объекта SDO или команды SDO init, конфигурация сохраняется неизменной до тех пор, пока не будет проведен сброс питания или не будут переданы новые параметры для тех же объектов SDO.

При выполнении полного сброса параметры ведомого устройства и модуля не сбрасываются!

⇒ Теперь можно запустить прикладную программу на исполнение.

ВНИМАНИЕ!

Всегда соблюдайте указания по технике безопасности для используемого электропривода, особенно при вводе его в эксплуатацию!

- **2.** Прежде чем управлять двухосевым сервоприводом, его необходимо инициализировать. Для этого вызовите блок *Init* FB 874 VMC_InitSigma7W_EC c *Enable* = TRUE.
 - ⇒ Выход *Valid* возвращает TRUE. При возникновении ошибки ее можно идентифицировать с помошью *ErrorID*.

Необходимо вызвать блок *Init* ещё раз в случае загрузки нового *axis DB* или при изменении параметров блока *Init*.

Продолжайте только в том случае, если блок Init не сообщает об ошибке!

- **3.** Убедитесь, что блок *Kernel* FB 872 VMC_KernelSigma7_EC вызывается периодически. Тем самым сигналы управления передаются в привод и принимаются сообщения о его состоянии.
- **4.** Запрограммируйте приложение для каждой оси с использованием FB 860 VMC_AxisControl или блоков PLCopen.

.

3.4.4. Копирование проекта

Порядок выполнения

В примере станция 'Source' копируется и сохраняется как 'Target'.

- 1. Откройте аппартную конфигурацию модуля ЦПУ 'Source' и запустите SPEED7 EtherCAT Manager.
- 2. ▶ В SPEED7 EtherCAT Manager командой 'File → Save as' сохраните конфигурацию в рабочей папке компьютера.
- 3. Saкpoйте SPEED7 EtherCAT Manager и конфигуратор оборудования.
- 4. Скопируйте станцию 'Source' с помощью Ctrl + C и вставьте как'Target' в проект с помощью Ctrl + V.
- 5. Выберите раздел 'Blocks' модуля ЦПУ 'Target' и удалите 'System data'.
- **6.** Откройте аппартную конфигурацию модуля ЦПУ *'Target'*. Модифицируйте данные IP-адреса или еще раз переподключите CPU или CP.
 - Перед вызовом SPED7 EtherCAT Manager необходимо в обязательном порядке сохранить свой проект с помощью команды 'Station → Save and compile'.
- 7. ▶ Сохраните проект с помощью 'Station → Safe and compile'.
- 8.

 Запустите SPEED7 EtherCAT Manager.
- **9.** Используйте команду *'File* → *Open'* для загрузки конфигурации из рабочей папки компьютера.
- **10.** Закройте SPEED7 EtherCAT Manager.
- 11. Сохраните и скомпилируйте конфигурацию.

Применение Sigma-7W с EtherCAT > Специальные блоки для управления приводом

3.5. Специальные блоки для управления приводом

3.5.1. UDT 872 - VMC_ConfigSigma7EC_REF - Sigma-7 EtherCAT Data structure axis configuration

Это определяемая пользователем структура данных, содержащая информацию о конфигурации оси. Этот блок UDT специально приспособлен для работы с сервоприводом *Sigma-7*, подключаемым через сеть EtherCAT.

3.5.2. FB 872 - VMC_KernelSigma7_EC - Sigma-7 EtherCAT Kernel

Описание

Этот блок преобразует команды управления осью сервопривода *Sigma-7* через сеть EtherCAT и обеспечивает обмен данными с приводом. Для каждой оси *Sigma-7* экземпляр этого FB вызывается циклически.

Имейте ввиду, что внутри этого блока содержится вызов SFC 238.

B SPEED7 Studio этот блок автоматически вставляется в проект.

B Siemens SIMATIC Manager блок SFC 238 необходимо скопировать в проект из библиотеки Motion Control Library.

Параметр	Тип переменной	Тип данных	Описание
Init	ВХОД	BOOL (Двоичное значение)	По переходу 0-1 выполняется внутренний сброс блока. Выполнение текущих команд управления движением прерывается, а блок сам блок инициализируется.
Config	ВХОД_ВЫХОД	UDT872	Структура данных для передачи зависящих от оси конфигурационных данных в <i>AxisKernel</i> .
Axis	вход_выход	MC_AXIS_REF	Структура данных для передачи зависящей от оси информации в <i>AxisKernel</i> и блоки PLCopen.

3.5.3. FB 874 - VMC_InitSigma7W_EC - Sigma-7W EtherCAT Initialization

Описание

Этот блок используется для конфигурирования двухосевого сервопривода Sigma-7W. Блок специально приспособлен для работы с сервоприводом Sigma-7W, подключенным через сеть EtherCAT.

Параметр	Тип переменной	Тип данных	Описание
M1_Config	ВХОД_ВЫХОД	UDT872	Структура данных для передачи в <i>AxisKernel</i> для оси 1 зависящих от оси конфигурационных данных.
M1_Axis	ВХОД_ВЫХОД	MC_AXIS_REF	Структура данных для передачи зависящей от оси информации в <i>AxisKernel</i> и блоки PLCopen для оси 1.
M2_Config	ВХОД_ВЫХОД	UDT872	Структура данных для передачи зависящих от оси конфигурационных данных в <i>AxisKernel</i> для оси 2.
M2_Axis	ВХОД_ВЫХОД	MC_AXIS_REF	Структура данных для передачи зависящей от оси информации в <i>AxisKernel</i> и блоки PLCopen для оси 2.
Enable	вход	BOOL (Двоичное значение)	Выполнение инициализации
LogicalAddress	вход	INT (Целое)	Начальный адрес входных данных PDO
M1_PdoInputs	вход	INT (Целое)	Начальный адрес входных PDO для оси 1
M1_PdoOutputs	ВХОД	INT (Целое)	Начальный адрес выходных PDO для оси 1

Применение Sigma-7W с EtherCAT > Специальные блоки для управления приводом

_	_	_	
Параметр	Тип переменной	Тип данных	Описание
M1_EncoderType	вход	INT (Целое)	Тип энкодера для оси 1
			1: Абсолютный энкодер2: Инкрементальный энкодер
M1_EncoderResolutionBits	вход	INT (Целое)	Количество разрядов, соответствующее одному обороту энкодера, для оси 1. Значение по умолчанию: 20
M1_FactorPosition	вход	REAL (Вещественное число)	Коэффициент преобразования значения позиции из пользовательских единиц [u] в единицы привода [приращения] и обратно для оси 1.
			При этом: $p_{\text{[increments]}} = p_{\text{[u]}} x FactorPosition$
			Пожалуйста, учитывайте фактор, который может быть задан в приводе через объекты 0x2701: 1 и 0x2701: 2. Он должен быть равен 1.
M1_FactorVelocity	вход	REAL (Вещественное число)	Коэффициент преобразования значения скорости из пользовательских единиц [u/s] в единицы привода [increments/s] и обратно для оси 1.
			При этом: $V_{[increments/s]} = V_{[u/s]} x$ Factor Velocity
			Пожалуйста, учитывайте фактор, который может быть задан в приводе через объекты 0x2702: 1 и 0x2702: 2. Он должен быть равен 1.
M1_FactorAcceleration	вход	REAL (Вещественное число)	Коэффициент преобразования значения ускорения из пользовательских единиц $[u/s^2]$ в единицы привода $[10^{-4}\mathrm{x}$ increments/s ₂] и обратно для оси 1.
			При этом: 10^{-4} x $a_{[increments/s^2]} = a_{[u/s^2]}$ x FactorAcceleration
			Пожалуйста, учитывайте фактор, который может быть задан в приводе через объекты 0x2703: 1 и 0x2703: 2. Он должен быть равен 1.
M1_OffsetPosition	ВХОД	REAL (Вещественное число)	Смещение для нулевой позиции для оси 1 [u].
M1_MaxVelocityApp	вход	REAL (Вещественное число)	Максимальная скорость приложения для оси 1 [u/s]. Входные значения команд проверяются на максимальное значение перед исполнением.
M1_MaxAccelerationApp	вход	REAL (Вещественное число)	Максимальный разгон приложения для оси 1 [u/s²]. Входные значения команд проверяются на максимальное значение перед исполнением.
M1_MaxDecelerationApp	вход	REAL (Вещественное число)	Максимальное замедление приложения для оси 1 $[u/s^2]$.
			Входные значения команд проверяются на максимальное значение перед исполнением.
M1_MaxPosition	ВХОД	REAL (Вещественное число)	Максимальное значение позиции для контроля программных ограничений для оси 1 [u].
M1_MinPosition	ВХОД	REAL (Вещественное число)	Максимальное значение позиции для контроля программных ограничений для оси 1 [u].
M1_EnableMaxPosition	вход	BOOL (Двоичное значение)	Контроль максимальной позиции для оси 1 ТRUE: Включает контроль максимальной позиции.
M1_EnableMinPosition	ВХОД	BOOL (Двоичное	Контроль минимальной позиции для оси 1
		значение)	■ TRUE: Включает контроль минимальной позиции.
M2_PdoInputs	ВХОД	INT (Целое)	Начальный адрес входных PDO для оси 2

Применение Sigma-7W с EtherCAT > Специальные блоки для управления приводом

Параметр	Тип переменной	Тип данных	Описание
M2_PdoOutputs	ВХОД	INT (Целое)	Начальный адрес выходных PDO для оси 2
M2_EncoderType	ВХОД	INT (Целое)	Тип энкодера для оси 2
			1: Абсолютный энкодер2: Инкрементальный энкодер
M2_EncoderResolutionBits	вход	INT (Целое)	Количество разрядов, соответствующее одному обороту энкодера, для оси 2. Значение по умолчанию: 20
M2_FactorPosition	вход	REAL (Вещественное число)	Коэффициент преобразования значения позиции из пользовательских единиц [u] в единицы привода [приращения] и обратно для оси 2.
			При этом: $p_{\text{[increments]}} = p_{\text{[u]}} \times FactorPosition$
			Пожалуйста, учитывайте фактор, который может быть задан в приводе через объекты 0x2701: 1 и 0x2701: 2. Он должен быть равен 1.
M2_FactorVelocity	вход	REAL (Вещественное число)	Коэффициент преобразования значения скорости из пользовательских единиц [u/s] в единицы привода [increments/s] и обратно для оси 2.
			При этом: $V_{[increments/s]} = V_{[u/s]} \times FactorVelocity$
			Пожалуйста, учитывайте фактор, который может быть задан в приводе через объекты 0x2702: 1 и 0x2702: 2. Он должен быть равен 1.
M2_FactorAcceleration	вход	REAL (Вещественное число)	Коэффициент преобразования значения ускорения из пользовательских единиц $[u/s^2]$ в единицы привода $[10^{-4}\mathrm{x}$ increments/ $s^2]$ и обратно для оси 2.
			При этом: 10^{-4} х $a_{\text{[increments/s}^2]} = a_{\text{[u/s}^2]}$ х FactorAcceleration
			Пожалуйста, учитывайте фактор, который может быть задан в приводе через объекты 0x2703: 1 и 0x2703: 2. Он должен быть равен 1.
M2_OffsetPosition	вход	REAL (Вещественное число)	Смещение для нулевой позиции для оси 2 [u].
M2_MaxVelocityApp	ВХОД	REAL (Вещественное число)	Максимальная скорость приложения для оси 2 [u/s].
		berinde inicito)	Входные значения команд проверяются на максимальное значение перед исполнением.
M2_MaxAccelerationApp	ВХОД	REAL (Вещест-	Максимальный разгон приложения для оси 2 $[u/s^2]$.
		венное число)	Входные значения команд проверяются на максимальное значение перед исполнением.
M2_MaxDecelerationApp	вход	REAL (Вещественное	Максимальное замедление приложения для оси 2 $[\mathrm{u/s^2}]$.
		число)	Входные значения команд проверяются на максимальное значение перед исполнением.
M2_MaxPosition	вход	REAL (Вещественное число)	Максимальное значение позиции для контроля программных ограничений для оси 2 [u].
M2_MinPosition	вход	REAL (Вещественное число)	Максимальное значение позиции для контроля программных ограничений для оси 2 [u].
M2_EnableMaxPosition	вход	BOOL (Двоичное значение)	Контроль максимальной позиции для оси 2 ТRUE: Включает контроль максимальной позиции.
M2_EnableMinPosition	ВХОД	BOOL (Двоичное	·
		значение)	■ TRUE: Включает контроль минимальной позиции.

Блоки для управления осью > Обзор

Параметр	Тип переменной	Тип данных	Описание
M1_MinUserPosition	выход	REAL (Вещественное число)	Минимальная пользовательская позиция для оси 1, основанная на минимальном значении датчика 0x80000000 и FactorPosition [u].
M1_MaxUserPosition	выход	REAL (Вещественное число)	Максимальная пользовательская позиция для оси 1, основанная на максимальном значении датчика 0x80000000 и <i>FactorPosition</i> [u].
M2_MinUserPosition	выход	REAL (Вещественное число)	Минимальная пользовательская позиция для оси 2, основанная на минимальном значении датчика 0x80000000 и FactorPosition [u].
M2_MaxUserPosition	выход	REAL (Вещественное число)	Максимальная пользовательская позиция для оси 2, основанная на максимальном значении датчика 0x80000000 и <i>FactorPosition</i> [u].
Valid	выход	BOOL (Двоичное значение)	Инициализация ■ TRUE: Инициализация выполнена
Ошибка	выход	BOOL (Двоичное значение)	 Ошибка TRUE: Возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра <i>ErrorID</i>. Ось заблокирована.
ErrorID	выход	WORD (16- разрядное значение)	Дополнительная информация об ошибке ⇔ Глава 5 'ErrorlD - Дополнительная информация об ошибке' на стр. 190

4. Блоки для управления осью

4.1. Обзор

В разделе *Axis Control* содержатся блоки для программирования задач движения и запросов состояния.

Простые задачи управления движением

Блок	См. страницу
UDT 860 - MC_AXIS_REF - Структура данных для оси	⇔ 122
FB 860 - VMC_AxisControl - Управление функциями привода и считывание состояния привода	₩ 122

Комплексные задачи управления движением - блоки PLCopen

Блок	См. страницу
UDT 860 - MC_AXIS_REF - Структура данных для оси	₩ 126
UDT 861 - MC_TRIGGER_REF - Структура данных	⇔ 126
FB 800 - MC_Power	⇔ 127
Включение или отключение оси	
FB 801 - MC_Home	₩ 129
Начало отсчёта оси	
FB 802 - MC_Stop	₩ 131
Останов оси	

Блоки для управления осью > Обзор

Блок	См. страницу
FB 803 - MC_Halt	∜ 133
Приостановка оси	
FB 804 - MC_MoveRelative	∜⇒ 135
Относительное движение оси	
FB 805 - MC_MoveVelocity	₩ 137
Движение оси с постоянной скоростью	
FB 808 - MC_MoveAbsolute	₩ 139
Перемещение оси в заданную позицию	
FB 811 - MC_Reset	₩ 141
Сброс оси	
FB 812 - MC_ReadStatus	₩ 143
Чтение PLCopen-состояния оси	
FB 813 - MC_ReadAxisError	₩ 145
Чтение ошибки оси	
FB 814 - MC_ReadParameter	₩ 147
Чтение параметров оси	
FB 815 - MC_WriteParameter	∜ 149
Запись параметров оси	
FB 816 - MC_ReadActualPosition	₩ 151
Чтение текущего положения оси	
FB 817 - MC_ReadActualVelocity	⇔ 152
Чтение текущей скорости оси	
FB 818 - MC_ReadAxisInfo	₩ 153
Чтение дополнительной информации об оси	
FB 819 - MC_ReadMotionState	₩ 155
Чтение состояния задания движения	
FB 823 - MC_TouchProbe	₩ 157
Контактный датчик	
FB 824 - MC_AbortTrigger	₩ 159
Сброс контактного датчика	
FB 825 - MC_ReadBoolParameter	₩ 160
Чтение логического параметра оси	
FB 826 - MC_WriteBoolParameter	₩ 162
Запись логического параметра оси	
FB 827 - VMC_ReadDWordParameter	₩ 164
Чтение параметра оси с форматом двойного слова	
FB 828 - VMC_WriteDWordParameter	⇔ 166
Запись параметра оси с форматом двойного слова	

Блоки для управления осью > Обзор

Блок	См. страницу
FB 829 - VMC_ReadWordParameter	₩ 168
Чтение параметра оси в формате слова	
FB 830 - VMC_WriteWordParameter	₩ 170
Запись параметров оси в формате слова	
FB 831 - VMC_ReadByteParameter	⇔ 172
Чтение байтового параметра оси	
FB 832 - VMC_WriteByteParameter	₩ 174
Запись байтового параметра оси	
FB 833 - VMC_ReadDriveParameter	⇔ 176
Чтение параметров привода	
FB 834 - VMC_WriteDriveParameter	⇔ 179
Запись параметров привода	
FB 835 - VMC_HomeInit_LimitSwitch	₩ 180
Инициализация прогона до конечного выключателя	
FB 836 - VMC_HomeInit_HomeSwitch	₩ 182
Инициализация прогона до выключателя исходного положения	
FB 837 - VMC_HomeInit_ZeroPulse	₩ 184
Инициализация прогона до нулевого импульса	
FB 838 - VMC_HomeInit_SetPosition	₩ 186
Инициализация прогона на текущую позицию	

4.2. Простые задачи управления движением

4.2.1. UDT 860 - MC_AXIS_REF - Структура данных для оси

Это определяемая пользователем структура данных, содержащая информацию о состоянии оси.

4.2.2. FB 860 - VMC_AxisControl - Блок управления осью

Описание

Функциональный блок FB *VMC_AxisControl* предназначен для управления подключенной осью. Он позволяет проверять состояние привода, включать его или выключать, а также выполнять различные команды движения. Данные экземплярного блока хранятся в отдельной области памяти.

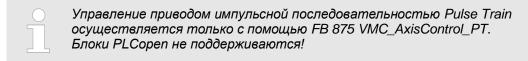
Блок VMC_AxisControl никогда не должен использоваться одновременно с блоком PLCopen MC_Power. Поскольку VMC_AxisControl включает в себя функциональные возможности MC_Power и самая последняя команда всегда исполняется модулем VMC_Kernel, то это может привести к неисправности привода.

Параметр

Параметр	Тип переменной	Тип данных	Описание
AxisEnable	вход	BOOL (Двоичное значение)	Включение / блокировка осиTRUE: Ось включена.FALSE: Ось заблокирована.
AxisReset	вход	BOOL (Двоичное значение)	■ Сброс оси— Переход 0-1: Выполняется сброс оси.
HomeExecute	вход	BOOL (Двоичное значение)	 Установка в начальное положение Переход 0-1: Запуск установки в начальное положение.
HomePosition	вход	REAL (Вещественное число)	При выдаче команды на установку в начальное положение ось устанавливается в положение, определяемое значением этого параметра. Позиция должна быть указана в используемом пользовательском блоке.
StopExecute	вход	BOOL (Двоичное значение)	Останов осиПереход 0-1: Запуск останова оси.
MvVelocityExecute	вход	BOOL (Двоичное значение)	Старт движения оси.Переход 0-1: Ось разгоняется / тормозится до заданной скорости.
MvRelativeExecute	вход	BOOL (Двоичное значение)	Старт движения оси.Переход 0-1: Начато относительное позиционирование оси.
MvAbsoluteExecute	вход	BOOL (Двоичное значение)	 Старт движения оси. Переход 0-1: Начато позиционирование оси в абсолютной системе координат.
Direction *	вход	ВҮТЕ (Байт)	Режим позиционирования в абсолютной системе координат. 0: кратчайший путь 1: прямое направление 2: обратное направление 3: текущее направление
PositionDistance	ВХОД	REAL (Вещественное число)	Абсолютное значение позиции или относительное расстояние в зависимости от команды [пользовательские единицы].

