

VARISPEED G7 General purpose inverter (Advanced Vector Control)

INSTRUCTION MANUAL

Varispeed G7 INSTRUCTION MANUAL

GENERAL PURPOSE INVERTER (ADVANCED VECTOR CONTROL)

Upon receipt of the product and prior to initial operation, read these instructions thoroughly, and retain for future reference.

Preface

This manual is designed to ensure correct and suitable application of Varispeed G7-Series Inverters. Read this manual before attempting to install, operate, maintain, or inspect an Inverter and keep it in a safe, convenient location for future reference. Before you understand all precautions and safety information before attempting application.

General Precautions

- The diagrams in this manual may be indicated without covers or safety shields to show details. Be sure to restore covers or shields before operating the Units and run the Units according to the instructions described in this manual.
- Any illustrations, photographs, or examples used in this manual are provided as examples only and may not apply to all products to which this manual is applicable.
- The products and specifications described in this manual or the content and presentation of the manual may be changed without notice to improve the product and/or the manual.
- When ordering a new copy of the manual due to damage or loss, contact your Yaskawa representatives or the nearest Yaskawa sales office and provide the manual number shown on the front cover.
- If nameplates become warn or damaged, order new ones from your Yaskawa representatives or the nearest Yaskawa sales office.

Safety Information

The following conventions are used to indicate precautions in this manual. Failure to heed precautions provided in this manual can result in serious or possibly even fatal injury or damage to the products or to related equipment and systems.

Indicates precautions that, if not heeded, could possibly result in loss of life or serious injury.

Indicates precautions that, if not heeded, could result in relatively serious or minor injury, damage to the product, or faulty operation.

Failure to heed a precaution classified as a caution can result in serious consequences depending on the situation.

Indicates important information that should be memorized.

Safety Precautions

Confirmations upon Delivery

Never install an Inverter that is damaged or missing components.

Doing so can result in injury.

Installation

- · Always hold the case when carrying the Inverter.
 - If the Inverter is held by the front cover, the main body of the Inverter may fall, possibly resulting in injury.
- Attach the Inverter to a metal or other noncombustible material. Fire can result if the Inverter is attached to a combustible material.
- Install a cooling fan or other cooling device when installing more than one Inverter in the same enclosure so that the temperature of the air entering the Inverters is below 45°C. Overheating can result in fires or other accidents.

Wiring

- Always turn OFF the input power supply before wiring terminals. Otherwise, an electric shock or fire can occur.
- Wiring must be performed by an authorized person qualified in electrical work. Otherwise, an electric shock or fire can occur.
- Be sure to ground the ground terminal. (200 V class: Ground to 100 Ω or less, 400 V class: Ground to 10 Ω or less)
- Otherwise, an electric shock or fire can occur.
- Always check the operation of any emergency stop circuits after they are wired. Otherwise, there is the possibility of injury. (Wiring is the responsibility of the user.)
- Never touch the output terminals directly with your hands or allow the output lines to come into contact with the Inverter case. Never short the output circuits. Otherwise, an electric shock or ground short can occur.
- Check to be sure that the voltage of the main AC power supply satisfies the rated voltage of the Inverter.

Injury or fire can occur if the voltage is not correct.

- Do not perform voltage withstand tests on the Inverter.
- Otherwise, semiconductor elements and other devices can be damaged.
- Connect braking resistors, Braking Resistor Units, and Braking Units as shown in the I/O wiring examples.
 - Otherwise, a fire can occur.
- Tighten all terminal screws to the specified tightening torque. Otherwise, a fire may occur.
- Do not connect AC power to output terminals U, V, and W.
- The interior parts of the Inverter will be damaged if voltage is applied to the output terminals.
- Do not connect phase-advancing capacitors or LC/RC noise filters to the output circuits. The Inverter can be damaged or internal parts burnt if these devices are connected.

• Do not connect electromagnetic switches or contactors to the output circuits. If a load is connected while the Inverter is operating, surge current will cause the overcurrent protection circuit inside the Inverter to operate.

Setting User Constants

CAUTION

- Disconnect the load (machine, device) from the motor before performing rotational autotuning. The motor may turn, possibly resulting in injury or damage to equipment. Also, motor constants cannot be correctly set with the motor attached to a load.
- Stay clear of the motor during rotational autotuning.
- The motor may start operating suddenly when stopped, possibly resulting in injury.

Trial Operation

• Check to be sure that the front cover is attached before turning ON the power supply. An electric shock may occur.

 Do not come close to the machine when the fault reset function is used. If the alarmed is cleared, the machine may start moving suddenly.

Also, design the machine so that human safety is ensured even when it is restarted. Injury may occur.

- Provide a separate emergency stop switch; the Digital Operator STOP Key is valid only when its function is set.
- Injury may occur.
- Reset alarms only after confirming that the RUN signal is OFF.
- Injury may occur.

• Don't touch the radiation fins (heatsink), braking resistor, or Braking Resistor Unit. These can become very hot.

Otherwise, a burn injury may occur.

• Be sure that the motor and machine is within the applicable ranges before starting operation. Otherwise, an injury may occur.

• Provide a separate holding brake if necessary. Always construct the external sequence to confirm that the holding brake is activated in the event of an emergency, a power failure, or an abnormality in the Inverter. Failure to observe this caution can result in injury.

• If using an Inverter with an elevator, take safety measures on the elevator to prevent the elevator from dropping.

Failure to observe this caution can result in injury.

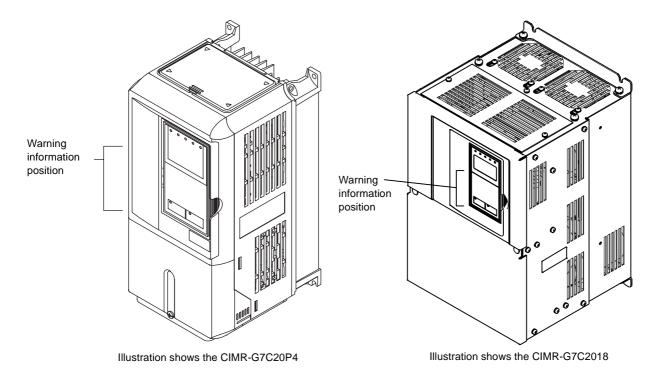
- Don't check signals while the Inverter is running. Otherwise, the equipment may be damaged.
- Be careful when changing Inverter settings. The Inverter is factory set to suitable settings. Otherwise, the equipment may be damaged.

Maintenance and Inspection

- WARNING
 Do not touch the Inverter terminals. Some of the terminals carry high voltages and are extremely dangerous. Doing so can result in electric shock.
 Always have the protective cover in place when power is being supplied to the Inverter. When attaching the cover, always turn OFF power to the Inverter through the MCCB. Doing so can result in electric shock.
 After turning OFF the main circuit power supply wait until the CHARGE indicator light goes out
- After turning OFF the main circuit power supply, wait until the CHARGE indicator light goes out before performance maintenance or inspections. The capacitor will remain charged and is dangerous.
- Maintenance, inspection, and replacement of parts must be performed only by authorized personnel.

Remove all metal objects, such as watches and rings, before starting work. Always use grounded tools. Failure to heed these warning can result in electric shock.

- A CMOS IC is used in the control board. Handle the control board and CMOS IC carefully. The CMOS IC can be destroyed by static electricity if touched directly.
- The CMOS IC can be destroyed by static electricity if touched directly.
- Do not change the wiring, or remove connectors or the Digital Operator, during operation. Doing so can result in personal injury.


Other

MARNING

• Do not attempt to modify or alter the Inverter. Doing so can result in electrical shock or injury.

Warning Information and Position

There is warning information on the Inverter in the position shown in the following illustration. Always heed the warnings.

Warning Information

- Risk of electric shock.
- •Read manual before installing.
- •Wait 5 minutes for capacitor discharge after disconnecting power supply.

- Aisque de décharge électrique.
- •Lire le manuel avant l' installation.
- •Attendre 5 minutes aprés la coupure de l' allmentation. Pour permettre la décharge des condensateurs.

<u>/</u>_危険

∕∽ けが・感電のおそれがあります。

- •据え付け・運転の前には必ず取扱説明書を お読み下さい。
- ・通電中及び電源遮断後5分以内はフロント カバーを外さないで下さい。

Registered Trademarks

The following registered trademarks are used in this manual.

- DeviceNet is a registered trademark of the ODVA (Open DeviceNet Vendors Association, Inc.).
- InterBus is a registered trademark of Phoenix Contact Co.
- ControlNet is a registered trademark of ControlNet International, Ltd.
- LONworks is a registered trademark of the Echolon.

Contents

1

Handling Inverters	1-1
Varispeed G7 Introduction	1-2
 Varispeed G7 Models 	1-2
Confirmations upon Delivery	1-3
◆ Checks	1-3
Nameplate Information	1-3
• Component Names	1-5
Exterior and Mounting Dimensions	1-7
 Open Chassis Inverters (IP00) 	1-7
Enclosed Wall-mounted Inverters (NEMA1 Type 1)	1-7
Checking and Controlling the Installation Site	1-9
Installation Site	1-9
Controlling the Ambient Temperature	1-9
Protecting the Inverter from Foreign Matter	1-9
Installation Orientation and Space	1-10
Removing and Attaching the Terminal Cover	1-11
Removing the Terminal Cover	1-11
Attaching the Terminal Cover	1-11
Removing/Attaching the Digital Operator and Front Cover	1-12
♦ Inverters of 15 kW or Less	1-12
Inverters of 18.5 kW or More	1-15
Wiring	2-1
Connections to Peripheral Devices	2-2
Connection Diagram	2-3
Terminal Block Configuration	2-5
Wiring Main Circuit Terminals	2-6
◆ Applicable Wire Sizes and Closed-loop Connectors	2-6
Main Circuit Terminal Functions	
Main Circuit Configurations	
 Standard Connection Diagrams Wiring the Main Circuits 	
Wiring Control Circuit Terminals	
•	
 Wire Sizes and Closed-loop Connectors Control Circuit Terminal Functions 	
Control Circuit Terminal Functions	
Control Circuit Wiring Precautions	

	Wiring Check2-2	28
	Checks2-	28
	Installing and Wiring Option Cards2-2	29
	 Option Card Models and Specifications	
	◆ Installation	
	PG Speed Control Card Terminals and Specifications	
	• Wiring	32
	♦ Wiring Terminal Blocks	
	Selecting the Number of PG (Encoder) Pulses	37
3	Digital Operator and Modes3-	·1
	Digital Operator3	-2
	Digital Operator Display	8-2
	Digital Operator Keys	8-2
	Modes3	-4
	♦ Inverter Modes	8-4
	Switching Modes	
	Drive Mode	6-6
	Quick Programming Mode	
	Advanced Programming Mode	
	Verify Mode 3-	
	 Autotuning Mode	13
4	Trial Operation4-	·1
4	Trial Operation 4 Trial Operation Procedure 4	
4		-2
4	Trial Operation Procedure4	-2 -3
4	Trial Operation Procedure	-2 -3 -3
4	Trial Operation Procedure	-2 -3 -3 -3
4	Trial Operation Procedure	-2 -3 -3 -4
4	Trial Operation Procedure	-2 -3 -3 -4 -5 -7
4	Trial Operation Procedure	-2 -3 -3 -3 -4 -5 -7
4	Trial Operation Procedure 4 Trial Operation Procedures 4 Setting the Power Supply Voltage Jumper (400 V Class Inverters of 55 kW or Higher) Power ON Checking the Display Status Basic Settings Settings for the Control Methods Autotuning 	-2 -3 -3 -3 -4 -5 -7 -9
4	Trial Operation Procedure 4 Trial Operation Procedures 4 Setting the Power Supply Voltage Jumper (400 V Class Inverters of 55 kW or Higher) Power ON Checking the Display Status Checking the Display Status Settings for the Control Methods Autotuning Application Settings No-load Operation Loaded Operation 	-2 -3 -3 -4 -5 -7 -9 14 14
4	Trial Operation Procedure 4 Trial Operation Procedures 4 Setting the Power Supply Voltage Jumper (400 V Class Inverters of 55 kW or Higher) Power ON Checking the Display Status Basic Settings Settings for the Control Methods Autotuning Application Settings No-load Operation 	-2 -3 -3 -4 -5 -7 -9 14 14
4	Trial Operation Procedure 4 Trial Operation Procedures 4 Setting the Power Supply Voltage Jumper (400 V Class Inverters of 55 kW or Higher) Power ON Checking the Display Status Checking the Display Status Settings for the Control Methods Autotuning Application Settings No-load Operation Loaded Operation 	-2 -3 -3 -4 -5 -7 -9 14 14 14
4	Trial Operation Procedure 4 Trial Operation Procedures 4 Setting the Power Supply Voltage Jumper (400 V Class Inverters of 55 kW or Higher) Power ON Checking the Display Status Basic Settings Settings for the Control Methods Autotuning Autotuning No-load Operation Check and Recording User Constants Check and Recording User Constants 	-2 -3 -3 -4 -5 -7 -9 14 14 15
-	Trial Operation Procedure 4 Trial Operation Procedures 4 Setting the Power Supply Voltage Jumper (400 V Class Inverters of 55 kW or Higher) Power ON Checking the Display Status Basic Settings Settings for the Control Methods Autotuning Autotuning No-load Operation Loaded Operation Check and Recording User Constants Adjustment Suggestions 	-2 -3 -3 -4 -5 -7 -9 14 14 15 16 -1
-	Trial Operation Procedure 4 Trial Operation Procedures 4 Setting the Power Supply Voltage Jumper (400 V Class Inverters of 55 kW or Higher) Power ON Checking the Display Status Basic Settings Settings for the Control Methods Autotuning Application Settings Loaded Operation Check and Recording User Constants Adjustment Suggestions Set Constants 	-2 -3 -3 -3 -4 -5 -9 14 14 15 16 -2
-	Trial Operation Procedure 4 Trial Operation Procedures 4 Setting the Power Supply Voltage Jumper (400 V Class Inverters of 55 kW or Higher) Power ON Checking the Display Status Basic Settings Settings for the Control Methods Autotuning Application Settings Loaded Operation Check and Recording User Constants Adjustment Suggestions User Constant Descriptions 	-2 -3 -3 -3 -4 -5 -7 -9 14 14 15 16 -2 -2 -3

User Constant Tables	5-8
A: Setup Settings	5-8
Application Constants: b	
Autotuning Constants: C	
Reference Constants: d	
Motor Constant Constants: E	
Option Constants: F	
 Terminal Function Constants: H Protection Function Constants: L 	
 N: Special Adjustments. 	
 Digital Operator Constants: o	
 Digital Operator Constants. 0	
 U: Monitor Constants 	
 Factory Settings that Change with the Control Method (A1-02) 	
♦ Factory Settings that Change with the Inverter Capacity (o2-04)	
Constant Settings by Function	6-1
Frequency Reference	6-2
 Selecting the Frequency Reference Source Using Multi-Step Speed Operation 	
Run Command	
Selecting the Run Command Source	
Stopping Methods	6-9
Selecting the Stopping Method when a Stop Command is Sent	6-9
Using the DC Injection Brake	6-13
♦ Using an Emergency Stop	6-14
Acceleration and Deceleration Characteristics	6-15
Setting Acceleration and Deceleration Times	6-15
Accelerating and Decelerating Heavy Loads (Dwell Function)	
Preventing the Motor from Stalling During Acceleration (Stall Prevention During	
Acceleration Function)	
Preventing Overvoltage During Deceleration (Stall Prevention During Deceleration)	
Function)	6-22
Adjusting Frequency References	6-24
Adjusting Analog Frequency References	6-24
 Operation Avoiding Resonance (Jump Frequency Function) 	
 Adjusting Frequency Reference Using Pulse Train Inputs 	
Speed Limit (Frequency Reference Limit Function)	6-30
Limiting Maximum Output Frequency	6-30
Limiting Minimum Frequency	
Improved Operating Efficiency	
 Reducing Motor Speed Fluctuation (Slip Compensation Function) 	
 Compensating for Insufficient Torque at Startup and Low-speed Operation 	
(Torque Compensation)	6-34
Hunting-prevention Function	

Stabilizing Speed (Speed Feedback Detection Function)	6-37
Machine Protection	6-38
Reducing Noise and Leakage Current	6-38
Limiting Motor Torque (Torque Limit Function)	6-41
Preventing Motor Stalling During Operation	6-43
Changing Stall Prevention Level during Operation Using an Analog Input	6-44
Detecting Motor Torque	6-44
Changing Overtorque and Undertorque Detection Levels Using an Analog Inpu	t 6-48
Motor Overload Protection	6-49
Setting Motor Protection Operation Time	6-51
Motor Overheating Protection Using PTC Thermistor Inputs	6-52
Limiting Motor Rotation Direction	6-54
Continuing Operation	6-55
Restarting Automatically After Power Is Restored	6-55
Speed Search	6-56
Continuing Operation at Constant Speed When Frequency Reference Is Lost	
Restarting Operation After Transient Error (Auto Restart Function)	
Inverter Protection	
Performing Overheating Protection on Mounted Braking Resistors	
 Reducing Inverter Overheating Pre-Alarm Warning Levels 	
Input Terminal Functions	0-00
Temporarily Switching Operation between Digital Operator and Control Circuit	0.00
Terminals Blocking Inverter Outputs (Baseblock Commands)	
 Stopping Acceleration and Deceleration (Acceleration/Deceleration Ramp Hold) 	
 Stopping Acceleration and Deceleration (Acceleration/Deceleration Ramp Flotd) Raising and Lowering Frequency References Using Contact Signals (UP/DOW) 	
 Accelerating and Decelerating Constant Frequencies in the Analog References 	
(+/- Speed)	6-72
Hold Analog Frequency Using User-set Timing	
Switching Operations between a Communications Option Card and Control Cir Terminals	
 Jog Frequency Operation without Forward and Reverse Commands (FJOG/RJ 	
 Stopping the Inverter by Notifying Programming Device Errors to the Inverter 	00,.011
(External Fault Function)	6-75
Monitor Constants	
 Using the Analog Monitor Constants 	
 Using Pulse Train Monitor Contents 	
Individual Functions	6-81
Using MEMOBUS Communications	6-81
 Using the Timer Function 	
◆ Using PID Control	
Energy-saving	
Setting Motor Constants	
Setting the V/f Pattern	
Torque Control	
Speed Control (ASR) Structure	6-122

	Droop Control Function	6-127
	Zero-servo Function	6-128
	Digital Operator Functions	6-132
	Setting Digital Operator Functions	6-132
	Copying Constants	6-135
	Prohibiting Writing Constants from the Digital Operator	
	 Setting a Password 	
	Displaying User-set Constants Only	
	Options	6-142
	Performing Speed Control with PG	
	 Using Digital Output Cards 	
	 Using an Analog Reference Card 	
	Using a Digital Reference Card	6-149
7	Troubleshooting	7-1
	Protective and Diagnostic Functions	7-2
	Fault Detection	
	 ♦ Alarm Detection 	
	 Operation Errors Errors During Autotuning 	
	 Errors when Using the Digital Operator Copy Function 	
	Troubleshooting	
	 If Constant Constants Cannot Be Set 	
	 If the Motor Does Not Operate	
	If the Direction of the Motor Rotation is Reversed	
	◆ If the Motor Does Not Put Out Torque or If Acceleration is Slow	7-20
	If the Motor Operates Higher Than the Reference	7-20
	If the Slip Compensation Function Has Low Speed Precision	7-20
	◆ If There is Low Speed Control Accuracy at High-speed Rotation in Open-loo	-
	Control Mode	
	 If Motor Deceleration is Slow If the Motor Overheats 	
	 If the Motor Overheats If There is Noise When the Inverter is Started or From an AM Radio 	
	 If the Ground Fault Interrupter Operates When the Inverter is Run 	
	 If There is Mechanical Oscillation 	
	If the Motor Rotates Even When Inverter Output is Stopped	7-24
	♦ If 0 V is Detected When the Fan is Started, or Fan Stalls	7-24
	If Output Frequency Does Not Rise to Frequency Reference	7-24
8	Maintenance and Inspection	8-1
	Maintenance and Inspection	8-2
	Outline of Maintenance	8-2
	Daily Inspection	8-2
	Periodic Inspection	8-2

	Periodic Maintenance of Parts	
	Cooling Fan Replacement Outline	
	Removing and Mounting the Control Circuit Terminal Card	
9	Specifications	9-1
	Standard Inverter Specifications	9-2
	 Specifications by Model Common Specifications 	
	Specifications of Options and Peripheral Devices	
10	Appendix	10-1
	Varispeed G7 Control Modes	
	Control Modes and Features	
	Control Modes and Applications	10-5
	Inverter Application Precautions	
	Selection	10-7
	Installation	
	♦ Settings	
	Handling	
	Motor Application Precautions	
	Using the Inverter for an Existing Standard Motor	
	Using the Inverter for Special Motors	
	Power Transmission Mechanism (Speed Reducers, Belts, and Chains)	10-11
	Conformance to CE Markings	
	CE Markings	10-12
	Requirements for Conformance to CE Markings	10-12
	User Constants	10-19

Handling Inverters

This chapter describes the checks required upon receiving or installing an Inverter.

Varispeed G7 Introduction	1-2
Confirmations upon Delivery	1-3
Exterior and Mounting Dimensions	1-7
Checking and Controlling the Installation Site	1-9
Installation Orientation and Space	1-10
Removing and Attaching the Terminal Cover	1-11
Removing/Attaching the Digital Operator and Front Cover	1-12

Varispeed G7 Introduction

Varispeed G7 Models

The Varispeed-G7 Series of Inverters included two Inverters in two voltage classes: 200 V and 400 V. Maximum motor capacities vary from 0.4 to 300 kW (41 models).

Voltage	Maximum Motor		Varispeed G7	Specifica (Always specify through the prote				
Class	Capacity kW	Output Capacity kVA	Basic Model Number	Open Chassis (IEC IP00) CIMR-G7□□□□□□	Enclosed Wall-mounted (IEC IP20, NEMA 1) CIMR-G7CDDDDDD			
	0.4	1.2	CIMR-G7C20P4		20P41			
	0.75	2.3	CIMR-G7C20P7		20P71			
	1.5	3.0	CIMR-G7C21P5		21P51			
	2.2	4.6	CIMR-G7C22P2		22P21			
	3.7	6.9	CIMR-G7C23P7	 Remove the top and bottom cov- ers from the Enclosed Wall- 	23P71			
	5.5	10	CIMR-G7C25P5	mounted model.	25P51□			
	7.5	13	CIMR-G7C27P5		27P51			
	11	19	CIMR-G7C2011		2011			
200 V class	15	25	CIMR-G7C2015		20151			
200 v class	18.5	30	CIMR-G7C2018		20181			
	22	37	CIMR-G7C2022	20220□	20221			
	30	50	CIMR-G7C2030	20300□	20301			
	37	61	CIMR-G7C2037	20370□	20371			
	45	70	CIMR-G7C2045	20450□	20451			
	55	85	CIMR-G7C2055	20550□	20551			
	75	110	CIMR-G7C2075	20750□	20751			
	90			20900□	-			
	110	160	CIMR-G7C2110	21100□	-			
	0.4	1.4	CIMR-G7C40P4		40P41			
	0.75	2.6	CIMR-G7C40P7		40P71			
	1.5	3.7	CIMR-G7C41P5		41P51			
	2.2				42P21			
	3.7 6.9		CIMR-G7C43P7	 Remove the top and bottom cov- ers from the Enclosed Wall- 	43P71□			
	5.5	11	CIMR-G7C45P5	mount model.	45P51□			
	7.5 10		CIMR-G7C47P5		47P51			
	11	21	CIMR-G7C4011		40111			
	15	26	CIMR-G7C4015		40151			
	18.5	32	CIMR-G7C4018		40181			
	22	40	CIMR-G7C4022	40220□	40221			
400 V class	30	50	CIMR-G7C4030	40300□	40301			
	37	61	CIMR-G7C4037	40370□	40371□			
	45	74	CIMR-G7C4045	40450□	40451			
	55	98	CIMR-G7C4055	40550□	40551			
	75	130	CIMR-G7C4075	40750□	40751			
	90	150	CIMR-G7C4090	40900□	40901			
	110	180	CIMR-G7C4110	41100□	41101□			
	132	210	CIMR-G7C4132	41320□	41321□			
	160	230	CIMR-G7C4160	41600□	41601			
	185	280	CIMR-G7C4185	41850□	-			
	220	340	CIMR-G7C4220	42200□	-			
	300	460	CIMR-G7C4300	43000□	-			

Table 1.1 Varispeed G7 Models

Confirmations upon Delivery

Checks

Check the following items as soon as the Inverter is delivered.

Table 1.2 Checks

Item	Method					
Has the correct model of Inverter been delivered?	Check the model number on the nameplate on the side of the Inverter.					
Is the Inverter damaged in any way?	Inspect the entire exterior of the Inverter to see if there are any scratches or other damage resulting from shipping.					
Are any screws or other components loose?	Use a screwdriver or other tools to check for tightness.					

If you find any irregularities in the above items, contact the agency from which you purchased the Inverter or your Yaskawa representative immediately.

Nameplate Information

There is a nameplate attached to the side of each Inverter. The nameplate shows the model number, specifications, lot number, serial number, and other information on the Inverter.

Example Nameplate

The following nameplate is an example for a European standard Inverter: 3-phase, 200 VAC, 0.4 kW, IEC IP20 and NEMA 1 standards

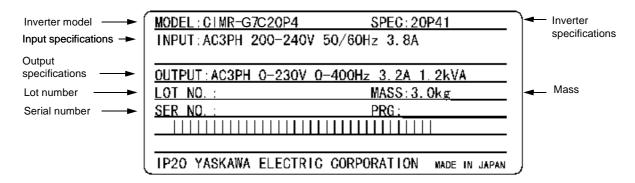


Fig 1.1 Nameplate

Inverter Model Numbers

The model number of the Inverter on the nameplate indicates the specification, voltage class, and maximum motor capacity of the Inverter in alphanumeric codes.

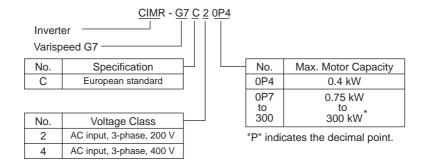
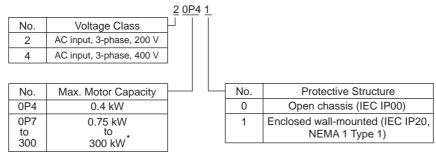



Fig 1.2 Inverter Model Numbers

Inverter Specifications

The Inverter specifications ("SPEC") on the nameplate indicate the voltage class, maximum motor capacity, the protective structure, and the revision of the Inverter in alphanumeric codes.

"P" indicates the decimal point.

Open Chassis Type (IEC IP00)

Protected so that parts of the human body cannot reach electrically charged parts from the front when the Inverter is mounted in a control panel.

Enclosed Wall-mounted Type (IEC IP20, NEMA 1 Type 1)

The Inverter is structured so that the Inverter is shielded from the exterior, and can thus be mounted to the interior wall of a standard building (not necessarily enclosed in a control panel). The protective structure conforms to the standards of NEMA 1 in the USA.

Top protective cover must be installed to conform with IEC IP20 and NEMA 1 Type 1 requirements. Refer to Fig. 1.4 for details.

Component Names

Inverters of 15 kW or Less

The external appearance and component names of the Inverter are shown in *Fig 1.4*. The Inverter with the terminal cover removed is shown in *Fig 1.5*.

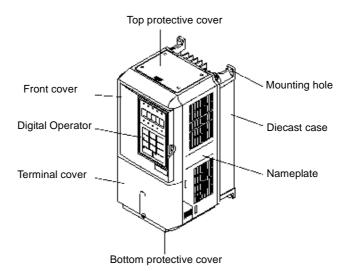


Fig 1.4 Inverter Appearance (15 kW or Less)

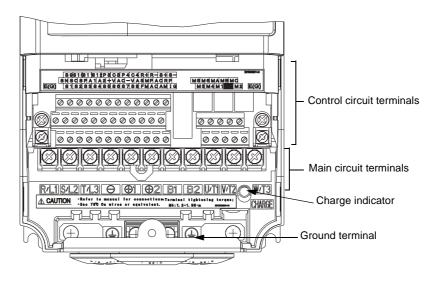


Fig 1.5 Terminal Arrangement (15 kW or Less)

■ Inverters of 18.5 kW or More

The external appearance and component names of the Inverter are shown in *Fig 1.6*. The Inverter with the terminal cover removed is shown in *Fig 1.7*.