Параметр	Тип	Тип данных	Описание
Тарашотр	переменной		
Velocity	вход	REAL (Вещественное число)	Значение скорости (со знаком) в [пользовательские единицы/с].
Acceleration	вход	REAL (Вещественное число)	Значение ускорения при разгоне (со знаком) в [пользовательские единицы/с].
Deceleration	вход	REAL (Вещественное число)	Значение ускорения при торможении (со знаком) в [пользовательские единицы/с].
JogPositive	вход	BOOL (Двоичное значение)	 Движение оси с постоянной скоростью в прямом направлении Переход 0-1: Запуск движения оси с постоянной скоростью. Переход 1-0: Ось останавливается.
JogNegative	вход	BOOL (Двоичное значение)	 Движение оси с постоянной скоростью в обратном направлении Переход 0-1: Запуск движения оси с постоянной скоростью. Переход 1-0: Ось останавливается.
JogVelocity	ВХОД	REAL (Вещественное число)	Значение скорости для толчкового режима в прямом направлении в [пользовательские единицы/с].
JogAcceleration	ВХОД	REAL (Вещественное число)	Значение ускорения в [пользовательские единицы/c²].
JogDeceleration	ВХОД	REAL (Вещественное число)	Значение замедления в [пользовательские единицы/c ²].
AxisReady	выход	BOOL (Двоичное значение)	 ■ Готовность оси – TRUE: Ось готова к включению. – FALSE: Ось не готова к включению. → Проверьте и устраните AxisError (см. AxisErrorID). → Проверьте и устраните DriveError (см. DriveErrorID). → Проверьте правильность инициализации FB (входные и выходные адреса или отображение PDO верны?)
AxisEnabled	ВЫХОД	BOOL (Двоичное значение)	 Состояние оси TRUE: Ось включена и принимает команды управления движением. FALSE: Ось не включена и не способна принимать команды управления движением.
AxisError	ВЫХОД	BOOL (Двоичное значение)	 ■ Ошибка оси движения – TRUE: Возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра AxisErrorID. → Ось заблокирована.
AxisErrorID	ВЫХОД	WORD (16- разрядное значение)	Дополнительная информация об ошибке
DriveWarning	ВЫХОД	BOOL (Двоичное значение)	 Предупреждение ТRUE: Привод сформировал предупреждение. Дополнительную информацию можно найти в руководстве пользователя на привод.
DriveError	ВЫХОД	BOOL (Двоичное значение)	 ■ Ошибка сервопривода – TRUE: В приводе возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра <i>DriveErrorID</i>. → Ось заблокирована.

Параметр	Тип переменной	Тип данных	Описание
DriveErrorID	выход	WORD (16- разрядное значение)	 Ошибка TRUE: Привод выдает ошибку. Дополнительную информацию можно найти в руководстве производителя.
IsHomed	выход	BOOL (Двоичное значение)	Информация о состоянии осиTRUE: Ось приведена в начальное положение.
ModeOfOperation	ВЫХОД	INT (Целое)	Специальный режим привода. Дополнительная информация приведена в его руководстве по эксплуатации. Пример для <i>Sigma-5</i> : 0: Нет изменения режима/нет назначения режима
			1: Режим Profile Position (Профиль позиционирования)
			2: Зарезервировано (сохраняется последний режим)
			3: Режим Profile Velocity (Профиль скорости)
			4: Режим Torque Profile (Профиль крутящего момента)
			6: Режим Homing (Установка в начальное положение)
			7: Режим Interpolated Position (Позиционирование с интерполяцией)
			8: Режим Cyclic Sync Position (Позиционирование с циклической синхронизацией)
			9: Режим Cyclic Sync Velocity (Скорость с циклической синхронизацией)
			10: Режим Cyclic Sync Torque (крутящий момент с циклической синхроизацией)
			Другое зарезервировано (сохраняется последний режим)
PLCopenState	выход	INT (Целое)	Текущее состояние PLCopen
			1: Disabled (Выключен)
			2: Standstill (Состояние простоя)
			3: Homing (Выход в начальное положение)
			4: Discrete Motion (Позиционирование)
			5: Continous Motion (Непрерывное движение)
			7: Stopping (Процесс остановки)
			8: Errorstop (Остановка по ошибке)
ActualPosition	выход	REAL (Вещественное число)	Позиция оси в [пользовательская единица].
ActualVelocity	выход	REAL (Вещественное число)	Скорость оси в [пользовательская единица/с].
CmdDone	выход	BOOL (Двоичное значение)	■ Состояние– TRUE: Задание выполнено без ошибки.
CmdBusy	выход	BOOL (Двоичное значение)	■ Состояние— TRUE: Задание выполняется.
CmdAborted	выход	BOOL (Двоичное значение)	 Состояние TRUE: Задание было отменено другим заданием.
CmdError	выход	BOOL (Двоичное значение)	■ Состояние– TRUE: В приводе возникла ошибка.
			Дополнительная информация об ошибке может быть взята из параметра <i>CmdErrorID</i> .



Параметр	Тип переменной	Тип данных	Описание
CmdErrorID	выход	WORD (16- разрядное значение)	Дополнительная информация об ошибке
DirectionPositive	выход	BOOL (Двоичное значение)	 Состояние процесса движения: увеличение позиции TRUE: Значение позиции оси увеличивается
DirectionNegative	выход	BOOL (Двоичное значение)	Состояние процесса движения: уменьшение позицииTRUE: Значение позиции оси уменьшается
SWLimitMinActive	выход	ВООL (Двоичное значение)	 ■ Программный концевой выключатель – TRUE: Сработал программный концевой выключатель минимальной позиции (превышено программное конечное положение в отрицательном направлении).
SWLimitMinActive	выход	ВООL (Двоичное значение)	 ■ Программный концевой выключатель – TRUE: Сработал программный концевой выключатель максимальной позиции (превышено программное конечное положение в отрицательном направлении).
HWLimitMinActive	выход	ВООL (Двоичное значение)	 Аппаратный концевой выключатель TRUE: Активен концевой выключатель отрицательного направления в приводе (NOT- Negative Overtravel).
HWLimitMaxActive	выход	ВООL (Двоичное значение)	 Аппаратный концевой выключатель TRUE: Активен концевой выключатель положительного направления в приводе (POT- Positive Overtravel).
Axis		MC_AXIS_REF	Ссылка на ось.

^{*)} Этот параметр поддерживается не всеми приводами, в частности, Sigma-5 с EtherCAT не поддерживает этот параметр.

4.3. Комплексные задачи управления движением - блоки PLCopen

4.3.1. UDT 860 - MC_AXIS_REF - Структура данных для оси

Это определяемая пользователем структура данных, содержащая информацию о состоянии оси.

4.3.2. UDT 861 - MC_TRIGGER_REF - Структура данных сигнала запуска

Это пользовательская структура данных, содержащая информацию о сигнале запуска.

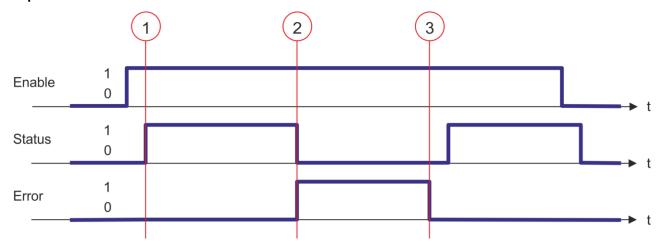
4.3.3. FB 800 - MC_Power - Разрешение работы оси

Описание

С помощью блока MC_Power ось может быть включена или выключена.

Параметр

Параметр	Тип переменной	Тип данных	Описание
Axis	вход_выход	MC_AXIS_REF	Ссылка на ось.
Enable	вход	BOOL (Двоичное значение)	Включение / выключение осиTRUE: Ось включена.FALSE: Ось выключена.
EnablePositive	ВХОД	BOOL (Двоичное значение)	Параметр в настоящее время не поддерживается; вызов со значением FALSE.
EnableNegative	ВХОД	BOOL (Двоичное значение)	Параметр в настоящее время не поддерживается; вызов со значением FALSE.
Состояние	выход	BOOL (Двоичное значение)	 ■ Состояние оси − TRUE: Ось включена и готова к выполнению задания по движению. − FALSE: Ось выключена и не готова к выполнению задания по движению.
Valid	ВЫХОД	BOOL (Двоичное значение)	Всегда FALSE
Error	выход	BOOL (Двоичное значение)	 Error TRUE: Во время исполнения блока возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра <i>ErrorID</i>. Ось заблокирована.
ErrorID	выход	WORD (16- разрядное значение)	Дополнительная информация об ошибке


Включение оси

Вызовите блок MC_Power со значением *Enable* = TRUE. Значение TRUE на выходе *Status* будет свидетельствать о том, что ось включена. В этом состоянии могут быть активированы задания движения.

Выключение оси

Вызовите блок MC_Power со значением *Enable* = FALSE. Значение FALSE на выходе *Status* будет свидетельствовать о том, что ось выключена. При выключении оси любая активная задача движения прерывается и ось останавливается.

- (1) Ось включается с помощью *Enable* = TRUE. С момента времени (1) она находится во включенном состоянии. Теперь могут быть активированы задания движения.
- (2) В момент времени (2) возникла ошибка, которая вызывает блокирование оси. Активная задача движения прерывается и ось останавливается.
- (3) Ошибка устранена и подтверждена в момент времени (3). Поскольку *Enable* все еще установлен, ось возвращается во включенное состояние. Ось выключается с помощью *Enable* = FALSE.

4.3.4. FB 801 - MC_Home - Перемещение оси в исходное положение

Описание

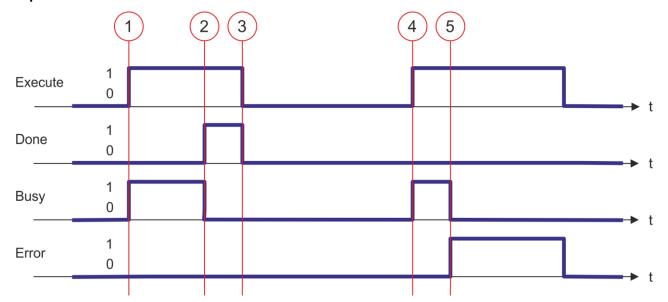
С помощью блока MC_Home ось устанавливается в начальную точку. Благодаря этому может быть установлено соответствие между координатами оси и реальным физическим положением привода. Метод перемещения к началу отсчета и связанные с ним параметры должны быть заданы непосредственно в приводе. Используйте для этого блоки VMC_HomeInit_...

Параметр

Параметр	Тип переменной	Тип данных	Описание
Axis	вход_выход	MC_AXIS_REF	Ссылка на ось.
Execute	вход	BOOL (Двоичное значение)	■ Перемещение в начальное положение– Переход 0-1: Запуск перемещения в начальное положение
Position	вход	REAL (Вещественное число)	По окончанию выхода в начальную точку ось устанавливается в положение, определяемое значением на входе <i>Position</i> .
			Значение <i>Position</i> должно быть указано в используемом блоке.
BufferMode	ВХОД	ВҮТЕ (Байт)	Параметр в настоящее время не поддерживается; вызов со значением B#16#0
Done	выход	BOOL (Двоичное значение)	■ Состояние– TRUE: Задание успешно выполнено
Busy	выход	BOOL (Двоичное значение)	■ Состояние– TRUE: Задание выполняется.
CommandAborted	выход	BOOL (Двоичное значение)	 ■ Состояние – TRUE: Задание было отменено другим заданием (функциональным блоком).
Error	выход	BOOL (Двоичное значение)	 Состояние TRUE: Во время исполнения блока возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра <i>ErrorID</i>.
ErrorID	выход	WORD (16- разрядное значение)	Дополнительная информация об ошибке

Состояние PLCopen

Запуск фунционального блока возможен только в PLCopen-состоянии Standstill.


Установка оси в начальную точку

Запуск установки в начальную позицию осуществляется по переходу 0-1 на входе *Execute*. Значение TRUE на выходе *Busy* свидетельствует о выполнении приводом установки в начальную позицию. Появление на выходе Done значения TRUE свидетельствует об успешном завершении выхода привода в начальную позицию. Фактическое положение оси установлено на значение со входа *Position*.

- Исполнение блока будет продолжено даже в случае установки на входе Ехесите значения FALSE.
- Исполнение блока не может быть прервано запуском команды движения (например, MC MoveRelative).

- (1) Запуск установки в начальную позицию осуществляется по переходу 0-1 на входе *Execute*, а выход *Busy* принимает значение TRUE.
- (2) В момент времени (2) завершается установка оси в начальную точку. Выход *Busy* принимает значение FALSE, а выход *Done -* значение TRUE.
- (3) В момент времени (3) выполнение задания завершается, вход *Execute* принимает значение FALSE и это устанавливает все выходные параметры в FALSE или 0.
- (4) В момент времени (4) по переходу 0-1 на входе *Execute* осуществляется запуск установки в начальную позицию, а *на* выход *Busy* появляется значение TRUE.
- (5) В момент времени (5) возникла ошибка исполнения блока. Выход *Busy* принимает значение FALSE, а выход *ERROR* значение TRUE.

4.3.5. FB 802 - MC_Stop - Остановка оси

Описание

Блок MC_STOP используется для остановки оси с блокировкой. Параметр Deceleration определяет динамические характеристики привода в процессе остановки.

Параметр

Параметр	Тип переменной	Тип данных	Описание
Axis	вход_выход	MC_AXIS_REF	Ссылка на ось.
Execute	вход	BOOL (Двоичное значение)	 Останов оси Переход 0-1: Запуск процесса торможения привода.
Deceleration	вход	REAL (Вещественное число)	Замедление при остановке в [пользовательские единицы/ c^2].
Jerk	вход	REAL (Вещественное число)	Параметр в настоящее время не поддерживается; вызов со значением 0.0.
Done	выход	BOOL (Двоичное значение)	■ Состояние– TRUE: Задание успешно выполнено.
Busy	выход	BOOL (Двоичное значение)	■ Состояние— TRUE: Задание выполняется.
CommandAborted	выход	BOOL (Двоичное значение)	 ■ Состояние – TRUE: Задание было отменено другим заданием (функциональным блоком).
Error	выход	BOOL (Двоичное значение)	 Состояние TRUE: При исполнении блока возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра <i>ErrorID</i>.
ErrorID	выход	WORD (16- разрядное значение)	Дополнительная информация об ошибке

Состояние PLCopen

- Запуск фунционального блока возможен в следующих PLCopen-состояниях: Standstill, Homing, Discrete Motion и Continuous Motion.
- Блок MC_Stop переводит ось в PLCopen-состояние Stopping. В состоянии Stopping никакие команды движения не могут быть запущены. До тех пор пока Execute имеет значение TRUE, ось остается в PLCopen-состоянии Stopping. Если для Execute установлено значение FALSE, ось перейдет в PLCopen-состояние Standstill. В состоянии Standstill могут быть запущены команды движения.

Остановка оси

Запуск торможения оси осуществляется по переходу 0-1 сигнала на входе *Execute*. Значение TRUE на выходе *Busy* свидетельствует о выполнении приводом торможения оси. После того, как ось остановится, т.е. ее скорость достигнет нулевого значения, сигнал на выходе *Busy* примет значение FALSE, на выходе *Done* - значение TRUE.

- Исполнение блока будет продолжено до полной остановки оси даже в случае установки на входе Execute значения FALSE.
- Исполнение блока не может быть прервано запуском команды движения (например, MC_MoveRelative).

- (1) Запуск остановки оси существляется в момент времени (1) по переходу 0-1 на входе *Execute*, при этом на выходе *Busy* устанавливается значение TRUE. Скорость оси снижается до нуля в соответствии со значением параметра *Deceleration*.
- (2) В момент времени (2) торможение оси завершается, ось останавливается. Выход *Busy* принимает значение FALSE, а выход *Done* значение TRUE.
- (3) В момент времени (3) выполнение задания завершается, вход *Execute* принимает значение FALSE и это устанавливает все выходные параметры в FALSE или 0.

4.3.6. FB 803 - MC_Halt - Приостановка оси

Описание

С помощью блока MC_Halt ось замедляется до полной остановки без блокировки. Параметр *Deceleration* определяет динамические характеристики привода в процессе торможения.

Параметр

Параметр	Тип переменной	Тип данных	Описание
Axis	вход_выход	MC_AXIS_REF	Ссылка на ось.
Execute	вход	BOOL (Двоичное значение)	 Останов оси Переход 0-1: Запуск процесса торможения привода.
Deceleration	вход	REAL (Вещественное число)	Замедление при остановке в [пользовательские единицы/ c^2].
Jerk	вход	REAL (Вещественное число)	Параметр в настоящее время не поддерживается; вызов со значением 0.0.
BufferMode	ВХОД	ВҮТЕ (Байт)	Параметр в настоящее время не поддерживается; вызов со значением В#16#0.
Done	выход	BOOL (Двоичное значение)	■ Состояние– TRUE: Задание успешно выполнено.
Busy	выход	BOOL (Двоичное значение)	■ Состояние– TRUE: Задание выполняется.
Active	выход	BOOL (Двоичное значение)	■ Состояние– TRUE: Блок управляет осью.
CommandAborted	ВЫХОД	BOOL (Двоичное значение)	■ Состояние– TRUE: Задание было прервано другим заданием (функциональным блоком).
Error	выход	BOOL (Двоичное значение)	 Состояние TRUE: При исполнении блока возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра ErrorID.
ErrorID	выход	WORD (16- разрядное значение)	Дополнительная информация об ошибке

Состояние PLCopen

Запуск фунционального блока возможен в следующих PLCopen-состояниях: *Discrete Motion* и *Continuous Motion*.

■ Блок МС Halt переводит ось в PLCopen-состояние Descrete Motion.

Замедление оси

Запуск торможения оси осуществляется по переходу 0-1 сигнала на входе *Execute*. Значение TRUE на выходе *Busy* свидетельствует о выполнении приводом торможения оси. После того, как торможение оси завершится, т.е. ее скорость достигнет нулевого значения, сигнал на выходе *Busy* примет значение FALSE, на выходе *Done* - значение TRUE.

- Исполнение блока будет продолжено до полной остановки оси даже в случае установки на входе Execute значения FALSE.
- Исполнение блока может быть прервано запуском команды движения (например, MC_MoveRelative).

- (1) Запуск остановки оси существляется в момент времени (1) по переходу 0-1 на входе *Execute*, при этом на выходе *Busy* устанавливается значение TRUE. Скорость оси снижается до нуля в соответствии со значением параметра *Deceleration*.
- (2) В момент времени (2) торможение оси завершается, ось останавливается. Выход *Busy* принимает значение FALSE, а выход *Done -* значение TRUE.
- (3) В момент времени (3) выполнение задания завершается, вход *Execute* принимает значение FALSE и это устанавливает все выходные параметры в FALSE или 0.

4.3.7. FB 804 - MC_MoveRelative - Движение оси в заданную относительную позицию

Описание

Блок MC_MoveRelative обеспечивает перемещение оси на заданное расстояние относительно текущей ее позиции. Параметры *Velocity*, *Acceleration* и *Deceleration* определяет динамические характеристики привода в процессе движения.

Параметр

Параметр	Тип переменной	Тип данных	Описание
Axis	вход_выход	MC_AXIS_REF	Ссылка на ось.
Execute	вход	BOOL (Двоичное значение)	Относительное движение осиПереход 0-1: Запуск движения оси.
ContinuousUpdate	ВХОД	BOOL (Двоичное значение)	Параметр в настоящее время не поддерживается; вызов со значением FALSE
Distance	ВХОД	REAL (Вещественное число)	Относительное перемещение [в пользовательских единицах]
Velocity	вход	REAL (Вещественное число)	Макс. скорость (не обязательно должна быть достигнута) в [пользовательские единицы/с]
Acceleration	вход	REAL (Вещественное число)	Ускорение в [пользовательские единицы/с2]
Deceleration	ВХОД	REAL (Вещественное число)	Замедление в [пользовательские единицы/с2]
Jerk	ВХОД	REAL (Вещественное число)	Параметр в настоящее время не поддерживается; вызов со значением 0.0
BufferMode	ВХОД	ВҮТЕ (Байт)	Параметр в настоящее время не поддерживается; вызов со значением B#16#0
Done	выход	BOOL (Двоичное значение)	 Состояние TRUE: Задание успешно выполнено; конечное положение достигнуто
Busy	ВЫХОД	BOOL (Двоичное значение)	■ Состояние– TRUE: Задание выполняется
Active	выход	BOOL (Двоичное значение)	СостояниеTRUE: Блок управляет осью
CommandAborted	выход	BOOL (Двоичное значение)	 ■ Состояние – TRUE: Задание было прервано другим заданием (функциональным блоком).
Error	ВЫХОД	BOOL (Двоичное значение)	 Состояние TRUE: При исполнении блока возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра ErrorID.
ErrorID	выход	WORD (16- разрядное значение)	Дополнительная информация об ошибке

Состояние PLCopen

- Запуск фунционального блока возможен в следующих PLCopen-состояниях: Standstill, Discrete Motion и Continuous Motion.
- Блок MC_MoveRelative переводит ось в PLCopen-состояние *Descrete Motion*.

Относительное перемещение оси

Запуск движения оси осуществляется по переходу 0-1 сигнала на входе *Execute*. Значение TRUE на выходе *Busy* свидетельствует о нахождении оси в состоянии движения. После достижения осью конечного положения сигнал на выходе *Busy* примет значение FALSE, на выходе *Done* - значение TRUE. Скорость оси при этом равна нулю.

- Исполнение блока будет продолжено до достижения осью конечного положения даже в случае установки на входе Execute значения FALSE.
- Исполнение блока может быть прервано запуском команды движения (например, MC_MoveAbsolute).

- (1) С помощью блока MC_MoveRelative ось выполняет относительное перемещение на расстояние, определяемое параметром *Distance* = 1000.0 (начальная позиция при запуске блока равно 0.0). Запуск движения оси существляется в момент времени (1) по переходу 0-1 на входе *Execute*, при этом на выходе *Busy* устанавливается значение TRUE.
- (2) В момент времени (2) ось переместилась на расстояние *Distance* = 1000.0, т.е. конечное положение достигнуто. Выход *Busy* принимает значение FALSE, а выход *Done* значение TRUE.
- (3) В момент времени (3) выполнение задания завершается, вход *Execute* принимает значение FALSE и это устанавливает все выходные параметры в FALSE или 0.

4.3.8. FB 805 - MC_MoveVelocity - Непрерывное движение оси с заданной скоростью

Описание

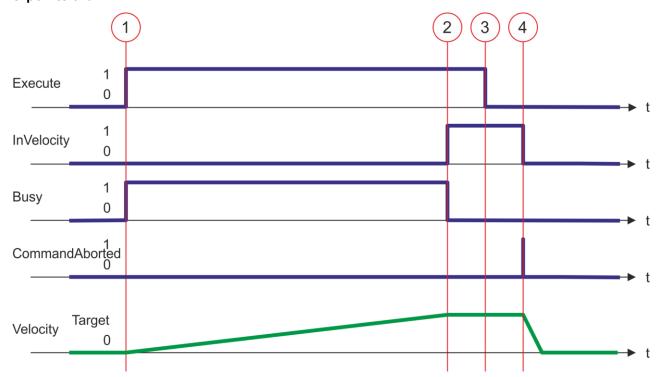
С помощью MC_MoveVelocity ось перемещается с постоянной скоростью. Параметры *Velocity*, *Acceleration* и *Deceleration* определяет динамические характеристики привода в процессе движения.

Параметр

Параметр	Тип переменной	Тип данных	Описание
Axis	вход_выход	MC_AXIS_REF	Ссылка на ось.
Execute	вход	BOOL (Двоичное значение)	 Движение оси с постоянной скоростью Переход 0-1: Осуществляется запуск движения оси с постоянной скоростью.
ContinuousUpdate	вход	BOOL (Двоичное значение)	Параметр в настоящее время не поддерживается; вызов со значением FALSE.
Velocity	ВХОД	REAL (Вещественное число)	Значение скорости (со знаком) в [пользовательские единицы/с].
Acceleration	ВХОД	REAL (Вещественное число)	Ускорение в [пользовательские единицы/c²].
Deceleration	ВХОД	REAL (Вещественное число)	Замедление в [пользовательские единицы/c²].
Jerk	ВХОД	REAL (Вещественное число)	Параметр в настоящее время не поддерживается; вызов со значением 0.0.
BufferMode	ВХОД	ВҮТЕ (Байт)	Параметр в настоящее время не поддерживается; вызов со значением В#16#0.
InVelocity	выход	BOOL (Двоичное значение)	 ■ Значение скорости — TRUE: Достигнуто значение скорости, установленное через параметр Velicity.
Busy	ВЫХОД	BOOL (Двоичное значение)	■ Состояние– TRUE: Задание выполняется.
Active	ВЫХОД	BOOL (Двоичное значение)	СостояниеTRUE: Блок управляет осью.
CommandAborted	выход	BOOL (Двоичное значение)	 Состояние TRUE: Задание было прервано другим заданием (функциональным блоком).
Error	ВЫХОД	BOOL (Двоичное значение)	 Состояние TRUE: При исполнении блока возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра ErrorID.
ErrorID	ВЫХОД	WORD (16- разрядное значение)	Дополнительная информация об ошибке

Состояние PLCopen

- Запуск фунционального блока возможен в следующих PLCopen-состояниях: Standstill, Discrete Motion и Continuous Motion.
- Блок MC_MoveVelocity переводит ось в PLCopen-состояние Continuous Motion.


Движение оси с заданной скоростью

Запуск движения оси с заданной скоростью осуществляется по переходу 0-1 сигнала на входе *Execute*. До тех пор, пока заданная скорость не достигнута, выход *Busy* имеет значение TRUE, а выход *InVelocity* - значение FALSE. При достижении заданной скорости выход *Busy* принимает значение FALSE, а выход *InVelocity* - значение TRUE. После этого ось непрерывно движется с этой скоростью.

- Исполнение блока продолжается даже в случае установки на входе Execute значения FALSE.
- Исполнение блока может быть прервано запуском команды движения (например, MC_MoveAbsolute).

- (1) Запуск движения оси с заданной скоростью осуществляется в момент времени (1) по переходу 0-1 на входе *Execute*, при этом на выходе *Busy* устанавливается значение TRUE.
- (2) В момент времени (2) ось достигает заданной скорости и выход *Busy* принимает значение FALSE, а выход *InVelocity* значение TRUE.
- (3) Возврат к значению FALSE на входе *Execute* в момент времени (3) не оказывает никакого влияния на ось. Ось будет продолжать движение с постоянной скоростью, а выход *InVelocity* по-прежнему будет иметь значение TRUE.
- (4) В момент времени (4) работа блока MC_Velocity прерывается запуском на исполнение блока MC_Halt. Ось тормозится до полной остановки.

4.3.9. FB 808 - MC_MoveAbsolute - Перемещение оси в заданную абсолютную позицию

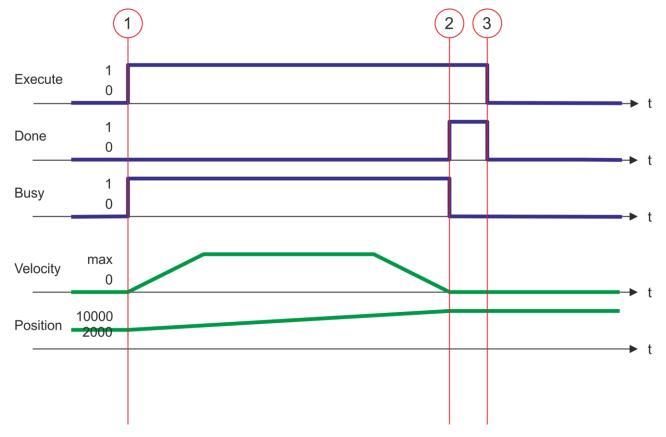
Описание

Блок MC_MoveAbsolute обеспечивает перемещение оси в заданную абсолютную позицию. Параметры *Velocity*, *Acceleration* и *Deceleration* определяет динамические характеристики привода в процессе движения.

Параметр

Параметр	Тип переменной	Тип данных	Описание
Axis	вход_выход	MC_AXIS_REF	Ссылка на ось.
Execute	ВХОД	BOOL (Двоичное значение)	Запуск перемещения осиПереход 0-1: Начинается движение оси.
ContinuousUpdate	ВХОД	BOOL (Двоичное значение)	Параметр в настоящее время не поддерживается; вызов со значением FALSE.
Position	вход	REAL (Вещественное число)	Значение абсолютной позиции [в пользовательских единицах] .
Velocity	вход	REAL (Вещественное число)	Макс. скорость (не обязательно должна быть достигнута) в [пользовательские единицы/с].
Acceleration	вход	REAL (Вещественное число)	Ускорение в [пользовательские единицы/c²].
Deceleration	вход	REAL (Вещественное число)	Замедление в [пользовательские единицы/c²].
Jerk	вход	REAL (Вещественное число)	Параметр в настоящее время не поддерживается; вызов со значением 0.0.
Direction	вход	ВҮТЕ (Байт)	 ■ Direction — 0: Кратчайший путь — 1: Положительное направление — 2: Отрицательное направление — 3: Текущее направление
BufferMode	ВХОД	ВҮТЕ (Байт)	Параметр в настоящее время не поддерживается; вызов со значением В#16#0.
Done	выход	BOOL (Двоичное значение)	 Состояние TRUE: Задание успешно выполнено. Заданная позиция достигнута.
Busy	ВЫХОД	BOOL (Двоичное значение)	■ Состояние— TRUE: Задание выполняется.
Active	ВЫХОД	BOOL (Двоичное значение)	СостояниеTRUE: Блок управляет осью.
CommandAborted	выход	BOOL (Двоичное значение)	 ■ Состояние – TRUE: Задание было прервано другим заданием (функциональным блоком).
Error	выход	BOOL (Двоичное значение)	 Состояние TRUE: При исполнении блока возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра <i>ErrorID</i>.
ErrorID	ВЫХОД	WORD (16- разрядное значение)	Дополнительная информация об ошибке ⇔ Глава 5 'ErrorID - Дополнительная информация об ошибке' на стр. 190

Состояние PLCopen


- Запуск фунционального блока возможен в следующих PLCopen-состояниях: Standstill, Discrete Motion и Continuous Motion.
- Блок MC_MoveVelocity переводит ось в PLCopen-состояние Descrete Motion.

Перемещение оси в заданную абсолютную позицию Запуск движения оси осуществляется по переходу 0-1 сигнала на входе *Execute*. Значение TRUE на выходе *Busy* свидетельствует о нахождении оси в состоянии движения. После достижения осью заданной позиции сигнал на выходе *Busy* примет значение FALSE, на выходе *Done* - значение TRUE. Скорость оси при этом равна нулю.

- При использовании Sigma-5 с EtherCAT перемещение в заданную позицию всегда осуществляется по кратчайшему пути.
- Исполнение блока будет продолжено до достижения осью конечного положения даже в случае установки на входе Execute значения FALSE.

- (1) С помощью блока MC_MoveAbsolute ось выполняет перемещение в абсолютную позицию 10000.0 (начальная позиция при запуске блока равно 2000.0). Запуск движения оси существляется в момент времени (1) по переходу 0-1 на входе *Execute*, при этом на выходе *Busy* устанавливается значение TRUE.
- (2) В момент времени (2) ось достигла заданную позицию. Выход *Busy* принимает значение FALSE, а выход *Done -* значение TRUE.
- (3) В момент времени (3) выполнение задания завершается, вход *Execute* принимает значение FALSE и это устанавливает все выходные параметры в FALSE или 0.

4.3.10. FB 811 - MC_Reset - Сброс ошибок оси

Описание

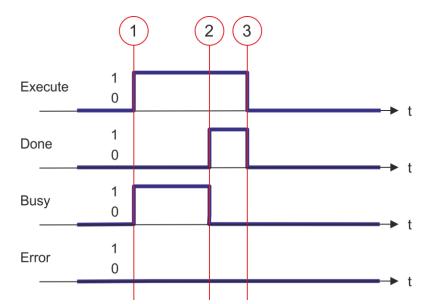
С помощью блока MC_Reset выполняется сброс (повторная инициализация) оси. При этом сбрасываются все внутренние ошибки привода.

Параметр

Параметр	Тип переменной	Тип данных	Описание
Axis	вход_выход	MC_AXIS_REF	Ссылка на ось.
Execute	вход	BOOL (Двоичное значение)	■ Сброс оси— Переход 0-1: Выполняется сброс оси
Done	выход	BOOL (Двоичное значение)	 Состояние TRUE: Задание успешно выполнено. Сброс ошибок произведён.
Busy	выход	BOOL (Двоичное значение)	■ Состояние– TRUE: Задание выполняется
Error	выход	BOOL (Двоичное значение)	 Состояние TRUE: При исполнении блока возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра <i>ErrorID</i>.
ErrorID	выход	WORD (16- разрядное значение)	Дополнительная информация об ошибке

Состояние PLCopen

- Запуск фунционального блока возможен в PLCopen-состоянии Errorstop.
- Блок MC_Reset в зависимости от параметров запуска блока MC_Power переводит ось в PLCopen-состояние *Standstill* (вызов блока MC_Power со значением *Enable* = TRUE) или *Disabled* (вызов блока MC_Power со значением *Enable* = FALSE).


Выполнение сброса оси

Сброс оси осуществляется по переходу 0-1 сигнала на входе *Execute*. В процессе выполнения сброса на выходе *Busy* присутствует значение TRUE. После завершения реинициализации оси сигнал на выходе *Busy* примет значение FALSE, на выходе *Done* - значение TRUE.

Исполнение блока будет продолжаться даже в случае установки на входе Execute значения FALSE.

- 1. Запуск сброса оси существляется в момент времени (1) по переходу 0-1 на входе Execute, при этом на выходе Busy устанавливается значение TRUE.
- **2.** В момент времени (2) сброс оси успешно завершен. Выход *Busy* принимает значение FALSE, а выход *Done* значение TRUE.
- 3. В момент времени (3) выполнение задания завершается, вход *Execute* принимает значение FALSE и это устанавливает все выходные параметры в FALSE или 0.

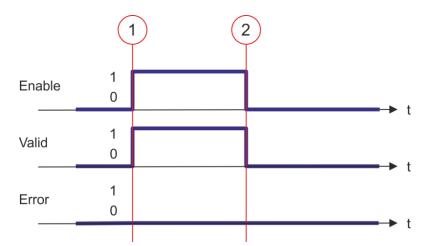
4.3.11. FB 812 - MC_ReadStatus - Состояние PLCopen

Описание

С помощью блока MC_ReadStatus может быть определено PLCopen-состояние оси.

Параметр

Параметр	Тип переменной	Тип данных	Описание
Axis	вход_выход	MC_AXIS_REF	Ссылка на ось.
Enable	вход	BOOL (Двоичное значение)	 Индикация состояния TRUE: Состояние постоянно отображается на выходах. FALSE: На всех выходах устанавливается значение FALSE или 0.
Valid	выход	BOOL (Двоичное значение)	Достоверность состоянияTRUE: Отоброжаемое состояние достоверно.
Error	выход	BOOL (Двоичное значение)	 Состояние TRUE: Возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра ErrorID.
ErrorID	выход	WORD (16-	Дополнительная информация об ошибке.
		разрядное значение)	∜ Глава 5 'ErrorID - Дополнительная информация об ошибке' на стр. 190
ErrorStop	ВЫХОД	BOOL (Двоичное значение)	■ Ошибка оси– TRUE: Возникла ошибка оси, задание на движение не может быть запущено.
Disabled	выход	BOOL (Двоичное значение)	 Состояние оси: Disabled TRUE: Ось выключена, задание на движение не может быть запущено.
Stopping	ВЫХОД	BOOL (Двоичное значение)	■ Состояние оси: Остановка оси– TRUE: Ось остановлена (активен блок MC_Stop).
Homing	выход	BOOL (Двоичное значение)	 Состояние оси: Homing TRUE: Ось выполняет перемещение в начальную позицию.
Standstill	выход	BOOL (Двоичное значение)	 ■ Состояние покоя – TRUE: Нет активных заданий на движение; такое задание может быть запущено.
DiscreteMotion	выход	BOOL (Двоичное значение)	 Состояние движения оси: Позиционирование TRUE: Ось выполняет позиционирование (исполняются блоки MC_MoveRelative, MC_MoveAbsolute или MC_Halt).
ContinuousMotion	выход	BOOL (Двоичное значение)	 Состояние движения оси: Непрерывное движение TRUE: Ось выполняет непрерывное движение (исполняется блок MC_MoveVelocity).


Состояние PLCopen

■ Запуск блока возможен в любом PLCopen-состоянии оси.

Определение состояния оси

При *Enable* = TRUE состояние оси в соответствии с диаграммой состояния PLCopen отображается на выходах блока.

- (1) В момент времени (1) на входе *Enable* устанавливается значение TRUE. При этом на выходе *Valid* устанавливается значение TRUE, на выходах отображается PLCopen-состояние оси.
- (2) В момент времени (2) на входе *Enable* устанавливается значение FALSE. В результате на всех выходах устанавливается значение FALSE или 0.

4.3.12. FB 813 - MC_ReadAxisError - Чтение ошибки оси

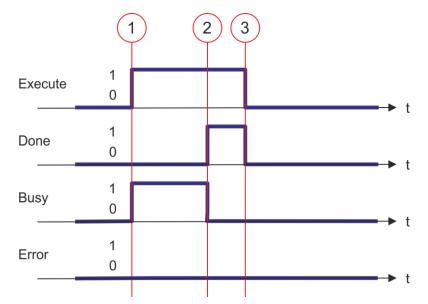
Описание

С помощью MC_ReadAxisError существующие ошибки оси считываются из привода.

Параметр

Параметр	Тип переменной	Тип данных	Описание
Axis	вход_выход	MC_AXIS_REF	Ссылка на ось.
Execute	вход	BOOL (Двоичное значение)	■ Сброс оси– Переход 0-1: Считывание ошибки оси.
Done	выход	BOOL (Двоичное значение)	 ■ Состояние – TRUE: Задание успешно выполнено. Ошибка оси считана.
Busy	выход	BOOL (Двоичное значение)	■ Состояние– TRUE: Задание выполняется.
Error	выход	BOOL (Двоичное значение)	 ■ Состояние – TRUE: Возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра ErrorID.
ErrorID	выход	WORD (16- разрядное значение)	Дополнительная информация об ошибке
AxisErrorID	выход	WORD (16- разрядное значение)	ID ошибки оси; считанное значение определяется производителем привода.