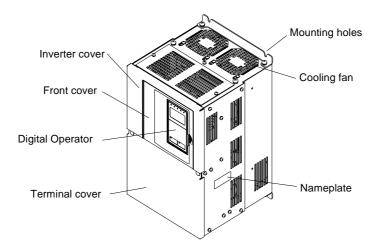


Fig 1.6 Inverter Appearance (18.5 kW or More)

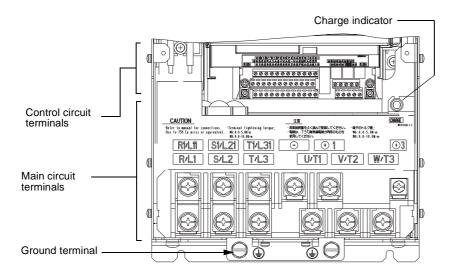


Fig 1.7 Terminal Arrangement (18.5 kW or More)

Exterior and Mounting Dimensions

Open Chassis Inverters (IP00)

Exterior diagrams of the Open Chassis Inverters are shown below.

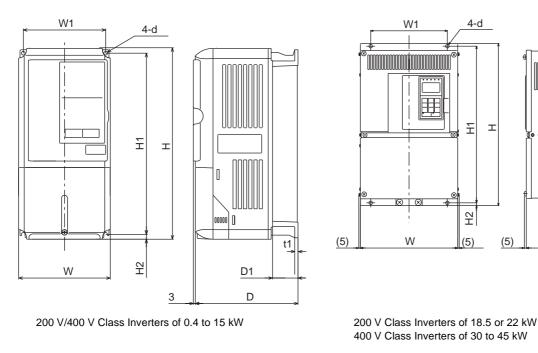
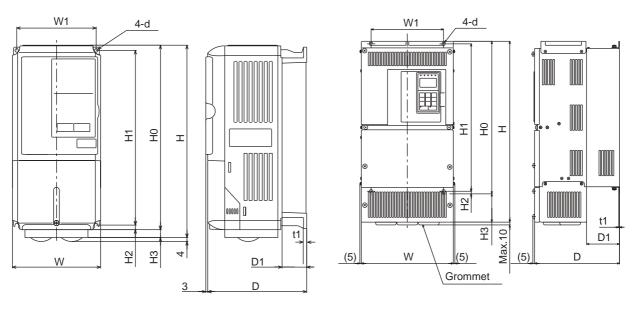



Fig 1.8 Exterior Diagrams of Open Chassis Inverters

Enclosed Wall-mounted Inverters (NEMA1 Type 1)

Exterior diagrams of the Enclosed Wall-mounted Inverters (NEMA1 Type 1) are shown below.

²⁰⁰ V/400 V Class Inverters of 0.4 to 15 kW

1

t1

D1

D

(5)

²⁰⁰ V Class Inverters of 18.5 or 22 kW 400 V Class Inverters of 30 to 45 kW

	Max. Appli-	Dimensions (mm) Heat Generation (W)																											
Voltage	cable	Open Chassis (IP00) Enclosed Wall-mounted (NEMA1)													Total	Cool- ing													
Class	Motor Output [kW]	W	Н	D	W1	H1	H2	D1	t1	Ap- prox. Mass	W	н	D	W1	H0	H1	H2	H3	D1	t1	Ap- prox. Mass	Mount- ing Holes d*	Exter nal	Exter Inter- nal nal era- tion					
	0.4																						20	39	59	Natu-			
	0.75		• • • •	157			_	39	_	3		• • • •	157		• • • •		_		39	_	3		27	42	69	ral			
	1.5	140	280		126	266	7		5		140	280		126	280	266	7	0		5		M5	50	50	100				
	2.2			177				59		4			177						59		4		70 112	59 74	129 186				
	5.5									6		300									6		112	74 84	248				
	7.5	200	300	197	186	285	8	65.5		7	200	310	197	186	300	285	8	10	65.5		7		219	113	332				
	11											350						0			-		374	170	544				
200 V	15	240	350	207	216	335		78	2.3	11	240	380	207	216	350	335		30	78	2.3	11	M6	429	183	612				
(3-phase)	18.5	250	400	250	195	385	7.5	100		21	254	535	250	195	400	385	7.5	135	100		24		501	211	712				
	22	275	450	258	220	435		100		24	279	615	258	220	450	435		165	100		27		586	274	860	Fan			
	30	375	600	300	250	575		100		57	380	890	300	250	600	575		210	100		62		865	352	1217				
	37	515	000	330	250	515	13		3.2	63	500	070	330	250	000	515	13	210		3.2	68	M10	1015	411	1426				
	45	450	725	350	325	700		130		86	455	1100	350	325	725	700		305	130		94		1266	505	1771				
	55									87											95		1588	619	2207				
	75	500	850	360	370	820	15		45	108														M12	2019	838	2857		
	90 110	575	885	380	445	855	15	140	4.5	150													NI12	2437 2733	997 1242	3434 3975			
	0.4															1					1		14	39	53	Notes			
	0.75			157				39		3			157									39		3		17	41	58	Natu- ral
	1.5	140	280		126	266	7		5		140	280		126	280	266	7	-		5		M5	36	48	84				
	2.2			177				59		4			177						59		4		59	56	115	1			
	3.7																	0					80	68	148				
	5.5	200	300	197	186	285	8	65.5		6	200	300	197	186	300	285	8		65.5		6		127	82	209				
	7.5	200	500	177	100	205	0	05.5		0	200	500	177	100	500	205	0		05.5		0		193	114	307				
	11	240	350	207	216	335		78		10	240	350	207	216	350	335			78		10		252	158	410				
	15																						326	172	498				
	18.5 22	275	450	258	220	435	7.5	100	2.3	21	279	535	258	220	450	435	7.5		100	2.3	24	M6	426 466	208 259	634 725				
400 V	30						1.5										1.5	85					400 678	259 317	725 995	Fan			
(3-phase)	30	325	550	283	260	535		105		36	329	635	283	260	550	535			105		40		784	360	1144				
	45	525	550	205	200	555		105		50	527	715	205	200	550	555		165	105		10		901	415	1316				
	55									88											96		1203	495	1698				
	75	450	725	350	325	700	13	100	3.2	89	455	1100	350	350 325 725	700	13	305	100	3.2	97	M10	1399	575	1974					
	90	500	050	260	270	000		130		102	505	10.45	200	270	050	000		205	130		122		1614	671	2285	5))			
	110	500	850	360	370	820	15		15	120	505	1245	360	370	850	820	15	395		4.5	130	M12	2097	853	2950				
	132	575	925	380	445	895	15	140	4.5	160	580	1325	380	445	925	895	15	15 400	140	4.5	170		2388	1002	3390				
	160	515	220	550		075		1 10		100	550	1525	550	- + + 5	125	575		400 12	140		170		2791	1147	3938				
	185														_														
	220											ι	Under	devel	lopme	ent													
	300								vorto																				

Table 1.3 Inverter Dimensions (mm) and Masses (kg)

* Same for Open Chassis and Enclosed Wall-mounted Inverters.

Checking and Controlling the Installation Site

Install the Inverter in the installation site described below and maintain optimum conditions.

Installation Site

Install the Inverter under the following conditions.

Table 1.4	Installation	Site
-----------	--------------	------

Туре	Ambient Operating Temperature	Humidity
Enclosed wall-mounted	-10 to + 40 °C	95% RH or less (no condensation)
Open chassis	-10 to + 45 °C	95% RH or less (no condensation)

Protection covers are attached to the top and bottom of the Inverter. Be sure to remove the protection covers before installing a 200 or 400 V Class Inverter with an output of 15 kW or less in a panel.

Observe the following precautions when mounting the Inverter.

- Install the Inverter in a clean location free from oil mist and dust. It can be installed in a totally enclosed panel that is completely shielded from floating dust.
- When installing or operating the Inverter, always take special care so that metal powder, oil, water, or other foreign matter does not get into the Inverter.
- Do not install the Inverter on combustible material, such as wood.
- Install the Inverter in a location free from radioactive materials and combustible materials.
- Install the Inverter in a location free from harmful gasses and liquids.
- Install the Inverter in a location without excessive oscillation.
- Install the Inverter in a location free from chlorides.
- Install the Inverter in a location not in direct sunlight.

Controlling the Ambient Temperature

To enhance the reliability of operation, the Inverter should be installed in an environment free from extreme temperature increases. If the Inverter is installed in an enclosed environment, such as a box, use a cooling fan or air conditioner to maintain the internal air temperature below 45°C.

Protecting the Inverter from Foreign Matter

Place a cover over the Inverter during installation to shield it from metal power produced by drilling.

Always remove the cover from the Inverter after completing installation. Otherwise, ventilation will be reduced, causing the Inverter to overheat.

Installation Orientation and Space

Install the Inverter vertically so as not to reduce the cooling effect. When installing the Inverter, always provide the following installation space to allow normal heat dissipation.

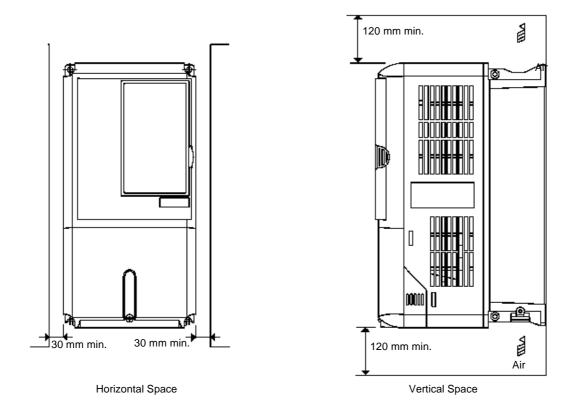


Fig 1.10 Inverter Installation Orientation and Space

1. The same space is required horizontally and vertically for both Open Chassis (IP00) and Enclosed Wallmounted (IP20, NEMA 1 Type 1) Inverters.

2. Always remove the protection covers before installing a 200 or 400 V Class Inverter with an output of 15 kW or less in a panel.

Always provide enough space for suspension eye bolts and the main circuit lines when installing a 200 or 400 V Class Inverter with an output of 18.5 kW or more in a panel.

Removing and Attaching the Terminal Cover

Remove the terminal cover to wire cables to the control circuit and main circuit terminals.

Removing the Terminal Cover

Inverters of 15 kW or Less

Loosen the screws at the bottom of the terminal cover, press in on the sides of the terminal cover in the directions of arrows 1, and then lift up on the terminal in the direction of arrow 2.

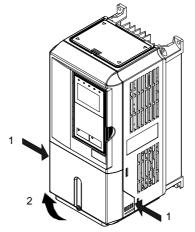


Fig 1.11 Removing the Terminal Cover (Model CIMR-G7C23P7 Shown Above)

Inverters of 18.5 kW or More

Loosen the screws on the left and right at the top of the terminal cover, pull out the terminal cover in the direction of arrow 1 and then lift up on the terminal in the direction of arrow 2.

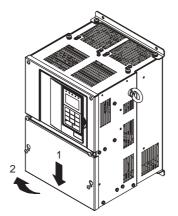


Fig 1.12 Removing the Terminal Cover (Model CIMR-G7C2018 Shown Above)

Attaching the Terminal Cover

When wiring the terminal block has been completed, attach the terminal cover by reversing the removal procedure.

For Inverters with an output of 15 kW or less, insert the tab on the top of the terminal cover into the grove on the Inverter and press in on the bottom of the terminal cover until it clicks into place.

Removing/Attaching the Digital Operator and Front Cover

The methods of removing and attaching the Digital Operator and Front Cover are described in this section.

Inverters of 15 kW or Less

To attach optional cards or change the terminal card connector, remove the Digital Operator and front cover in addition to the terminal cover. Always remove the Digital Operator from the front cover before removing the terminal cover.

The removal and attachment procedures are given below.

Removing the Digital Operator

Press the lever on the side of the Digital Operator in the direction of arrow 1 to unlock the Digital Operator and lift the Digital Operator in the direction of arrow 2 to remove the Digital Operator as shown in the following illustration.

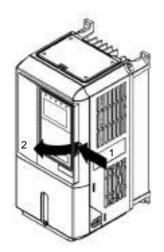


Fig 1.13 Removing the Digital Operator (Model CIMR-G7C43P7 Shown Above)

Removing the Front Cover

Press the left and right sides of the front cover in the directions of arrows 1 and lift the bottom of the cover in the direction of arrow 2 to remove the front cover as shown in the following illustration.

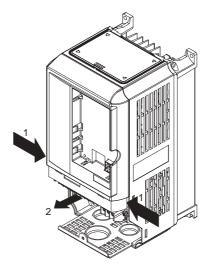


Fig 1.14 Removing the Front Cover (Model CIMR-G7C43P7 Shown Above)

Mounting the Front Cover

After wiring the terminals, mount the front cover to the Inverter by performing in reverse order to the steps to remove the front cover.

- 1. Do not mount the front cover with the Digital Operator attached to the front cover; otherwise, Digital Operator may malfunction due to imperfect contact.
- 2. Insert the tab of the upper part of the front cover into the groove of the Inverter and press the lower part of the front cover onto the Inverter until the front cover snaps shut.

Mounting the Digital Operator

After attaching the terminal cover, mount the Digital Operator onto the Inverting using the following procedure.

- 1. Hook the Digital Operator at A (two locations) on the front cover in the direction of arrow 1 as shown in the following illustration.
- 2. Press the Digital Operator in the direction of arrow 2 until it snaps in place at B (two locations).

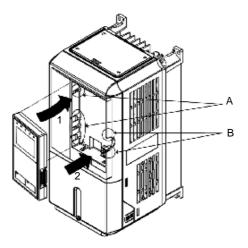


Fig 1.15 Mounting the Digital Operator

1. Do not remove or attach the Digital Operator or mount or remove the front cover using methods other than those described above, otherwise the Inverter may break or malfunction due to imperfect contact.

2. Never attach the front cover to the Inverter with the Digital Operator attached to the front cover. Imperfect contact can result.

Always attach the front cover to the Inverter by itself first, and then attach the Digital Operator to the front cover.

Inverters of 18.5 kW or More

For Inverter with an output of 18.5 kW or more, remove the terminal cover and then use the following procedures to remove the Digital Operator and main cover.

Removing the Digital Operator

Use the same procedure as for Inverters with an output of 18.5 kW or less.

Removing the Front Cover

Lift up at the location label 1 at the top of the control circuit terminal card in the direction of arrow 2.

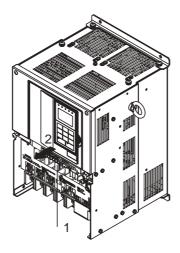


Fig 1.16 Removing the Front Cover (Model CIMR-G7C2018 Shown Above)

Attaching the Front Cover

After completing required work, such as mounting an optional card or setting the terminal card, attach the front cover by reversing the procedure to remove it.

- 1. Confirm that the Digital Operator is not mounted on the front cover. Contact faults can occur if the cover is attached while the Digital Operator is mounted to it.
- 2. Insert the tab on the top of the front cover into the slot on the Inverter and press in on the cover until it clicks into place on the Inverter.

Attaching the Digital Operator

Use the same procedure as for Inverters with an output of 15 kW or less.

2 Wiring

This chapter describes wiring terminals, main circuit terminal connections, main circuit terminal wiring specifications, control circuit terminals, and control circuit wiring specifications.

Connections to Peripheral Devices	2-2
Connection Diagram	2-3
Terminal Block Configuration	2-5
Wiring Main Circuit Terminals	2-6
Wiring Control Circuit Terminals	2-20
Wiring Check	2-28
Installing and Wiring Option Cards	2-29

Connections to Peripheral Devices

Examples of connections between the Inverter and typical peripheral devices are shown in Fig 2.1.

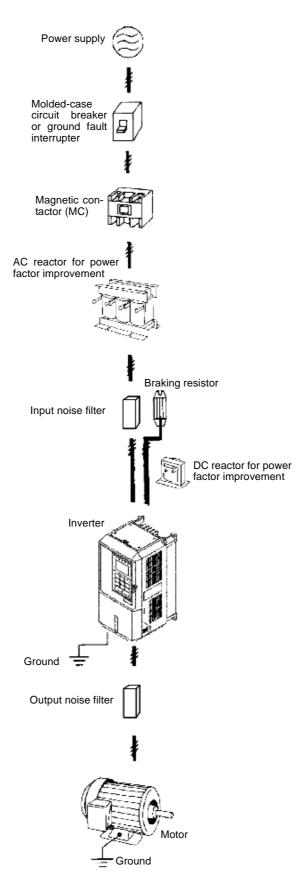


Fig 2.1 Example Connections to Peripheral Devices

Connection Diagram

The connection diagram of the Inverter is shown in Fig 2.2.

When using the Digital Operator, the motor can be operated by wiring only the main circuits.

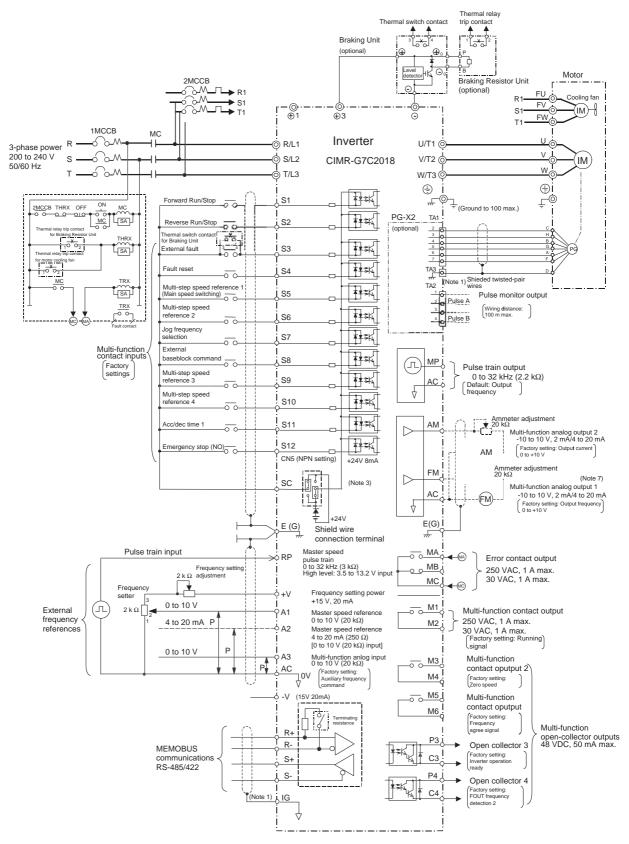


Fig 2.2 Connection Diagram (Model CIMR-G7C2018 Shown Above)

1. Control circuit terminals are arranged as shown below.

S9 S		S12 P3	C3 P4	C4 R+	R- S+	S-]
E(G) SN SC	SP A1 S2 S3	A2 + S4 S5	V AC - S6 S7	V A3 N S8 FM	AC AM	RP IG	M5 M6 MA MB MC M3 M4 M1 M2 E(G)

- 2. The output current capacity of the +V terminal is 20 mA.
- Disable the stall prevention during deceleration (set constant L3-04 to 0) when using a Braking Resistor Unit. If this user constant is not changed to disable stall prevention, the system may not stop during deceleration.
- 4. Main circuit terminals are indicated with double circles and control circuit terminals are indicated with single circles.
- 5. The wiring for a motor with a cooling fan is not required for self-cooling motors.
- 6. PG circuit wiring (i.e., wiring to the PG-B2 Card) is not required for open-loop vector control.
- Sequence input signals S1 to S12 are labeled for sequence connections (0 V common and sinking mode) for no-voltage contacts or NPN transistors. These are the default settings.
 For PNP transistor sequence connections (+24V common and sourcing mode) or to provide a 24-V external power supply, refer to *Table 2.13*.
- 8. The master speed frequency reference can set to input either a voltage (terminal A1) or current (terminal A2) by changing the setting of parameter H3-13. The default setting is for a voltage reference input.
- 9. The multi-function analog output is a dedicated meter output for an analog frequency meter, ammeter, voltmeter, wattmeter, etc. Do not use this output for feedback control or for any other control purpose.
- 10.DC reactors to improve the input power factor built into 200 V Class Inverters for 18.5 to 110 kW and 400 V Class Inverters for 18.5 to 300 kW. A DC reactor is thus an option only for Inverters for 15 kW or less.
- 11.Set parameter L8-01 to 1 when using a breaking resistor (ERF). When using a Braking Resistor Unit, a shutoff sequence for the power supply must be made using a thermal relay trip.

Terminal Block Configuration

The terminal arrangement for 200 V Class Inverters are shown in Fig 2.3 and Fig 2.4.

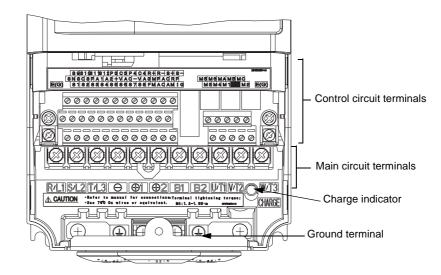
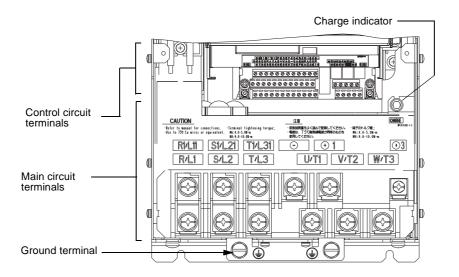



Fig 2.3 Terminal Arrangement (200 V Class Inverter for 0.4 kW Shown Above)

Wiring Main Circuit Terminals

Applicable Wire Sizes and Closed-loop Connectors

Select the appropriate wires and crimp terminals from *Table 2.1* to *Table 2.3*. Refer to instruction manual TOE-C726-2 for wire sizes for Braking Resistor Units and Braking Units.

Inverter Model CIMR-□	Terminal Symbol	Termi- nal Screws	Tightening Torque (N•m)	Possible Wire Sizes mm ² (AWG)	Recom- mended Wire Size mm ² (AWG)	Wire Type
G7C20P4	$ \begin{array}{c} \text{R/L1, S/L2, T/L3, } \ominus, \oplus 1, \oplus 2, \text{B1, B2,} \\ \text{U/T1, V/T2, W/T3} \\ \hline \oplus \end{array} $	M4	1.2 to 1.5	2 to 5.5 (14 to 10)	2 (14)	
G7C20P7	$ \begin{array}{c} \text{R/L1, S/L2, T/L3, } \bigcirc, \oplus 1, \oplus 2, \text{B1, B2,} \\ \text{U/T1, V/T2, W/T3} \\ \hline \oplus \end{array} $	M4	1.2 to 1.5	2 to 5.5 (14 to 10)	2 (14)	
G7C21P5	$ \begin{array}{c} \text{R/L1, S/L2, T/L3, } \bigcirc, \oplus 1, \oplus 2, \text{B1, B2,} \\ \text{U/T1, V/T2, W/T3} \\ \hline \oplus \end{array} $	M4	1.2 to 1.5	2 to 5.5 (14 to 10)	2 (14)	
G7C22P2	$ \begin{array}{c} \text{R/L1, S/L2, T/L3, } \ominus, \oplus 1, \oplus 2, \text{B1, B2,} \\ \text{U/T1, V/T2, W/T3} \\ \hline \oplus \end{array} $	M4	1.2 to 1.5	2 to 5.5 (14 to 10)	3.5 (12)	
G7C23P7	$ \begin{array}{c} \text{R/L1, S/L2, T/L3, } \bigcirc, \oplus 1, \oplus 2, \text{B1, B2,} \\ \text{U/T1, V/T2, W/T3} \\ \hline \end{array} $	M4	1.2 to 1.5	2 to 5.5 (14 to 10)	5.5 (10)	
G7C25P5	$ \begin{array}{c} R/L1, S/L2, T/L3, \overline{\bigcirc}, \oplus 1, \oplus 2, B1, B2, \\ U/T1, V/T2, W/T3 \\ \hline \textcircled{B} \end{array} $	M5	2.5	8 to 14 (8 to 6)	8 (8)	
G7C27P5	$ \begin{array}{c} \text{R/L1, S/L2, T/L3, } \ominus, \oplus 1, \oplus 2, \text{B1, B2,} \\ \text{U/T1, V/T2, W/T3} \\ \end{array} $	M5	2.5	14 (6)	14 (6)	
	$R/L1$, $S/L2$, $T/L3$, $\overline{\bigcirc}$, $\oplus 1$, $\oplus 2$, $U/T1$, $V/T2$, $W/T3$	M6	4.0 to 5.0	22 to 30 (4 to 3)	22 (4)	
G7C2011	B1, B2	M5	2.5	8 to 14 (8 to 6)	-	Power cables, e.g., 600 V
		M6	4.0 to 5.0	22 (4)	22 (4)	vinyl power cables
	R/L1, S/L2, T/L3, \bigcirc , \oplus 1, \oplus 2, U/T1, V/T2, W/T3	M8	9.0 to 10.0	22 to 38 (4 to 2)	30 (3)	
G7C2015	B1, B2	M5	2.5	8 to 14 (8 to 6)	-	
		M6	4.0 to 5.0	22 (4)	22 (4)	
	R/L1, $S/L2$, $T/L3$, $⊖$, $⊕$ 1, $U/T1$, $V/T2$, $W/T3$, $R1/L11$, $S1/L21$, $T1/L31$	M8	9.0 to 10.0	30 to 60 (3 to 1)	30 (3)	
G7C2018	① 3	M6	4.0 to 5.0	8 to 22 (8 to 4)	-	
		M8	9.0 to 10.0	22 to 38 (4 to 2)	22 (4)	
	R/L1, S/L2, T/L3, ⊖, ⊕1 U/T1, V/T2, W/T3, R1/L11, S1/L21, T1/L31	M8	9.0 to 10.0	50 to 60 (1 to 1/0)	50 (1)	
G7C2022	⊕ 3	M6	4.0 to 5.0	8 to 22 (8 to 4)	-	
	(M8	9.0 to 10.0	22 to 38 (4 to 2)	22 (4)	
	R/L1, S/L2, T/L3, ⊖, ⊕1 U/T1, V/T2, W/T3, R1/L11, S1/L21, T1/L31	M10	17.6 to 22.5	60 to 100 (2/0 to 4/0)	60 (2/0)	
G7C2030	÷ 3	M8	8.8 to 10.8	5.5 to 22 (10 to 4)	-	
		M10	17.6 to 22.5	30 to 60 (2 to 2/0)	30 (2)	
	r/ £ 1, / £ 2	M4	1.3 to 1.4	0.5 to 5.5 (20 to 10)	1.25 (16)	