Состояние PLCopen


■ Запуск блока возможен в любом PLCopen-состоянии оси.

Чтение ошибки оси

Чтение ошибки оси осуществляется по переходу 0-1 сигнала на входе *Execute*. В процессе выполнения чтения оси на выходе *Busy* присутствует значение TRUE. После завершение чтения ошибки оси сигнал на выходе *Busy* примет значение FALSE, на выходе *Done* - значение TRUE. Выход *AxisErrorID* отображает текущую ошибку оси.

- (1) Запуск чтения ошибки оси существляется в момент времени (1) по переходу 0-1 на входе *Execute*, при этом на выходе *Busy* устанавливается значение TRUE.
- (2) В момент времени (2) чтение ошибки оси успешно завершено. Выход *Busy* принимает значение FALSE, а выход *Done -* значение TRUE.
- (3) В момент времени (3) выполнение задания завершается, вход *Execute* принимает значение FALSE и это устанавливает все выходные параметры в FALSE или 0.

4.3.13. FB 814 - MC_ReadParameter - Чтение значения параметра оси

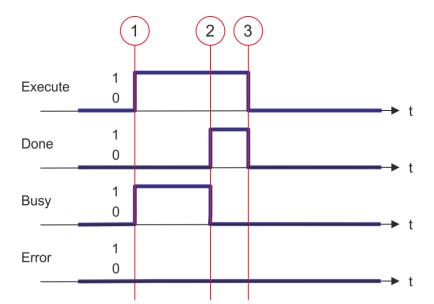
Описание

С помощью MC_ReadParameter осуществляется чтение из оси значения параметра с заданным номером. Чраздел 4.3.35 'Параметры PLCopen' на стр. 186

Параметр

Параметр	Тип переменной	Тип данных	Описание
Axis	вход_выход	MC_AXIS_REF	Ссылка на ось.
Execute	вход	BOOL (Двоичное значение)	 Чтение параметров оси Переход 0-1: Выполняется чтение значения параметра.
ParameterNumber	ВХОД	INT (Целое)	Номер параметра для чтения. ∜ <i>Раздел 4.3.35 'Параметры PLCopen' на стр. 186</i>
Done	выход	BOOL (Двоичное значение)	 Состояние TRUE: Задание успешно выполнено. Значение параметра считано.
Busy	выход	BOOL (Двоичное значение)	■ Состояние– TRUE: Задание выполняется.
Error	выход	BOOL (Двоичное значение)	 Состояние TRUE: Возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра <i>ErrorID</i>.
ErrorID	ВЫХОД	WORD (16- разрядное значение)	Дополнительная информация об ошибке.
Value	ВЫХОД	REAL (Вещественное число)	Значение считанного параметра.

Состояние PLCopen


■ Запуск блока возможен в любом PLCopen-состоянии оси.

Чтение значение параметра оси

Чтение значения параметра оси осуществляется по переходу 0-1 сигнала на входе *Execute*. В процессе выполнения чтения значения параметра оси на выходе *Busy* присутствует значение TRUE. После завершение чтения значения параметра оси сигнал на выходе *Busy* примет значение FALSE, на выходе *Done* - значение TRUE. На выходе *Value* отображется значение параметра.

- (1) Запуск чтения значения параметра оси существляется в момент времени (1) по переходу 0-1 на входе *Execute*, при этом на выходе *Busy* устанавливается значение TRUE.
- (2) В момент времени (2) чтение значения параметра оси успешно завершено. Выход *Busy* принимает значение FALSE, а выход *Done -* значение TRUE.
- (3) В момент времени (3) выполнение задания завершается, вход *Execute* принимает значение FALSE и это устанавливает все выходные параметры в FALSE или 0.

4.3.14. FB 815 - MC_WriteParameter - Запись значения параметра оси

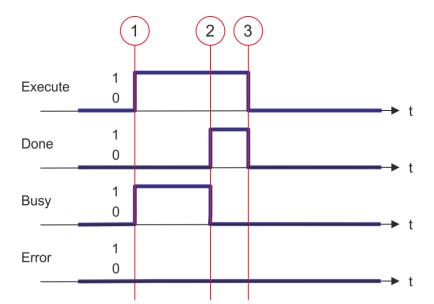
Описание

С помощью MC_WriteParameter осуществляется запись в ось значения параметра с заданным номером. Ч⇒ Раздел 4.3.35 'Параметры PLCopen' на стр. 186

Параметр

Параметр	Тип переменной	Тип данных	Описание
Axis	вход_выход	MC_AXIS_REF	Ссылка на ось.
Execute	вход	BOOL (Двоичное значение)	 Запись значения параметра оси Переход 0-1: Выполняется запись значения параметра.
Номер параметра	ВХОД	INT (Целое)	Номер параметра для записи. <i>Ч⇒ Раздел 4.3.35 'Параметры PLCopen' на стр. 186</i>
Value	ВХОД	REAL (Вещественное число)	Значение записываемого параметра.
Done	выход	BOOL (Двоичное значение)	 Состояние TRUE: Задание успешно выполнено. Значение параметра записано.
Busy	выход	BOOL (Двоичное значение)	■ Состояние– TRUE: Задание выполняется.
Error	выход	BOOL (Двоичное значение)	 ■ Состояние – TRUE: Возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра ErrorID.
ErrorID	выход	WORD (16- разрядное значение)	Дополнительная информация об ошибке.

Состояние PLCopen


■ Запуск блока возможен в любом PLCopen-состоянии оси.

Запись значения параметра оси

Запись значения параметра оси осуществляется по переходу 0-1 сигнала на входе *Execute*. В процессе выполнения записи значения параметра оси на выходе *Busy* присутствует значение TRUE. После завершение записи значения параметра оси сигнал на выходе *Busy* примет значение FALSE, на выходе *Done* - значение TRUE.

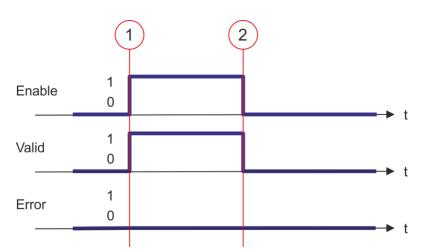
- (1) Запуск записи значения параметра оси существляется в момент времени (1) по переходу 0-1 на входе *Execute*, при этом на выходе *Busy* устанавливается значение TRUE.
- (2) В момент времени (2) запись значения параметра оси успешно завершено. Выход *Busy* принимает значение FALSE, а выход *Done -* значение TRUE.
- (3) В момент времени (3) выполнение задания завершается, вход *Execute* принимает значение FALSE и это устанавливает все выходные параметры в FALSE или 0.

4.3.15. FB 816 - MC_ReadActualPosition - Чтение текущего положения оси

Описание

С помощью блока MC_ReadActualPosition осуществляется считывание текущего положения оси.

Параметр


Параметр	Тип переменной	Тип данных	Описание
Axis	вход_выход	MC_AXIS_REF	Ссылка на ось.
Enable	вход	BOOL (Двоичное значение)	 ■ Чтение положения оси — TRUE: Положение оси непрерывно считывается. — FALSE: На всех выходах устанавливается значение FALSE или 0.
Valid	выход	BOOL (Двоичное значение)	■ Результат чтения позиции– TRUE: Значение позиции достоверно.
Error	выход	BOOL (Двоичное значение)	 ■ Состояние — TRUE: Возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра ErrorID.
ErrorID	выход	WORD (16- разрядное значение)	Дополнительная информация об ошибке.
Position	выход	REAL (Вещест- венное число)	Позиция оси [пользовательская единица].

Состояние PLCopen

■ Запуск блока возможен в любом PLCopen-состоянии оси.

Чтение положения оси

При установке на входе *Enable* значения TRUE выполняется определение текущей позиции оси, значение которой отображется на выходе *Position*.

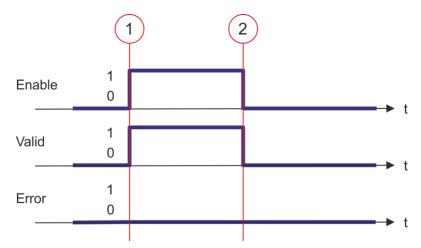
- (1) В момент времени (1) на входе *Enable* устанавливается значение TRUE. При этом на выходе *Valid* устанавливается значение TRUE, на выходе *Position* отображается значение текущей позиции оси.
- (2) В момент времени (2) на входе *Enable* устанавливается значение FALSE. В результате на всех выходах устанавливается значение FALSE или 0.

4.3.16. FB 817 - MC_ReadActualVelocity - Чтение скорости оси

Описание

С помощью блока MC_ReadActualVelocity осуществляется считывание текущей скорости оси.

Параметр


Параметр	Тип переменной	Тип данных	Описание
Axis	вход_выход	MC_AXIS_REF	Ссылка на ось.
Enable	вход	BOOL (Двоичное значение)	 ■ Чтение скорости оси − TRUE: Скорость оси непрерывно считывается − FALSE: На всех выходах устанавливается значение FALSE или 0.
Valid	выход	BOOL (Двоичное значение)	Достоверность значения скоростиTRUE: Значение скорсти достоверно.
Error	выход	BOOL (Двоичное значение)	 Состояние TRUE: Возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра <i>ErrorID</i>.
ErrorID	ВЫХОД	WORD (16- разрядное значение)	Дополнительная информация об ошибке.
			⇔ Глава 5 'ErrorID - Дополнительная информация об ошибке' на стр. 190
Velocity	ВЫХОД	REAL (Вещественное число)	Скорость оси в [пользовательская единица/с].

Состояние PLCopen

■ Запуск блока возможен в любом PLCopen-состоянии оси.

Чтение скорости оси

При установке на входе *Enable* значения TRUE выполняется определение текущей скорости оси, значение которой отображется на выходе *Velocity*.

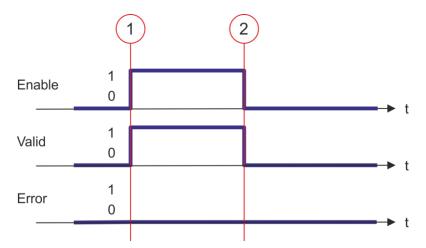
- (1) В момент времени (1) на входе *Enable* устанавливается значение TRUE. При этом на выходе *Valid* устанавливается значение TRUE, на выходе *Velocity* отображается значение текущей скорости оси.
- (2) В момент времени (2) на входе *Enable* устанавливается значение FALSE. В результате на всех выходах устанавливается значение FALSE или 0.

4.3.17. FB 818 - MC_ReadAxisInfo - Чтение дополнительной информации об оси

Описание

С помощью блока MC_ReadAxisInfo осуществляется отображение некоторой дополнительной информации об оси.

Параметр


Параметр	Тип переменной	Тип данных	Описание
Axis	вход_выход	MC_AXIS_REF	Ссылка на ось.
Enable	вход	BOOL (Двоичное значение)	 Чтение дополнительной информации об оси TRUE: Выполняется чтение дополнительной информации об оси. FALSE: На всех выходах устанавливается значение FALSE или 0.
Valid	выход	BOOL (Двоичное значение)	Достоверность дополнительной информацииTRUE: Дополнительная информация достоверна.
Error	выход	BOOL (Двоичное значение)	 Состояние TRUE: Возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра <i>ErrorID</i>.
ErrorID	выход	WORD (16- разрядное значение)	Дополнительная информация об ошибке
HomeAbsSwitch	ВЫХОД	BOOL (Двоичное значение)	Выключатель исходного положения ■ TRUE: Выключатель исходного положения активирован.
LimitSwitchPos	выход	BOOL (Двоичное значение)	Концевой выключатель положительного направления (POT- Positive Overtravel) TRUE: Концевой выключатель положительного направления активирован.
LimitSwitchNeg	выход	BOOL (Двоичное значение)	Концевой выключатель отрицательного направления (NOT- Negative Overtravel) TRUE: Концевой выключатель отрицательного направления активирован.
Simulation	выход	BOOL (Двоичное значение)	Параметр в настоящее время не поддерживается; вызов со значением FALSE.
CommunicationRe ady	выход	BOOL (Двоичное значение)	 Информация об оси: Обмен данными TRUE: Обмен данными с инициализированной осью; ось готова к обмену.
ReadyForPowerO n	ВЫХОД	BOOL (Двоичное значение)	Информация об оси: Возможность запускаTRUE: Запуск оси возможен.
PowerOn	выход	BOOL (Двоичное значение)	Информация об оси: СостояниеTRUE: Запуск оси выполнен.
IsHomed	ВЫХОД	BOOL (Двоичное значение)	Информация об оси: Исходное положениеTRUE: Ось приведена в начальное положение.
AxisWarning	выход	BOOL (Двоичное значение)	■ Информация об оси: Ошибка— TRUE: Возникла как минимум одна ошибка оси.

Состояние PLCopen

■ Запуск блока возможен в любом PLCopen-состоянии оси.

Определение состояния оси При установке на входе *Enable* значения TRUE информация о состоянии оси отображается на выходах блока.

- (1) В момент времени (1) на входе *Enable* устанавливается значение TRUE. При этом на выходе *Valid* устанавливается значение TRUE, а на выходах отображается дополнительная информация о состоянии оси.
- (2) В момент времени (2) на входе *Enable* устанавливается значение FALSE. В результате на всех выходах устанавливается значение FALSE или 0.

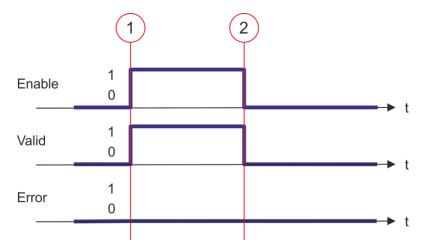
4.3.18. FB 819 - MC_ReadMotionState - Чтение состояния процесса движения

Описание

Блок MC_ReadMotionState позволяет получать информацию о текущем состоянии процесса движения.

Параметр

Параметр	Тип переменной	Тип данных	Описание
Axis	вход_выход	MC_AXIS_REF	Ссылка на ось.
Enable	вход	BOOL (Двоичное значение)	 Чтение состояния процесса движения TRUE: Состояние процесса движения непрерывно считывается. FALSE: На всех выходах устанавливается значение FALSE или 0.
Source	вход	ВҮТЕ (Байт)	Поддерживается только Source = 0; фактическое состояние процесса движения отображается на выходах блока.
Valid	выход	BOOL (Двоичное значение)	 Достоверность данных TRUE: Данные о состоянии процесса движения достоверны.
Error	выход	BOOL (Двоичное значение)	 ■ Состояние – TRUE: Возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра ErrorID.
ErrorID	ВЫХОД	WORD (16- разрядное значение)	Дополнительная информация об ошибке.
			്⇔ Глава 5 'ErrorID - Дополнительная информация об ошибке' на стр. 190
ConstantVelocity	выход	BOOL (Двоичное значение)	Состояние процесса движения: СкоростьTRUE: Скорость постоянна.
Acceleration	выход	BOOL (Двоичное значение)	 Состояние процесса движения: Ускорение TRUE: Ось ускоряется; скорость оси увеличивается.
Decelerating	выход	BOOL (Двоичное значение)	 Состояние процесса движения: Торможение TRUE: Ось тормозится; скорость оси становится ниже.
DirectionPositive	выход	BOOL (Двоичное значение)	Состояние процесса движения: увеличение позицииTRUE: Значение позиции оси увеличивается.
DirectionNegative	выход	BOOL (Двоичное значение)	Состояние процесса движения: уменьшение позицииTRUE: Значение позиции оси уменьшается.


Состояние PLCopen

■ Запуск блока возможен в любом PLCopen-состоянии оси.

Чтение состояния процесса движения

При *Enable* = TRUE информация о состоянии процесса движения оси отображается на выходах блока.

- (1) В момент времени (1) на входе *Enable* устанавливается значение TRUE. При этом на выходе *Valid* устанавливается значение TRUE, а на выходах отображается состояние процесса движения оси.
- (2) В момент времени (2) на входе *Enable* устанавливается значение FALSE. В результате на всех выходах устанавливается значение FALSE или 0.

4.3.19. FB 823 - MC_TouchProbe - Определение позиции оси

Описание

Этот функциональный блок используется для однократного определения позиции оси по сигналу запуска. Источник сигнала запуска определяется значением переменной на входе *TriggerInput*. В качестве источника такого сигнала может выступать, например, дискретный вход или импульс нулевой отметки энкодера.

Параметр

Параметр	Тип переменной	Тип данных	Описание
Axis	вход_выход	MC_AXIS_REF	Ссылка на ось.
TriggerInput	вход_выход	MC_TRIGGER_REF	Ссылка на источник сигнала запуска.
			Конфигурация ■ .Probe - 01: TouchProbe 1 - 02: TouchProbe 2 ■ .TriggerSource - 00: Вход - 00: Импульс нулевой отметки энкодера ■ .Triggermode - 00: SingleTrigger (фиксированное значение) ■ .Reserved (0 - фиксированное значение)
Execute	вход	BOOL (Двоичное значение)	Запуск определения позиции оси существляется по переходу 0-1 на входе <i>Execute</i> .
Done	выход	BOOL (Двоичное значение)	 Состояние TRUE: Задание успешно выполнено. Позиция оси определена.
Busy	выход	BOOL (Двоичное значение)	■ Состояние– TRUE: Задание выполняется.
CommandAborted	выход	BOOL (Двоичное значение)	 ■ Состояние – TRUE: Задание было отменено другим заданием (функциональным блоком).
Error	выход	BOOL (Двоичное значение)	 Состояние TRUE: Возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра <i>ErrorID</i>.
ErrorID	ВЫХОД	WORD (16- разрядное значение)	Дополнительная информация об ошибке.
RecordedPosition	ВЫХОД	REAL (Вещественное число)	Значение позиции оси в момент появления сигнала запуска [пользовательские единицы].

- Исполнение блока будет продолжено до полного завершения задания даже в случае установки на входе Ехесите значения FALSE. Определенная позиция оси затем выводится в течение одного цикла на выходе RecordedPosition. № Раздел 6 'Поведение входов и выходов' на стр. 197
- Чтобы блок был успешно исполнен, связь с осью должна быть в порядке и ось не должна находиться в PLCopen-состоянии Homing.
- Исполнение блока может быть прервано запуском нового блока MC TouchProbe для той же оси.
- Исполнение блока может быть прервано запуском блока MC_AbortTrigger.
- Исполнение блока может быть прервано запуском блока MC_Home.

Определение позиции оси

После завершения выполнения задания сигнал на выходе *Busy* примет значение FALSE, на выходе *Done* - значение TRUE. Определенное значение позиции отображается на выходе *RecordedPosition*.

4.3.20. FB 824 - MC_AbortTrigger - Отмена определения позиции оси

Описание

Этот блок прерывает процедуру определения положения оси, начатой блоком MC TouchProbe.