Table 2.1 200 V Class Wire Sizes

Inverter Model CIMR-□	Terminal Symbol	Termi- nal Screws	Tightening Torque (N•m)	Possible Wire Sizes mm ² (AWG)	Recom- mended Wire Size mm ² (AWG)	Wire Type
	R/L1, S/L2, T/L3, ⊖, ⊕1 U/T1, V/T2, W/T3, R1/L11, S1/L21, T1/L31	M10	17.6 to 22.5	80 to 125 (3/0 to 250)	80 (3/0)	
G7C2037	÷3	M8	8.8 to 10.8	5.5 to 22 (10 to 4)	-	
		M10	17.6 to 22.5	38 to 60 (1 to 2/0)	38 (1)	
	r/ € 1, / € 2	M4	1.3 to 1.4	0.5 to 5.5 (20 to 10)	1.25 (16)	
	R/L1, S/L2, T/L3, ⊖, ⊕1, U/T1, V/T2, W/T3, R1/L11, S1/L21, T1/L31	M10	17.6 to 22.5	50 to 100 (1/0 to 4/0)	$50 \times 2P$ $(1/0 \times 2P)$	
G7C2045	÷ 3	M8	8.8 to 10.8	5.5 to 60 (10 to 2/0)	-	
0702010	Ð	M10	17.6 to 22.5	30 to 60 (3 to 4/0)	50 (1/0)	
	r/ € 1, / € 2	M4	1.3 to 1.4	0.5 to 5.5 (20 to 10)	1.25 (16)	
	$\Theta, \oplus 1$	M12	31.4 to 39.2	80 to 125 (3/0 to 250)	$80 \times 2P$ $(3/0 \times 2P)$	
	R/L1, S/L2, T/L3, U/T1, V/T2, W/T3,	M10	17.6 to 22.5	80 to 100 (3/0 to 4/0)	$80 \times 2P$ $(3/0 \times 2P)$	
G7C2055	R1/L11, S1/L21, T1/L31 ⊕ 3	M8	8.8 to 10.8	5.5 to 60	(3/0 × 2P)	
		M12	17.6 to 22.5	(10 to 2/0) 80 to 200	80	
				(2/0 to 400) 0.5 to 5.5	(2/0) 1.25	
	r/ € 1, / € 2	M4	1.3 to 1.4	(20 to 10) 150 to 200	(16) 150 × 2P	
	R/L1, S/L2, T/L3, ⊖, ⊕1	M12	31.4 to 39.2	(250 to 350)	$(250 \times 2P)$	
	U/T1, V/T2, W/T3, R1/L11, S1/L21, T1/L31	M12	31.4 to 39.2	100 to 150 (4/0 to 300)	$100 \times 2P$ $(4/0 \times 2P)$	Power cables,
G7C2075	÷3	M8	8.8 to 10.8	5.5 to 60 (10 to 2/0)	-	e.g., 600 V
	(M12	31.4 to 39.2	60 to 150 (2/0 to 300)	$60 \times 2P$ $(2/0 \times 2P)$	vinyl power cables
	r/ £ 1, / £ 2	M4	1.3 to 1.4	0.5 to 5.5 (20 to 10)	1.25 (16)	
	R/L1, S/L2, T/L3, ⊖, ⊕1	M12	31.4 to 39.2	200 to 325 (350 to 600)	$200 \times 2P, \text{ or}$ $50 \times 4P$ $(350 \times 2P, \text{ or } 1/0 \times 4P)$	
G7C2090	U/T1, V/T2, W/T3, R1/L11, S1/L21, T1/L31	M12	31.4 to 39.2	150 to 325 (300 to 600)	$150 \times 2P, \text{ or}$ $50 \times 4P$ $(300 \times 2P, \text{ or } 1/0 \times 4P)$	
	⊕ 3	M8	8.8 to 10.8	5.5 to 60 (10 to 2/0)	-	
		M12	31.4 to 39.2	150 (300)	$150 \times 2P$ $(300 \times 2P)$	
	r/ € 1, / € 2	M4	1.3 to 1.4	0.5 to 5.5 (20 to 10)	1.25 (16)	
	R/L1, S/L2, T/L3, ⊖, ⊕1	M12	31.4 to 39.2	200 to 325 (350 to 600)	$200 \times 2P, \text{ or}$ $50 \times 4P$ $(350 \times 2P, \text{ or } 1/0 \times 4P)$	
G7C2110	U/T1, V/T2, W/T3, R1/L11, S1/L21, T1/ L31	M12	31.4 to 39.2	150 to 325 (300 to 600)	$150 \times 2P$, or $50 \times 4P$ $(300 \times 2P$, or $1/0 \times 4P$)	
	÷ 3	M8	8.8 to 10.8	5.5 to 60 (10 to 2/0)	-	
	Ð	M12	31.4 to 39.2	150 (300)	$150 \times 2P$ $(300 \times 2P)$	
	r/ € 1, / € 2	M4	1.3 to 1.4	0.5 to 5.5 (20 to 10)	1.25 (16)	

* The wire thickness is set for copper wires at $75^\circ C$

Inverter Model CIMR-□	Terminal Symbol	Termi- nal Screws	Tightening Torque (N•m)	Possible Wire Sizes mm ² (AWG)	Recom- mended Wire Size mm ² (AWG)	Wire Type
G7C40P4	R/L1, S/L2, T/L3, ⊖, ⊕1, ⊕2, B1, B2, U/T1, V/T2, W/T3	M4	1.2 to 1.5	2 to 5.5 (14 to 10)	2 (14)	
G7C40P7	R/L1, S/L2, T/L3, ⊖, ⊕1, ⊕2, B1, B2, U/T1, V/T2, W/T3 ④	M4	1.2 to 1.5	2 to 5.5 (14 to 10)	2 (14)	
G7C41P5	$ \begin{array}{c} \text{R/L1, S/L2, T/L3, } \bigcirc, \oplus 1, \oplus 2, \text{B1, B2,} \\ \text{U/T1, V/T2, W/T3} \\ \hline \oplus \end{array} $	M4	1.2 to 1.5	2 to 5.5 (14 to 10)	2 (14)	
G7C42P2	$ \begin{array}{c} \text{R/L1, S/L2, T/L3, } \bigcirc, \oplus 1, \oplus 2, \text{B1, B2,} \\ \text{U/T1, V/T2, W/T3} \\ \hline \oplus \end{array} $	M4	1.2 to 1.5	2 to 5.5 (14 to 10)	3.5 (12) 2 (14)	
G7C43P7	R/L1, S/L2, T/L3, ⊖, ⊕1, ⊕2, B1, B2, U/T1, V/T2, W/T3	M4	1.2 to 1.5	2 to 5.5 (14 to 10)	3.5 (12)	
G7C45P5	$ \begin{array}{c} R/L1, S/L2, T/L3, \bigcirc, \oplus 1, \oplus 2, B1, B2, \\ U/T1, V/T2, W/T3 \\ \hline \oplus \end{array} $	M4	1.2 to 1.5	3.5 to 5.5 (12 to 10)	5.5 (10)	
G7C47P5	R/L1, S/L2, T/L3, ⊖, ⊕1, ⊕2, B1, B2, U/T1, V/T2, W/T3	M5	2.5	5.5 to 14 (10 to 6)	8 (8)	
G7C4011	R/L1, S/L2, T/L3, ⊖, ⊕1, ⊕2, B1, B2, U/T1, V/T2, W/T3	M5	2.5	8 to 14 (8 to 6)	8 (8)	Power cables, e.g., 600 V
		M5 (M6)	2.5 (4.0 to 5.0)	5.5 to 14 (10 to 6)	5.5 (10)	vinyl power cables
	$\begin{array}{c} \text{R/L1, S/L2, T/L3, } \bigcirc, \oplus 1, \oplus 2, \text{U/T1,} \\ \text{V/T2, W/T3} \end{array}$	M5	4.0 to 5.0	8 to 14 (8 to 6)	8 (8)	cables
G7C4015	B1, B2	M5	2.5	8 (8)	8 (8)	
		M5 (M6)	4.0 to 5.0	8 to 22 (8 to 4)	8 (8)	
G7C4018	R/L1, S/L2, T/L3, ⊖, ⊕1, ⊕3, U/T1, V/T2, W/T3, R1/L11, S1/L21, T1/L31	M6	4.0 to 5.0	14 to 22 (6 to 4)	14 (6)	
		M8	9.0 to 10.0	14 to 38 (6 to 2)	14 (6)	
G7C4022	R/L1, S/L2, T/L3, ⊖, ⊕1, ⊕3, U/T1, V/T2, W/T3, R1/L11, S1/L21, T1/L31	M6	4.0 to 5.0	22 (4)	22 (4)	
		M8	9.0 to 10.0	22 to 38 (4 to 2)	22 (4)	
	R/L1, S/L2, T/L3, ⊖, ⊕1, U/T1, V/T2, W/T3, R1/L11, S1/L21, T1/L31	M8	9.0 to 10.0	22 to 60 (4 to 1/0)	38 (2)	
G7C4030	÷3	M6	4.0 to 5.0	8 to 22 (8 to 4)	-	
	Ð	M8	9.0 to 10.0	22 to 38 (4 to 2)	22 (4)	
	R/L1, S/L2, T/L3, ⊖, ⊕1, U/T1, V/T2, W/T3, R1/L11, S1/L21, T1/L31	M8	9.0 to 10.0	30 to 60 (2 to 1/0)	38 (2)	
G7C4037	÷3	M6	4.0 to 5.0	8 to 22 (8 to 4)	-	
	٩	M8	9.0 to 10.0	22 to 38 (4 to 2)	22 (4)	

Table 2.2 400 V Class Wire Sizes

Inverter Model CIMR-□	Terminal Symbol	Termi- nal Screws	Tightening Torque (N•m)	Possible Wire Sizes mm ² (AWG)	Recom- mended Wire Size mm ² (AWG)	Wire Type
	$R/L1$, $S/L2$, $T/L3$, Θ , \oplus 1, $U/T1$, $V/T2$, $W/T3$, $R1/L11$, $S1/L21$, $T1/L31$	M8	9.0 to 10.0	50 to 60 (1 to 1/0)	50 (1)	
G7C4045	⊕ 3	M6	4.0 to 5.0	8 to 22 (8 to 4)	-	
		M8	9.0 to 10.0	22 to 38 (4 to 2)	22 (4)	
	R/L1, S/L2, T/L3, ⊖, ⊕1, U/T1, V/T2, W/T3, R1/L11, S1/L21, T1/L31	M10	17.6 to 22.5	50 to 100 (1/0 to 4/0)	50 (1/0)	
G7C4055	÷3	M8	8.8 to 10.8	5.5 to 22 (10 to 4)	-	
0701055		M10	17.6 to 22.5	38 to 60 (2 to 2/0)	38 (2)	
	r/ £1, 200/ _{£2} 200, 400/ _{£2} 400	M4	1.3 to 1.4	0.5 to 5.5 (20 to 10)	1.25 (16)	
	$R/L1$, $S/L2$, $T/L3$, \bigcirc , \oplus 1, $U/T1$, $V/T2$, $W/T3$, $R1/L11$, $S1/L21$, $T1/L31$	M10	17.6 to 22.5	80 to 100 (3/0 to 4/0)	100 (4/0)	
G7C4075	• 3	M8	8.8 to 10.8	8 to 22 (8 to 4)	-	
0704075		M10	17.6 to 22.5	50 to 100 (1 to 4/0)	50 (1)	
	$r/\epsilon 1$, 200/ $\epsilon 2200$, 400/ $\epsilon 2400$	M4	1.3 to 1.4	0.5 to 5.5 (20 to 10)	1.25 (16)	
	R/L1, $S/L2$, $T/L3$, $⊖$, $⊕$ 1, $U/T1$, $V/T2$, $W/T3$, $R1/L11$, $S1/L21$, $T1/L33$	M10	17.6 to 22.5	50 to 100 (1/0 to 4/0)	$50 \times 2P$ $(1/0 \times 2P)$	
G7C4090	÷3	M8	8.8 to 10.8	8 to 60 (8 to 2/0)	-	Power cables,
0101070		M10	17.6 to 22.5	60 to 150 (2/0 to 300)	60 (2/0)	e.g., 600 V vinyl power
	r/ £ 1, 200/ _{£ 2} 200, 400/ _{£ 2} 400	M4	1.3 to 1.4	0.5 to 5.5 (20 to 10)	1.25 (16)	cables
	R/L1, S/L2, T/L3, ⊖, ⊕1, U/T1, V/T2, W/T3, R1/L11, S1/L21, T1/L33	M10	17.6 to 22.5	60 to 100 (2/0 to 4/0)	80 × 2P (3/0 × 2P)	
G7C4110	⊕ 3	M8	8.8 to 10.8	8 to 60 (8 to 2/0)	-	
		M10	17.6 to 22.5	100 to 150 (4/0 to 300)	100 (4/0)	
	r/ £ 1, 200/ _{£ 2} 200, 400/ _{£ 2} 400	M4	1.3 to 1.4	0.5 to 5.5 (20 to 10)	1.25 (16)	
	R/L1, S/L2, T/L3, ⊖, ⊕1, U/T1, V/T2, W/T3, R1/L11, S1/L21, T1/L31	M12	31.4 to 39.2	80 to 200 (3/0 to 400)	$80 \times 2P$ $(3/0 \times 2P)$	
G7C4132	⊕ 3	M8	8.8 to 10.8	8 to 60 (8 to 2/0)	-	
0/0102		M12	31.4 to 39.2	50 to 150 (1/0 to 300)	$50 \times 2P$ $(1/0 \times 2P)$	
	$r/\epsilon 1$, 200/ $\epsilon 2200$, 400/ $\epsilon 2400$	M4	1.3 to 1.4	0.5 to 5.5 (20 to 10)	1.25 (16)	
	R/L1, S/L2, T/L3, ⊖, ⊕ 1, U/T1, V/T2, W/T3, R1/L11, S1/L21, T1/L31	M12	31.4 to 39.2	100 to 200 (4/0 to 400)	$100 \times 2P$ (4/0 × 2P)	
G7C4160	÷3	M8	8.8 to 10.8	80 to 60 (8 to 2/0)	-	
0,0100		M12	31.4 to 39.2	50 to 150 (1/0 to 300)	$50 \times 2P$ $(1/0 \times 2P)$	
	r/ £1, 200/ _{£2} 200, 400/ _{£2} 400	M4	1.3 to 1.4	0.5 to 5.5 (20 to 10)	1.25 (16)	
G7C4185 G7C4220 G7C4300		Under d	levelopment	· · · · · ·		

 $^{\ast}~$ The wire thickness is set for copper wires at 75°C.

Wire Thickness (mm ²)	Terminal Screws	Size
0.5	M3.5	1.25 to 3.5
0.5	M4	1.25 to 4
0.75	M3.5	1.25 to 3.5
0.75	M4	1.25 to 4
1.05	M3.5	1.25 to 3.5
1.25	M4	1.25 to 4
	M3.5	2 to 3.5
	M4	2 to 4
2	M5	2 to 5
	M6	2 to 6
	M8	2 to 8
	M4	5.5 to 4
	M5	5.5 to 5
3.5/5.5	M6	5.5 to 6
	M8	5.5 to 8
	M5	8 to 5
8	M6	8 to 6
	M8	8 to 8
14	M6	14 to 6
14 -	M8	14 to 8
22	M6	22 to 6
22 -	M8	22 to 8
30/38	M8	38 to 8
50/20	M8	60 to 8
50/60	M10	60 to 10
80	N10	80 to 10
100	M10	100 to 10
100		100 to 12
150	M12	150 to 12
200		200 to 12
225	M12 x 2	325 to 12
325	M16	325 to 16

Table 2.3 Closed-loop Connector Sizes (JIS C2805) (200 V Class and 400 V Class)

Determine the wire size for the main circuit so that line voltage drop is within 2% of the rated voltage. Line voltage drop is calculated as follows: Line voltage drop (V) = $\sqrt{3}$ x wire resistance (W/km) x wire length (m) x current (A) x 10⁻³

♦ Main Circuit Terminal Functions

Main circuit terminal functions are summarized according to terminal symbols in *Table 2.4*. Wire the terminals correctly for the desired purposes.

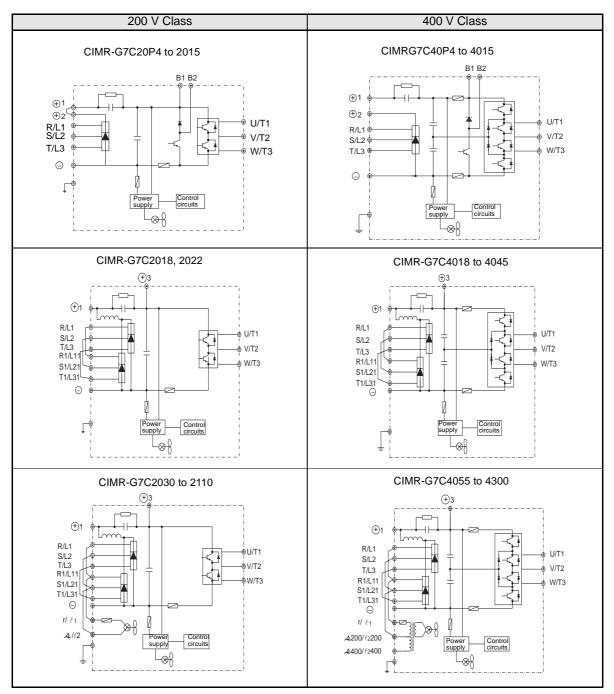
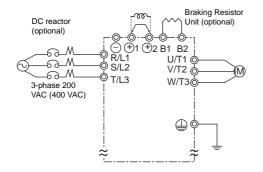

Purpose	Terminal Symbol	Model: CIMR-G7C□		
Fulpose	Terminal Symbol	200 V Class	400 V Class	
Main circuit power input	R/L1, S/L2, T/L3	20P4 to 2110	40P4 to 4160	
Main circuit power input	R1/L11, S1/L21, T1/L31	2018 to 2110	4018 to 4160	
Inverter outputs	U/T1, V/T2, W/T3	20P4 to 2110	40P4 to 4160	
DC power input	\oplus 1, \ominus	20P4 to 2110	40P4 to 4160	
Braking Resistor Unit connec- tion	B1, B2	20P4 to 27P5	40P4 to 4015	
DC reactor connection	⊕1, ⊕2	20P4 to 2015	40P4 to 4015	
Braking Unit connection	⊕3, ⊖	2018 to 2110	4018 to 4160	
Ground		20P4 to 2110	40P4 to 4160	

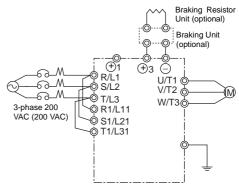
Table 2.4 Main Circuit Terminal Functions (200 V Class and 400 V Class)

Main Circuit Configurations

The main circuit configurations of the Inverter are shown in Fig 2.5.



Note Consult your Yaskawa representative before using 12-phase rectification.


Standard Connection Diagrams

Standard Inverter connection diagrams are shown in *Fig 2.5*. These are the same for both 200 V Class and 400 V Class Inverters. The connections depend on the Inverter capacity.

CIMR-G7C20P4 to 2015 and 40P4 to 4015

Be sure to remove the short-circuit bar before connecting the DC reactor.

■CIMR-G7C2018, 2022, and 4018 to 4045

The DC reactor is built in.

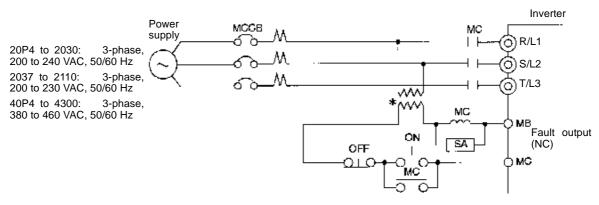
■CIMR-G7C2030 to 2110 ■CIMR-G7C4055 to 4300 Braking Resistor Unit (optional) Braking Resistor Unit (optional) Ó Ó Braking Unit Braking Unit (optional) (optional) 0 0 ·@···@ --⇔---⇔-⊕3 ⊝ ⊕**1** Ðĭ ⊕3 ⊝ 60 െ R/L1 R/L1 Ú/T1 © V/T2 © U/T1 © V/T2 © 6 M -@__M © S/L2 ര S/L2 (M) -60-N -@__M [∲] T/L3 Ф T/L3 W/T3@ W/T3@ >0 R1/L11 3-phase 3-phase 🖄 R1/L11 200 VAC 400 VAC >© S1/L21 ≫Ö S1/L21 © T1/L31 Φ T1/L31 . ⊚ r/ℓ1 في الأكل الأ Ø.200/ℓ2200 ⊚&400/ℓ2400

Control power is supplied internally from the main circuit DC power supply for all Inverter models.

Fig 2.5 Main Circuit Terminal Connections

Wiring the Main Circuits

This section describes wiring connections for the main circuit inputs and outputs.


■Wiring Main Circuit Inputs

Observe the following precautions for the main circuit power supply input.

Installing a Molded-case Circuit Breaker

Always connect the power input terminals (R, S, and T) and power supply via a molded-case circuit breaker (MCCB) suitable for the Inverter.

- Choose an MCCB with a capacity of 1.5 to 2 times the Inverter's rated current.
- For the MCCB's time characteristics, be sure to consider the Inverter's overload protection (one minute at 150% of the rated output current).
- If the same MCCB is to be used for more than one Inverter, or other devices, set up a sequence so that the power supply will be turned OFF by a fault output, as shown in *Fig 2.6*.

* For 400 V class Inverters, connect a 400/200 V transformer.

Fig 2.6 MCCB Installation

Installing a Ground Fault Interrupter

Inverter outputs use high-speed switching, so high-frequency leakage current is generated. Therefore, at the Inverter primary side, use a ground fault interrupter to detect only the leakage current in the frequency range that is hazardous to humans and exclude high-frequency leakage current.

- For the special-purpose ground fault interrupter for Inverters, choose a ground fault interrupter with a sensitivity amperage of at least 30 mA per Inverter.
- When using a general ground fault interrupter, choose a ground fault interrupter with a sensitivity amperage of 200 mA or more per Inverter and with an operating time of 0.1 s or more.

Installing a Magnetic Contactor

If the power supply for the main circuit is to be shut off during a sequence, a magnetic contactor can be used.

When a magnetic contactor is installed on the primary side of the main circuit to forcibly stop the Inverter, however, the regenerative braking does not work and the Inverter will coast to a stop.

- The Inverter can be started and stopped by opening and closing the magnetic contactor on the primary side. Frequently opening and closing the magnetic contactor, however, may cause the Inverter to break down. Start and stop the Inverter at most once every 30 minutes.
- When the Inverter is operated with the Digital Operator, automatic operation cannot be performed after recovery from a power interruption.
- If the Braking Resistor Unit is used, program the sequence so that the magnetic contactor is turned OFF by the contact of the Unit's thermal overload relay.

Connecting Input Power Supply to the Terminal Block

Input power supply can be connected to any terminal R, S or T on the terminal block; the phase sequence of input power supply is irrelevant to the phase sequence.

Installing an AC Reactor

If the Inverter is connected to a large-capacity power transformer (600 kW or more) or the phase advancing capacitor is switched, an excessive peak current may flow through the input power circuit, causing the converter unit to break down.

To prevent this, install an optional AC Reactor on the input side of the Inverter or a DC reactor to the DC reactor connection terminals.

This also improves the power factor on the power supply side.

Installing a Surge Absorber

Always use a surge absorber or diode for inductive loads near the Inverter. These inductive loads include magnetic contactors, electromagnetic relays, solenoid valves, solenoids, and magnetic brakes.

Installing a Noise Filter on Power Supply Side

Install a noise filter to eliminate noise transmitted between the power line and the Inverter.

• Correct Noise Filter Installation

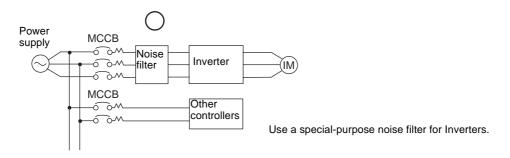
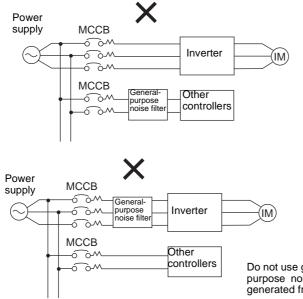



Fig 2.7 Correct Power supply Noise Filter Installation

• Incorrect Noise Filter Installation

Do not use general-purpose noise filters. No generalpurpose noise filter can effectively suppress noise generated from the Inverter.

Fig 2.8 Incorrect Power supply Noise Filter Installation

Wiring the Output Side of Main Circuit

Observe the following precautions when wiring the main output circuits.

Connecting the Inverter and Motor

Connect output terminals U, V, and W to motor lead wires U, V, and W, respectively.

Check that the motor rotates forward with the forward run command. Switch over any two of the output terminals to each other and reconnect if the motor rotates in reverse with the forward run command.

Never Connect a Power Supply to Output Terminals

Never connect a power supply to output terminals U, V, and W. If voltage is applied to the output terminals, the internal circuits of the Inverter will be damaged.

Never Short or Ground Output Terminals

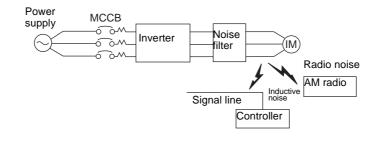
If the output terminals are touched with bare hands or the output wires come into contact with the Inverter casing, an electric shock or grounding will occur. This is extremely hazardous. Do not short the output wires.

Do Not Use a Phase Advancing Capacitor or Noise Filter

Never connect a phase advancing capacitor or LC/RC noise filter to an output circuit. The high-frequency components of the Inverter output may result in overheating or damage to these part or may result in damage to the Inverter or cause other parts to burn.

Do Not Use an Electromagnetic Switch

Never connect an electromagnetic switch (MC) between the Inverter and motor and turn it ON or OFF during operation. If the MC is turned ON while the Inverter is operating, a large inrush current will be created and the overcurrent protection in the Inverter will operate.


When using an MC to switch to a commercial power supply, stop the Inverter and motor before operating the MC. Use the speed search function if the MC is operated during operation. If measures for momentary power interrupts are required, use a delayed release MC.

Installing a Thermal Overload Relay

This Inverter has an electronic thermal protection function to protect the motor from overheating. If, however, more than one motor is operated with one Inverter or a multi-polar motor is used, always install a thermal relay (THR) between the Inverter and the motor and set L1-01 to 0 (no motor protection). The sequence should be designed so that the contacts of the thermal overload relay turn OFF the magnetic contactor on the main circuit inputs.

Installing a Noise Filter on Output Side

Connect a noise filter to the output side of the Inverter to reduce radio noise and inductive noise.

 Inductive Noise:
 Electromagnetic induction generates noise on the signal line, causing the controller to malfunction.

 Radio Noise:
 Electromagnetic waves from the Inverter and cables cause the broadcasting radio receiver to make noise.

Fig 2.9 Installing a Noise Filter on the Output Side

Countermeasures Against Inductive Noise

As described previously, a noise filter can be used to prevent inductive noise from being generated on the output side. Alternatively, cables can be routed through a grounded metal pipe to prevent inductive noise. Keeping the metal pipe at least 30 cm away from the signal line considerably reduces inductive noise.

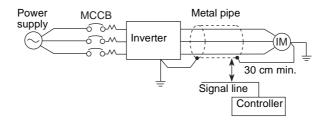



Fig 2.10 Countermeasures Against Inductive Noise

Countermeasures Against Radio Interference

Radio noise is generated from the Inverter as well as from the input and output lines. To reduce radio noise, install noise filters on both input and output sides, and also install the Inverter in a totally enclosed steel box.

The cable between the Inverter and the motor should be as short as possible.

Cable Length between Inverter and Motor

If the cable between the Inverter and the motor is long, the high-frequency leakage current will increase, causing the Inverter output current to increase as well. This may affect peripheral devices. To prevent this, adjust the carrier frequency (set in C6-01, C6-02) as shown in *Table 2.6.* (For details, refer to *Chapter 5 User Constants.*)

Table 2.6 Cable Length between Inverter and Motor

Cable length	50 m max.	100 m max.	More than 100 m
Carrier frequency	15 kHz max.	10 kHz max.	5 kHz max.

Ground Wiring

Observe the following precautions when wiring the ground line.

- Always use the ground terminal of the 200 V Inverter with a ground resistance of less than 100 Ω and that of the 400 V Inverter with a ground resistance of less than 10 Ω .
- Do not share the ground wire with other devices, such as welding machines or power tools.
- Always use a ground wire that complies with technical standards on electrical equipment and minimize the length of the ground wire.

Leakage current flows through the Inverter. Therefore, if the distance between the ground electrode and the ground terminal is too long, potential on the ground terminal of the Inverter will become unstable.

• When using more than one Inverter, be careful not to loop the ground wire.