Параметр

Параметр	Тип переменной	Тип данных	Описание
Axis	вход_выход	MC_AXIS_REF	Ссылка на ось.
TriggerInput	вход_выход	MC_TRIGGER_REF	Ссылка на источник сигнала запуска. Конфигурация ■ .Probe — 01: TouchProbe 1 — 02: TouchProbe 2 ■ .TriggerSource
			 Тиддег Source 00: Вход 00: Импульс нулевой отметки энкодера Triggermode 00: SingleTrigger (фиксированное значение) Reserved (0 - фиксированное значение)
Execute	вход	BOOL (Двоичное значение)	Процедура определения позиции оси прерывается по переходу 0-1 на входе <i>Execute</i> .
Done	выход	BOOL (Двоичное значение)	 Состояние TRUE: Задание успешно выполнено. Процедура определения позиции оси прервана.
Busy	выход	BOOL (Двоичное значение)	■ Состояние– TRUE: Задание выполняется.
Error	выход	BOOL (Двоичное значение)	 Состояние TRUE: Возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра <i>ErrorID</i>.
ErrorID	ВЫХОД	WORD (16-разрядное значение)	Дополнительная информация об ошибке ⇔ Глава 5 'ErrorID - Дополнительная информация об ошибке' на стр. 190

Чтобы блок был успешно исполнен, связь с осью должна быть стабильной.

Отмена определения позиции оси

Процедура определения позиции оси прерывается по переходу 0-1 на входе *Execute*. В процессе выполнения задания на выходе *Busy* присутствует значение TRUE. После завершения выполнения задания сигнал на выходе *Busy* примет значение FALSE, на выходе *Done* - значение TRUE.

4.3.21. FB 825 - MC_ReadBoolParameter - Чтение логического параметра оси

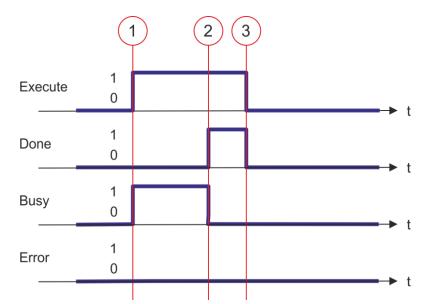
Описание

С помощью блока MC_ReadBoolParameter осуществляется чтение значения логического параметра оси (тип BOOL) с заданным номером. [™] Раздел 4.3.35 'Парметры PLCopen' на стр. 186

Параметр

Параметр	Тип переменной	Тип данных	Описание
Axis	вход_выход	MC_AXIS_REF	Ссылка на ось.
Execute	вход	BOOL (Двоичное значение)	 Чтение параметров оси Переход 0-1: Выполняется чтение значения параметра.
ParameterNumber	ВХОД	INT (Целое)	Номер параметра для чтения. ∜ <i>Раздел 4.3.35 'Параметры PLCopen' на стр. 186</i>
Done	выход	BOOL (Двоичное значение)	 Состояние TRUE: Задание успешно выполнено. Значение параметра считано.
Busy	выход	BOOL (Двоичное значение)	■ Состояние– TRUE: Задание выполняется.
Error	выход	BOOL (Двоичное значение)	 Состояние TRUE: Возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра <i>ErrorID</i>.
ErrorID	выход	WORD (16- разрядное значение)	Дополнительная информация об ошибке.
Value	выход	BOOL (Двоичное значение)	Значение считанного параметра.

Состояние PLCopen


■ Запуск блока возможен в любом PLCopen-состоянии оси.

Чтение значение параметра оси

Чтение значения параметра оси осуществляется по переходу 0-1 сигнала на входе *Execute*. В процессе выполнения чтения значения параметра оси на выходе *Busy* присутствует значение TRUE. После завершение чтения значения параметра оси сигнал на выходе *Busy* примет значение FALSE, на выходе *Done* - значение TRUE. На выходе *Value* отображется значение параметра.

- (1) Запуск чтения значения параметра оси существляется в момент времени (1) по переходу 0-1 на входе *Execute*, при этом на выходе *Busy* устанавливается значение TRUE.
- (2) В момент времени (2) чтение значения параметра оси успешно завершено. Выход *Busy* принимает значение FALSE, а выход *Done -* значение TRUE.
- (3) В момент времени (3) выполнение задания завершается, вход *Execute* принимает значение FALSE и это устанавливает все выходные параметры в FALSE или 0.

4.3.22. FB 826 - MC_WriteBoolParameter - Запись логического параметра оси

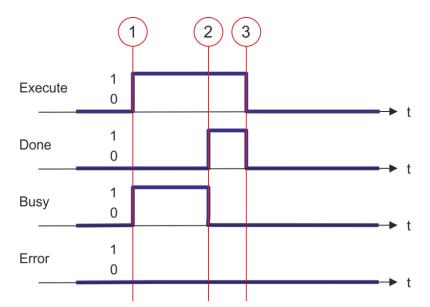
Описание

С помощью блока MC_WriteBoolParameter осуществляется запись значения логического парамеметра оси (тип BOOL) с заданным номером. Чраздел 4.3.35 'Параметры PLCopen' на стр. 186

Параметр

Параметр	Тип переменной	Тип данных	Описание
Axis	вход_выход	MC_AXIS_REF	Ссылка на ось.
Execute	вход	BOOL (Двоичное значение)	 Запись значения параметра оси Переход 0-1: Выполняется запись значения параметра.
ParameterNumber	ВХОД	INT (Целое)	Номер параметра для записи. <i>Ч⇒ Раздел 4.3.35 'Параметры PLCopen' на стр. 186</i>
Value	ВХОД	BOOL (Двоичное значение)	Значение записываемого параметра.
Done	выход	BOOL (Двоичное значение)	 Состояние TRUE: Задание успешно выполнено. Значение параметра записано.
Busy	выход	BOOL (Двоичное значение)	■ Состояние– TRUE: Задание выполняется.
Error	выход	BOOL (Двоичное значение)	 Состояние TRUE: Возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра <i>ErrorID</i>.
ErrorID	выход	WORD (16- разрядное значение)	Дополнительная информация об ошибке.

Состояние PLCopen


■ Запуск блока возможен в любом PLCopen-состоянии оси.

Запись значения параметра оси

Запись значения параметра оси осуществляется по переходу 0-1 сигнала на входе *Execute*. В процессе выполнения записи значения параметра оси на выходе *Busy* присутствует значение TRUE. После завершение записи значения параметра оси сигнал на выходе *Busy* примет значение FALSE, на выходе *Done* - значение TRUE.

- (1) Запуск записи значения параметра оси существляется в момент времени (1) по переходу 0-1 на входе *Execute*, при этом на выходе *Busy* устанавливается значение TRUE.
- (2) В момент времени (2) запись значения параметра оси успешно завершено. Выход *Busy* принимает значение FALSE, а выход *Done -* значение TRUE.
- (3) В момент времени (3) выполнение задания завершается, вход *Execute* принимает значение FALSE и это устанавливает все выходные параметры в FALSE или 0.

4.3.23. FB 827 - VMC_ReadDWordParameter - Чтение параметра оси с форматом двойного слова

Описание

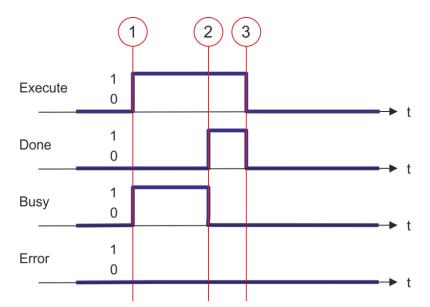
С помощью блока MC_ReadDWordParameter осуществляется чтение значения параметра оси с заданным номером, имеющего формат двойного слова.

Ч⇒ Раздел 4.3.35 'Параметры PLCopen' на стр. 186

Параметр

Параметр	Тип переменной	Тип данных	Описание
Axis	вход_выход	MC_AXIS_REF	Ссылка на ось.
Execute	вход	BOOL (Двоичное значение)	 Чтение параметров оси Переход 0-1: Выполняется чтение значения параметра.
ParameterNumber	ВХОД	INT (Целое)	Номер параметра для чтения. ∜ Раздел 4.3.35 'Параметры PLCopen' на стр. 186
Done	выход	BOOL (Двоичное значение)	 Состояние TRUE: Задание успешно выполнено. Значение параметра считано.
Busy	выход	BOOL (Двоичное значение)	■ Состояние– TRUE: Задание выполняется.
Error	выход	BOOL (Двоичное значение)	 Состояние TRUE: Возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра <i>ErrorID</i>.
ErrorID	выход	WORD (16- разрядное значение)	Дополнительная информация об ошибке.
Value	выход	DWORD	Значение считанного параметра.

Состояние PLCopen


■ Запуск блока возможен в любом PLCopen-состоянии оси.

Чтение значение параметра оси

Чтение значения параметра оси осуществляется по переходу 0-1 сигнала на входе *Execute*. В процессе выполнения чтения значения параметра оси на выходе *Busy* присутствует значение TRUE. После завершение чтения значения параметра оси сигнал на выходе *Busy* примет значение FALSE, на выходе *Done* - значение TRUE. На выходе *Value* отображется значение параметра.

- (1) Запуск чтения значения параметра оси существляется в момент времени (1) по переходу 0-1 на входе *Execute*, при этом на выходе *Busy* устанавливается значение TRUE.
- (2) В момент времени (2) чтение значения параметра оси успешно завершено. Выход *Busy* принимает значение FALSE, а выход *Done -* значение TRUE.
- (3) В момент времени (3) выполнение задания завершается, вход *Execute* принимает значение FALSE и это устанавливает все выходные параметры в FALSE или 0.

4.3.24. FB 828 - VMC_WriteDWordParameter - Запись параметра оси с форматом двойного слова

Описание

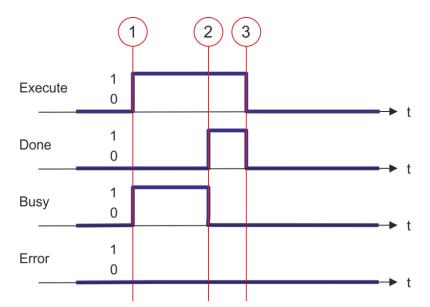
С помощью блока VMC_WriteDWordParameter осуществляется запись значения параметра оси с заданным номером, имеющего формат двойного слова.

Ч Раздел 4.3.35 'Параметры PLCopen' на стр. 186

Параметр

Параметр	Тип переменной	Тип данных	Описание
Axis	вход_выход	MC_AXIS_REF	Ссылка на ось.
Execute	вход	BOOL (Двоичное значение)	 Запись значения параметра оси Переход 0-1: Выполняется запись значения параметра.
ParameterNumber	ВХОД	INT (Целое)	Номер параметра для записи. <i>Ч⇒ Раздел 4.3.35 'Параметры PLCopen' на стр. 186</i>
Value	ВХОД	DWORD	Значение записываемого параметра.
Done	выход	BOOL (Двоичное значение)	 Состояние TRUE: Задание успешно выполнено. Значение параметра записано.
Busy	выход	BOOL (Двоичное значение)	■ Состояние– TRUE: Задание выполняется.
Error	выход	BOOL (Двоичное значение)	 Состояние TRUE: Возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра <i>ErrorID</i>.
ErrorID	выход	WORD (16- разрядное значение)	Дополнительная информация об ошибке.

Состояние PLCopen


■ Запуск блока возможен в любом PLCopen-состоянии оси.

Запись значения параметра оси

Запись значения параметра оси осуществляется по переходу 0-1 сигнала на входе *Execute*. В процессе выполнения записи значения параметра оси на выходе *Busy* присутствует значение TRUE. После завершение записи значения параметра оси сигнал на выходе *Busy* примет значение FALSE, на выходе *Done* - значение TRUE.

- (1) Запуск записи значения параметра оси существляется в момент времени (1) по переходу 0-1 на входе *Execute*, при этом на выходе *Busy* устанавливается значение TRUE.
- (2) В момент времени (2) запись значения параметра оси успешно завершено. Выход *Busy* принимает значение FALSE, а выход *Done -* значение TRUE.
- (3) В момент времени (3) выполнение задания завершается, вход *Execute* принимает значение FALSE и это устанавливает все выходные параметры в FALSE или 0.

4.3.25. FB 829 - VMC_ReadWordParameter - Чтение параметра оси с форматом слова

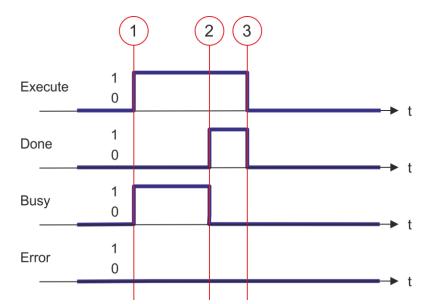
Описание

С помощью блока MC_ReadWordParameter осуществляется чтение значения параметра оси с заданным номером, имеющего формат слова. ∜ Раздел 4.3.35 'Параметры PLCopen' на стр. 186

Параметр

Параметр	Тип переменной	Тип данных	Описание
Axis	вход_выход	MC_AXIS_REF	Ссылка на ось.
Execute	вход	BOOL (Двоичное значение)	Чтение параметров осиПереход 0-1: Выполняется чтение значения параметра.
ParameterNumber	вход	INT (Целое)	Номер параметра для чтения. ∜ <i>Раздел 4.3.35 'Параметры PLCopen' на стр. 186</i>
Done	выход	BOOL (Двоичное значение)	 Состояние TRUE: Задание успешно выполнено. Значение параметра считано.
Busy	выход	BOOL (Двоичное значение)	■ Состояние– TRUE: Задание выполняется.
Error	выход	BOOL (Двоичное значение)	 Состояние TRUE: Возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра <i>ErrorID</i>.
ErrorID	выход	WORD (16- разрядное значение)	Дополнительная информация об ошибке.
Value	выход	WORD (16- разрядное значение)	Значение считанного параметра.

Состояние PLCopen


■ Запуск блока возможен в любом PLCopen-состоянии оси.

Чтение значение параметра оси

Чтение значения параметра оси осуществляется по переходу 0-1 сигнала на входе *Execute*. В процессе выполнения чтения значения параметра оси на выходе *Busy* присутствует значение TRUE. После завершение чтения значения параметра оси сигнал на выходе *Busy* примет значение FALSE, на выходе *Done* - значение TRUE. На выходе *Value* отображется значение параметра.

- (1) Запуск чтения значения параметра оси существляется в момент времени (1) по переходу 0-1 на входе *Execute*, при этом на выходе *Busy* устанавливается значение TRUE.
- (2) В момент времени (2) чтение значения параметра оси успешно завершено. Выход *Busy* принимает значение FALSE, а выход *Done -* значение TRUE.
- (3) В момент времени (3) выполнение задания завершается, вход *Execute* принимает значение FALSE и это устанавливает все выходные параметры в FALSE или 0.

4.3.26. FB 830 - VMC_WriteWordParameter - Запись параметра оси с форматом слова

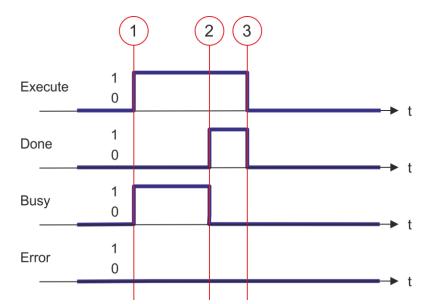
Описание

С помощью блока VMC_WriteWordParameter осуществляется запись значения параметра оси с заданным номером, имеющего формат слова. *Ч⇒ Раздел 4.3.35 'Параметры PLCopen' на стр. 186*

Параметр

Параметр	Тип переменной	Тип данных	Описание
Axis	вход_выход	MC_AXIS_REF	Ссылка на ось.
Execute	вход	BOOL (Двоичное значение)	 Запись значения параметра оси Переход 0-1: Выполняется запись значения параметра.
ParameterNumber	вход	INT (Целое)	Номер параметра для записи. <i>Ч⇒ Раздел 4.3.35 'Параметры PLCopen' на стр. 186</i>
Value	вход	WORD (16- разрядное значение)	Значение записываемого параметра.
Done	выход	BOOL (Двоичное значение)	 Состояние TRUE: Задание успешно выполнено. Значение параметра записано.
Busy	выход	BOOL (Двоичное значение)	■ Состояние– TRUE: Задание выполняется.
Error	выход	BOOL (Двоичное значение)	 Состояние TRUE: Возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра <i>ErrorID</i>.
ErrorID	выход	WORD (16-	Дополнительная информация об ошибке.
		разрядное значение)	⇔ Глава 5 'ErrorID - Дополнительная информация об ошибке' на стр. 190

Состояние PLCopen


■ Запуск блока возможен в любом PLCopen-состоянии оси.

Запись значения параметра оси

Запись значения параметра оси осуществляется по переходу 0-1 сигнала на входе *Execute*. В процессе выполнения записи значения параметра оси на выходе *Busy* присутствует значение TRUE. После завершение записи значения параметра оси сигнал на выходе *Busy* примет значение FALSE, на выходе *Done* - значение TRUE.

- (1) Запуск записи значения параметра оси существляется в момент времени (1) по переходу 0-1 на входе *Execute*, при этом на выходе *Busy* устанавливается значение TRUE.
- (2) В момент времени (2) запись значения параметра оси успешно завершено. Выход *Busy* принимает значение FALSE, а выход *Done -* значение TRUE.
- (3) В момент времени (3) выполнение задания завершается, вход *Execute* принимает значение FALSE и это устанавливает все выходные параметры в FALSE или 0.

4.3.27. FB 831 - MC_ReadByteParameter - Чтение значения байтового параметра оси

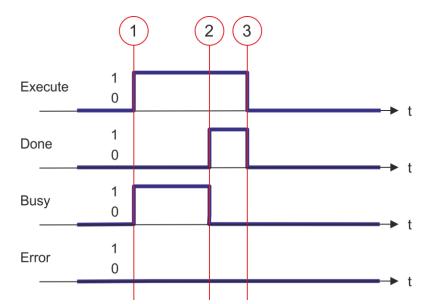
Описание

С помощью блока MC_ReadByteParameter осуществляется чтение значения байтового параметра оси (тип BYTE) с заданным номером. Ч⇒ Раздел 4.3.35 'Параметры PLCopen' на стр. 186

Параметр

Параметр	Тип переменной	Тип данных	Описание
Axis	вход_выход	MC_AXIS_REF	Ссылка на ось.
Execute	вход	BOOL (Двоичное значение)	 Чтение параметров оси Переход 0-1: Выполняется чтение значения параметра.
ParameterNumber	ВХОД	INT (Целое)	Номер параметра для чтения. ∜ <i>Раздел 4.3.35 'Параметры PLCopen' на стр. 186</i>
Done	выход	BOOL (Двоичное значение)	 Состояние TRUE: Задание успешно выполнено. Значение параметра считано.
Busy	выход	BOOL (Двоичное значение)	■ Состояние– TRUE: Задание выполняется.
Error	ВЫХОД	BOOL (Двоичное значение)	 ■ Состояние – TRUE: Возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра ErrorID.
ErrorID	ВЫХОД	WORD (16- разрядное значение)	Дополнительная информация об ошибке.
Value	выход	ВҮТЕ (Байт)	Значение считанного параметра.

Состояние PLCopen


■ Запуск блока возможен в любом PLCopen-состоянии оси.

Чтение значение параметра оси

Чтение значения параметра оси осуществляется по переходу 0-1 сигнала на входе *Execute*. В процессе выполнения чтения значения параметра оси на выходе *Busy* присутствует значение TRUE. После завершение чтения значения параметра оси сигнал на выходе *Busy* примет значение FALSE, на выходе *Done* - значение TRUE. На выходе *Value* отображется значение параметра.

- (1) Запуск чтения значения параметра оси существляется в момент времени (1) по переходу 0-1 на входе *Execute*, при этом на выходе *Busy* устанавливается значение TRUE.
- (2) В момент времени (2) чтение значения параметра оси успешно завершено. Выход *Busy* принимает значение FALSE, а выход *Done -* значение TRUE.
- (3) В момент времени (3) выполнение задания завершается, вход *Execute* принимает значение FALSE и это устанавливает все выходные параметры в FALSE или 0.