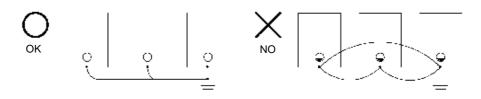


Fig 2.12 Ground Wiring

Connecting the Braking Resistor (ERF)

A Braking Resistor that mounts to the Inverter can be used with 200 V and 400 V Class Inverters with outputs from 0.4 to 3.7 kW.

Connect the braking resistor as shown in Fig 2.13.

Table	2.7
-------	-----

L8-01 (Protect selection for internal DB resistor)	1 (Enables overheat protection)		
L3-04 (Stall prevention selection during deceleration)	0 (Disables stall prevention function)		
(Select either one of them.)	3 (Enables stall prevention function with braking resistor)		

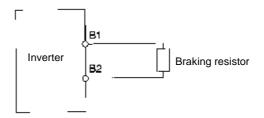


Fig 2.13 Connecting the Braking Resistor

The braking resistor connection terminals are B1 and B2. Do not connect to any other terminals. Connecting to any terminals other than B1 or B2 can cause the resistor to overheat, resulting in damage to the equipment.

Connecting the Braking Resistor Unit (LKEB) and Braking Unit (CDBR)

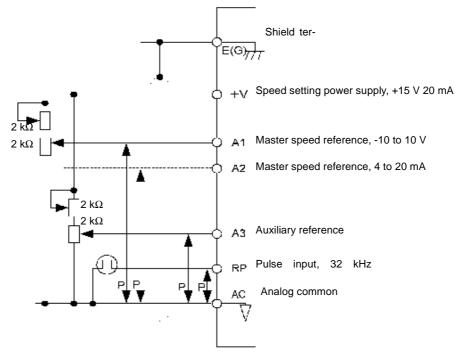
Use the following settings when using a Braking Resistor Unit. Refer to *User Constants* on page 10-19 for connection methods for a Braking Resistor Unit.

A Braking Resistor that mounts to the Inverter can also be used with Inverters with outputs from 0.4 to 3.7 kW.

Table	2.8
-------	-----

L8-01 (Protect selection for internal DB resistor)	0 (Disables overheat protection)
(Select either one of them)	0 (Disables stall prevention function)
	3 (Enables stall prevention function with braking resistor)

L8-01 is used when a braking resistor without thermal overload relay trip contacts (ERF type mounted to Inverter) is connected.


The Braking Resistor Unit cannot be used and the deceleration time cannot be shortened by the Inverter if L3-04 is set to 1 (i.e., if stall prevention is enabled for deceleration).

Wiring Control Circuit Terminals

Wire Sizes and Closed-loop Connectors

For remote operation using analog signals, keep the control line length between the Digital Operator or operation signals and the Inverter to 50 m or less, and separate the lines from high-power lines (main circuits or relay sequence circuits) to reduce induction from peripheral devices.

When setting frequencies from an external frequency setter (and not from a Digital Operator), used shielded twisted-pair wires and ground the shield to terminal E (G), as shown in the following diagram.

Terminal numbers and wire sizes are shown in Table 2.9.

Table 2.9 Terminal Numbers and Wire Sizes (Same for all Models)

Terminals	Termi- nal Screws	Tightening Torque (N•m)	Possible Wire Sizes mm ² (AWG)	Recom- mended Wire Size mm ² (AWG)	Wire Type
FM, AC, AM, M3, M4, SC, A1, A2, A3, +V, -V, S1, S2, S3, S4, S5, S6, S7, S8, MA, MB, MC, M1, M2, P3, C3, P4, C4, MP, RP, R+, R-, S9, S10, S11, S12, S+, S-, IG, SN, SP	Phoenix type	0.5 to 0.6	Single wire ^{*3} : 0.14 to 2.5 Stranded wire: 0.14 to 1.5 (26 to 14)	0.75 (18)	 Shielded, twisted-pair wire^{*1} Shielded, polyethylene-covered, vinyl sheath cable (KPEV-S by Hitachi Electrical Wire or equivalent)
E (G)	M3.5	0.8 to 1.0	0.5 to 2 ^{*2} (20 to 14)	1.25 (12)	

* 1. Use shielded twisted-pair cables to input an external frequency reference.

* 2. Refer to Table 2.3 Close-loop Connector Sizes for suitable closed-loop crimp terminal sizes for the wires.

* 3. We recommend using straight solderless terminal on signal lines to simplify wiring and improve reliability.

Straight Solderless Terminals for Signal Lines

Models and sizes of straight solderless terminal are shown in the following table.

Wire Size mm ² (AWG)	Model	d1	d2	L	Manufacturer
0.25 (24)	AI 0.25 - 8YE	0.8	2	12.5	
0.5 (20)	AI 0.5 - 8WH	1.1	2.5	14	
0.75 (18)	AI 0.75 - 8GY	1.3	2.8	14	Phoenix Contact
1.25 (16)	AI 1.5 - 8BK	1.8	3.4	14	
2 (14)	AI 2.5 - 8BU	2.3	4.2	14	

Table 2.10 Straight Solderless Terminal Sizes

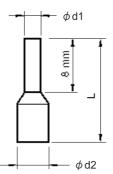


Fig 2.15 Straight Solderless Terminal Sizes

■Wiring Method

Use the following procedure to connect wires to the terminal block.

- 1. Loosen the terminal screws with a thin-slot screwdriver.
- 2. Insert the wires from underneath the terminal block.
- 3. Tighten the terminal screws firmly.

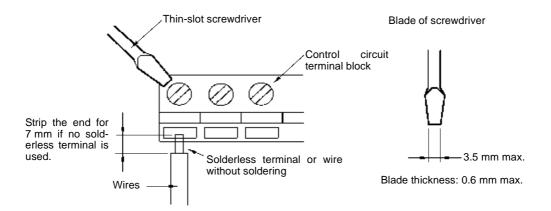


Fig 2.16 Connecting Wires to Terminal Block

Control Circuit Terminal Functions

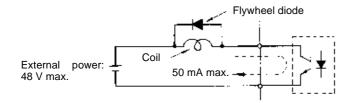
The functions of the control circuit terminals are shown in *Table 2.11*. Use the appropriate terminals for the correct purposes.

Туре	No.	Signal Name	Function	Signal Level
	S 1	Forward run/stop command	Forward run when ON; stopped when OFF.	
	S2	Reverse run/stop command	Reverse run when ON; stopped when OFF.	
	S 3	Multi-function input 1 ^{*1}	Factory setting: External fault when ON.	
	S 4	Multi-function input 2 ^{*1}	Factory setting: Fault reset when ON.	
	S5	Multi-function input 3 ^{*1}	Factory setting: Multi-speed speed reference 1 effective when ON.	
	S 6	Multi-function input 4 ^{*1}	Factory setting: Multi-speed speed reference 2 effective when ON.	
Se- quence	S 7	Multi-function input 5 ^{*1}	Factory setting: Jog frequency selected when ON.	24 VDC, 8 mA
input signals	S 8	Multi-function input 6 ^{*1}	Factory setting: External baseblock when ON.	Photocoupler isolation
	S9	Multi-function input 7 ^{*1}	Factory setting: Multi-speed speed reference 3 effective when ON.	
	S10	Multi-function input 8 ^{*1}	Factory setting: Multi-speed speed reference 4 effective when ON.	
	S11	Multi-function input 9 ^{*1}	Factory setting: Acceleration/deceleration time selected when ON.	
	S12	Multi-function input 10 ^{*1}	Factory setting: Emergency stop (NO con- tact) when ON.	
	SC Sequence input common		-	
	+V	+15 V power output	+15 V power supply for analog references	+15 V (Max. current: 20 mA)
	-V	-15 V power output	-15 V power supply for analog references	-15 V (Max. current: 20 mA)
	A1	Master speed frequency ref- erence	-10 to +10 V/-100 to 100% 0 to +10 V/100%	-10 to +10 V, 0 to +10 V (Input impedance: 20 kΩ)
Analog input signals	A2	Multi-function analog input	4 to 20 mA/100%, -10 to +10 V/-100 to +100%, 0 to +10 V/100% Factory setting: Added to terminal A1 (H3-09 = 0)	4 to 20 mA (Input imped- ance: 250 Ω)
A	A3	Multi-function analog input	4 to 20 mA/100%, -10 to +10 V/-100 to +100%, 0 to +10 V/100% Factory setting: Analog speed 2 (H3-05 = 2)	4 to 20 mA (Input imped- ance: 250 Ω)
	AC	Analog reference common	og reference common 0 V	
	E(G)	Shield wire, optional ground line connection point	-	-

Table 2.11 Control Circuit Terminals

Туре	No.	Signal Name	Function	Signal Level	
	P3	Multi function DUC autout 2	Factory setting: Ready for operation when		
Photo- coupler	C3	Multi-function PHC output 3	ON.		
outputs	P4		Factory setting: FOUT frequency detected	50 mA max. at 48 VDC ^{*2}	
-	C4	Multi-function PHC output 4	when ON.		
	MA	Fault output signal (NO con- tact)	Fault when CLOSED across MA and MC		
	MB	Fault output signal (NC con- tact)	Fault when OPEN across MB and MC		
	MC	Relay contact output com- mon	-		
Deley	M1	Multi-function contact output	Factory setting: Operating	Dry contacts Contact capacity:	
Relay outputs	M2	(NO contact)	Operating when ON across M1 and M2.	1 A max. at 250 VAC 1 A max. at 30 VDC	
	M3	Multi-function contact output	Factory setting: Zero speed		
	M4	2	Zero speed level (b2-01) or below when ON.		
-	M5		Factory setting: Frequency agreement detec-		
-	M6	Multi-function contact output 3	tion Frequency within 2 Hz of set frequency when ON.		
Analog	FM	Multi-function analog moni- tor 1	Factory setting: Output frequency 0 to 10 V/100% frequency		
moni- tor out- puts	AM	Multi-function analog moni- tor 2	Factory setting: Current monitor 5 V/Inverter's rated current	0 to +10 VDC ±5% 2 mA max.	
	AC	Analog common	-		
Pulse	RP	Multi-function pulse input ^{*3}	Factory setting: Frequency reference input (H6-01 = 0)	0 to 32 kHz (3 kΩ)	
I/O	MP	Multi-function pulse monitor	Factory setting: Output frequency (H6-06 = 2)	0 to 32 kHz (2.2 kΩ)	
	R+	MEMOBUS communica-		Differential input, PHC	
RS-	R-	tions input	For 2-wire RS-485, short R+ and S+ as well	isolation	
485/	S+	MEMOBUS communica-	as R- and S	Differential output, PHC	
422	² S- tions output			isolation	
	IG	Communications shield wire	-	-	

Table 2.11	Control Circuit	Terminals	(Continued))
	Control On Out	Torriniaio		,


* 1. For a 3-wire sequence, the default settings are a 3-wire sequence for S5, multi-step speed setting 1 for S6 and multi-step speed setting 2 for S7.

* 2. When driving a reactive load, such as a relay coil, always insert a flywheel diode as shown in *Fig 2.17*.

* 3. Pulse input specifications are given in the following table.

Low level voltage	0.0 to 0.8 V
High level voltage	3.5 to 13.2 V
H duty	30% to 70%
Pulse frequency	0 to 32 kHz

2-23

The rating of the flywheel diode must be at least as high as the circuit voltage.

Fig 2.17 Flywheel Diode Connection

Shunt Connector CN5 and DIP Switch S1

The shunt connector CN 5 and DIP switch S1 are described in this section.

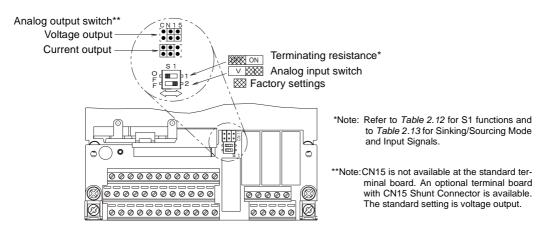


Fig 2.18 Shunt Connector CN5 and DIP Switch S1

The functions of DIP switch S1 are shown in the following table.

Table 2.12 DIP Switch S1

Name	Function	Setting
S1-1	RS-485 and RS-422 terminating resis- tance	OFF: No terminating resistance ON: Terminating resistance of 110Ω
S1-2	Input method for analog input A2	OFF: 0 to 10 V (internal resistance: 20 k Ω) ON: 4 to 20 mA (internal resistance: 250 Ω)

■ Sinking/Sourcing Mode

The input terminal logic can be switched between sinking mode (0-V common) and sourcing mode (+24-V common) by using the terminals SN, SC, and SP. An external 24-V power supply is also supported, providing more freedom in signal input methods.

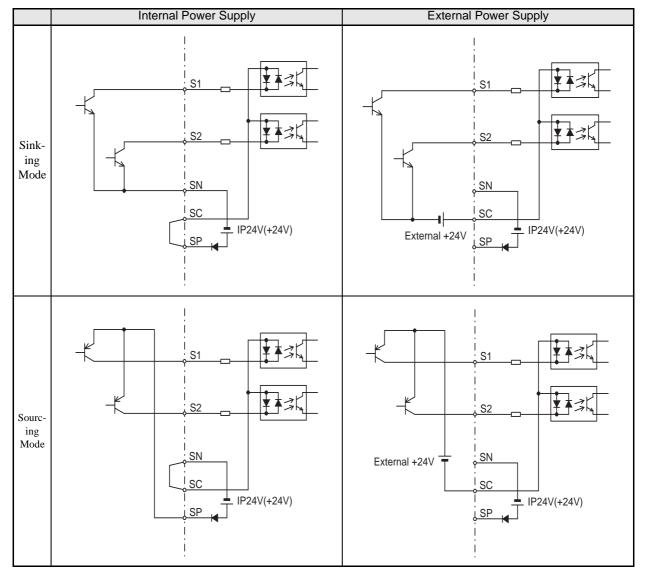


Table 2.13 Sinking/Sourcing Mode and Input Signals

Control Circuit Terminal Connections

Connections to Inverter control circuit terminals are shown in Fig 2.19.

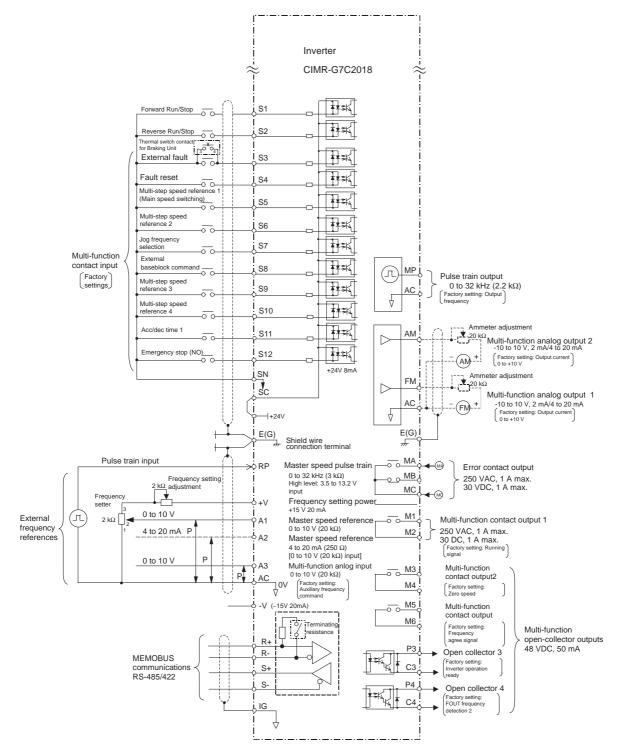


Fig 2.19 Control Circuit Terminal Connections

Control Circuit Wiring Precautions

Observe the following precautions when wiring control circuits.

- Separate control circuit wiring from main circuit wiring (terminals R/L1, S/L2, T/L3, B1, B2, U/T1, V/T2, W/T3, ⊖, ⊕1, ⊕2, and ⊕3) and other high-power lines.
- Separate wiring for control circuit terminals MA, MB, MC, M1, and M2 (contact outputs) from wiring to other control circuit terminals.
- Use twisted-pair or shielded twisted-pair cables for control circuits to prevent operating faults. Process cable ends as shown in *Fig 2.20*.
- Connect the shield wire to terminal E (G).
- Insulate the shield with tape to prevent contact with other signal lines and equipment.

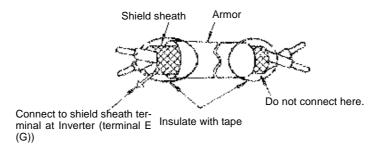


Fig 2.20 Processing the Ends of Twisted-pair Cables

2

Wiring Check

Checks

Check all wiring after wiring has been completed. Do not perform a buzzer check on control circuits. Perform the following checks on the wiring.

- Is all wiring correct?
- Have any wire clippings, screws, or other foreign material been left?
- Are all screws tight?
- Are any wire ends contacting other terminals?

Installing and Wiring Option Cards

Option Card Models and Specifications

Up to three Option Cards can be mounted in the Inverter. You can mount up one Card into each of the three places on the controller card (A, C, and D) shown in *Fig 2.21*.

Table 2.14 lists the type of Option Cards and their specifications.

Card	Model	Specifications	Mounting Loca- tion
	PG-A2	Serial open-collector/complimentary inputs	А
PG Speed Control Cards	PG-B2	Phase A/B complimentary inputs	А
ro speed Control Cards	PG-D2	Single line-driver inputs	А
	PG-X2	Phase A/B line-driver inputs	А
	AI-14U	Input signal levels 0 to 10 V DC (20 k Ω), 1 channel 4 to 20 mA (250 Ω), 1 channel Input resolution: 14-bit	С
Speed Reference Cards	AI-14B	Input signal levels 0 to 10 V DC (20 k Ω) 4 to 20 mA (250 Ω), 3 channels Input resolution: 13-bit with sign bit	С
	DI-08	8-bit digital speed reference setting	С
	DI-16H2	16-bit digital speed reference setting	С
DeviceNet Communications Card	SI-N	DeviceNet communications support	С
Profibus-DP Communica- tions Card	SI-P	Profibus-DP communications support	С
InterBus-S Communications Card	SI-R	InterBus-S communications support	С
Analog Monitor Cord	AO-08	8-bit analog outputs, 2 channels	D
Analog Monitor Card	AO-12	12-bit analog outputs, 2 channels	D
Digital Output Cond	DO-08	Six photocoupler outputs and 2 relay outputs	D
Digital Output Card	DO-02C	2 relay outputs	D

Table 2.14	Option	Card S	specifications
	Option	oaru o	pecinications

Installation

Before mounting an Option Card, remove the terminal cover and be sure that the charge indicator inside the Inverter is not lit. After confirming that the charge indicator is not lit, remove the Digital Operator and front cover and then mount the Option Card.

Refer to documentation provided with the Option Card for actual mounting instructions for option slots A, C, and D.

■ Preventing C and D Option Card Connectors from Rising

After installing an Option Card into slot C or D, insert an Option Clip to prevent the side with the connector from rising. The Option Clip can be easily removed by holding onto the protruding portion of the Clip and pulling it out.

Remove the Option Clip before installing an Option Card into slot C or D. The Option Card can not be installed completely and may not function properly if it is installed with the Option Clip attached.

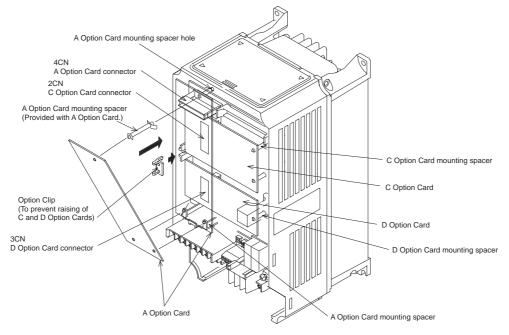


Fig 2.21 Mounting Option Cards

PG Speed Control Card Terminals and Specifications

The terminal specifications for the PG Speed Control Cards are given in the following tables.

■PG-A2

The terminal specifications for the PG-A2 are given in the following table.

Terminal	No.	Contents	Specifications
	1	Power supply for pulse generator	12 VDC (±5%), 200 mA max.
	2	Tower suppry for purse generator	0 VDC (GND for power supply)
	3	+12 V/open collector switching ter-	Terminal for switching between 12 V voltage input and open collector input. For open collector input,
TA 1	4	mmai	short across 3 and 4.
TA1 5	5	Pulse input terminal	H: +4 to 12 V; L: +1 V max. (Maximum response frequency: 30 kHz)
	6		Pulse input common
	7	Dulse motor output terminal	12 VDC (±10%), 20 mA max.
	8	Pulse motor output terminal	Pulse monitor output common
TA2	(E)	Shield connection terminal	-

■PG-B2

The terminal specifications for the PG-B2 are given in the following table.

Terminal	No.	Contents	Specifications
	1	Dower supply for pulse generator	12 VDC (±5%), 200 mA max.
	2	Power supply for pulse generator	0 VDC (GND for power supply)
TA1	3	A-phase pulse input terminal	H: +8 to 12 V L: +1 V max. (Maximum response frequency: 30 kHz)
IAI	4		Pulse input common
	5	B-phase pulse input terminal	H: +8 to 12 V L: +1 V max. (Maximum response frequency: 30 kHz)
	6		Pulse input common
	1	A phase monitor output terminal	Open collector output, 24 VDC, 30 mA max.
ΤΛ 2	2	A-phase monitor output terminal	A-phase monitor output common
IAZ	TA2 3		Open collector output, 24 VDC, 30 mA max.
	4	B-phase monitor output terminal	B-phase monitor output common
TA3	(E)	Shield connection terminal	-

■PG-D2

The terminal specifications for the PG-D2 are given in the following table.

Table 2.17 PG-D2 Terminal Specifications

Terminal	No.	Contents	Specifications
	1		12 VDC (±5%), 200 mA max.*
	2	Power supply for pulse generator	0 VDC (GND for power supply)
	3		5 VDC (±5%), 200 mA max.*
TA1	4	Pulse input + terminal	Line driver input (RS-422 level input) Maximum response frequency: 300 kHz
	5	Pulse input - terminal	
	6	Common terminal	-
	7	Pulse monitor output + terminal	
	8	Pulse monitor output - terminal	Line driver output (RS-422 level output)
TA2	(E)	Shield connection terminal	-

* 5 VDC and 12 VDC cannot be used at the same time.

■PG-X2

The terminal specifications for the PG-X2 are given in the following table.

Terminal	No.	Contents	Specifications	
	1		12 VDC (±5%), 200 mA max.*	
	2	Power supply for pulse generator	0 VDC (GND for power supply)	
	3		5 VDC (±5%), 200 mA max.*	
TA1	4	A-phase + input terminal		
	5	A-phase - input terminal		
	6	B-phase + input terminal	Line driver input (RS-422 level input) Maximum response frequency: 300 kHz	
	7	B-phase - input terminal		
	8	Z-phase + input terminal		
	9	Z-phase - input terminal]	
	10	Common terminal	0 VDC (GND for power supply)	
	1	A-phase + output terminal		
	2	A-phase - output terminal		
	3	B-phase + output terminal		
TA2	4	B-phase - output terminal	Line driver output (RS-422 level output)	
	5	Z-phase + output terminal		
	6	Z-phase - output terminal	1	
	7	Control circuit common	Control circuit GND	
TA3	(E)	Shield connection terminal	-	

Table 2.18	PG-X2	Terminal	Specifications
------------	-------	----------	----------------

 $\ast~5$ VDC and 12 VDC cannot be used at the same time.

Wiring

Wiring examples are provided in the following illustrations for the Control Cards.

■ Wiring the PG-A2

Wiring examples are provided in the following illustrations for the PG-A2.

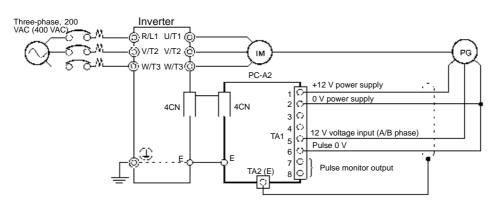
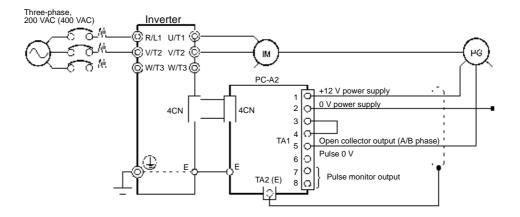
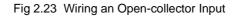
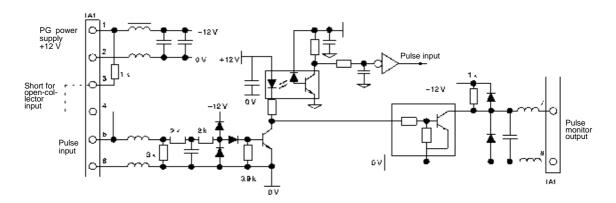
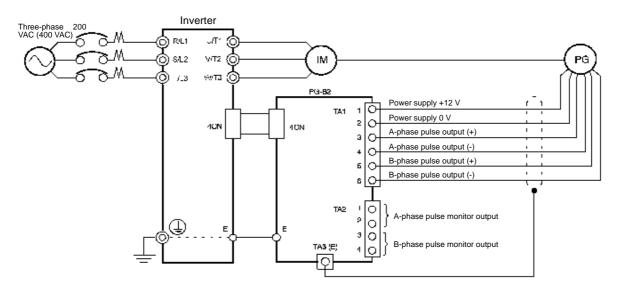
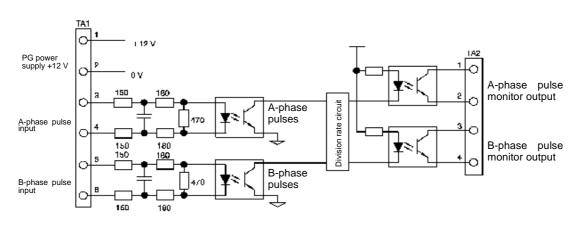




Fig 2.22 Wiring a 12 V Voltage Input

- Shielded twisted-pair wires must be used for signal lines.
- Do not use the pulse generator's power supply for anything other than the pulse generator (encoder). Using it for another purpose can cause malfunctions due to noise.
- The length of the pulse generator's wiring must not be more than 100 meters.

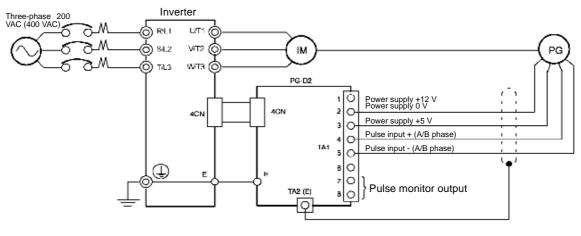

Fig 2.24 I/O Circuit Configuration of the PG-A2

■ Wiring the PG-B2

Wiring examples are provided in the following illustrations for the PG-B2.

- · Shielded twisted-pair wires must be used for signal lines.
- Do not use the pulse generator's power supply for anything other than the pulse generator (encoder). Using it for another purpose can cause malfunctions due to noise.
- The length of the pulse generator's wiring must not be more than 100 meters.
- The direction of rotation of the PG can be set in user constant F1-05. The factory preset if for forward rotation, A-phase advancement.

Fig 2.25 PG-B2 Wiring

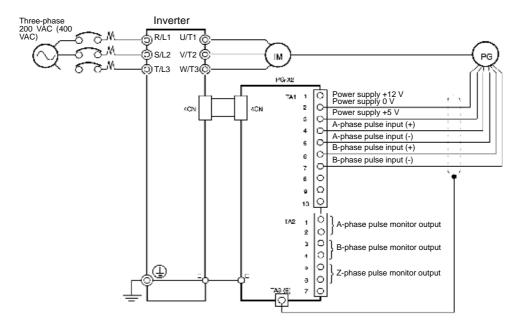

- When connecting to a voltage-output-type PG (encoder), select a PG that has an output impedance with a current of at least 12 mA to the input circuit photocoupler (diode).
- The pulse monitor dividing ratio can be changed using constant F1-06.

A-phase pulses

Fig 2.26 I/O Circuit Configuration of the PG-B2

■Wiring the PG-D2

Wiring examples are provided in the following illustrations for the PG-D2.



- Shielded twisted-pair wires must be used for signal lines.
- Do not use the pulse generator's power supply for anything other than the pulse generator (encoder). Using it for another purpose can cause malfunctions due to noise.
- The length of the pulse generator's wiring must not be more than 100 meters.

Fig 2.27 PG-D2 Wiring

■Wiring the PG-X2

Wiring examples are provided in the following illustrations for the PG-X2.

- Shielded twisted-pair wires must be used for signal lines.
- Do not use the pulse generator's power supply for anything other than the pulse generator (encoder). Using it for another purpose can cause malfunctions due to noise.
- The length of the pulse generator's wiring must not be more than 100 meters.
- The direction of rotation of the PG can be set in user constant F1-05 (PG Rotation). The factory preset if for motor forward rotation, A-phase advancement.

Fig 2.28 PG-X2 Wiring

Wiring Terminal Blocks

Use no more than 100 meters of wiring for PG (encoder) signal lines, and keep them separate from power lines.

Use shielded, twisted-pair wires for pulse inputs and pulse output monitor wires, and connect the shield to the shield connection terminal.

■Wire Sizes (Same for All Models)

Terminal wire sizes are shown in Table 2.19.

Table 2.19 Wire Sizes

Terminal	Terminal Screws	Wire Thickness (mm ²)	Wire Type
Pulse generator power supply Pulse input terminal Pulse monitor output terminal	-	Stranded wire: 0.5 to 1.25 Single wire: 0.5 to 1.25	 Shielded, twisted-pair wire Shielded, polyethylene-covered, vinyl sheath cable
Shield connection terminal	M3.5	0.5 to 2	(KPEV-S by Hitachi Electric Wire or equivalent)

Straight Solderless Terminals for Control Circuit Terminals

We recommend using straight solderless terminal on signal lines to simplify wiring and improve reliability.

Refer to Table 2.10 Straight Solderless Terminal Sizes for specifications.

■Closed-loop Connector Sizes and Tightening Torque

The closed-loop connectors and tightening torques for various wire sizes are shown in Table 2.20.

Table 2.20 Closed-loop Connectors and Tightening Torques

Wire Thickness [mm ²]	Terminal Screws	Crimp Terminal Size	Tightening Torque (N • m)
0.5		1.25 - 3.5	
0.75	M3.5	1.25 - 3.5	0.8
1.25	MI5.5	1.25 - 3.5	0.8
2		2 - 3.5	

Wiring Method and Precautions

The wiring method is the same as the one used for straight solderless terminals. Refer to page 2-2-21. Observe the following precautions when wiring.

- Separate the control signal lines for the PG Speed Control Card from main circuit lines and power lines.
- Connect the shield when connecting to a PG. The shield must be connected to prevent operational errors caused by noise. Also, do not use any lines that are more than 100 m long. Refer to *Fig 2.20* for details on connecting the shield.
- Connect the shield to the shield terminal (E).
- Do not solder the ends of wires. Doing so may cause contact faults.
- When not using straight solderless terminals, strip the wires to a length of approximately 5.5 mm.

Selecting the Number of PG (Encoder) Pulses

The setting for the number of PG pulses depends on the model of PG Speed Control Card being used. Set the correct number for your model.

■PG-A2/PG-B2

The maximum response frequency is 32,767 Hz.

Use a PG that outputs a maximum frequency of approximately 20 kHz for the rotational speed of the motor.

$$\frac{\text{Motor speed at maximum frequency output (min^{-1})}{60} \times \text{PG rating (p/rev)} = 20,000 \text{ Hz}$$

Some examples of PG output frequency (number of pulses) for the maximum frequency output are shown in *Table 2.21*.

Motor's Maximum Speed (min ⁻¹)	PG Rating (p/rev)	PG Output Frequency for Maximum Fre- quency Output (Hz)
1800	600	18,000
1500	800	20,000
1200	1000	20,000
900	1200	18,000

Table 2.21 PG Pulse Selection Examples

Note 1. The motor speed at maximum frequency output is expressed as the sync rotation speed.

2. The PG power supply is 12 V.

3. A separate power supply is required if the PG power supply capacity is greater than 200 mA. (If momentary power loss must be handled, use a backup capacitor or other method.)

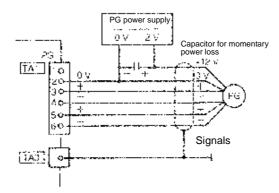


Fig 2.29 PG-B2 Connection Example

■PG-D2/PG-X2

There are 5 V and 12 V PG power supplies.

Check the PG power supply specifications before connecting.

The maximum response frequency is 300 kHz.

Use the following equation to computer the output frequency of the PG (f_{PG}).

$$f_{PG}(Hz) = \frac{Motor speed at maximum frequency output (min-1)}{60} \times PG rating (p/rev)$$

A separate power supply is required if the PG power supply capacity is greater than 200 mA. (If momentary power loss must be handled, use a backup capacitor or other method.)

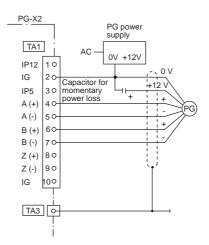


Fig 2.30 PG-X2 Connection Example (for 12 V PG power supply)

3

Digital Operator and Modes

This chapter describes Digital Operator displays and functions, and provides an overview of operating modes and switching between modes.

Digital Operator	3-2
Modes	3-4

Digital Operator

This section describes the displays and functions of the Digital Operator.

Digital Operator Display

The key names and functions of the Digital Operator are described below.

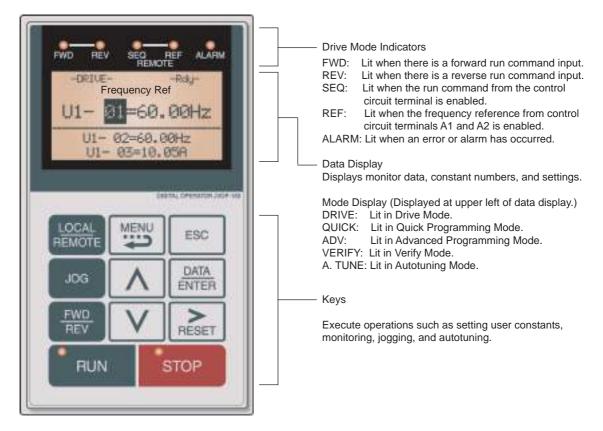


Fig 3.1 Digital Operator Component Names and Functions

Digital Operator Keys

The names and functions of the Digital Operator Keys are described in Table 3.1.

Table 3.1	Key Functions
-----------	---------------

Key	Name	Function		
LOCAL REMOTE	LOCAL/REMOTE Key	Switches between operation via the Digital Operator (LOCAL) and control circuit terminal operation (REMOTE). This Key can be enabled or disabled by setting user constant o2-01.		
	MENU Key	Selects menu items (modes).		
ESC	ESC Key	Returns to the status before the DATA/ENTER Key was pressed.		
JOG	JOG Key	Enables jog operation when the Inverter is being operated from the Digital Operator.		

Key	Name	Function				
FWD REV	FWD/REV Key	Selects the rotation direction of the motor when the Inverter is being operated from the Digital Operator.				
> RESET	Shift/RESET Key	Sets the number of digits for user constant settings. Also acts as the Reset Key when a fault has occurred.				
>	Increment Key	Selects menu items, sets user constant numbers, and increments set values. Used to move to the next item or data.				
<	Decrement Key	Selects menu items, sets user constant numbers, and decrements set values. Used to move to the previous item or data.				
DATA ENTER	DATA/ENTER Key	Pressed to enter menu items, user constants, and set values. Also used to switch from one display to another.				
RUN	RUN Key	Starts the Inverter operation when the Inverter is being controlled by the Digital Operator.				
STOP	STOP Key	Stops Inverter operation. This Key can be enabled or disabled when operating from the control circuit terminal by setting user constant o2-02.				

Table 3.1 Key Functions (Continued)

Note Except in diagrams, Keys are referred to using the Key names listed in the above table.

There are indicators on the upper left of the RUN and STOP Keys on the Digital Operator. These indicators will light and flash to indicate operating status.

The RUN Key indicator will flash and the STOP Key indicator will light during initial excitation of the dynamic brake. The relationship between the indicators on the RUN and STOP Keys and the Inverter status is shown in the *Fig 3.2*.

	ST	tput frequency	RUN	STOP		<u> </u>
riequ	-	setting	1	1		
F	RUN	•	Ö.	Ö	٠	:Ö:
S	STOP	Ö	•	Ö.	-Ö-	Ö.
¢	;∷Lit	🔅 : Blinking	: Not lit			

Fig 3.2 RUN and STOP Indicators

Modes

*

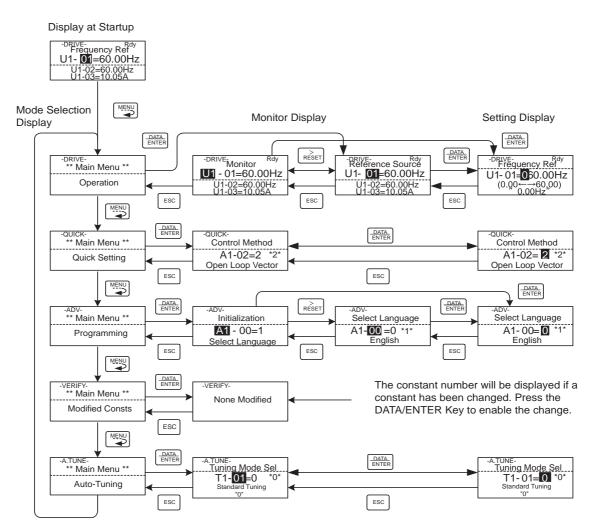
This section describes the Inverter's modes and switching between modes.

Inverter Modes

The Inverter's user constants and monitoring functions are organized in groups called modes that make it easier to read and set user constants. The Inverter is equipped with 5 modes.

Table 3.2 Modes

The 5 modes and their primary functions are shown in the Table 3.2.


Mode	Primary function(s)			
Drive mode	The Inverter can be run in this mode. Use this mode when monitoring values such as frequency references or output cur- rent, displaying fault information, or displaying the fault history.			
Quick programming mode	Use this mode to reference and set the minimum user constants to operate the Inverter (e.g., the operating environment of the Inverter and Digital Operator).			
Advanced programming mode	Use this mode to reference and set all user constants.			
Verify mode	Use this mode to read/set user constants that have been changed from their factory- set values.			
Autotuning mode*	Use this mode when running a motor with unknown motor constants in the vector control mode. The motor constants are calculated and set automatically. This mode can also be used to measure only the motor line-to-line resistance.			

Always perform autotuning with the motor before operating using vector control. Autotuning mode will not be displayed during operation or when an error has occurred. The default setting of the Inverter is for open-loop vector control 1 (A1-02 = 2).

Switching Modes

The mode selection display will appear when the MENU Key is pressed from a monitor or setting display. Press the MENU Key from the mode selection display to switch between the modes.

Press the DATA/ENTER Key from the mode selection key to monitor data and from a monitor display to access the setting display.

When running the Inverter after using Digital Operator, press the MENU Key to select the drive mode (displayed on the LCD screen) and then press the DATA/ENTER Key from the drive mode display to bring up the monitor display. Run commands can't be received from any other display. (Monitor display in the drive mode will appear when the power is turned ON.)

Drive Mode

Drive mode is the mode in which the Inverter can be operated. The following monitor displays are possible in drive mode: The frequency reference, output frequency, output current, and output voltage, as well as fault information and the fault history.

When b1-01 (Reference selection) is set to 0, the frequency can be changed from the frequency setting display. Use the Increment, Decrement, and Shift/RESET Keys to change the frequency. The user constant will be written and the monitor display will be returned to when the DATA/ENTER Key is pressed after changing the setting.

Example Operations

Key operations in drive mode are shown in the following figure.

Display at Startup

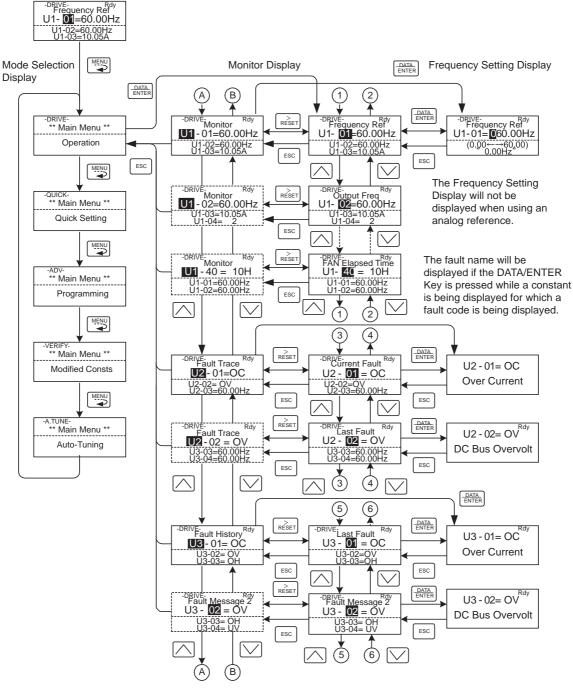


Fig 3.4 Operations in Drive Mode

Note When changing the display with the Increment and Decrement Keys, the next display after the one for the last parameter number will be the one for the first parameter number and vise versa. For example, the next display after the one for U1-01 will be U1-40. This is indicated in the figures by the letters A and B and the numbers 1 to 6.

The display for the first monitor constant (frequency reference) will be displayed when power is turned ON. The monitor item displayed at startup can be set in o1-02 (Monitor Selection after Power Up). Operation cannot be started from the mode selection display.

Quick Programming Mode

In quick programming mode, the constants required for Inverter trial operation can be monitored and set.

Constants can be changed from the setting displays. Use the Increment, Decrement, and Shift/RESET Keys to change the frequency. The user constant will be written and the monitor display will be returned to when the DATA/ENTER Key is pressed after changing the setting.

Refer to Chapter 5 User Constants for details on the constants displayed in quick programming mode.

Example Operations

Key operations in quick programming mode are shown in the following figure.

Fig 3.5 Operations in Quick Programming Mode

Advanced Programming Mode

In advanced programming mode, all Inverter constants can be monitored and set.

Constants can be changed from the setting displays. Use the Increment, Decrement, and Shift/RESET Keys to change the frequency. The user constant will be written and the monitor display will be returned to when the DATA/ENTER Key is pressed after changing the setting.

Refer to Chapter 5 User Constants for details on the constants.

Example Operations

Key operations in advanced programming mode are shown in the following figure.

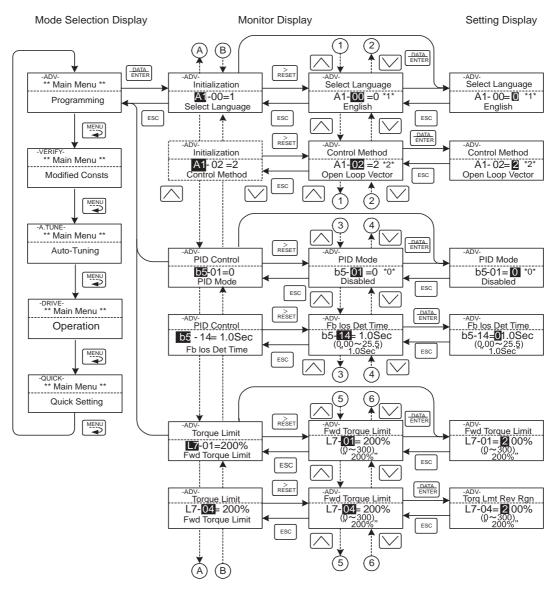


Fig 3.6 Operations in Advanced Programming Mode

■Setting User Constants

Here, the procedure is shown to change C1-01 (Acceleration Time 1) from 10 s to 20 s.

Step No.	Digital Operator Display	Description
1	-DRIVE- Frequency Ref U1- 01=60.00Hz U1-02=60.00Hz U1-03=10.05A	Power supply turned ON.
2	-DRIVE- ** Main Menu ** Operation	MENU Key pressed to enter drive mode.
3	-QUICK- ** Main Menu ** Quick Setting	MENU Key pressed to enter quick programming mode.
4	-ADV- ** Main Menu ** Programming	MENU Key pressed to enter advanced programming mode.
5	-ADV- Initialization AT-00=1 Select Language	DATA/ENTER pressed to access monitor display.
6	-ADV- Accel Time 1 C1-00= 10.0Sec (0.0←→6000.0) "10.0Sec"	Increment or Decrement Key pressed to display C1-01 (Acceleration Time 1).
7	-ADV- Accel Time 1 C1-01=0010.0Sec (0.0 ←→6000.0) 10.0Sec"	DATA/ENTER Key pressed to access setting display. The setting of C1-01 (10.00) is displayed.
8	-ADV- Accel Time 1 C1-01= 0 0 0.0Sec (0.0 ←→6000.0) 10.0Sec"	Shift/RESET Key pressed to move the flashing digit to the right.
9	-ADV- Accel Time 1 C1-01= 00 1 0.0Sec (0.0 ←→6000.0) 10.0Sec"	Increment Key pressed to change set value to 20.00 s.
10	-ADV- Accel Time 1 C1-01= 00 2 0.0Sec (0.0←→6000.0) "10.0Sec"	DATA/ENTER Key pressed to enter the set data.
11	-ADV- Entry Accepted	"Entry Accepted" is displayed for 1.0 s after the data setting has been con- firmed with the DATA/ENTER Key.
12	-ADV- Accel Time 1. C1- IOI = 20.0Sec (0.0 ← →6000.0) 10.0Sec"	The monitor display for C1-01 returns.

Table 3.3 Setting User Constants in Advanced Programming Mode

External Fault Setting Procedure

Examples of the Digital Operator displays that appear when setting an eternal error for a multi-function contact input in Advanced Programming Mode are shown in the following diagram.

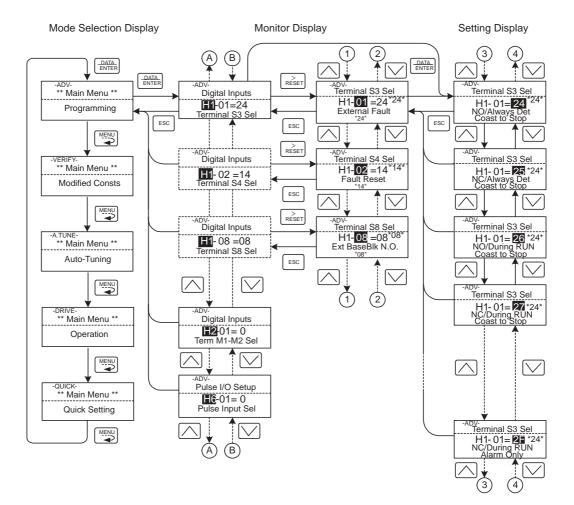


Fig 3.7 External Fault Function Setting Example

З

Verify Mode

Verify mode is used to display any constants that have been changed from their default settings in a programming mode or by autotuning. "None" will be displayed if no settings have been changed.

Of the environment mode settings, only A1-02 will be displayed if it has been changed. Other environment modes settings will not be displayed even if they have been changed from their default settings.

Even in verify mode, the same procedures can be used to change settings as are used in the programming modes. Use the Increment, Decrement, and Shift/RESET Keys to change the frequency. The user constant will be written and the monitor display will be returned to when the DATA/ENTER Key is pressed after changing the setting.

■Example Operations

An example of key operations is given below for when the following settings have been changed from their default settings: b1-01 (Reference Selection), C1-01 (Acceleration Time 1), E1-01 (Input Voltage Setting), and E2-01 (Motor Rated Current).

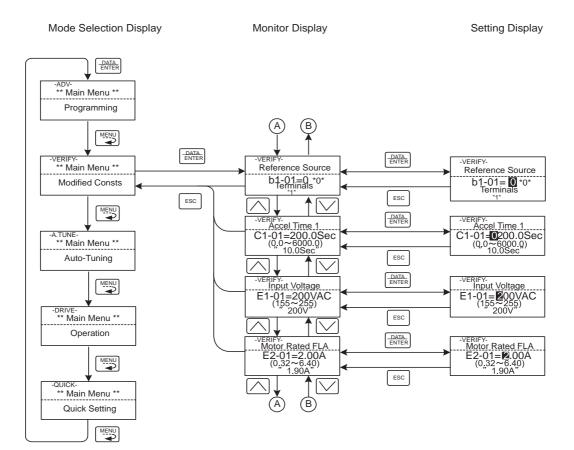


Fig 3.8 Operations in Verify Mode

Autotuning Mode

Autotuning automatically tunes and sets the required motor constants when operating in the vector control modes. Always perform autotuning before starting operation.

When V/f control has been selected, stationary autotuning for only line-to-line resistance can be selected.

When the motor cannot be disconnected from the load, perform stationary autotuning. Contact your Yaskawa representatives to set motor constants by calculation.

The Inverter's autotuning function automatically determines the motor constants, while a servo system's autotuning function determines the size of a load, so these autotuning functions are fundamentally different. The default setting of the Inverter is for open-loop vector control 1.

Example of Operation

Set the motor output power (in kW), rated voltage, rated current, rated frequency, rated speed, and number of poles specified on the nameplate on the motor and then press the RUN Key. The motor is automatically run and the motor constants measured based on these settings and autotuning will be set.

Always set the above items. Autotuning cannot be started otherwise, e.g., it cannot be started from the motor rated voltage display.

Constants can be changed from the setting displays. Use the Increment, Decrement, and Shift/RESET Keys to change the frequency. The user constant will be written and the monitor display will be returned to when the DATA/ENTER Key is pressed after changing the setting.

The following example shows autotuning for open-loop vector control while operating the motor without switching to motor 2.

* TUn10 will be displayed during rotational autotuning and TUn11 will be displayed during stationary autotuning. The DRIVE indicator will light when autotuning starts.

Fig 3.9 Operation in Autotuning Mode

The setting displays in for autotuning depend on the control mode (V/f, V/f with PG, open-loop vector 1, open-loop vector 2, or flux vector). If a fault occurs during autotuning, refer to *Chapter 7 Troubleshooting*.

4

Trial Operation

This chapter describes the procedures for trial operation of the Inverter and provides an example of trial operation.

Trial Operation Procedure	4-2
Trial Operation Procedures	4-3
Adjustment Suggestions	4-16

Trial Operation Procedure

Perform trial operation according to the following flowchart.

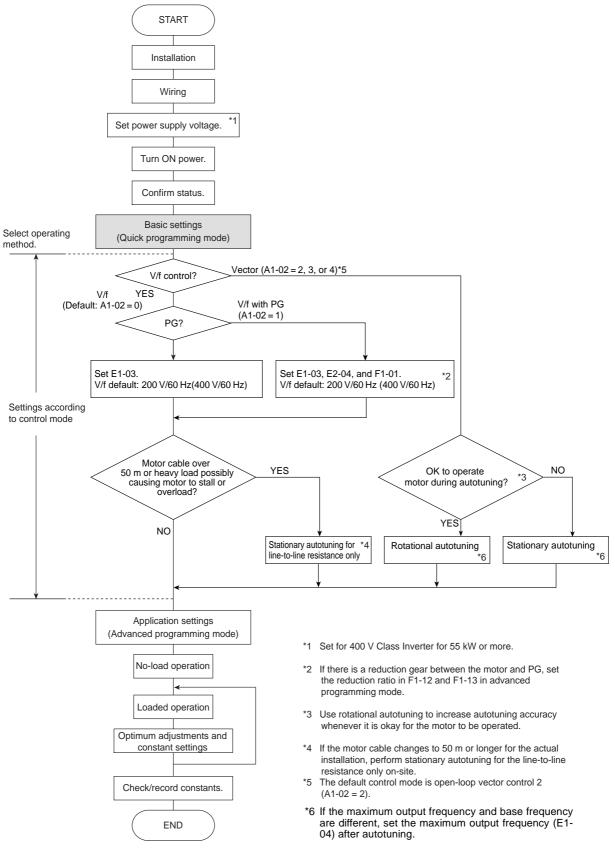
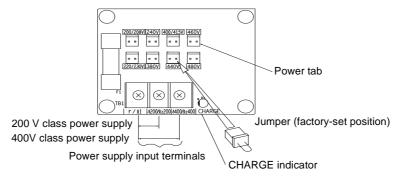


Fig 4.1 Trial Operation Flowchart

Trial Operation Procedures


The procedure for the trial operate is described in order in this section.

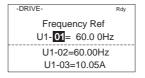
Setting the Power Supply Voltage Jumper (400 V Class Inverters of 55 kW or Higher)

Set the power supply voltage jumper after setting E1-01 (Input Voltage Setting) for 400 V Class Inverters of 55 kW or higher. Insert the jumper into the voltage connector nearest to the actual power supply voltage.

The jumper is factory-set to 440 V when shipped. If the power supply voltage is not 440 V, use the following procedure to change the setting.

- 1. Turn OFF the power supply and wait for at least 5 minutes.
- 2. Confirm that the CHARGE indicator has gone out.
- 3. Remove the terminal cover.
- 4. Insert the jumper at the position for the voltage supplied to the Inverter (see Fig 4.2).
- 5. Return the terminal cover to its original position.

Power ON


Confirm all of the following items and then turn ON the power supply.

- Check that the power supply is of the correct voltage.
 - 200 V class: 3-phase 200 to 240 VDC, 50/60 Hz
 - 400 V class: 3-phase 380 to 480 VDC, 50/60 Hz
- Make sure that the motor output terminals (U, V, W) and the motor are connected correctly.
- Make sure that the Inverter control circuit terminal and the control device are wired correctly.
- Set all Inverter control circuit terminals to OFF.
- When using a PG Speed Control Card, make sure that it is wired correctly.
- Make sure that the motor is not connected to the mechanical system (no-load status)

Checking the Display Status

If the Digital Operator's display at the time the power is connected is normal, it will read as follows:

Display for normal operation

The frequency reference monitor is displayed in the data display section.

When an fault has occurred, the details of the fault will be displayed instead of the above display. In that case, refer to *Chapter 7 Troubleshooting*. The following display is an example of a display for faulty operation.

Display for fault operation

-DRIVE-UV DC Bus Undervolt

The display will differ depending on the type of fault. A low voltage alarm is shown at left.

Basic Settings

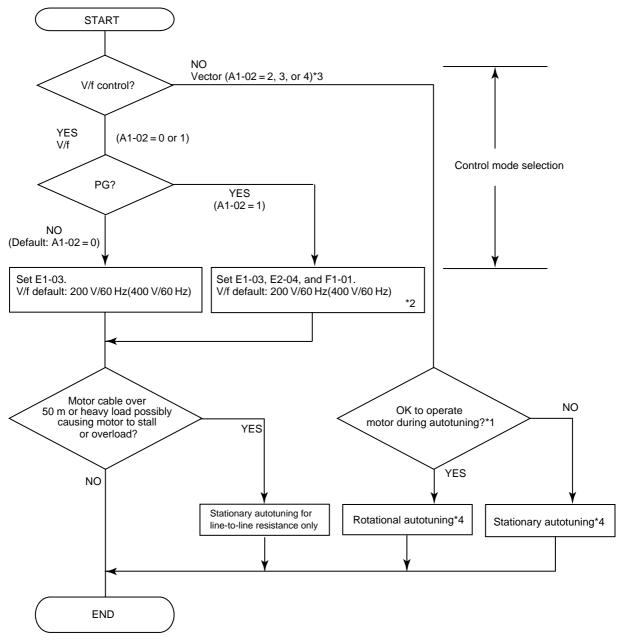
Switch to the quick programming mode ("QUICK" will be displayed on the LCD screen) and then set the following user constants. Refer to *Chapter 3 Digital Operator and Modes* for Digital Operator operating procedures and to *Chapter 5 User Constants* and *Chapter 6 Constant Settings by Function* for details on the user constants.

Constants that must be set are listed in *Table 4.1* and those that are set according to the application are listed in *Table 4.2*.