4.3.28. FB 832 - MC_WriteByteParameter - Запись значения байтового параметра оси

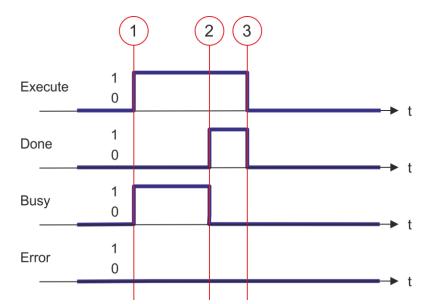
Описание

С помощью блока VMC_WriteByteParameter осуществляется запись значения байтового параметра оси (тип BYTE) с заданным номером. Ч⇒ Раздел 4.3.35 'Параметры PLCopen' на стр. 186

Параметр

Параметр	Тип переменной	Тип данных	Описание
Axis	вход_выход	MC_AXIS_REF	Ссылка на ось.
Execute	вход	BOOL (Двоичное значение)	 Запись значения параметра оси Переход 0-1: Выполняется запись значения параметра.
ParameterNumber	ВХОД	INT (Целое)	Номер параметра для записи. <i>Ч⇒ Раздел 4.3.35 'Параметры PLCopen' на стр. 186</i>
Value	ВХОД	ВҮТЕ (Байт)	Значение записываемого параметра.
Done	выход	BOOL (Двоичное значение)	 Состояние TRUE: Задание успешно выполнено. Значение параметра записано.
Busy	выход	BOOL (Двоичное значение)	■ Состояние– TRUE: Задание выполняется.
Error	ВЫХОД	BOOL (Двоичное значение)	 Состояние TRUE: Возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра <i>ErrorID</i>.
ErrorID	выход	WORD (16- разрядное значение)	Дополнительная информация об ошибке.

Состояние PLCopen


■ Запуск блока возможен в любом PLCopen-состоянии оси.

Запись значения параметра оси

Запись значения параметра оси осуществляется по переходу 0-1 сигнала на входе *Execute*. В процессе выполнения записи значения параметра оси на выходе *Busy* присутствует значение TRUE. После завершение записи значения параметра оси сигнал на выходе *Busy* примет значение FALSE, на выходе *Done* - значение TRUE.

- (1) Запуск записи значения параметра оси существляется в момент времени (1) по переходу 0-1 на входе *Execute*, при этом на выходе *Busy* устанавливается значение TRUE.
- (2) В момент времени (2) запись значения параметра оси успешно завершено. Выход *Busy* принимает значение FALSE, а выход *Done -* значение TRUE.
- (3) В момент времени (3) выполнение задания завершается, вход *Execute* принимает значение FALSE и это устанавливает все выходные параметры в FALSE или 0.

4.3.29. FB 833 - VMC_ReadDriveParameter - Чтение параметра привода

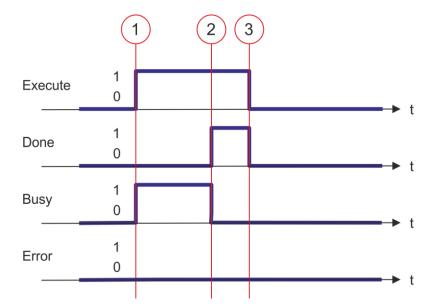
Описание

Блок VMC_ReadDriveParameter используется для чтения значения параметра из подключенного привода.

Параметр

Параметр	Тип переменной	Тип данных	Описание
Axis	вход_выход	MC_AXIS_REF	Ссылка на ось.
Execute	вход	BOOL (Двоичное значение)	Чтение параметра приводаПереход 0-1: Выполняется считывание параметра привода.
Index	вход	WORD (16- разрядное значение)	Индекс параметра привода.
Subindex	ВХОД	ВҮТЕ (Байт)	Субиндекс параметра привода.
Length	ВХОД	ВҮТЕ (Байт)	Формат данных
			1: BYTE (Байт)2: WORD (16-разрядное значение)4: DWORD
Done	выход	BOOL (Двоичное значение)	 Состояние TRUE: Задание успешно выполнено. Значение параметра считано.
Busy	выход	BOOL (Двоичное значение)	■ Состояние– TRUE: Задание выполняется.
Error	выход	BOOL (Двоичное значение)	 Состояние TRUE: Возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра <i>ErrorID</i>.
ErrorID	ВЫХОД	WORD (16-	Дополнительная информация об ошибке.
		разрядное значение)	⇔ Глава 5 'ErrorID - Дополнительная информация об ошибке' на стр. 190
Value	ВЫХОД	DWORD	Значение считанного параметра.

Состояние PLCopen


■ Запуск блока возможен в любом PLCopen-состоянии оси.

Чтение параметров привода

Чтение значения параметров привода осуществляется по переходу 0-1 сигнала на входе *Execute*. В процессе выполнения чтения значения параметра на выходе *Busy* присутствует значение TRUE. После завершение чтения значения параметра сигнал на выходе *Busy* примет значение FALSE, на выходе *Done* - значение TRUE. На выходе *Value* отображется значение параметра.

- (1) Запуск чтения значения параметра существляется в момент времени (1) по переходу 0-1 на входе *Execute*, при этом на выходе *Busy* устанавливается значение TRUE.
- (2) В момент времени (2) чтение значения параметра успешно завершено. Выход *Busy* принимает значение FALSE, а выход *Done -* значение TRUE.
- (3) В момент времени (3) выполнение задания завершается, вход *Execute* принимает значение FALSE и это устанавливает все выходные параметры в FALSE или 0.

4.3.30. FB 834 - VMC_WriteDriveParameter - Запись параметра привода

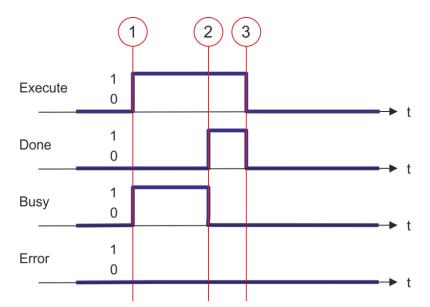
Описание

С помощью MC_WriteDriveParameter осуществляется запись значения параметра в подключенный привод.

Параметр

Параметр	Тип переменной	Тип данных	Описание
Axis	вход_выход	MC_AXIS_REF	Ссылка на ось.
Execute	вход	BOOL (Двоичное значение)	 Запись параметра привода Переход 0-1: Выполняется запись значения параметра привода.
Index	вход	WORD (16- разрядное значение)	Индекс параметра привода.
Subindex	вход	ВҮТЕ (Байт)	Субиндекс параметра привода.
Length	вход	ВҮТЕ (Байт)	Формат данных
			1: BYTE (Байт)2: WORD (16-разрядное значение)4: DWORD
Value	вход	DWORD	Значение записываемого параметра.
Done	выход	BOOL (Двоичное значение)	 Состояние TRUE: Задание успешно выполнено. Значение параметра считано.
Busy	выход	BOOL (Двоичное значение)	■ Состояние– TRUE: Задание выполняется.
Error	выход	BOOL (Двоичное значение)	 ■ Состояние – TRUE: Возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра ErrorID.
ErrorID	выход	WORD (16-	Дополнительная информация об ошибке.
		разрядное значение)	∜ Глава 5 'ErrorID - Дополнительная информация об ошибке' на стр. 190

Состояние PLCopen


■ Запуск блока возможен в любом PLCopen-состоянии оси.

Запись параметра привода

Запись значения параметра осуществляется по переходу 0-1 сигнала на входе *Execute*. В процессе выполнения записи значения параметра оси на выходе *Busy* присутствует значение TRUE. После завершение записи значения параметра оси сигнал на выходе *Busy* примет значение FALSE, на выходе *Done* - значение TRUE.

- (1) Запуск записи значения параметра осуществляется в момент времени (1) по переходу 0-1 на входе *Execute*, при этом на выходе *Busy* устанавливается значение TRUE.
- (2) В момент времени (2) запись значения параметра успешно завершено. Выход *Busy* принимает значение FALSE, а выход *Done -* значение TRUE.
- (3) В момент времени (3) выполнение задания завершается, вход *Execute* принимает значение FALSE и это устанавливает все выходные параметры в FALSE или 0.

4.3.31. FB 835 - VMC_HomeInit_LimitSwitch - Инициализация перемещения до концевого выключателя

Описание

Это блок инициализирует прогон до концевого выключателя.

Параметры

Параметр	Тип переменной	Тип данных	Описание
Execute	вход	BOOL (Двоичное значение)	 Инициализация прогона Переход 0-1: Принимаются значения входных параметров и начинается процесс начальной установки.
Direction	вход	BOOL (Двоичное значение)	 Направление движения TRUE: к концевому выключателю положительного направления. FALSE: к концевому выключателю отрицательного направления.
VelocitySearchSwitch	вход	REAL (Вещественное число)	Скорость поиска выключателя в [пользовательские единицы/с].
VelocitySearchZero	вход	REAL (Вещественное число)	Скорость поиска начального положения в [пользовательские единицы/с].
Ускорение	вход	REAL (Вещественное число)	Ускорение в [пользовательские единицы/c ²].
Done	ВЫХОД	BOOL (Двоичное значение)	■ Состояние– TRUE: Инициализация завершена без ошибок.
Busy	ВЫХОД	BOOL (Двоичное значение)	■ Состояние– TRUE: Инициализация выполняется.
Error	выход	BOOL (Двоичное значение)	 Состояние TRUE: Возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра <i>ErrorID</i>.
ErrorID	выход	WORD (16- разрядное значение)	Дополнительная информация об ошибке.
AXIS	вход_выход	MC_AXIS_REF	Ссылка на ось.

Инициализация прогона до конечного выключателя

Процедура инициализации прогона Принимаются значения входных параметров и по переходу 0-1 сигнала на входе *Execute* начинается процесс прогона. В процессе выполнения инициализации на выходе *Busy* значение сигнала равно TRUE. В случае успешного завершения инициализации сигнал на выходе *Done* принимает значение TRUE. В случае возникновения ошибки в процессе инициализации сигнал на выходе *Error* принимает значение TRUE, а на выходе *ErrorID* отобразится номер ошибки.

- 1. Убедитесь в наличии связи с осью.
- **2.** Убедитесь, что PLCopen-состояние оси является допустимым.
- 3.
 Проверьте значения входных переменных:
 - Bxoд VelocitySearchSwitch [пользовательские единицы] > 0.0
 - VelocitySearchSwitch [пользовательские единицы] > 0
 - VelocitySearchSwitch [пользовательские единицы] ≤VelocityMax
 - Bxoд VelocitySearchZero [пользовательские единицы] > 0.0
 - VelocitySearchZero [внутренние единицы] > 0
 - VelocitySearchZero [внутренние единицы] ≤VelocityMax
 - Bxoд Acceleration [пользовательские единицы] > 0.0
 - Acceleration [внутренние единицы] > 0
 - Acceleration [внутренние единицы] ≤AccelerationMax
- 4. Передайте параметры привода:
 - "Homing Method" определяется значением переменной на входе Direction (см. таблицу ниже).
 - "Homing Speed during search for switch" [приращений/с]
 - "Homing Speed during search for switch" [приращений/с]
 - "Homing Acceleration" [приращений/с²]

Homing Method	Direction
1	FALSE
2	TRUE

4.3.32. FB 836 - VMC_HomeInit_HomeSwitch - Инициализация прогона до выключателя исходного положения

Описание

Это блок инициализирует прогон до выключателя исходного положения.

Параметры

Параметр	Тип переменной	Тип данных	Описание
Execute	вход	BOOL (Двоичное значение)	 Инициализация прогона Переход 0-1: Принимаются значения входных параметров и начинается процесс начальной установки.
InitialDirection	вход	BOOL (Двоичное значение)	 Направление движения TRUE: к концевому выключателю положительного направления. FALSE: к концевому выключателю отрицательного направления.
WithIndexPulse	вход	BOOL (Двоичное значение)	Перемещение в начальное положениеTRUE: с нулевым импульсом.FALSE: без нулевого импульса.
OnRisingEdge	вход	BOOL (Двоичное значение)	 Сигнал срабатывания выключателя исходного положения TRUE: Переход 0-1. FALSE: Переход 1-0.
SameDirIndexPulse	вход	BOOL (Двоичное значение)	 Поиск нулевого импульса TRUE: Поиск нулевого импульса после достижения выключателя исходного положения без изменения направления движения. FALSE: Поиск нулевого импульса после достижения выключателя исходного положения с изменением направления движения на противоположное.
VelocitySearchSwitch	вход	REAL (Вещественное число)	Скорость поиска выключателя в [пользовательские единицы/с].
VelocitySearchZero	вход	REAL (Вещественное число)	Скорость поиска начального положения в [пользовательские единицы/с].
Ускорение	вход	REAL (Вещественное число)	Ускорение в [пользовательские единицы/c ²].
Done	выход	BOOL (Двоичное значение)	■ Состояние— TRUE: Инициализация завершена без ошибок.
Busy	выход	BOOL (Двоичное значение)	■ Состояние— TRUE: Инициализация выполняется.
Error	выход	BOOL (Двоичное значение)	 Состояние TRUE: Возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра <i>ErrorID</i>.
ErrorID	выход	WORD (16- разрядное	Дополнительная информация об ошибке
		значение)	информация об ошибке' на стр. 190
AXIS	вход_выход	MC_AXIS_REF	Ссылка на ось.

Инициализация прогона до выключателя исходного положения

Принимаются значения входных параметров и по переходу 0-1 сигнала на входе *Execute* начинается процесс прогона. В процессе выполнения инициализации на выходе *Busy* значение сигнала равно TRUE. В случае успешного завершения инициализации сигнал на выходе *Done* принимает значение TRUE. В случае возникновения ошибки в процессе инициализации сигнал на выходе *Error* принимает значение TRUE, а на выходе *ErrorID* отобразится номер ошибки.

Процедура инициализации прогона

- 1. Убедитесь в наличии связи с осью.
- 2. Убедитесь, что PLCopen-состояние оси является допустимым.
- 3.
 Проверьте значения входных переменных:
 - Bxoд VelocitySearchSwitch [пользовательские единицы] > 0.0
 - VelocitySearchSwitch [пользовательские единицы] > 0
 - VelocitySearchSwitch [пользовательские единицы] ≤VelocityMax
 - Bxoд VelocitySearchZero [пользовательские единицы] > 0.0
 - VelocitySearchZero [внутренние единицы] > 0
 - VelocitySearchZero [внутренние единицы] ≤VelocityMax
 - Вход Acceleration [пользовательские единицы] > 0.0
 - Acceleration [внутренние единицы] > 0
 - Acceleration [внутренние единицы] ≤AccelerationMax
- 4. Передайте параметры привода:
 - "Homing Method" определяется значением переменной на входе Direction (см. таблицу ниже).
 - "Homing Speed during search for switch" [приращений/с]
 - "Homing Speed during search for switch" [приращений/с]
 - "Homing Acceleration" [приращений/с²]

Homing Method	InitialDirection	WithIndexPulse	OnRisingEdge	SameDirIndexPulse
7	положительное	true	true	false
8	положительное	true	true	true
9	положительное	true	false	false
10	положительное	true	false	true
11	отрицательное	true	true	false
12	отрицательное	true	true	true
13	отрицательное	true	false	false
14	отрицательное	true	false	true
24	положительное	false	true	false
24	положительное	false	true	true
24	положительное	false	false	false
24	положительное	false	false	true
28	отрицательное	false	true	false
28	отрицательное	false	true	true
28	отрицательное	false	false	false
28	отрицательное	false	false	true

4.3.33. FB 837 - VMC_HomeInit_ZeroPulse - Инициализация прогона до нулевого импульса

Описание

Это блок инициализирует прогон до нулевого импульса.

Параметры

Параметр	Тип переменной	Тип данных	Описание
Execute	вход	BOOL (Двоичное значение)	 Инициализация прогона Переход 0-1: Принимаются значения входных параметров и начинается процесс начальной установки.
Direction	вход	BOOL (Двоичное значение)	Направление движенияTRUE: Положительное направление.FALSE: Отрицательное направление.
VelocitySearchZero	вход	REAL (Вещественное число)	Скорость поиска начального положения в [пользовательские единицы/с].
Ускорение	вход	REAL (Вещественное число)	Ускорение в [пользовательские единицы/c²].
Done	ВЫХОД	BOOL (Двоичное значение)	■ Состояние– TRUE: Инициализация завершена без ошибок.
Busy	выход	BOOL (Двоичное значение)	■ Состояние— TRUE: Инициализация выполняется.
Error	выход	BOOL (Двоичное значение)	 ■ Состояние – TRUE: Возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра ErrorID.
ErrorID	· · · · · · · · · · · · · · · · · · ·		Дополнительная информация об ошибке.
			∜ Глава 5 'ErrorID - Дополнительная информация об ошибке' на стр. 190
AXIS	вход_выход	MC_AXIS_REF	Ссылка на ось.

Инициализация прогона до нулевого импульса

Процедура инициализации прогона Принимаются значения входных параметров и по переходу 0-1 сигнала на входе *Execute* начинается процесс прогона. В процессе выполнения инициализации на выходе *Busy* значение сигнала равно TRUE. В случае успешного завершения инициализации сигнал на выходе *Done* принимает значение TRUE. В случае возникновения ошибки в процессе инициализации сигнал на выходе *Error* принимает значение TRUE, а на выходе *ErrorID* отобразится номер ошибки.

- 1. Убедитесь в наличии связи с осью.
- **2.** Убедитесь, что PLCopen-состояние оси является допустимым.
- 3. Проверьте значения входных

переменных:

- Bxoд VelocitySearchZero [пользовательские единицы] > 0.0
- VelocitySearchZero [внутренние единицы] > 0
- VelocitySearchZero [внутренние единицы] ≤VelocityMax
- Вход Acceleration [пользовательские единицы] > 0.0
- Acceleration [внутренние единицы] > 0
- Acceleration [внутренние единицы] ≤AccelerationMax

4. Передайте параметры привода:

- "Homing Method" определяется значением переменной на входе *Direction* (см. таблицу ниже).
- "Homing Speed during search for switch" [приращений/с]
- "Homing Speed during search for switch" [приращений/с]
- "Homing Acceleration" [приращений/с₂]

Homing Method	Direction
33	false
34	true

4.3.34. FB 838 - VMC_Homelnit_SetPosition - Инициализация прогона в текущую позицию

Описание

Этот блок инициализирует прогон в текущую позицию.

Параметры

Параметр	Тип переменной	Тип данных	Описание
Execute	вход	BOOL (Двоичное значение)	 Инициализация прогона Переход 0-1: Принимаются значения входных параметров и начинается процесс начальной установки.
Done	выход	BOOL (Двоичное значение)	■ Состояние— TRUE: Инициализация завершена без ошибок.
Busy	выход	BOOL (Двоичное значение)	■ Состояние— TRUE: Инициализация выполняется.
Error	выход	BOOL (Двоичное значение)	 ■ Состояние – TRUE: Возникла ошибка. Дополнительная информация об ошибке может быть взята из параметра ErrorID.
ErrorID	выход	WORD (16-разрядное	Дополнительная информация об ошибке.
	значение)		∜ Глава 5 'ErrorID - Дополнительная информация об ошибке' на стр. 190
AXIS	вход_выход	MC_AXIS_REF	Ссылка на ось.