Con- stant Number	Name	Description	Setting Range	Factory Setting	Page
A1-02	Control method selection	Set the control method for the Inverter. 0: V/f control 1: V/f control with PG 2: Open-loop vector control 1 3: Flux vector 4: Open-loop vector control 2	0 to 4	2	5-8
b1-01	Reference selec- tion	Set the frequency reference input method. 0: Digital Operator 1: Control circuit terminal (analog input) 2: MEMOBUS communications 3: Option Card 4: Pulse train input	0 to 4	1	5-10 6-6 6-60 6-75
b1-02	Operation method selection	Set the run command input method. 0: Digital Operator 1: Control circuit terminal (sequence input) 2: MEMOBUS communications 3: Option Card	0 to 3	1	5-10 6-11 6-60 6-75
C1-01	Acceleration time 1	Set the acceleration time in seconds for the output frequency to climb from 0% to 100%.	0.0 to 6000.0	10.0 s	5-18 6-18
C1-02	Deceleration time 1	Set the deceleration time in seconds for the output frequency to fall from 100% to 0%.	0.0 to 6000.0	10.0 s	5-18 6-18
E1-01	Input voltage set- ting	Set the Inverter's nominal input voltage in volts.	155 to 255 V (200 V class) 310 to 510 V (400 V class)	200 V (200 V class) 400 V (400 V class)	5-28 6-99
E2-01	Motor rated cur- rent	Set the motor rated current.	10% to 200% of Inverter's rated current	Setting for general- purpose motor of same capacity as Inverter	5-30 6-45 6-97
L1-01	Motor protection selection	Set to enable or disable the motor overload protec- tion function using the electronic thermal relay. 0: Disabled 1: General motor protection 2: Inverter motor protection 3: Vector motor protection		1	5-48 6-45

Table 4.1 Constants that Must Be Set

Con- stant Number	Name	Description	Setting Range	Factory Setting	Page
b1-03	Stopping method selection	Select stopping method when stop command is sent. 0: Deceleration to stop 1: Coast to stop 2: DC braking stop 3: Coast to stop with timer	0 to 3	0	5-10 6-13
C6-02	Carrier fre- quency selection	The carrier frequency is set low if the motor cable is 50 m or longer or to reduce radio noise or leak-	1 to F	Depends on capac- ity, volt- age, and control mode.	5-23
C6-11	Carrier fre- quency selection for open-loop vector control 2	age current.	1 to 4	Depends on kVA setting.	5-25
d1-01 to d1-04 and d1-17	Frequency refer- ences 1 to 4 and jog frequency ref- erence	Set the required speed references for multi-step speed operation or jogging.	0 to 400.00 Hz	d1-01 to d1-04: 0.00 Hz d1-17: 6.00 Hz	5-24 6-9
H4-02 and H4- 05	FM and AM ter- minal output gain	Adjust when an instrument is connected to the FM or AM terminal.	0.00 to 2.50	H4-02: 1.00 H4-05: 0.50	5-45
L3-04	Stall prevention selection during deceleration	If using the dynamic brake option (braking resis- tor, Braking Resistor Units, and Braking Units), be sure to set constant L3-04 to 0 (disabled) or 3 (enabled with braking resistor).	0 to 3	1	5-52 6-23


Table 4.2 Constants that Are Set as Required

Settings for the Control Methods

Autotuning methods depend on the control method set for the Inverter. Make the settings required by the control method.

Overview of Settings

Make the required settings in quick programming mode and autotuning mode according to the following flowchart.

Note If the motor cable changes to 50 m or longer for the actual installation, perform stationary autotuning for the line-to-line resistance only on-site. * 1. Use rotational autotuning to increase autotuning accuracy whenever it is okay for the motor to be operated. Always perform rotational autotuning when

- using open-loop vector control 2. * 2. If there is a reduction gear between the motor and PG, set the reduction ratio in F1-12 and F1-13.
- * 3. The default setting of the Inverter is for open-loop vector control 1 (A1-02 = 2).
- * 4. If the maximum output frequency and base frequency are different, set the maximum output frequency (E1-04) after autotuning.

Fig 4.3 Settings According to the Control Method

Setting the Control Method

Any of the following five control methods can be set.

Control Mode	Constant Set- ting	Basic Control	Main Applications	
V/f control	A1-02 = 0	Voltage/frequency ratio fixed control	Variable speed control, particularly control of multiple motors with one Inverter and replacing existing invert- ers	
V/f control with PG	A1-02 = 1	Voltage/frequency ratio fixed control with speed compensation using a PG	Applications requiring high-precision speed control using a PG on the machine side	
Open-loop vector control 1	A1-02 = 2 (factory setting)	Current vector control without a PG	Variable speed control, applications requiring speed and torque accuracy using vector control without a PG	
Flux vector control	A1-02 = 3	Flux vector control	Very high-performance control with a PG (simple servo drives, high-preci- sion speed control, torque control, and torque limiting)	
Open-loop vector control 2 A1-02 = 4		Current vector control without a PG with an ASR (speed controller) (Always perform rotational autotun- ing.) Very high-performance control out a PG (torque control withou torque limiting, applications rec a 1:200 speed control range with PG)		

Note With vector control, the motor and Inverter must be connected 1:1. The motor capacity for which stable control is possible is 50% to 100% of the capacity of the Inverter.

PG Control without PG (A1-02 = 0)

• Set either one of the fixed patterns (0 to E) in E1-03 (V/f Pattern Selection) or set F in E1-03 to specify a user-set pattern as required for the motor and load characteristics in E1-04 to E1-13 in advanced programming mode.

Simple operation motor at 50 Hz:	of	a	general-purpose	E1-03 = 0
Simple operation motor at 60 Hz:	of	a	general-purpose	E1-03 = F (default) or 1 If $E1-03 = F$, the default setting in the user setting from E1-04 to $E1-13$ are for 60 Hz

• Perform stationary autotuning for the line-to-line resistance only if the motor cable is 50 m or longer for the actual installation or the load is heavy enough to produce stalling. Refer to the following section on *Autotuning* for details on stationary autotuning.

V/f Control with PG (A1-02=1)

• Set either one of the fixed patterns (0 to E) in E1-03 (V/f Pattern Selection) or set F in E1-03 to specify a user-set pattern as required for the motor and load characteristics in E1-04 to E1-13 in advanced programming mode.

Simple operation motor at 50 Hz:	of	a	general-purpose	E1-03 = 0
Simple operation motor at 60 Hz:	of	a	general-purpose	E1-03 = F (default) or 1 If $E1-03 = F$, the default setting in the user setting from $E1-04$ to $E1-13$ are for 60 Hz

- Set the number of motor poles in E2-04 (Number of Motor Poles)
- Set the number of rotations per pulse in F1-01 (PG Constant). If there is a reduction gear between the motor and PG, set the reduction ratio in F1-12 and F1-13 in advanced programming mode.

• Perform stationary autotuning for the line-to-line resistance only if the motor cable is 50 m or longer for the actual installation or the load is heavy enough to produce stalling. Refer to the following section on *Autotuning* for details on stationary autotuning.

Open-loop Vector Control 1 (A1-02 = 2)

Perform autotuning. If the motor can be operated, perform rotational autotuning. If the motor cannot be operated, perform stationary autotuning. Refer to the following section on *Autotuning* for details on autotuning.

Flux Vector Control (A1-02 = 3)

Perform autotuning. If the motor can be operated, perform rotational autotuning. If the motor cannot be operated, perform stationary autotuning. Refer to the following section on *Autotuning* for details on autotuning.

Open-loop Vector Control 2 (A1-02 = 4)

Perform autotuning. Be sure to perform rotational autotuning. Refer to the following section on *Autotuning* for details on autotuning.

Autotuning

Use the following procedure to perform autotuning to automatically set motor constants when using the vector control method, when the cable length is long, etc.

Setting the Autotuning Mode

One of the following three autotuning modes can be set.

- Rotational autotuning
- Stationary autotuning
- Stationary autotuning for line-to-line resistance only

Always confirm the precautions before autotuning before performing autotuning.

Rotational Autotuning (T1-01 = 0)

Rotational autotuning is used only for open-vector control. Set T1-01 to 0, input the data from the nameplate, and then press the RUN Key on the Digital Operator. The Inverter will stop the motor for approximately 1 minute and then set the required motor constants automatically while operating the motor for approximately 1 minute.

Stationary Autotuning (T1-01 = 1)

Stationary autotuning is used for open-vector control or flux vector control. Set T1-01 to 1, input the data from the nameplate, and then press the RUN Key on the Digital Operator. The Inverter will supply power to the stationary motor for approximately 1 minute and some of the motor constants will be set automatically. The remaining motor constants will be set automatically the first time operation is started in drive mode.

Stationary Autotuning for Line-to-Line Resistance Only (T1-01 = 2)

Stationary autotuning for line-to-line resistance only can be used in any control method. This is the only autotuning possible for V/f control and V/f control with PG modes.

Autotuning can be used to prevent control errors when the motor cable is long (50 m or longer) or the cable length has changed since installation or when the motor and Inverter have different capacities.

Set T1-01 to 2 for open-loop vector control, and then press the RUN Key on the Digital Operator. The Inverter will supply power to the stationary motor for approximately 20 seconds and the Motor Line-to-Line Resistance (E2-05) and cable resistance will be automatically measured.

Precautions Before Using Autotuning

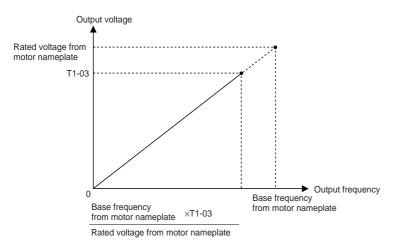
Read the following precautions before using autotuning.

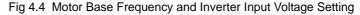
- Autotuning the Inverter is fundamentally different from autotuning the servo system. Inverter autotuning automatically adjusts parameters according to detected motor constants, whereas servo system autotuning adjusts parameters according to the detected size of the load.
- When speed precision or torque precision is required at high speeds (i.e., 90% of the rated speed or higher), use a motor with a rated voltage that is 20 V less than the input power supply voltage of the Inverter for 200V-class Inverters and 40 V less for 400V-class Inverters. If the rated voltage of the motor is the same as the input power supply voltage, the voltage output from the Inverter will be unstable at high speeds and sufficient performance will not be possible.
- Use stationary autotuning whenever performing autotuning for a motor that is connected to a load.
- Use rotational autotuning whenever performing autotuning for a motor that has fixed output characteristics, when high precision is required, or for a motor that is not connected to a load.
- If rotational autotuning is performed for a motor connected to a load, the motor constants will not be found accurately and the motor may exhibit abnormal operation. Never perform rotational autotuning for a motor connected to a load.
- If the wiring between the Inverter and motor changes by 50 m or more between autotuning and motor installation, perform stationary autotuning for line-to-line resistance only.
- If the motor cable is long (50 m or longer), perform stationary autotuning for line-to-line resistance only even when using V/f control.
- The status of the multi-function inputs and multi-function outputs will be as shown in the following table during autotuning. When performing autotuning with the motor connected to a load, be sure that the hold-ing brake is not applied during autotuning, especially for conveyor systems or similar equipment.

Tuning Mode	Multi-function Inputs	Multi-function Outputs
Rotational autotuning	Do not function.	Same as during normal operation
Stationary autotuning	Do not function.	Maintain same status as when autotuning is started.
Stationary autotuning for line- to-line resistance only	Do not function.	Maintain same status as when autotuning is started.

• To cancel autotuning, always use the STOP Key on the Digital Operator.

1. Power will be supplied to the motor when stationary autotuning is performed even though the motor will not turn. Do not touch the motor until autotuning has been completed.


2. When performing stationary autotuning connected to a conveyor or other machine, ensure that the holding brake is not activated during autotuning.


Precautions for Rotational and Stationary Autotuning

Lower the base voltage based on *Fig 4.4* to prevent saturation of the Inverter's output voltage when the rated voltage of the motor is higher than the voltage of the power supply to the Inverter. Use the following procedure to perform autotuning.

- 1. Input the voltage of the input power supply to T1-03 (Motor rated voltage).
- Input the results of the following formula to T1-05 (Motor base frequency): (Base frequency from the motor's nameplate × setting of T1-03)/(Rated voltage from motor's nameplate)
- 3. Perform autotuning.

After completing autotuning, set E1-04 (Max. output frequency) to the base frequency from the motor's nameplate.

1. When speed precision is required at high speeds (i.e., 90% of the rated speed or higher), set T1-03 (Motor rated voltage) to the input power supply voltage \times 0.9.

2. When operating at high speeds (i.e., 90% of the rated speed or higher), the output current will increase as the input power supply voltage is reduced. Be sure to provide sufficient margin in the Inverter current.

Precautions after Rotational and Stationary Autotuning

If the maximum output frequency and base frequency are different, set the maximum output frequency (E1-04) after autotuning.

Constant Settings for Autotuning

The following constants must be set before autotuning.

Con-	Name				Data	Display	s during	g Autoti	uning
stant Num- ber	Display	Display	Setting Range	Factory Setting	V/f	V/f with PG	Open -loop Vec- tor 1	Flux Vec- tor	Open -loop Vec- tor 2
T1-00	Motor 1/2 selection ^{*1} Select Motor	When switching to motor 2 is selected, set the motor for which autotuning is to be per- formed. (This constant is ignored if motor 2 is not selected.) 1: Motor 1 2: Motor 2	1 or 2	1	Yes	Yes	Yes	Yes	Yes
T1-01	Autotun- ing mode selection Tuning Mode Sel	Set the autotuning mode. 0: Rotational autotuning 1: Stationary autotuning 2: Stationary autotuning for line-to-line resistance only	0 to 2	2 (V/f) 0 (Vec- tor) ^{*4}	Yes	Yes	Yes	Yes	Yes
T1-02	Motor out- put power Mtr Rated Power	Set the output power of the motor in kilowatts. ^{*5 *7}	0.00 to 650.00 kW	0.40 kW *2	Yes	Yes	Yes	Yes	Yes
T1-03	Motor rated volt- age Rated Voltage	Set the rated voltage of the motor in volts. ^{*5 *6}	0 to 255.0 V (200 V class) 0 to 510.0 V (400 V class)	200.0 V (200 V class) 400.0 V (400 V class)	-	-	Yes	Yes	Yes
T1-04	Motor rated cur- rent Rated Cur- rent	Set the rated current of the motor in amps. ^{*5 *7}	0.32 to 6.40 A ^{*3}	1.90 A ^{*2}	Yes	Yes	Yes	Yes	Yes
T1-05	Motor base fre- quency Rated Fre- quency	Set the base frequency of the motor in hertz. ^{*3 *4 *5 *6}	0 to 400.0 Hz	60.0 Hz	-	-	Yes	Yes	Yes
T1-06	Number of motor poles Number of Poles	Set the number of motor poles.	2 to 48 poles	4 poles	-	-	Yes	Yes	Yes

Table 4.3 Constant Settings before Autotuning

Con-	Name				Data	Display	/s durin	g Autoti	uning
stant Num- ber	Display	Display	Setting Range	Factory Setting	V/f	V/f with PG	Open -loop Vec- tor 1	Flux Vec- tor	Open -loop Vec- tor 2
T1-07	Motor base speed	Set the base speed of the motor	0 to 24000	1750			Yes	Yes	Yes
	Rated Speed	in min ⁻¹ .*3*5	01024000	min ⁻¹	-	-	ies		ies
T1-08	Number of PG pulses when turn- ing	Set the number of pulses for the PG (pulse generator or encoder). Set the number of pulses per motor revolution	0 to 60000	600	_	Yes	-	Yes	-
	PG Pulses/ Rev	without a multiplication factor.							

Table 4.3 Constant Settings before Autotuning(Continued)

* 1. Not normally displayed. Displayed only when a motor switch command is set for a multi-function digital input (one of H1-01 to H1-05 set to 16).

* 2. The factory setting depends on the Inverter capacity. Values are given for a 200 V class, 0.4 kW Inverter.

* 3. The setting range is 10% to 200% of the Inverter capacity.

* 4. For V/f control, the only setting that is possible is 2 (stationary autotuning for line-to-line resistance only).

* 5. For fixed output motors, set the base speed value.

* 6. For inverter motors or for specialized vector motors, the voltage or frequency may be lower than for general-purpose motors. Always confirm the information on the nameplate or in test reports. If the no-load values are known, input the no-load voltage in T1-03 and the no-load current in T1-05 to ensure accuracy.

 $\ast~$ 7. The settings that will ensure stable vector control are between 50% and 100% of the Inverter rating.

Refer to page 3-14 for Digital Operator displays during autotuning.

Application Settings

User constants are set as required in advanced programming mode ("ADV" will be displayed on the LCD screen). All the constants that can be set in quick programming mode can also be displayed and set in advanced programming mode.

Setting Examples

The following are examples of settings for applications.

- When using an Inverter-mounted braking resistor (ERF), set L8-01 to 1 to enable ERF braking resistor overheating protection.
- To prevent the machine from being operated in reverse, set b1-04 to 1 to disable reverse operation.
- To increase the speed of a 60 Hz motor by 10%, set E1-04 to 66.0 Hz.
- To use a 0 to 10-V analog signal for a 60 Hz motor for variable-speed operation between 0 and 54 Hz (0% to 90% speed deduction), set H3-02 to 90.0%.
- To control speed between 20% and 80% to ensure smooth gear operation and limit the maximum speed of the machine, set d2-01 to 80.0% and set d2-02 to 20.0%.

No-load Operation

To being no-load operation (without connecting the machine and the motor), press the LOCAL/REMOTE Key on the Digital Operator to change to LOCAL mode (the SEQ and REF indicators on the Digital Operator should be OFF).

Always confirm safety around the motor and machine before starting Inverter operation from the Digital Operator. Confirm that the motor works normally and that no errors are displayed at the Inverter.

Jog Frequency Reference (d1-17, default: 6.00 Hz) can be started and stopped by pressing and releasing the JOG Key on the Digital Operator. If the external sequence prevent operation from the Digital Operator, confirm that emergency stop circuits and machine safety mechanisms are functioning, and then start operation in REMOTE mode (i.e., with a signal from the control signal terminals). The safety precautions must always be taken before starting the Inverter with the motor connected to the machine.

Both a RUN command (forward or reverse) and a frequency reference (or multi-step speed reference) must be provided to start Inverter operation.

Input these commands and reference regardless of the operation method (i.e., LOCAL of REMOTE).

Loaded Operation

Connect the machine to the motor and then start operation as described for no-load operation (i.e., from the Digital Operator or by using control circuit terminal signals).

Connecting the Load

- After confirming that the motor has stopped completely, connect the mechanical system.
- Be sure to tighten all the screws when securing the motor shaft to the mechanical system.

Operation using the Digital Operator

- Use the Digital Operator to start operation in LOCAL mode in the same way as in no-load operation.
- If fault occurs during operation, make sure the STOP Key on the Digital Operator is easily accessible.
- At first, set the frequency reference to a low speed of one tenth the normal operating speed.

Checking Operating Status

- Having checked that the operating direction is correct and that the machine is operating smoothly at slow speed, increase the frequency reference.
- After changing the frequency reference or the rotation direction, check that there is no oscillation or abnormal sound from the motor. Check the monitor display to ensure that U1-03 (Output Current) is not too high.
- Refer to *Adjustment Suggestions* on page 4-16 if hunting, vibration, or other problems originating in the control system occur.

Check and Recording User Constants

Use verify mode ("VERIFY" will be displayed on the LCD screen) to check user constants that have been changed for trial operation and record them in a user constant table.

Any user constants that have been change by autotuning will also be displayed in verify mode.

If required, the copy function in constants o3-01 and o3-02 displayed in advanced programming mode can be used to copy the changed settings from the Inverter to a recording area in the Digital Operator. If changed settings are saved in the Digital Operator, they can be easily copied back to the Inverter to speed up system recovery if for any reason the Inverter has to be replaced.

The following functions can also be used to manage user constants.

- Recording user constants
- · Setting access levels for user constants
- · Setting a password

Recording User Constants (o2-03)

If o2-03 is set to 1 after completing trial operation, the settings of user constants will be saved in a separate memory area in the Inverter. Later, after Inverter settings have been changed, the user constants can be initialized to the settings saved in the separate memory area when o2-03 was set to 1 by setting A1-03 (Initialize) to 1110.

■User Constant Access Levels (A1-01)

A1-01 can be set to 0 (monitoring-only) to prevent user constants from being changed. A1-01 can also be set to 1 (User-specified Constants) and used along with A2 constants to display only constants required by the machine or application in a programming mode.

■Password (A1-04 and A1-05)

When the access level is set to monitoring-only (A1-01 = 0), a password can be set so that user constants will be displayed only when the correct password is input.

Adjustment Suggestions

If hunting, vibration, or other problems originating in the control system occur during trial operation, adjust the constants listed in the following table according to the control method. This table lists only the most commonly used user constants.

Control Method	Name (Constant Number)	Performance	Factory Setting	Recom- mended Setting	Adjustment Method
	Hunting-prevention gain (N1-02)	Controlling hunting and vibration in mid- dle-range speeds (10 to 40 Hz)	1.00	0.50 to 2.00	 Reduce the setting if torque is insufficient for heavy loads. Increase the setting if hunt- ing or vibration occurs for light loads.
	Carrier frequency selection (C6-02)	 Reducing motor magnetic noise Controlling hunting and vibration at low speeds 	Depends on capac- ity	0 to default	 Increase the setting if motor magnetic noise is high. Reduce the setting if hunt- ing or vibration occurs at low to middle-range speeds.
V/f control (A1-02 = 0 or 1)	Torque compensation primary delay time constant (C4-02)	Increasing torque and speed responseControlling hunting and vibration	Depends on capac- ity	200 to 1000 ms	 Reduce the setting if torque or speed response is slow. Increase the setting if hunt- ing or vibration occurs.
	Torque compensation gain (C4-01)	 Improving torque at low speeds (10 Hz or lower) Controlling hunting and vibration 	1.00	0.50 to 1.50	 Increase the setting if torque is insufficient at low speeds. Reduce the setting if hunt- ing or vibration occurs for light loads.
	Middle output fre- quency voltage (E1-08) Minimum output fre- quency voltage (E1-10)	 Improving torque at low speeds Controlling shock at startup	Depends on capac- ity and voltage	Default to Default + 3 to 5 V^*	 Increase the setting if torque is insufficient at low speeds. Reduce the setting if shock at startup is large.
	Speed feedback detec- tion control (AFR) gain (N2-01)	 Increasing torque and speed response Controlling hunting and vibration in mid- dle-range speeds (10 to 40 Hz) 	1.00	0.50 to 2.00	 Reduce the setting if torque or speed response is slow. Increase the setting if hunt- ing or vibration occurs.
Open-loop vector con- trol $(A \downarrow 02 - 2)$	Torque compensation primary delay time constant (C4-02)	 Increasing torque and speed response Controlling hunting and vibration 	20 ms	20 to 100 ms	 Reduce the setting if torque or speed response is slow. Increase the setting if hunt- ing or vibration occurs.
(A1-02 = 2)	Slip compensation pri- mary delay time (C3- 02)	Increasing speed responseImproving speed sta- bility	200 ms	100 to 500 ms	 Reduce the setting if speed response is slow. Increase the setting if the speed is not stable.
	Slip compensation gain (C3-01)	Improving speed accuracy	1.0	0.5 to 1.5	Increase the setting if speed response is slow.Reduce the setting if the speed is too fast.

Table 4.4 Adjusted User Constants

Control Method	Name (Constant Number)	Performance	Factory Setting	Recom- mended Setting	Adjustment Method
Open-loop vector con- trol 1 (A1-02 = 2)	Carrier frequency selection (C6-02)	 Reducing motor magnetic noise Controlling hunting and vibration at low speeds (10 Hz or less) 	Depends on capac- ity	0 to default	 Increase the setting if motor magnetic noise is high. Reduce the setting if hunt- ing or vibration occurs at low speeds.
	Middle output fre- quency voltage (E1-08) Minimum output fre- quency voltage (E1-10)	 Improving torque at low speeds Controlling shock at startup	Depends on capac- ity and voltage	Default to Default + 1 or 2 V [*]	 Increase the setting if torque or speed response is slow. Reduce the setting if shock at startup is large.
	ASR proportional gain 1 (C5-01) and ASR proportional gain 2 (C5-03)	Torque and speed responseControlling hunting and vibration	20.00	10.00 to 50.00	 Increase the setting if torque or speed response is slow. Reduce the setting if hunt- ing or vibration occurs.
	ASR integral time 1 (high-speed) (C5-02) and ASR integral time 2 (low-speed) (C5-04)	Torque and speed responseControlling hunting and vibration	0.500 s	0.300 to 1.000 s	 Reduce the setting if torque or speed response is slow. Increase the setting if hunt- ing or vibration occurs.
Flux vector control (A1-02 = 3)	ASR switching fre- quency (C5-07)	Switching the ASR proportional gain and integral time accord- ing to the output fre- quency	0.0 Hz	0.0 to max. output fre- quency	Set the output frequency at which to change the ASR proportional gain and inte- gral time when the same val- ues cannot be used for both high-speed and low-speed operation.
	ASR primary delay time (C5-06)	• Controlling hunting and vibration	0.004 s	0.004 to 0.020	Increase the setting if machine rigidity is low and the system vibrates easily.
	Carrier frequency selection (C6-02)	 Reducing motor magnetic noise Controlling hunting and vibration at low speeds (3 Hz or less) 	Depends on the capacity.	2.0 kHz to default	 Increase the setting if motor magnetic noise is high. Reduce the setting if hunt- ing or vibration occurs at low to middle-range speeds.

Table 4.4	Adjusted User Constants (Continued)	

Control Method	Name (Constant Number)	Performance	Factory Setting	Recom- mended Setting	Adjustment Method
Open-loop vector con- trol 2 (A1-02 = 4)	ASR proportional gain 1 (C5-01) and ASR proportional gain 2 (C5-03)	Torque and speed responseControlling hunting and vibration	10.00	10.00 to 50.00	 Increase the setting if torque or speed response is slow. Reduce the setting if hunt- ing or vibration occurs.
	ASR integral time 1 (high-speed) (C5-02) and ASR integral time 2 (low-speed) (C5-04)	 Torque and speed response Controlling hunting and vibration 	0.500 s	0.300 to 1.000 s	 Reduce the setting if torque or speed response is slow. Increase the setting if hunt- ing or vibration occurs.
	ASR switching fre- quency (C5-07)	Switching the ASR proportional gain and integral time accord- ing to the output fre- quency	0.0 Hz	0.0 to max. output fre- quency	Set the output frequency at which to change the ASR proportional gain and inte- gral time when the same val- ues cannot be used for both high-speed and low-speed operation.
	ASR primary delay time (C5-06)	Controlling hunting and vibration	0.010 s	0.04 to 0.020	Increase the setting if machine rigidity is low and the system vibrates easily.
	Carrier frequency selection (C6-11)	 Reducing motor magnetic noise Controlling hunting and vibration at low speeds (3 Hz or less) 	Depends on the capacity.	Default value	 Increase the setting if motor magnetic noise is high. Reduce the setting if hunt- ing or vibration occurs at low to middle-range speeds.

Table 4.4 Adjusted User Constants (Continued)

* The setting is given for 200 V Class Inverters. Double the voltage for 400 V Class Inverters.

- Do not change the Torque Compensation Gain (C4-01) from its default setting of 1.00 when using openloop vector control 1.
- If speeds are inaccurate during regeneration in open-loop vector control 1, enable Slip Compensation During Regeneration (C3-04 = 1).
- Use slip compensation to improve speed precision during V/f control (A1-02 = 0). Set the Motor Rated Current (E2-01), Motor Rated Slip (E2-02), and Motor No-load Current (E2-03), and then adjust the Slip Compensation Gain (C3-01) to between 0.5 and 1.5. The default setting for V/f control is C3-01 = 0.0 (slip compensation disabled).
- To improve speed response and stability in V/f control with a PG (A1-02 = 1), set the ASR constants (C5-01 to C5-05) to between 0.5 and 1.5 times the default. (It is not normally necessary to adjust this setting.) ASR for V/f control with a PG will only control the output frequency; a high gain, such as is possible for open-loop vector control 2 or flux vector control, cannot be set.

The following user constants will also indirectly affect the control system.

Name (Constant Number)	Application
Dwell function (b6-01 to b6-04)	Used for heavy loads or large machine backlashes.
Droop function (b7-01 to b7-02)	Used to soften the torque or to balance the load between two motors. Can be used when the control mode (A1-02) is set to 3 or 4.
Acceleration/deceleration times (C1-01 to C1-11)	Adjust torque during acceleration and deceleration.
S-curve characteristics (C2-01 to C2-04)	Used to prevent shock when completing acceleration.

Table 4.5 Constants Indirectly Affecting Control and Applications

Name (Constant Number)	Application
Jump frequencies (d3-01 to d3-04)	Used to avoid resonance points during operation.
Analog input filter time constant (H3-12)	Used to prevent fluctuations in analog input signals caused by noise.
Stall prevention (L3-01 to L3-06)	Used to prevent 0 V (overvoltage errors) and motor stalling for heavy loads or rapid acceleration/deceleration. Stall prevention is enabled by default and the setting does not normally need to be changed. When using a braking resistor, however, disable stall prevention during deceleration by setting L3-04 to 0.
Torque limits (L7-01 to L7-04)	Set the maximum torque during vector control. If a setting is increased, use a motor with higher capacity than the Inverter. If a setting is reduced, stalling can occur under heavy loads.
Feed forward control (N5-01 to N5-03)	Used to increase response for acceleration/deceleration or to reduce over- shooting when there is low machine rigidity and the gain of the speed controller (ASR) cannot be increased. The inertia ratio between the load and motor and the acceleration time of the motor running alone must be set.

Table 4.5	Constants Indirectly	v Affecting Control an	d Applications(Continued)
10010 1.0	Constants manoon	<i>y i</i> mooting oomaan un	

5

User Constants

This chapter describes all user constants that can be set in the Inverter.

User Constant Descriptions5-	-2
Digital Operation Display Functions and Levels5	-3
User Constant Tables5-	-8

User Constant Descriptions

This section describes the contents of the user constant tables.

Description of User Constant Tables

User constant tables are structured as shown below. Here, b1-01 (Frequency Reference Selection) is used as an example.

Con- stant Number	Name		Setting Range	Factory Setting	Change during Opera- tion	Control Methods						
	Display	Description				V/f	V/f with PG	Open -loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
b1-01	Reference selection Reference Source	Set the frequency reference input method. 0: Digital Operator 1: Control circuit terminal (analog input) 2: MEMOBUS communi- cations 3: Option Card 4: Pulse train input	0 to 4	1	No	Q	Q	Q	Q	Q	180H	-

• Constant Number:	The number of the user constant.		
• Name:	The name of the user constant.		
• Description:	Details on the function or settings of the user constant.		
Setting Range:	The setting range for the user constant.		
• Factory Setting:	The factory setting (each control method has its own factory setting. Therefore the factory setting changes when the control method is changed.) Refer to page 5-83 for factory settings by control method.		
• Change during Operation:	Indicates whether or not the constant can be changed while the Inverter is in operation.		
	Yes: Changes possible during operation.		
	No: Changes not possible during operation.		
• Control Methods:	Indicates the control methods in which the user constant can be moni- tored or set.		
	Q: Items which can be monitored and set in either quick program- ming mode or advanced programming mode.		
	A: Items which can be monitored and set only in advanced pro- gramming mode.		
	No: Items which cannot be monitored or set for the control method.		
• MEMOBUS Register:	The register number used for MEMOBUS communications.		
• Page:	Reference page for more detailed information on the constant.		

Digital Operation Display Functions and Levels

The following figure shows the Digital Operator display hierarchy for the Inverter.

		No.	Function	Display	Page
		U1	Status Monitor Constants	Monitor	5-75
	Drive Mode	U2	Fault Trace	Fault Trace	5-80
		U3	Fault History	Fault History	5-82
	Inverter can be operated and	03	1 adit filstory	Fault Flistory	J-02
	its status can be displayed.	A1	Initialize Mode	Initialization	5-8
		A2		User	5-8
			User-specified Setting Mode	Parameters	
		b1	Operation Mode Selections	Sequence	5-10
		b2	DC Injection Braking	DC Braking	5-12
		b3	Speed Search	Speed Search	5-13
	Quick Programming Mode	b4	Timer Function	Delay Timers	5-14
		b5	PID Control	PID Control	5-14
	Minimum constants required	b6	Dwell Functions	PID Control	5-16
	for operation can be monitored	b7	Droop Control	Droop Con- trol	5-17
	or set.	b8	Energy Saving	Energy Sav- ing	5-18
		b9	Zero Servo	Zero Servo	5-19
		C1	Acceleration/Deceleration	Accel/Decel	5-20
		C2	S-curve Acceleration/Deceleration	S-Curve Acc/ Dcc	5-21
		C3	Motor Slip Compensation	Motor-Slip	5-22
		C4	Torque Compensation	Comp Torque	5-23
	Advanced Programming Mode	C5	Speed Control (ASR)	Comp ASR Tuning	5-24
	All constants can be monitored	C6	Carrier Frequency	Carrier Freq	5-25
	or set.	d1	Preset Reference	Preset Ref-	5-26
	or set.	d1 d2	Reference Limits	erence Reference	
		-		Limits Jump Fre-	5-27
		d3	Jump Frequencies	quencies	5-28
		d4	Reference Frequency Hold	Sequence	5-28
		d5	Torque Control	Torque Control	5-29
		d6	Field Control	Field-weak- ening	5-30
	Verify Mode	E1	V/f Pattern	V/f Pattern	5-32
		E2	Motor Setup	Motor Setup	5-33
	Constants changed from the	E3	Motor 2 V/f Pattern	V/f Pattern 2	5-35
	default settings can be moni-	E4	Motor 2 Setup	Motor Setup 2	5-37
	tored or set.	F1	PG Option Setup	PG Option Setup	5-38
		F2	Analog Reference Card	AI-14 Setup	5-40
		F3	Digital Reference Card	DI-08, 16 Setup	5-41
		F4	Analog Monitor Cards	AO-08, 12 Setup	5-40
		F5	Digital Output Card	DO-02,08 Setup	5-43
		F6	Communications Option Card	CP-916 Setup	5-44
	Autotuning Mode	H1	Multi-function Contact Inputs	Digital	5-45
	Automatically sets motor con-	H2	Multi-function Contact Outputs	Inputs Digital Out-	5-48
	stants if autotuning data (from	H3	Analog Inputs	puts Analog	5-50
	motor nameplate) is input for			Inputs Analog Out-	
	open-loop vector control or to	H4 H5	Multi-function Analog Outputs MEMOBUS Communications	puts Serial Com	5-53 5-54
	measure the line-to-line resis-			Setup Pulse I/O	
	tance for V/f control.	H6	Pulse Train	Setup Motor Over-	5-56
	L]	L1	Motor Overload	load PwrLoss	5-57
		L2	Power Loss Ridethrough	Ridethru	5-58
		L3	Stall Prevention	Stall Preven- tion	5-60
		L4	Reference Detection	Ref Detec- tion	5-61
		L5	Fault Restart	Fault Restart	5-62
		L6	Torque Detection	Torque Detection	5-63
		L7	Torque Limits	Torque Limit	5-64
		L8	Hardware Protection	Hdwe Pro- tection	5-65
		N1	Hunting Prevention Function	Hunting Prev	5-67
		N2	Speed Feedback Protection Control	AFR	5-68
		N3	High-slip Braking	High Slip	5-68
		N4	Speed Estimation	Observer	5-69
		N5	Feed Forward	Feedfoward	5-70
			Monitor Select	Cont Monitor	5-70
		01 02		Select Key Selec-	
			Multi-function Selections	Hana	5-72
		02	Copy Function	tions COPY Func-	5-73

Т

Motor Autotuning

Auto-Tuning

5-74

User Constants Settable in Quick Programming Mode

The minimum user constants required for Inverter operation can be monitored and set in quick programming mode. The user constants displayed in quick programming mode are listed in the following table. These, and all other user constants, are also displayed in advanced programming mode.

Refer to the overview of modes on page 3-4 for an overview of quick programming mode.

	Name						Cont	rol Me	thods	;	
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open -loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter
A1-02	Control method selection	Set the control method for the Inverter. 0: V/f control 1: V/f control with PG 2: Open-loop vector control 1	0 to 4	2	No	Q	Q	Q	Q	Q	102H
	Control Method	3: Flux vector control 4: Open-loop vector control 2									
	Reference selection	Set the frequency reference input method. 0: Digital Operator									
b1-01	Reference Source	 Digital Operator Control circuit terminal (analog input) MEMOBUS communications Option Card Pulse train input 	0 to 4	1	No	Q	Q	Q	Q	Q	180H
b1-02	Operation method selection	Set the run command input method 0: Digital Operator 1: Control circuit terminal (sequence input)	0 to 3	1	No	Q	Q	Q	Q	Q	181H
b1-02	Run Source	2: MEMOBUS communications 3: Option Card									
	Stopping method selection	Select stopping method when stop command is sent. 0: Deceleration to stop 1: Coast to stop									
b1-03	Stopping Method	 Coast to stop DC braking stop (Stops faster than coast to stop, without regenerative operation.) Coast to stop with timer (Run commands are disregarded during deceleration time.) 	0 to 3	0	No	Q	Q	Q	Q	Q	182H
C1-01	Accelera- tion time 1	Set the acceleration time in seconds for the output frequency to climb from			Yes	Q	Q	Q	Q	Q	200H
01 01	Accel Time 1	0% to 100%.	0.0 to 6000.0	10.0 s	103	Ŷ	×	×	×	×	20011
C1-02	Decelera- tion time 1	Set the deceleration time in seconds for the output frequency to fall from	*1	10.0 5	Yes	Q	Q	Q	Q	Q	201H
01 02	Decel Time 1	100% to 0%.			105	×	×	×	×	×	20111
C6-02	Carrier fre- quency selection	Select carrier wave fixed pattern. Select F to enable detailed settings	1 to F	6 *2	No	Q	Q	Q	Q	No	224H
C6-02 se	Carrier Freq Sel	using constants C6-03 to C6-05.									

	Name						Cont	rol Me	thods	;	
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open -loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter
C6-11	Carrier fre- quency for open-loop vector con- trol 2	Select carrier frequency when open- loop vector control 2 is used. 1: 2.0kHz 2: 4.0kHz 3: 6.0kHz	1 to 4	4 ^{*2}	No	No	No	No	No	Q	22DH
	Carrier Freq Sel	4: 8.0kHz									
d1-01	Frequency reference 1	Set the frequency reference in the unit		0.00 Hz	V	0	0	0	0	0	280H
d1-01	Reference 1	specified in o1-03.		0.00 HZ	Yes	Q	Q	Q	Q	Q	28011
d1-02	Frequency reference 2	Frequency reference when multi-step speed reference 1 is ON for a multi-	-	0.00 Hz	Yes	Q	Q	Q	0	0	281H
u1 02	Reference 2	function input.		0.00 112	103	X	X	×	X	X	20111
d1-03	Frequency reference 3 Frequency reference when multi-step 0 to	0 to	0.00 Hz	Yes	Q	Q	Q	Q	Q	282H	
u1-03	Reference 3	function input.	400.00 *9	0.00112	103	Q	Q	Q	Q	Q	20211
d1-04	Frequency reference 4	Frequency reference when multi-step speed reference 1 and 2 are ON for a		0.00 Hz	Yes	Q	Q	Q	Q	Q	283H
d1-04	Reference 4	multi-function input.		0.00 HZ	ies	Q	Q	Q	Ŷ	Q	285П
d1-17	Jog frequency reference	Frequency reference when Jog Fre- quency Selection, FJOG command, or RJOG command is ON for a multi-		6.00 Hz	Yes	Q	Q	Q	Q	Q	292H
	Jog Reference	function input.									
E1-01	Input volt- age setting	Set the Inverter input voltage in 1 volt. This set value will be the basis for the	155 to 255 *3	200 V	No	Q	Q	Q	Q	Q	300H
L1-01	Input Volt- age	protection functions.		*3	110	Y	Y	Y	Y	Y	50011
E1-03	V/f pattern selection	0 to E: Select from 15 preset patterns. F: Custom user-set patterns (Applica-	0 to F	F	No	Q	Q	No	No	No	302H
11-05	V/F Selec- tion	ble for setting E1-04 to E1-10).	0.01	Ĩ	110	X	Y	110	110	110	50211

Name						Cont	rol Me	thods		
Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open -loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter
Max. output frequency (FMAX) Max Frequency	(11-22)	40.0 to 400.0 ^{*9}	60.0 Hz *4	No	Q	Q	Q	Q	Q	303H
Max. voltage (VMAX) Max Voltage	((2) PR422) ((E -18)) ((E -18)) (E -10) (E -10) (0.0 to 255.0 *3	200.0 V *3*4	No	Q	Q	Q	Q	Q	304H
Base fre- quency (FA) Base Fre- quency	to set V/f characteristics in a straight ne, set the same values for E1-07 and 1-09. In this case, the setting for E1- 8 will be disregarded. Iways ensure that the four frequen- es are set in the following manner: 1-04 (FMAX) \geq E1-06 (FA) > E1-07	0.0 to 400.0 ^{*9}	60.0 Hz *4	No	Q	Q	Q	Q	Q	305H
Min. out- put fre- quency (FMIN) Min Fre-	will be disregarded. ways ensure that the four frequen- es are set in the following manner: -04 (FMAX) \geq E1-06 (FA) $>$ E1-07	0.0 to 400.0 ^{*9}	0.5 Hz *4	No	Q	Q	Q	A	Q	308H
quency										
Base voltage (VBASE)	Change this setting only when making advanced adjustments for V/f in the fixed outputs area. Normally, there is	0.0 to 255.0	0.0 V *5	No	А	А	Q	Q	Q	30CH
Base Voltage	no need to make these settings.	*3								
Motor rated cur- rent Motor	Set the motor rated current in amps. This set value becomes the base value for motor protection, torque limit, and torque control. It is set automatically	0.32 to 6.40 *7	1.90 A *6	No	Q	Q	Q	Q	Q	30EH
Rated FLA	when using autotuning.									
Number of motor poles Number of	Set the number of motor poles. The value is set automatically during auto- tuning.	2 to 48	4	No	No	Q	No	Q	Q	311H
Poles Motor rated output	Set the output of the motor in units of 0.01kW. This constant is automatically	0.00 to 650.000	0.40*10	No	Q	Q	Q	Q	Q	318H
Mtr Rated Power	set during autotuning.									
PG con- stant	Set the number of pulses per rotation for the PG (pulse generator or	0 to								
PG Pulses/ Rev	encoder) being used. (Do not set as a multiple.)	60000	600	No	No	Q	No	Q	No	380H
Gain (ter- minal FM)	Set the voltage level gain for multi- function analog output 1.									
÷	0.00 to 2.50	1.00	Yes	Q	Q	Q	Q	Q	41EH	
	Max. output frequency (FMAX) Max Frequency (Max. voltage (VMAX) Max Voltage Base fre- quency (FA) Base Fre- quency (FA) Min. out- put fre- quency (FMIN) Min Fre- quency (FMIN) Min Fre- quency (VBASE) Base Voltage (VBASE) Base Voltage (VBASE) Base Voltage (VBASE) Base Voltage (VBASE) Base Voltage Motor rated cur- rent Motor Rated FLA Number of Poles Number of Poles Motor rated poles Number of Poles Motor rated poles Motor rated poles Motor rated poles Motor rated poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor rated poles Motor rated poles Motor Poles Motor Poles Motor Poles Motor rated poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor Poles Motor P	DisplayMax. output frequency (FMAX)Max. Frequency (VMAX)Max. voltage (VMAX)Max. VoltageBase frequency (FA)Base frequency (FA)Base Frequency (FA)Base Frequency (FA)Min. out- put frequency (FMIN)Min Frequency (FMIN)Min Frequency (FMIN)Min Frequency (FMIN)Min Frequency (FMIN)Min Frequency (FMIN)Min Frequency (FMIN)Min Frequency (FMIN)Min Frequency (FMIN)Motor rated cur- rentMotor rated cur- rentMotor rated cur- rentMotor polesMotor rated cur- rentMumber of polesMotor rated cur- rentMumber of polesMotor rated cur- rated cur- rentMumber of polesMotor rated cur- rated cur- rentMumber of polesMotor rated polesMotor rated polesMotor rated polesMotor rated polesMotor rated polesMotor rated polesMotor rated polesMotor rated cur- polesMotor rated cur- polesMotor rated cur- polesMotor rated cur- polesMotor rated cur- polesMotor rated cur- polesMotor rated cur- polesMotor rated cur- polesMotor <b< td=""><td>DisplayDescriptionRangeMax. output frequency (FMAX)40.0 to $40.0.0^{*9}$Max. voltage (VMAX)$\frac{1}{10000000000000000000000000000000000$</td><td>DisplayDescriptionRangeSettingMax. output frequency (FMAX)$a_{a,a}$$a_{a,b}$$a_{a,b}$$a_{a,b}$$a_{a,b}$Max. voltage$a_{a,a}$$a_{a,b}$$a_{a,b}$$a_{a,b}$$a_{a,b}$$a_{a,b}$Max. voltage$a_{a,b}$$a_{a,b}$$a_{a,b}$$a_{a,b}$$a_{a,b}$$a_{a,b}$Max. voltage$a_{a,b}$$a_{a,b}$$a_{a,b}$$a_{a,b}$$a_{a,b}$$a_{a,b}$Max. voltage$a_{a,b}$$a_{a,b}$$a_{a,b}$$a_{a,b}$$a_{a,b}$$a_{a,b}$Max. voltageTo set V/f characteristics in a straight line, set the same values for E1-07 ad Ways ensure that the four frequen- cies are set in the following manner: E1-04 (FMAX) ≥ E1-06 (FA) > E1-07 (FB) ≥ E1-09 (FMIN)0.0 to $a_{a,b}$$0.0$ to $a_{a,b}$$0.0$ to $a_{a,b}$Min out- put fre- quencyChange this setting only when making advanced adjustments for V/f in the is read outputs area. Normally, there is no need to make these settings.0.0 to 255.0 $a_{a,b}$$0.0$ to 255.0 $a_{a,b}$Base VoltageSet the motor rated current in amps. This set value becomes the base value for motor protection, torque limit, and for motor protection, torque limit, and for motor protection, torque limit, and ro ro ro ro set the number of motor poles. The value is set automatically during auto- $a_{a,b}$$1.90$ A $a_{a,b}$Number of polesSet the output of the motor in units of output.0.00 to 0.01 to $t_{a,b}$$0.00$ to $t_{a,b}$<td>DisplayDescriptionRangeSettingOperationMax. voluge (YMAX) Max voltage Base frequency (FAA X) Max voltage$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$</td><td>DisplayDescriptionSetting RangeFactory Settingduring optionV_{ff}Max. frequency (FMAX)$V_{ff}$$U_{0}$ to $U_{0}$$U_{0}$ to $U_{0}$$U_{0}$ to $U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$<td>DisplayDescriptionSetting RangeFactory Setting<math>QuringOpen-tionVII<math>VifiwightwightMax.touputfrequency(PMAX)$VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$</math></math></td><td>DisplayDescriptionSetting RangeFactory settingOutring outring outring outring outring outring outring outring outring outring (MAX)VitVit where is to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to<b< td=""><td>DisplayDescriptionSetting RangeFactory setting$U_{r1}$$U_{r1}$$U_{r1}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$</td><td>DisplayDescriptionSetting RangeFactory Setting$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$</td></b<></td></td></td></b<>	DisplayDescriptionRangeMax. output frequency (FMAX) 40.0 to $40.0.0^{*9}$ Max. voltage (VMAX) $\frac{1}{10000000000000000000000000000000000$	DisplayDescriptionRangeSettingMax. output frequency (FMAX) $a_{a,a}$ $a_{a,b}$ $a_{a,b}$ $a_{a,b}$ $a_{a,b}$ Max. voltage $a_{a,a}$ $a_{a,b}$ $a_{a,b}$ $a_{a,b}$ $a_{a,b}$ $a_{a,b}$ Max. voltage $a_{a,b}$ $a_{a,b}$ $a_{a,b}$ $a_{a,b}$ $a_{a,b}$ $a_{a,b}$ Max. voltage $a_{a,b}$ $a_{a,b}$ $a_{a,b}$ $a_{a,b}$ $a_{a,b}$ $a_{a,b}$ Max. voltage $a_{a,b}$ $a_{a,b}$ $a_{a,b}$ $a_{a,b}$ $a_{a,b}$ $a_{a,b}$ Max. voltageTo set V/f characteristics in a straight line, set the same values for E1-07 ad Ways ensure that the four frequen- cies are set in the following manner: E1-04 (FMAX) ≥ E1-06 (FA) > E1-07 (FB) ≥ E1-09 (FMIN) 0.0 to $a_{a,b}$ 0.0 to $a_{a,b}$ 0.0 to $a_{a,b}$ Min out- put fre- quencyChange this setting only when making advanced adjustments for V/f in the is read outputs area. Normally, there is no need to make these settings. 0.0 to 255.0 $a_{a,b}$ 0.0 to 255.0 $a_{a,b}$ Base VoltageSet the motor rated current in amps. This set value becomes the base value for motor protection, torque limit, and for motor protection, torque limit, and for motor protection, torque limit, and ro ro ro ro set the number of motor poles. The value is set automatically during auto- $a_{a,b}$ 1.90 A $a_{a,b}$ Number of polesSet the output of the motor in units of output. 0.00 to 0.01 to $t_{a,b}$ 0.00 to $t_{a,b}$ <td>DisplayDescriptionRangeSettingOperationMax. voluge (YMAX) Max voltage Base frequency (FAA X) Max voltage$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$</td> <td>DisplayDescriptionSetting RangeFactory Settingduring optionV_{ff}Max. frequency (FMAX)$V_{ff}$$U_{0}$ to $U_{0}$$U_{0}$ to $U_{0}$$U_{0}$ to $U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$$U_{0}$<td>DisplayDescriptionSetting RangeFactory Setting<math>QuringOpen-tionVII<math>VifiwightwightMax.touputfrequency(PMAX)$VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$</math></math></td><td>DisplayDescriptionSetting RangeFactory settingOutring outring outring outring outring outring outring outring outring outring (MAX)VitVit where is to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to<b< td=""><td>DisplayDescriptionSetting RangeFactory setting$U_{r1}$$U_{r1}$$U_{r1}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$</td><td>DisplayDescriptionSetting RangeFactory Setting$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$</td></b<></td></td>	DisplayDescriptionRangeSettingOperationMax. voluge (YMAX) Max voltage Base frequency (FAA X) Max voltage $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	DisplayDescriptionSetting RangeFactory Settingduring option V_{ff} Max. frequency (FMAX) V_{ff} U_{0} to U_{0} U_{0} to U_{0} U_{0} to U_{0} U_{0} <td>DisplayDescriptionSetting RangeFactory Setting<math>QuringOpen-tionVII<math>VifiwightwightMax.touputfrequency(PMAX)$VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$</math></math></td> <td>DisplayDescriptionSetting RangeFactory settingOutring outring outring outring outring outring outring outring outring outring (MAX)VitVit where is to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to<b< td=""><td>DisplayDescriptionSetting RangeFactory setting$U_{r1}$$U_{r1}$$U_{r1}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$</td><td>DisplayDescriptionSetting RangeFactory Setting$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$</td></b<></td>	DisplayDescriptionSetting RangeFactory Setting $QuringOpen-tionVIIVifiwightwightMax.touputfrequency(PMAX)VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	DisplayDescriptionSetting RangeFactory settingOutring outring outring outring outring outring outring outring outring outring (MAX)VitVit where is to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to to <b< td=""><td>DisplayDescriptionSetting RangeFactory setting$U_{r1}$$U_{r1}$$U_{r1}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$$U_{r2}$</td><td>DisplayDescriptionSetting RangeFactory Setting$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$$v_{rf}$</td></b<>	DisplayDescriptionSetting RangeFactory setting U_{r1} U_{r1} U_{r1} U_{r2}	DisplayDescriptionSetting RangeFactory Setting v_{rf}

	Name						Cont	trol Me	thods		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open -loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter
H4-05	Gain (ter- minal AM) Terminal AM Gain	Set the voltage level gain for multi- function analog output 2. Set the number of multiples of 10 V to be output as the 100% output for the monitor items. Voltage output from the terminals, however, have a 10 V max. meter calibration function.	0.00 to 2.50	0.50	Yes	Q	Q	Q	Q	Q	421H
L1-01	Motor pro- tection selection MOL Fault Select	 Set to enable or disable the motor overload protection function using the electronic thermal relay. O: Disabled I: General-purpose motor protection 2: Inverter motor protection 3: Vector motor protection In some applications when the Inverter power supply is turned off, the thermal value is reset, so even if this constant is set to 1, protection may not be effective. When several motors are connected to one Inverter, set to 0 and ensure that each motor is installed with a protection device. 	0 to 3	1	No	Q	Q	Q	Q	Q	480H
L3-04	Stall pre- vention selection during decelera- tion StallP Decel Sel	 0: Disabled (Deceleration as set. If deceleration time is too short, a main circuit overvoltage may result.) 1: Enabled (Deceleration is stopped when the main circuit voltage exceeds the overvoltage level. Deceleration restarts when voltage is returned.) 2: Intelligent deceleration mode (Deceleration rate is automatically adjusted so that in Inverter can decelerate in the shortest possible time. Set deceleration time is disregarded.) 3: Enabled (with Braking Resistor Unit) *8 When a braking option (Braking Resistor Unit, Braking Unit) is used, always set to 0 or 3. 	0 to 3 *11	1	No	Q	Q	Q	Q	Q	492H

* 1. The setting ranges for acceleration/deceleration times depends on the setting of C1-10 (Acceleration/deceleration Time Setting Unit). If C1-10 is set to 0, the setting range is 0.00 to 600.00 (s).

* 2. The factory setting depends on the Inverter capacity.

 $\ast~$ 3. These are values for a 200 V class Inverter. Values for a 400 V class Inverter are double.

* 4. The factory setting will change when the control method is changed. (Open-loop vector 1 factory settings are given.)

 $\ast~$ 5. After autotuning, E1-13 will contain the same value as E1-05.

* 6. The factory setting depends on the Inverter capacity. (The value for a 200 V Class Inverter for 0.4 kW is given.)

* 7. The setting range is from 10% to 200% of the Inverter rated output current. (The value for a 200 V Class Inverter for 0.4 kW is given.)

* 8. L3-04 cannot be set to 3 for flux vector control or open-loop vector control 2.

* 9. The setting range is 0 to 66.0 for open-loop vector control 2.

* 10.The same capacity as the Inverter will be set by initializing the constants.

* 11. The setting range is 0 to 2 for flux vector control and open-loop vector control 2.

User Constant Tables

A: Setup Settings

The following settings are made with the environment constants (A constants): Language displayed on the Digital Operator, access level, control method, initialization of constants.

Initialize Mode: A1

User constants for the environment modes are shown in the following table.