Инициализация прогона до текущей позиции

Принимаются значения входных параметров и по переходу 0-1 сигнала на входе *Execute* начинается процесс прогона. В процессе выполнения инициализации на выходе *Busy* значение сигнала равно TRUE. В случае успешного завершения инициализации сигнал на выходе *Done* принимает значение TRUE. В случае возникновения ошибки в процессе инициализации сигнал на выходе *Error* принимает значение TRUE, а на выходе *ErrorID* отобразится номер ошибки.

Процедура инициализации прогона

- 1. Убедитесь в наличии связи с осью.
- **2.** Убедитесь, что PLCopen-состояние оси является допустимым.
- 3.
 Передайте параметры привода:
 - "Homing Method" = 35

4.3.35. Параметры PLCopen

Nº	Название	Тип данных	R/W	Примечание
1	CommandedPosition	REAL	R (чтение)	Заданная позиция Доступ к: #Axis.Status.Positioning.SetValues.CommandedPosition
2	SWLimitPos	REAL		Программный концевой выключатель положительного направления Доступ к: "Axis".AxisConfiguration.PositionLimits.MaxPosition

Nº	Название	Тип данных	R/W	Примечание
3	SWLimitNeg	REAL	R/W (чтение /запись)	Программный концевой выключатель отрицательного направления Доступ к: "Axis".AxisConfiguration.PositionLimits.MinPosition
4	EnableLimitPos	ВООL (Двоичное значение)	R/W (чтение /запись)	Активирование программного концевого выключателя положительного направления Доступ к: "Axis".AxisConfiguration.PositionLimits.EnableMaxPos
5	EnableLimitNeg	ВООL (Двоичное значение)	R/W (чтение /запись)	Активирование программного концевого выключателя отрицательного направления Доступ к: "Axis".AxisConfiguration.PositionLimits.EnableMinPos
6	EnablePosLagMonitoring	ВООL (Двоичное значение)	R/W (чтение /запись)	Активировать контроль отклонения позиции Функция не поддерживается
7	MaxPositionLag	REAL	R/W (чтение /запись)	Максимальное отклонение позиции Функция не поддерживается
8	MaxVelocitySystem	REAL	R (чтение)	Максимально допустимая скорость оси в системе управления движением Параметр в настоящее время не поддерживается
9	MaxVelocityAppl	REAL	R/W (чтение /запись)	Максимально допустимая скорость оси в приложении Доступ к: #Axis.AxisConfiguration.DynamicLimits.MaxVelocityApp
10	ActualVelocity	REAL	R (чтение)	Текущая скорость Доступ к: #Axis.Status.Positioning.ActValues.Velocity
11	CommandedVelocity	REAL	R (чтение)	Заданная скорость Доступ к: #Axis.Status.Positioning.SetValues.Velocity
12	MaxAccelerationSystem	REAL	R (чтение)	Максимально допустимое ускорение оси в системе управления движением Параметр в настоящее время не поддерживается
13	MaxAccelerationAppl	REAL	R/W (чтение /запись)	Максимально допустимое ускорение оси в приложении Доступ к: #Axis.AxisConfiguration.DynamicLimits.MaxAccelerationApp
14	MaxDecelerationSystem	REAL	R (чтение)	Максимально допустимое замедление оси в системе управления движением Параметр в настоящее время не поддерживается
15	MaxDecelerationAppl	REAL	R/W (чтение /запись)	Максимально допустимое замедление оси в приложении Доступ к: #Axis.AxisConfiguration.DynamicLimits.MaxDecelerationApp

Nº	Название	Тип данных	R/W	Примечание
16	MaxJerkSystem	REAL	R (чтение)	Максимально допустимый толчок оси в системе управления движением Параметр в настоящее время не поддерживается
17	MaxJerkAppl	REAL	R/W (чтение /запись)	Максимально допустимый толчок оси в приложении Параметр в настоящее время не поддерживается.

4.3.36. Специфические параметры VIPA

Позиционирование оси: YASKAWA Sigma-5 / Sigma-7 с управлением через EtherCAT

Nº	Название	Тип данных	Индекс	Субиндекс	Доступ
900	HomingDone	BOOL	-	-	R/W ^{1, 2}
901	PositiveTorqueLimit	BOOL	-	-	R/W ^{1, 2}
902	NegativeTorqueLimit	BOOL	-	-	R/W ^{1, 2}
1000	ErrorCode	WORD	603F	0	R ³
1001	HomeOffset	DWORD	607C	0	R/W ^{5, 6}
1002	HomingMethod	WORD	6098	0	R/W ^{3, 4}
1003	SpeedSearchSwitch	DWORD	6099	1	R/W ^{5, 6}
1004	SpeedSearchZero	DWORD	6099	2	R/W ^{5, 6}
1005	HomingAcceleration	DWORD	609A	0	R/W ^{5, 6}
1006	PositiveTorqueLimit	WORD	60E0	0	R/W ^{3, 4}
1007	NegativeTorqueLimit	WORD	0x60E1	0	R/W ^{3, 4}
1008	MotorRatedTorque	DWORD	0x6076	0	R/W ^{5, 6}
1009	FollowingErrorWindow	DWORD	0x6065	0	R/W ^{5, 6}
1010	FollowingErrorTimeOut	WORD	0x6066	0	R/W ^{3, 4}
1011	PositionWindow	DWORD	0x6067	0	R/W ^{5, 6}
1012	PositionTime	WORD	0x6068	0	R/W ^{3, 4}
1013	Min Position Limit	DWORD	0x607D	1	R/W ^{5, 6}
1014	Max Position Limit	DWORD	0x607D	2	R/W ^{5, 6}
1015	Digital outputs/ physical outputs	DWORD	0x60FE	1	R/W ^{5, 6}
1016	Digital outputs/ mask	DWORD	0x60FE	2	R/W ^{5, 6}

1) Доступ через ∜Раз∂ел 4.3.21 "FB 825 - MC_ReadBoolParameter - Чтение логического параметра оси" на стр. 160

2) Доступ через [™]⊳Раздел 4.3.22 "FB 826 - MC_WriteBoolParameter - Запись логического параметра оси" на стр. 162

3) Доступ через ∜Раз∂ел 4.3.25 "FB 829 - VMC_ReadWordParameter - Чтение параметра оси с форматом слова" на стр. 168

4) Доступ через 🦫 Раздел 4.3.26 "FB 830 - VMC_WriteWordParameter - Запись параметра оси с форматом слова" на стр. 170

5) Доступ через [™]Раздел 4.3.23 "FB 827 - VMC_ReadDWordParameter - Чтение параметра оси с форматом двойного слова" на стр. 164

6) Доступ через 🦫 Раздел 4.3.24 "FB 828 - VMC_WriteDWordParameter - Запись параметра оси с форматом двойного слова" на стр. 166

Nº	Название	Тип данных	Индекс	Субиндекс	Доступ
1017	Quick stop deceleration	DWORD	0x6085	0	R/W ^{5, 6}
1018	Forward external torque limit	WORD	0x2404	0	R/W ^{3, 4}
1019	Reverse external torque limit	WORD	0x2405	0	R/W ^{3, 4}

- 1) Доступ через Ч⊳ Раз∂ел 4.3.21 "FB 825 MC_ReadBoolParameter Чтение логического параметра оси" на стр. 166
- 2) Доступ через 🧠 Раздел 4.3.22 "FB 826 MC_WriteBoolParameter Запись логического параметра оси" на стр. 162
- 3) Доступ через 🧠 Раздел 4.3.25 "FB 829 VMC_ReadWordParameter Чтение параметра оси с форматом слова" на стр. 168
- 4) Доступ через 🤝 Раздел 4.3.26 "FB 830 VMC_WriteWordParameter Запись параметра оси с форматом слова" на стр. 170
- 5) Доступ через 🦴 Раздел 4.3.23 "FB 827 VMC_ReadDWordParameter Чтение параметра оси с форматом двойного слова" на стр. 164
- 6) Доступ через 🦴 Раздел 4.3.24 "FB 828 VMC_WriteDWordParameter Запись параметра оси с форматом двойного слова" на стр. 166

5. ErrorID - Дополнительная информация об ошибке

ErrorID	Описание	Примечание
0x0000	Ошибка отсутствует	
0x8y24	Ошибка в параметрах блока у, где у: 1: Ошибка в PROTOKOLL 2: Ошибка в PARAMETER 3: Ошибка в BAUDRATE 4: Ошибка в CHARLENGTH 5: Ошибка в PARITY 6: Ошибка в STOPBITS 7: Ошибка в FLOWCONTROL (параметр отсутствует)	VMC_ConfigMaster_RTU
0x8001	Недопустимое значение для параметра Position.	
0x8002	Недопустимое значение для параметра Distance.	
0x8003	Недопустимое значение для параметра Velocity.	
0x8004	Недопустимое значение для параметра Acceleration.	
0x8005	Недопустимое значение для параметра Deceleration.	
0x8007	Недопустимое значение для параметра ContinuousUpdate.	
0x8008	Недопустимое значение для параметра BufferMode.	
0x8009	Недопустимое значение для параметра EnablePositive.	
0x800A	Недопустимое значение для параметра EnableNegative.	
0x800B	Недопустимое значение для параметра MasterOffset.	
0x800C	Недопустимое значение для параметра SlaveOffset.	
0x800D	Недопустимое значение для параметра MasterScaling.	
0x800E	Недопустимое значение для параметра SlaveScaling.	
0x800F	Недопустимое значение для параметра StartMode.	
0x8010	Недопустимое значение для параметра ActivationMode.	
0x8011	Недопустимое значение для параметра Source.	
0x8012	Недопустимое значение для параметра Direction.	
0x8014	Недопустимый параметр физической оси.	Mc_ReadParameter
0x8015	Недопустимый индекс или субиндекс.	Mc_ReadParameter
0x8016	Недопустимая длина параметра.	Mc_ReadParameter
0x8017	Недопустимый LADDR.	Mc_ReadParameter
0x8018	Недопустимое значение для параметра RatioDenominator.	MC_GearIn
0x8019	Недопустимое значение для параметра RatioNumerator.	MC_GearIn
0x801A	Номер папаметра неизвестен.	Mc_ReadParameter, MC_WriteParameter
0x801B	Параметр не может быть записан, параметр защищен от записи.	MC_WriteParameter
0x801C	Связь параметров с неизвестным режимом.	MC_Home, MC_WriteParameter
0x801D	Связь параметров с общей ошибкой. Причина ошибки подробно не описана.	

ErrorID	Описание	Примечание
0x801E	Значение параметра SDO вне диапазона.	MC_Home, MC_WriteParameter
0x801F	Тип в ANY не BYTE.	Параметр для чтения/записи
0x8020	Разная конфигурация пользовательских блоков для кулачка (CAM) и главной оси.	
0x8021	Разная конфигурация пользовательских блоков для кулачка (CAM) и ведомой оси.	
0x8022	По логическому адресу, указанному через LADDR, нет устройства PROFIBUS / PROFINET, из которого можно считывать согласованные данные.	Параметр для чтения/записи
0x8023	При обращении к устройству ввода-вывода была обнаружена ошибка доступа.	Параметр для чтения/записи
0x8024	Ошибка ведомого во внешнем ведомом устройстве PROFIBUS DP.	Параметр для чтения/записи
0x8025	Системная ошибка во внешнем ведомом устройстве PROFIBUS DP.	Параметр для чтения/записи
0x8026	Системная ошибка во внешнем ведомом устройстве PROFIBUS DP.	Параметр для чтения/записи
0x8027	Данные еще не были прочитаны модулем.	Параметр для чтения/записи
0x8028	Системная ошибка во внешнем ведомом устройстве PROFIBUS DP.	Параметр для чтения/записи
0x8029	Попытка записи в объект, который доступен только по чтению.	Параметр для чтения/записи
0x802A	Попытка чтения из объекта, который доступен только по записи.	Параметр для чтения/записи
0x802B	Неподдерживаемый доступ к объекту.	Параметр для чтения/записи
0x802C	Неверный тип данных.	Параметр для чтения/записи
0x802D	Ошибка в профиле устройства.	Параметр для чтения/записи
0x802E	Тип команды ошибки.	Параметр для чтения/записи
0x802F	Нет доступных системных ресурсов.	Параметр для чтения/записи
0x8030	Недопустимое значение для параметра <i>Hardware</i> (1 = SLIO CP, 2 = CPU VIPA).	Modbus; Init
0x8031	Недопустимое значение для параметра <i>Unitld</i> .	Modbus; Init
0x8032	Недопустимое значение для параметра <i>UserUnitsVelocity</i> $(0 = \Gamma \mu, 1 = \%, 2 = o6/muh (RPM)).$	Modbus; Init
0x8033	Недопустимое значение для параметра <i>UserUnitsAcceleration</i> $(0 = 0.00 \text{ c}, 1 = 0.0 \text{ c}).$	Modbus; Init
0x8034	Недопустимое значение для параметра <i>MaxVelocityApp</i> (должно быть > 0).	Modbus; Init
0x8035	Ошибка доступа к <i>MonitorData</i> при чтении.	Modbus; Init
0x8036	Ошибка доступа к NumberOfPoles при чтении.	Modbus; Init
0x8037	Ошибка доступа к UserUnitsVelocity при записи.	Modbus; Init
0x8038	Ошибка доступа к MinOutputFrequency при чтении.	Modbus; Init
0x8039	Ошибка доступа к MaxOutputFrequency при чтении.	Modbus; Init
0x803A	Ошибка доступа к StoppingMethodSelection при записи.	Modbus; Init
0x803B	Ошибка доступа к UserUnitsAcceleration при записи.	Modbus; Init
0x8041	Недопустимое значение для параметра AccelerationTime.	Modbus V1000
0x8042	Недопустимое значение для параметра DecelerationTime.	Modbus V1000
0x8043	Недопустимое значение для параметра JogAccelerationTime.	Modbus V1000
0x8044	Недопустимое значение для параметра JogDecelerationTime.	Modbus V1000

ErrorID	Описание	Примечание
0x8045	Недопустимое значение для параметра <i>JogVelocity</i> (≤ <i>MaxVelocityApp</i>).	Modbus V1000
0x80C8	Коммуникационная ошибка Modbus: отсутствие ответа от сервера в течение определенного периода времени (таймаут может быть параметризован через интерфейс).	Modbus V1000
0x809y	Ошибка в значении параметра блока у, где у:	VMC_ConfigMaster_RTU
	 1: Ошибка в PROTOKOLL 3: Ошибка в BAUDRATE 4: Ошибка в CHARLENGTH 5: Ошибка в PARITY 6: Ошибка в STOPBITS 	
0x8092	Ошибка доступа к параметру DB (слишком короткий DB).	VMC_ConfigMaster_RTU
0x809A	Интерфейс недоступен или работает в режиме PROFIBUS.	VMC_ConfigMaster_RTU
0x8101	Циклический обмен данными с осью невозможен.	
0x8102	PLCopen-состояние не определено.	
0x8103	Команда не поддерживается осью.	
0x8104	Ось не готова к включению, возможные причины: Связь с осью не готова. Привод не находится в состоянии 'switched on' → сброс ошибки привода возможен с помощью МС_Reset. Связь была прервана, например, из-за выключения ЦПУ. Сброс ошибки с помощью МС_Reset.	PreOperational также должен быть установлен в Operational.
0x8105	Команда не поддерживается виртуальной осью.	
0x8106	PLCopen-состояние не определено.	
0x8107	Команда не разрешена, когда привод отключен.	VMC_AxisControl_PT, Mod- busV1000
0x8188	Коммуникационная ошибка Modbus: Внутренняя ошибка MB_FUNCTION недействительна.	Modbus V1000
0x8189	Коммуникационная ошибка Modbus: Внутренняя ошибка MB_DATA_ADDR недействительна.	Modbus V1000
0x818A	Коммуникационная ошибка Modbus: Внутренняя ошибка MB_DATA_LEN недействительна.	Modbus V1000
0x818B	Коммуникационная ошибка Modbus: Внутренняя ошибка MB_DATA_PTR недействительна.	Modbus V1000
0x8201	Команда не может быть выполнена в настоящее время из-за отсутствия внутренних ресурсов (без свободного слота в CommandBuffer).	
0x8202	Ошибка записи смещения для Homing (отсутствие свободного слота в CommandBuffer).	DriveManager → Homing (активная команда)
0x8210	Коммуникационная ошибка Modbus: Аппаратное обеспечение несовместимо с библиотекой блоков Modbus RTU/TCP.	Modbus V1000
0x828y	Ошибка в параметре у DB параметров, где у: 1: Ошибка в параметре №1 2: Ошибка в параметре №2	VMC_ConfigMaster_RTU
0x8301	Циклический обмен данными с ведущей осью невозможен.	

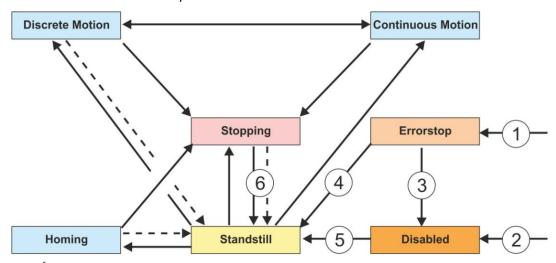
ErrorID	Описание	Примечание
0x8302	PLCopen-состояние не определено.	
0x8303	Команда не поддерживается ведущей осью.	
0x8304	Ведущая ось не находится в состоянии Pre-Operational.	
0x8305	Изменен номер блока данных ведущей оси.	
0x8306	Ошибка связи с ведущей осью. Быстрый останов ведомой оси.	
0x8311	Циклический обмен данными с ведомой осью невозможен.	
0x8312	Недопустимая команда для текущего PLCopen- состояния ведомой оси.	
0x8313	Команда не поддерживается ведомой осью.	
0x8314	Ведущая ось не находится в состоянии Pre-Operational.	
0x8315	Изменен номер блока данных ведущей оси.	
0x8321	Сопряжение с помощью StartMode = relative и ActivationMode = nextcycle не допускается.	
0x8322	Сопряжение с помощью StartMode = absolute и ActivationMode = nextcycle не допускается.	
0x8323	Переключение с разными <i>StartMode</i> (должен использоваться <i>StartMode</i> муфты)	
0x8331	MC_CamIn неактивен.	
0x8332	MC_GearIn неактивен.	
0x8340	Недопустимое значение в TriggerInput.Probe.	MC_TouchProbe и MC_AbortTrigger
0x8341	Недопустимое значение в TriggerInput.Source.	MC_TouchProbe и MC_AbortTrigger
0x8342	Недопустимое значение в TriggerInput.TriggerMode.	MC_TouchProbe и MC_AbortTrigger
0x8350	Недопустимое значение в VelocitySearchSwitch.	Homing, инициализация
0x8351	Недопустимое значение в VelocitySearchZero.	Homing, инициализация
0x8352	Недопустимая комбинация входов.	Homing, инициализация
0x8360	ЦПУ не поддерживает режим Pulse Train.	VMC_AxisControl_PT
0x8361	Неверное значение в S_ChannelNumberPWM.	VMC_AxisControl_PT
0x8362	Общая ошибка выхода Pulse Train.	VMC_AxisControl_PT
0x8363	Команда движения с набором StopExecute.	VMC_AxisControl_PT, Mod- busV1000
0x8381	Коммуникационная ошибка Modbus: сервер возвращает код исключения 01h.	Modbus V1000
0x8382	Коммуникационная ошибка Modbus: сервер возвращает код исключения 03h или или неправильный стартовый адрес.	Modbus V1000
0x8383	Коммуникационная ошибка Modbus: сервер возвращает код исключения 02h.	Modbus V1000
0x8384	Коммуникационная ошибка Modbus: сервер возвращает код исключения 04h.	Modbus V1000

ErrorID	Описание	Примечание
0x8386	Коммуникационная ошибка Modbus: сервер возвращает неверный код функции.	Modbus V1000
0x8388	Коммуникационная ошибка Modbus: Сервер возвращает ошибочное значение или ошибочный номер.	Modbus V1000
0x8400	MC_Power: непредусмотренное состояние привода	MC_Power
	Состояние привода <> Работа разрешена	
0x8401	MC_Power: непредусмотренное состояние привода	MC_Power
	Состояние привода = Активен быстрый останов	
0x8402	MC_Power: непредусмотренное состояние привода	MC_Power
	Состоянние привода = Активна реакция на ошибку	
0x8403	MC_Power: непредусмотренное состояние привода	MC_Power
	Состояние привода = Ошибка	
0x8410	Тайм-аут при попытке сброса привода.	Базовый FB> MC_Reset
0x8500	Неверное значение в <i>EncoderType</i> (1 или 2).	Блок инициализации
0x8501	Неверное значение в <i>EncoderResolutionBits</i> (>0 и ≤32).	Блок инициализации
0x8502	Неверное значение в <i>LogicalAddress</i> (≥0).	Блок инициализации
0x8503	Неверное значение в StartInputAddress (≥0).	Блок инициализации
0x8504	Неверное значение в StartOutputAddress (≥0).	Блок инициализации
0x8505	Неверное значение в FactorPosition (>0.0).	Блок инициализации
0x8506	Неверное значение в FactorVelocity (>0.0).	Блок инициализации
0x8507	Неверное значение в FactorAcceleration (>0.0).	Блок инициализации
0x8508	Неверное значение в <i>MaxVelocityApp</i> (>0.0).	Блок инициализации
0x8509	Неверное значение в MaxAccelerationApp (>0.0).	Блок инициализации
0x850A	Неверное значение в MaxDecelerationApp (>0.0).	Блок инициализации
0x850B	Неверное значение в MaxVelocityDrive (>0.0).	Блок инициализации
0x850C	Неверное значение в MaxAccelerationDrive (>0.0).	Блок инициализации
0x850D	Неверное значение в MaxDecelerationDrive (>0.0).	Блок инициализации
0x850E	Неверное значение в <i>MinPosition</i> (≥MinUserPos).	Блок инициализации
0x850F	Неверное значение в <i>MaxPosition</i> (≥MaxUserPos).	Блок инициализации
0x8510	Неверное значение в M2_EncoderType.	VMC_InitSigma7W_EC
0x8511	Неверное значение в M2_EncoderResolutionBits	VMC_InitSigma7W_EC
0x8513	Неверное значение в M2_PdoInputs.	VMC_InitSigma7W_EC
0x8514	Неверное значение в M2_PdoOutputs.	VMC_InitSigma7W_EC
0x8515	Неверное значение в M2_FactorPosition.	VMC_InitSigma7W_EC
0x8516	Неверное значение в M2_FactorVelocity.	VMC_InitSigma7W_EC
0x8517	Неверное значение в M2_FactorAcceleration.	VMC_InitSigma7W_EC
0x8518	Неверное значение в M2_MaxVelocityApp.	VMC_InitSigma7W_EC
0x8519	Неверное значение в M2_MaxAccelerationApp.	VMC_InitSigma7W_EC
0x851A	Неверное значение в M2_MaxDecelerationApp.	VMC_InitSigma7W_EC
0x8603	Ошибка Homing в приводе, скорость <> 0.	MC_Home
0x8604	Ошибка Homing в приводе, скорость = 0.	MC_Home

ErrorID	Описание	Примечание
0x8700	Ошибка: Недопустимый размер.	
0x8710	Ошибка SDO: Бит переключения не был изменен.	
0x8711	Ошибка SDO: Тайм-аут протокола SDO.	
0x8712	Ошибка SDO: Команда "клиент/сервер" недействительна или неизвестна.	
0x8713	Ошибка SDO: Недопустимый размер блока (только в блочном режиме).	
0x8714	Ошибка SDO: Недопустимый порядковый номер (только в блочном режиме).	
0x8715	Ошибка SDO: Ошибка CRC (только в режиме блока).	
0x8716	Ошибка SDO: Недостаточно памяти.	
0x8717	Ошибка SDO: Неподдерживаемый доступ к объекту.	
0x8718	Ошибка SDO: Попытка чтения из объекта, который доступен только по записи.	
0x8719	Ошибка SDO: Попытка записи в объект, который доступен только по чтению.	
0x871A	Ошибка SDO: Объект не существует в словаре объектов.	
0x871B	Ошибка SDO: Объект не может быть сопоставлен с PDO.	
0x871C	Ошибка SDO: Количество и длина объектов, подлежащих отображению, превышают длину PDO.	
0x871D	Ошибка SDO: Общая несовместимость параметров.	
0x871E	Ошибка SDO: Общая внутренняя несовместимость в устройстве.	
0x871F	Ошибка SDO: Ошибка доступа из-за сбоя оборудования.	
0x8720	Ошибка SDO: Тип данных не соответствует, длина служебного параметра не соответствует.	
0x8721	Ошибка SDO: Тип данных не соответствует, служебный параметр слишком длинный.	
0x8722	Ошибка SDO: Тип данных не соответствует, служебный параметр слишком длинный.	
0x8723	Ошибка SDO: Субиндекс отсутствует.	
0x8724	Ошибка SDO: Доступ по записи - Значение параметра вне диапазона.	
0x8725	Ошибка SDO: Доступ по записи - Значение параметра выше верхней границы диапазона.	
0x8726	Ошибка SDO: Доступ по записи - Значение параметра ниже нижней границы диапазона.	
0x8727	Ошибка SDO: Максимальное значение < Минимальное значение.	
0x8728	Ошибка SDO: Общая ошибка.	
0x8729	Ошибка SDO: Данные не могут быть переданы в приложение или сохранены там.	
0x872A	Ошибка SDO: Данные не могут быть переданы в приложение или сохранены там, потому что локальное управление включено.	
0x872B	Ошибка SDO: Из-за текущего состояния устройства никакие данные не могут быть переданы в приложение или сохранены там.	
0x872C	Ошибка SDO: Динамическая генерация каталога объектов не может быть выполнена или каталог объектов не существует.	

ErrorID	Описание	Примечание
0x872D	Ошибка SDO: Неизвестный код.	
0x8750	Неверное значение в <i>LADDR</i> .	
0x8751	Тип указателя ANY отличается от BYTE.	
0x8752	По адресу, указанному через LADDR, нет модуля PROFIBUS DP или устройства PROFINET IO, из которого можно считывать согласованные данные.	
0x8753	Ошибка доступа при обращении к устройству PROFINET IO.	
0x8754	Ошибка ведомого на внешнем ведомом PROFIBUS DP.	
0x8755	Длина данных SFB не соответствует длине пользовательских данных.	
0x8756	Ошибка на внешнем ведомом PROFIBUS DP.	
0x8757	Системная ошибка на внешнем ведомом PROFIBUS DP.	
0x8758	Данные еще не были прочитаны устройством.	
0x8759	Системная ошибка на внешнем ведомом PROFIBUS DP.	
0x875A	Системные ресурсы отсутствуют.	
0x8799	Ошибка SDO: Произошла другая ошибка, более подробную информацию см. в <i>Info1</i> и <i>Info2</i> .	
0x8888	Внутренняя: ошибка BufferIndex	VMC_AxisControl_PT
0xC000	Внутренняя ошибка: Статус Init не определен.	Modbus; Init
0xC001	Внутренняя ошибка: Недопустимое значение для параметра Cmd.ActiveType.	Modbus V1000
0xC002	Внутренняя ошибка: Недопустимое значение для параметра <i>Cmd.State</i> .	Modbus V1000

Состояния


6. Состояния оси и поведение выходов

6.1. Состояния

Диаграмма состояний

На диаграмме состояний приведены все состояния, которые может принимать ось, которая всегда находится в одном из этих состояний. В зависимости от исходного состояния изменение состояния может происходить автоматически или через блоки управления осью. В основном задачи движения обрабатываются последовательно. Для запроса состояния оси могут быть использованы следующие функциональные блоки:

- 🤝 Раздел 4.3.11 'FB 812 MC ReadStatus Состояние PLCopen' на стр. 143
- Параметр PLCopenState из ⇔ Раздел 4.2.2 'FB 860 VMC_AxisControl Control block axis control' на стр. 122

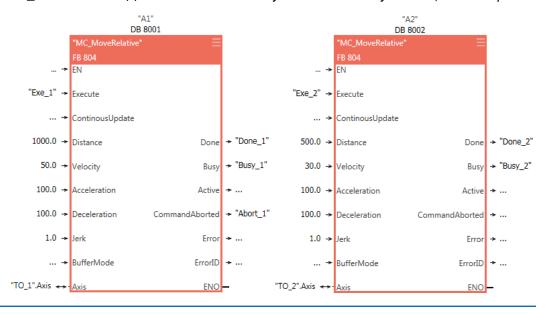
- **- >** Возврат при завершении
- (1) Из каждого состояния: Возникла ошибка оси
- (2) Из каждого состояния: MC_Power Enable = FALSE и отсутствие ошибки оси
- (3) MC_Reset и MC_Power.Status = FALSE
- (4) MC_Reset и MC_Power.Status = TRUE и MC_Power.Enable = TRUE
- (5) MC_Power.Enable = TRUE и MC_Power.Status = TRUE
- (6) MC_Stop.Done = TRUE и MC_Stop.Execute = FALSE

Имеются следующие возможные состояния

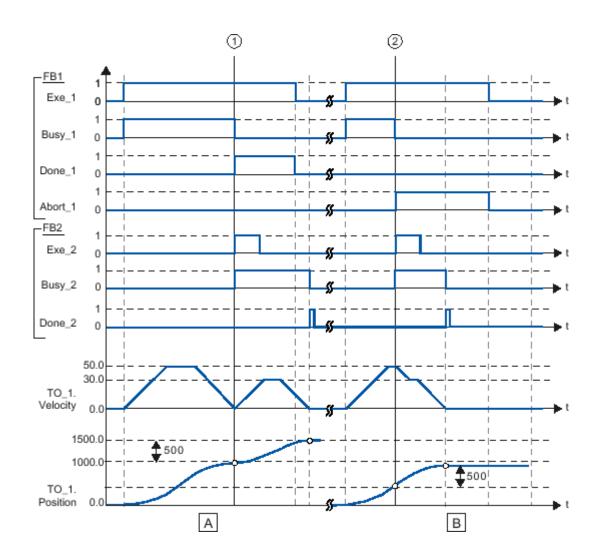
- Disabled (Запрет работы)
 - Исходное состояние оси.
 - Ось не может быть приведена в движение каким-либо функциональным блоком.
- Error Stop (Остановка по ошибке)
 - Возникла ошибка оси.
 - Ось остановлена и заблокирована для дальнейших задач движения.
 - Ось остается в этом состоянии до тех пор, пока не будет устранена ошибка и выполнен RESET (сброс).
 - Ошибки оси могут быть считаны из привода с помощью соответствующего функционального блока.
 - Ошибки функционального блока не приводят к переходу в это состояние.
- Stand Still (Состояние простоя)
 - Готовность к выполнению задач движения.
 - Отсутствует ошибка оси.
 - Для оси нет активных задач движения.
 - На привод оси подано напряжение питания.

Смена заданий на перемещение оси

- Stopping (Процесс остановки)
 - Ось находится в состоянии торможения:


 □ Раздел 4.3.5 'FB 802 MC_Stop Остановка оси' на стр. 131

 □ Раздел 4.2.2 'FB 860 VMC_AxisControl Control block axis control' на стр. 122
 - Состояние Stopping активно пока активен FB 802 MC_Stop (Execute = 1).
 Даже если ось уже остановлена. Затем состояние оси автоматически изменится на Standstill.
- Homing (Выход в начальное положение)
 - Ось осуществляет движение в начальное положение:
 - № Раздел 4.3.4 'FB 801 MC_Home Перемещение оси в исходное положение' на стр. 129
 - Ч Раздел 4.2.2 'FB 860 VMC_AxisControl Control block axis control' на стр. 122
 - Как только ось займет начальное положение, её состояние автоматически изменится на Standstill.
- Discrete Motion (Позиционирование)
 - Ось в настоящее время выполняет задачу движения:
 - $\red{\Leftrightarrow}$ Раздел 4.3.9 'FB 808 MC_MoveAbsolute Перемещение оси в заданную абсолютную позицию' на стр. 139
 - Раздел 4.3.7 'FB 804 MC_MoveRelative Движение оси в заданную относительную позицию' на стр. 135
 - 🤝 Раздел 4.3.6 'FB 803 MC_Halt Приостановка оси' на стр.133
 - ⇔ Раздел 4.2.2 'FB 860 VMC_AxisControl Control block axis control' на стр.122
 - Как только цель задачи движения будет достигнута, состояние автоматически изменится на Standstill.
- Continous Motion (Непрерывное движение)
 - Ось выполняет задачу непрерывного движения:
 - ₩ Раздел 4.3.8 'FB 805 MC_MoveVelocity Непрерывное движение оси с заданной скоростью' на стр.137
 - ♥ Раздел 4.2.2 'FB 860 VMC_AxisControl Control block axis control' на стр.122


6.2. Смена заданий на перемещение оси

Пример

Ниже в приимере показана смена заданий на перемещение оси с использованием функционального блока MC_MoveRelative. Ч⇒ Раздел 4.3.7 'FB 804 - MC MoveRelative - Движение оси в заданную относительную позицию' на стр.135

Смена заданий на перемещение оси

- (A) Ось перемещается на расстояние 1000.0, определяемое значением параметра *Distance* функционального блока "MC_MoveRelative" (A1) (начальная позиция равна 0.0).
- (1) Информирование о достижение заданной позиции осуществляется в момент времени (1) с помощью выходной переменной *Done_1*. В этот же момент времени (1) запускается другой функциональный блок MC_MoveRelative (A2) с заданием на перемещение на расстояние 500.0. Об успешном достижении новой заданной позиции сообщается с помощью выходной переменной *Done_2*. Поскольку входная переменная *Exe_2* к этому моменту уже находится в сброшенном состоянии, переменная *Done_2* будет находиться в установленном состоянии в течение только одного цикла управления ПЛК.
- (B) Выполняемое задание MC_MoveRelative (A1) сменяется другим заданием MC_MoveRelative (A2).
- (2) Информирование об отмене задания осуществляется в момент времени (2) переменной *Abort_1*. Затем ось перемещается с новой скоростью на расстояние 500.0, определяемое значением параметра *Distance*. Об успешном достижении новой заданной позиции сообщается с помощью выходной переменной *Done 2*.

Поведение входов и выходов

6.3. Поведение входов и выходов

Эксклюзивность выходов

- Выходы Busy, Done, Error и CommandAborted являются взаимоисключающими, поэтому в функциональном блоке только один из этих выходов может быть в состоянии TRUE в каждый отдельно взятый момент времени.
- Как только значение входного параметра *Execute* станет TRUE, один из выходов должен принять значение TRUE. При этом только один из выходов *Active, Error, Done* и *CommandAborted* может быть в состоянии TRUE в один и тот же момент времени.

Состояние выхода

- Выходы Done, InVelocity, Error, ErrorID и CommandAborted сбрасываются по переходу 1-0 значения сигнала на входе Execute, если функциональный блок не активен (Busy = FALSE).
- На выполнение команды не влияет переход 1-0 сигнала на входе Execute.
- Если на момент окончания выполнения задания функциональным блоком сигнал на входе *Execute* уже сброшен, выходные сигналы действуют минимум еще в течение одного цикла управления ПЛК. Только после этого выходы будут сброшены.

Входной параметр

- Значения входных параметров принимаются функциональным блоком для исполнения по переходу 0-1 сигнала на входе Execute.
- Для приёма измененных значений входных параметров требуется повторный переход 0-1 сигнала на входе Execute.
- Если значение входного параметра не передано в функциональный блок, то остается в силе последнее переданное значение.
- При первом вызове должно быть передано значащее значение по умолчанию.

Положение и расстояние

- Параметр Position определяет абсолютное значение позиции.
- Параметр Distance определяет расстояние между двумя положениями оси.
- Как Position, так и Distance задаются в технических единицах, например, в
 [мм] или [°] в соответствии с масштабом оси.

Параметры для динамического поведения

 Динамические параметры для функций Move задаются в инженерных единицах в секунду.

Например, если ось масштабируется в миллиметрах, то единица измерения для Velocity (скорость) - это [мм/с], для Acceleration (ускорение) - [мм/с 2] и для Deceleration (торможение) - [мм/с 2].

Обработка ошибок

- Все функциональные блоки имеют два выхода для информирования об ошибках, возникших во время выполнения команды.
- Выход *Error* индицирует наличие ошибки, а на выходе *ErrorID* указывается её конкретный номер.
- Выходы *Done* и *InVelocity* указывают на успешное выполнение команды и не устанавливаются, если значение *Error* становится TRUE.

Типы ошибок

- Ошибки функционального блока
 - Ошибки функционального блока это ошибки, которые связаны только с функциональным блоком, а не с осью, например, некорректное ее параметрирование.
 - Ошибки функционального блока не требуют явного сброса, поскольку сбрасываются автоматически при сбросе сигнала на входе *Execute*.
- Коммуникационные ошибки
 - Коммуникационной ошибкой, например, является ситуация, когда функциональный блок не может обратиться к оси.
 - Коммуникационные ошибки часто указывают на некорректные конфигурацию или параметрирование.
 - Сброс невозможен, но функциональный блок может быть перезапущен после исправления конфигурации.

Поведение входов и выходов

■ Ошибки оси

- Ошибки оси обычно возникают во время движения, например, такие как ошибка позиции.
- Ошибка оси должна быть сброшена с помощью функционального блока MC Reset.

Поведение выхода Done

- Выходной сигнал *Done* устанавливается, когда команда была успешно выполнена.
- Когда при управлении осью несколькими функциональными блоками текущая команда прервана другим блоком, то выходной сигнал *Done* первого блока не будет установлен.

Поведение выхода CommandAborted

Выходной сигнал *CommandAborted* устанавливается, когда команда прерывается другим блоком.

Поведение выхода Busy

- Значение TRUE на выходе Busy указывает на то, что функциональный блок активен.
- Выход Busy устанавливается сразу после перехода 0-1 сигнала на входе Execute и не будет сброшен до тех пор, пока команда не будет успешно завершена или завершена с ошибкой.
- До тех пор пока сигнал на выходе Busy имеет значение TRUE, функциональный блок должен вызываться циклически для выполнения команды.

Поведение выхода Active

■ Если движение оси управляется несколькими функциональными блоками, выход *Active* каждого блока указывает, что команда выполняется приводом.

Bход *Enable* и выход *Valid*

- В отличие от *Execute* вход *Enable* вызывает действие, которое должно выполняться постоянно и многократно, пока сигнал на входе *Enable* имеет значение TRUE. Например, блок MC_ReadStatus циклически обновляет состояние оси, пока сигнал на входе *Enable* имеет значение TRUE.
- Функциональный блок, активируемый через сигнал Enable, подтверждает достоверность значения выходных сигналов с помощью выхода Valid. Тем не менее, данные могут постоянно обновляться при значении TRUE на выходе Valid.

BufferMode

BufferMode не поддерживается.