	Name				Change		Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
A1-00	Language selection for Digital Operator display Select Lan- guage	Used to select the language displayed on the Digital Operator (LCD). 0: English 1: Japanese 2: German 3: French 4: Italian 5: Spanish 6: Portuguese This constant is not initialized by the initialize operation.	0 to 6	1	Yes	A	А	А	А	А	100H	_
A1-01	Constant access level Access Level	 Used to set the constant access level (set/read.) 0: Monitoring only (Monitoring drive mode and setting A1-01 and A1- 04.) 1: Used to select user constant (Only constants set in A2- 01 to A2-32 can be read and set.) 2: Advanced (Constants can be read and set in both quick programming mode and advanced programming (A) mode.) 	0 to 2	2	Yes	A	А	А	А	А	101H	6- 139 6- 141
A1-02	Control method selection Control Method	Used to select the control method for the Inverter 0: V/f control 1: V/f with PG feedback 2: Open-loop vector control 1 3: Flux vector 4: Open-loop vector control 2 This constant is not initialized by the initialize operation.	0 to 4	2	No	Q	Q	Q	Q	Q	102H	4-5 4-7 4-16

	Name				Change		Con	trol Me	ethods	3		
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
	Initialize	Used to initialize the con-										
A1-03	Init Parame- ters	stants using the specified method. 0: No initializing 1110: Initializes using the User constants 2220: Initializes using a two-wire sequence. (Initializes to the factory setting.) 3330: Initializes using a three-wire sequence.	0 to 3330	0	No	A	А	А	А	А	103H	-
	Password	Password input when a pass-										
A1-04	Enter Pass- word	word has been set in A1-05. This function write-protects some constants of the initial- ize mode. If the password is changed, A1-01 to A1-03 and A2-01 to A2-32 constants can no longer be changed. (Program- ming mode constants can be changed.)	0 to 9999	0	No	A	А	А	А	А	104H	6- 140
	Password setting	Used to set a four digit num- ber as the password.										
A1-05	Select Pass- word	This constant is not usually displayed. When the Pass- word (A1-04) is displayed, hold down the RESET Key and press the Menu Key and the password will be dis- played.	0 to 9999	0	No	А	А	А	А	А	105H	6- 140

■User-set Constants: A2

The constants set by the user are listed in the following table.

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
A2-01 to A2-32	User setting constants User Param 1 to 32	Used to set the constant num- bers that can be set/read. Maximum 32. Effective when the Constant Access Level (A1-01) is set to User Program (1). Constants set in constants A2-01 to A2- 32 can be set/read in pro- gramming mode.	b1-01 to o3-02	-	No	А	А	А	А	А	106H to 125H	6- 141

Application Constants: b

The following settings are made with the application constants (B constants): Operation method selection, DC injection braking, speed searching, timer functions, dwell functions, and energy saving functions.

■Operation Mode Selections: b1

User constants for operation mode selection are shown in the following table.

	Name				Change		Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
b1-01	Reference selection Reference Source	Set the frequency reference input method. 0: Digital Operator 1: Control circuit terminal (analog input) 2: MEMOBUS communica- tions 3: Option Card 4: Pulse train input	0 to 4	1	No	Q	Q	Q	Q	Q	180H	4-5 6-2 6-66 6-83
b1-02	Operation method selection Run Source	Set the run command input method. 0: Digital Operator 1: Control circuit terminal (sequence input) 2: MEMOBUS communica- tions 3: Option Card	0 to 3	1	No	Q	Q	Q	Q	Q	181H	4-5 6-7 6-66 6-83
b1-03	Stopping method selection Stopping Method	Used to set the stopping method used when a stop com- mand is input. 0: Deceleration to stop 1: Coast to stop 2: DC injection braking stop (Stops faster than coast to stop, no regenerative operation.) 3: Coast to stop with timer (Run commands are disregarded during deceleration.)	0 to 3*	0	No	Q	Q	Q	Q	Q	182H	4-6 6-9
b1-04	Prohibition of reverse operation Reverse Oper	0: Reverse enabled 1: Reverse disabled	0 or 1	0	No	A	А	А	А	А	183H	6-54

	Name				Change		Con	trol Me	ethods	5		
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
	Operation selection for setting E1-09 or less	Used to set the method of operation when the fre- quency reference input is less than the minimum output fre- quency (E1-09). 0: Run at frequency reference										
b1-05	Zero-Speed Oper	 (E1-09 not effective). 1: STOP (Frequencies below E1-09 in the coast to stop state.) 2: Run at min. frequency. (E1-09) 3: Run at zero speed (Frequencies below E1-09 are zero) 	0 to 3	0	No	No	No	No	А	No	184H	6-9
	Read sequence input twice	Used to set the responsiveness of the control inputs (forward/ reverse and multi-function inputs.)										
b1-06	Cntl Input Scans	 0: Two scans every 2 ms (Use for fast responses.) 1: Two scans every 5 ms (Use for possible malfunction due to noise.) 	0 or 1	1	No	Α	А	А	А	A	185H	-
b1-07	Operation selection after switching to remote mode	Used to set the operation mode by switching to the Remote mode using the Local/Remote Key. 0: Run signals that are input during mode switching are disregarded. (Input Run	0 or 1	0	No	А	А	А	А	А	186H	_
	LOC/REM RUN Sel	signals after switching the mode.) 1: Run signals become effective immediately after switching to the Remote mode.										
b1-08	Run com- mand selec- tion in program- ming modes	Used to set an operation inter- lock in programming modes. 0: Cannot operate. 1: Can operate (Disabled when Digital Operator is set to select run command	0 or 1	0	No	А	А	А	А	А	187H	-
	RUN CMD at PRG	(when $b1-02 = 0$).										

* The setting range is 0 or 1 for flux vector control and open-loop vector control 2.

■DC Injection Braking: b2

User constants for injection braking are shown in the following table.

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
b2-01	Zero speed level (DC injection braking start- ing fre- quency)	Used to set the frequency which starts DC injection braking in units of Hz when deceleration to stop is selected. When b2-01 is less than E1- 09, E1-09 becomes the DC	0.0 to 10.0	0.5 Hz	No	A	А	А	А	А	189H	6-9
	DCInj Start Freq	injection braking starting fre- quency.										
b2-02	DC injection braking cur- rent	Sets the DC injection braking current as a percentage of the	0 to 100	50%	No	А	А	А	No	No	18AH	6-9 6-13
]	DCInj Cur- rent	Inverter rated current.	100									0-15
1.2.02	DC injection braking time at start	Used to set the time to per- form DC injection braking at start in units of 1 second.	0.00	0.00							1001	6 12
b2-03	DCInj Time@Start	Used to stop coasting motor and restart it. When the set value is 0, DC injection brak- ing at start is not performed.	to 10.00	0.00 s	No	A	A	A	A	A	18BH	6-13
	DC injection braking time at stop	Used to set the time to per- form DC injection braking at stop in units of 1 second.	0.00									
b2-04	DCInj Time@Stop	Used to prevent coasting after the stop command is input. When the set value is 0.00, DC injection braking at stop is not performed.	to 10.00	0.50 s	No	Α	A	Α	Α	Α	18CH	6-9
b2-08	Magnetic flux compensa- tion volume	Sets the magnetic flux com- pensation as a percentage of the no-load current.	0 to 1000	0%	No	No	No	А	No	No	190H	-
	Field Comp											

■Speed Search: b3

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
	Speed search selection (current detection or speed calcu- lation)	Enables/disables the speed search function for the run command and sets the speed search method. 0: Disabled, speed calculation 1: Enabled, speed calculation 2: Disabled, current detection 3: Enabled, current detection										
b3-01	SpdSrch at Start	Speed Calculation: When the search is started, the motor speed is calculated and acceleration/deceleration is performed from the calculated speed to the specified frequency (motor direction is also searched).	0 to 3	2*	No	A	A	А	No	А	191H	6-56
		Current Detection: The speed search is started from the frequency when power was momentarily lost and the maximum frequency, and the speed is detected at the search current level.										
b3-02	Speed search oper- ating current (current detection)	Sets the speed search operation current as a percentage, taking the Inverter rated current as 100%. Not usually necessary to set.	0 to 200	100%*	No	А	No	А	No	А	192H	6-56
	SpdSrch Current	When restarting is not possible with the factory settings, reduce the value.										
b3-03	Speed search decelera- tion time (current detection)	Sets the output frequency deceleration time during speed search in 1-second units. Set the time for deceleration from the maximum output fre- quency to the minimum output	0.1 to 10.0	2.0 s	No	А	No	А	No	No	193H	6-56
	SpdSrch Dec Time	frequency.										
b3-05	Speed search wait time (cur- rent detec- tion or speed calcu- lation)	Sets the contactor operating delay time when there is a con- tactor on the output side of the Inverter. When a speed search is performed after recovering from a momentary power loss, the search operation is delayed	0.0 to 20.0	0.2 s	No	А	А	А	А	А	195H	6-56
	Search Delay	the search operation is delayed by the time set here.										

User constants for the speed search are shown in the following table.

* The factory setting will change when the control method is changed. (Open-loop vector 1 factory settings are given.)

■Timer Function: b4

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
b4-01	Timer func- tion ON- delay time Delay-ON Timer	Sets the timer function out- put ON-delay time (dead band) for the timer function input, in 1-second units. Enabled when a timer func- tion is set in H1-□□ or H2- □□.	0.0 to 300.0	0.0 s	No	А	A	А	А	А	1A3H	6-93
b4-02	Timer func- tion OFF- delay time Delay-OFF Timer	Sets the timer function out- put OFF-delay time (dead band) for the timer function input, in 1-second units. Enabled when a timer func- tion is set in H1- I or H2- I.	0.0 to 300.0	0.0 s	No	А	A	А	А	А	1A4H	6-93

User constants for timer functions are shown in the following table.

■PID Control: b5

User constants for PID control are shown in the following table.

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
	PID control mode selec- tion	0: Disabled 1: Enabled (Deviation is D- controlled.) 2: Enabled (Feedback value										
b5-01	PID Mode	 2: Enabled (Feedback value is D-controlled.) 3: PID control enabled (frequency reference + PID output, D control of deviation) 4: PID control enabled (frequency reference + PID output, D control of feedback value). 	0 to 4	0	No	А	А	A	A	А	1A5H	6-95
b5-02	Proportional gain (P) PID Gain	Sets P-control proportional gain as a percentage. P-control is not performed	0.00 to 25.00	1.00	Yes	A	А	А	А	А	1A6H	6-95
	Integral (I)	when the setting is 0.00. Sets I-control integral time in										
b5-03	time	1-second units.	0.0 to	1.0 s	Yes	А	А	А	А	А	1A7H	6-95
	PID I Time	I-control is not performed when the setting is 0.0.	360.0									
b5-04	Integral (I) limit	Sets the I-control limit as a percentage of the maximum	0.0 to 100.0	100.0%	Yes	А	А	А	А	А	1A8H	6-95
	PID I Limit	output frequency.	100.0									
b5-05	Derivative (D) time	Sets D-control derivative time in 1-second units.	0.00 to	0.00 s	Yes	А	А	А	А	А	1A9H	6-95
	PID D Time	D-control is not performed when the setting is 0.00.	10.00									

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
b5-06	PID limit PID Limit	Sets the limit after PID-con- trol as a percentage of the maximum output frequency.	0.0 to 100.0	100.0%	Yes	А	А	A	А	А	1AAH	6-95
b5-07	PID offset adjustment PID Offset	Sets the offset after PID-con- trol as a percentage of the maximum output frequency.	-100.0 to +100.0	0.0%	Yes	А	А	A	A	A	1ABH	6-95
b5-08	PID primary delay time constant PID Delay Time	Sets the time constant for low pass filter for PID-control outputs in 1-second units. Not usually necessary to set.	0.00 to 10.00	0.00 s	Yes	А	А	А	А	А	1ACH	6-95
b5-09	PID output characteris- tics selection Output Level Sel	Select forward/reverse for PID output. 0: PID output is forward. 1: PID output is reverse (highlights the output code)	0 or 1	0	No	А	А	А	А	А	1ADH	6-95
b5-10	PID output gain Output Gain	Sets output gain.	0.0 to 25.0	1.0	No	А	А	А	А	А	1AEH	6-95
b5-11	PID reverse output selec- tion Output Rev Sel	 0: 0 limit when PID output is negative. 1: Reverses when PID output is negative. 0 limit when reverse prohibit is selected using b1-04. 	0 or 1	0	No	А	А	А	А	А	1AFH	6-95
b5-12	Selection of PID feed- back com- mand loss detection Fb los Det Sel	 0: No detection of loss of PID feedback. 1: Detection of loss of PID feedback. Operation continues during detection, with the malfunctioning contact not operating. 2: Detection of loss of PID feedback. Coasts to stop during detection, and fault contact operates. 	0 to 2	0	No	A	А	A	A	A	1B0H	6-96
b5-13	PID feed- back com- mand loss detection level Fb los Det Lvl	Sets the PID feedback loss detection level as a percent units, with the maximum out- put frequency at 100%.	0 to 100	0%	No	A	А	А	А	А	1B1H	6-96
b5-14	PID feed- back com- mand loss detection time Fb los Det Time	Sets the PID feedback loss detection level in s units.	0.0 to 25.5	1.0 s	No	A	А	А	А	А	1B2H	6-96

	Name						Con	trol Me	ethods	5		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
b5-15	PID sleep function operation level	Set the PID sleep function start level as a frequency.	0.0 to 400.0	0.0 Hz	No	A	А	А	А	А	1B3H	6-96
	PID Sleep Level											
b5-16	PID sleep operation delay time	Set the delay time until the PID sleep function starts in	0.0 to 25.5	0.0 s	No	А	А	А	А	А	1B4H	6-96
	PID Sleep Time	seconds.	23.5									
b5-17	Accel/decel time for PID reference	Set the accel/decel time for PID reference in seconds.	0.0 to 25.5	0.0 s	No	А	А	А	А	А	1B5H	6-96
	PID SFS Time	r in reference in seconds.	23.5									

■Dwell Functions: b6

User constants for dwell functions are shown in the following table.

	Name						Con	trol Me	ethoc	ls		
Con- stant Num- ber	Display	Description	Setting Range	Fac- tory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
b6-01	Dwell fre- quency at start		0.0 to 400.0	0.0 Hz	No	А	А	А	А	А	1B6H	6-19
	Dwell Ref @Start											
	Dwell time at start	Run command ON OFF	0.0 to									
b6-02	Dwell Time @Start	Output frequency	10.0	0.0 s	No	Α	Α	A	А	A	1B7H	6-19
b6-03	Dwell fre- quency at stop	b6-02 b6-04	0.0 to 400.0	0.0 Hz	No	А	А	А	А	А	1B8H	6-19
	Dwell Ref @Stop	The dwell function is used to output frequency temporarily when driving a motor with a heavy load.	400.0									
	Dwell time at stop		0.0 to									
b6-04	Dwell Time @Stop		10.0	0.0 s	No	А	A	A	A	A	1B9H	6-19

■DROOP Control: b7

	Name						Con	trol Me	ethods	3		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
	Droop control gain	Sets the slip as a percentage of maximum frequency when										
b7-01	Droop Quan- tity	the maximum output fre- quency is specified and the rated torque occurs. Droop-control is not per- formed when the setting is 0.0.	0.0 to 100.0	0.0%	Yes	No	No	No	А	А	1CAH	4-18 6- 127
b7-02	Droop control delay time	Droop control responsive- ness constant	0.03 to	0.05 s	No	А	А	А	А	А	1A4H	4-18 6-
07-02	Droop Delay Time	When hunting or oscillation occurs, increase the value.	2.00	0.05 \$	INO	A	A	A	A	A	1741	127

User constants for droop functions are shown in the following table.

■Energy Saving: b8

User constants for energy-saving control functions are shown in the following table.

	Name						Con	trol Me	ethods	3		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
b8-01	Energy-sav- ing mode selection	Select whether to enable or disable energy-saving con- trol.	0 or 1	0	No	A	A	А	А	А	1CCH	-
	Energy Save Sel	0: Disable 1: Enable										
b8-02	Energy-sav- ing gain	Set the energy-saving gain with the open-loop vector	0.0 to	0.7	Yes	No	No	А	А	А	1CDH	
08-02	Energy Save Gain	control method.	10.0	*1	ies	INO	INO	A	A	A	ЮЛ	-
b8-03	Energy-sav- ing filter time constant	Set the energy-saving filter time constant with the open-	0.00 to 10.0	0.50 s *2	Yes	No	No	А	А	А	1CEH	-
	Energy Save F.T	loop vector control method.	10.0	.7								
b8-04	Energy-sav- ing coeffi- cient	Set the maximum motor effi- ciency value. Set the motor rated capacity	0.0 to	*3	No			No	No	N-	1CFH	
08-04	Energy Save COEF	in E2-11, and adjust the value by 5% at a time until output power reaches a minimum value.	655.00	*4	NO	A	A	NO	NO	No	ІСГП	-
b8-05	Power detec- tion filter time constant	Set the time constant for out- put power detection.	0 to 2000	20 ms	No	А	А	No	No	No	1D0H	-
	kW Filter Time	put power detection.	2000									
	Search opera- tion voltage limiter	Set the limit value of the volt- age control range during search operation.										
b8-06	Search V Limit	Perform search operation to optimize operations using minute variations in voltage using energy-saving control. Set to 0 to disable the search operation. 100% is the motor base voltage.	0 to 100	0%	No	А	А	No	No	No	1D1H	-

* 1. The factory setting is 1.0 when using V/f control with PG.

* 2. The factory setting is 2.00 s when Inverter capacity is 55 kW min. The factory setting will change when the control method is changed. (Open-loop vector 1 factory settings are given.)

* 3. The same capacity as the Inverter will be set by initializing the constants.

* 4. The factory settings depend on the Inverter capacity.

■Zero Servo: b9

	Name						Con	trol Me	ethods	3		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
	Zero-servo gain	Adjust the strength of the zero-servo lock.										
b9-01	Zero Servo Gain	Enabled when the "zero-servo command" is set for the multi-function input. When the zero-servo command has been input and the frequency reference drop below excita- tion level (b2-01), a position control loop is created and the motor stops. Increasing the zero-servo gain in turn increases the strength of the lock. Increasing it by too much will cause oscillation.	0 to 100	5	No	No	No	No	A	No	IDAH	
	much will cause oscillation. Zero-servo completion width Sets the output width of the P-lock completion signal. Enabled when the "zero-servo											
b9-02	Zero Servo Count	completion (end)" is set for a multi-function input. The zero-servo completion signal is ON when the current posi- tion is within the range (the zero-servo position + zero- servo completion width.) Set the allowable position dis- placement from the zero- servo position to 4 times the pulse rate of the PG (pulse generator, encoder) in use.	0 to 16383	10	No	No	No	No	A	No	1DBH	

User constants for dwell functions are shown in the following table.

♦ Autotuning Constants: C

The following settings are made with the autotuning constants (C constants): Acceleration/deceleration times, s-curve characteristics, slip compensation, torque compensation, speed control, and carrier frequency functions.

■Acceleration/Deceleration: C1

User constants for acceleration and deceleration times are shown in the following table.

	Name						Cont	rol Me	thods	5		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vect or	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
C1-01	Accelera- tion time 1	Sets the acceleration time to accelerate from 0 to the maxi-			Yes	Q	Q	Q	Q	Q	200H	4-5
	Accel Time 1	mum output frequency, in 1- second units.										6-15
C1-02	Decelera- tion time 1	Sets the deceleration time to decelerate from the maximum			Yes	Q	Q	Q	Q	Q	201H	4-5
01 02	Decel Time 1	output frequency to 0, in 1- second units.			103	X	Ŷ	Ŷ	Ŷ	X	20111	6-15
C1-03	Accelera- tion time 2	The acceleration time when the multi-function input			Yes	А	А	А	А	А	202H	6-15
	Accel Time 2	"accel/decel time 1" is set to ON.										
C1-04	Decelera- tion time 2	The deceleration time when the multi-function input	-		Yes	А	А	А	А	А	203H	6-15
01-04	Decel Time 2	"accel/decel time 1" is set to ON.			103	А	А	А	А	л	20311	0-15
C1-05	Accelera- tion time 3	ra- ne 3 The acceleration time when the multi-function input			No	А	А	А	А	А	204H	6-15
C1-05	Accel Time 3	"accel/decel time 2" is set to ON.	0.0 to 6000.0	10.0 s	NO	А	А	А	А	Л	20411	0-15
C1-06	Decelera- tion time 3	The deceleration time when the multi-function input			No	А	А	А	А	А	205H	6-15
C1-00	Decel Time 3	"accel/decel time 2" is set to ON.			NO	A	A	A	A	А	2031	0-15
G1 07	Accelera- tion time 4	The acceleration time when the multi-function input			N						20.61	6.15
C1-07	Accel Time 4	"accel/decel time 1" and "accel/decel time 2" are set to ON.			No	A	А	А	A	А	206H	6-15
	Decelera- tion time 4	The deceleration time when the multi-function input										
C1-08	Decel Time 4	"accel/decel time 1" and "accel/decel time 2" are set to ON.			No	A	А	А	А	А	207H	6-15
	Emergency stop time	The deceleration time when the multi-function input										
C1-09	C1-09 Fast Stop Time the multi-func "Emergency (f to ON. This function of stopped method	"Emergency (fast) stop" is set to ON. This function can be used a stopped method when a fault has been detected.			No	А	А	А	А	А	208H	6-14

	Name						Cont	rol Me	thods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vect or	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
C1-10	Accel/decel time setting unit	0: 0.01-second units 1: 0.1-second units	0 or 1	1	No	А	А	А	А	А	209H	6-15
	Acc/Dec Units	1: 0.1-second units										
	Units Accel/decel Sets the time switch- ing fre- quency Below set	Sets the frequency for auto- matic acceleration/decelera- tion switching. Below set frequency: Accel/										
C1-11	Acc/Dec SW Freq	decel time 4 Above set frequency: Accel/ decel time 1 The multi-function input "accel/decel time 1" or "accel/decel time 2" take pri- ority.	0.0 to 400.0	0.0 Hz	No	А	Α	А	Α	Α	20AH	-

* The setting range for acceleration/deceleration times will depends on the setting for C1-10. When C1-10 is set to 0, the setting range for acceleration/deceleration/deceleration times becomes 0.00 to 600.00 seconds.

■S-curve Acceleration/Deceleration: C2

User constants for S-curve characteristics are shown in the following table.

0	Name						Cont	rol Me	ethoc	ls		
Con- stant Num- ber	Display	Description	Setting Range	Fac- tory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
C2-01	S-curve characteris- tic time at accelera- tion start		0.00 to 2.50	0.20 s	No	А	А	A	А	A	20BH	-
	SCrv Acc @ Start											
C2-02	S-curve characteris- tic time at accelera- tion end	All sections of the S-curve characteris- tic time are set in seconds units. When the S-curve characteristic time is set, the accel/decel times will increase by only half of the S-curve characteris-	0.00 to 2.50	0.20 s	No	А	А	A	А	A	20CH	-
	SCrv Acc @ End	Run command										
C2-03	S-curve characteris- tic time at decelera- tion start	Run command Output frequencyON C2-01 C2-04 Time	0.00 to 2.50	0.20 s	No	А	А	A	А	A	20DH	-
	SCrv Dec @ Start											
C2-04	S-curve characteris- tic time at decelera- tion end		0.00 to 2.50	0.00 s	No	А	А	A	А	A	20EH	-
	SCrv Dec @ End											

■Motor Slip Compensation: C3

	Name						Con	trol Me	ethods	S		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
C3-01	Slip compen- sation gain Slip Comp Gain	 Used to improve speed accuracy when operating with a load. Usually setting is not necessary. Adjust this constant at the following times. When actual speed is low, increase the set value. When actual speed is high, decrease the set value. 	0.0 to 2.5	1.0*	Yes	А	No	А	А	А	20FH	4-16 6-32
	Slip compen- sation pri- mary delay time	Slip compensation primary delay time is set in ms units. Usually setting is not neces- sary. Adjust this constant at the fol-	0 to	200 ms								4-16
C3-02	Slip Comp Time	 lowing times. Reduce the setting when slip compensation respon- sive is slow. When speed is not stabi- lized, increase the setting. 	10000	200 ms *	No	А	No	Α	No	No	210H	6-32
C3-03	Slip compen- sation limit	Sets the slip compensation limit as a percentage of motor	0 to 250	200%	No	А	No	А	No	No	211H	6-32
	Slip Comp Limit	rated slip.										
C3-04	Slip compen- sation selec- tion during regeneration Slip Comp Regen	0: Disabled. 1: Enabled. When the slip compensation during regeneration function has been activated, as regen- eration capacity increases momentarily, it may be neces- sary to use a braking option (braking resistor, Braking Resistor Unit or Braking Unit.)	0 or 1	0	No	A	No	А	No	No	212H	6-32
C3-05	Output volt- age limit operation selection Output V limit	0: Disabled. 1: Enabled. (The motor flux will be lowered automati- cally when the output voltage become satu- rated.)	0 or 1	0	No	No	No	А	А	А	213H	6-32

User constants for slip compensation are shown in the following table.

* The factory setting will change when the control method is changed. (Open-loop vector 1 factory settings are given.)

■Torque Compensation: C4

User constants for are torque compensation shown in the following table.

	Name						Cont	rol Me	thods			
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
C4-01	Torque com- pensation gain	 Sets torque compensation gain as a ratio. Usually setting is not neces- sary. Adjust in the following cir- cumstances: When the cable is long; increase the set value. When the motor capacity is smaller than the Inverter capacity (Max. applicable motor capacity), increase the set values. When the motor is oscillat- ing, decrease the set val- ues. Adjust the output current range at minimum speed rota- tion so that it does not exceed the Inverter rated output cur- rent. Do not alter the torque com- pensation gain from its default (1.00) when using the open-loop vector control method. 	0.00 to 2.50	1.00	Yes	Α	Α	А	No	No	215H	4-16 6-35
C4-02	Torque com- pensation primary delay time constant Torq Comp Time	 The torque compensation delay time is set in ms units. Usually setting is not necessary. Adjust in the following circumstances: When the motor is oscillating, increase the set values. When the responsiveness of the motor is low, decrease the set values. 	0 to 10000	20 ms *	No	A	A	А	No	No	216H	4-16 6-35
C4-03	Forward starting torque F TorqCmp@ start	Sets the forward starting torque as a percentage of the motor rated torque.	0.0 to 200.0	0.0%	No	No	No	А	No	No	217H	-
C4-04	Reverse starting torque R TorqCmp@ start	Sets the reverse starting torque as a percentage of the motor rated torque.	-200.0 to 0.0	0.0%	No	No	No	A	No	No	218H	-
C4-05	Starting torque time constant TorqCmp DelayT	Sets the delay time in ms for starting torque. The filter is disabled if the time is set to 0 to 4 ms.	0 to 200	10 ms	No	No	No	А	No	No	219H	-

* The factory setting will change when the control method is changed. (Open-loop vector 1 factory settings are given.)

■Speed Control (ASR): C5

User constants for speed control are shown in the following table.

-	Name						Cont	rol Me	ethod	s		
Con- stant Num- ber	Display	Description	Setting Range	Fac- tory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
C5-01	ASR pro- portional gain 1	Sets the proportional gain of the speed loop (ASR.)	0.00 to 300.00 *2	0.20*	Yes	No	А	No	А	А	21BH	-
	ASR P Gain 1		.7									
C5-02	ASR inte- gral (I) time 1	Sets the integral time of the speed loop	0.000 to	0.500 s*	Yes	No	А	No	А	А	21CH	-
	ASR I Time 1	(ASR) in 1-second units.	10.000	S**								
C5-03	ASR pro- portional gain 2	Usually setting is not necessary.	0.00 to 300.00	0.20*	Yes	No	А	No	А	А	21DH	-
	ASR P Gain 2	Set to change the rotational speed gain.	*2									
C5-04	ASR inte- gral (I) time 2		0.000 to	0.500 s*	Yes	No	А	No	А	А	21EH	-
	ASR I Time 2		10.000	5.								
	ASR limit	Sets the upper limit for the compensa- tion frequency for the speed control	0.0 to									
C5-05	ASR Limit	loop (ASR) to a percentage of the maximum output frequency.	20.0	5.0%	No	No	А	No	No	No	21FH	-
C5-06	ASR pri- mary delay time	Sets the filter time constant; the time from the speed loop to the torque com- mand output, in units of 1-second.	0.000 to	0.004	No	No	No	No	А	A*	220H	-
	ASR Delay Time	Usually setting is not necessary.	0.500									
C5-07	ASR switching frequency	Set the frequency for switching between Proportion Gain 1, 2 and Inte-	0.0 to 400.0	0.0	No	No	No	No	А	А	221H	-
	ASR Gain SW Freq	gral Time 1, 2 in Hz units.	400.0									
C5-08	ASR inte- gral (I) limit	Set to a small value to prevent any rad- ical load change. Set to 100% of the	0 to 400	400	No	No	No	No	А	А	222Н	-
	ASR I Limit	maximum output frequency.	400									

* 1. When the control method is changed, the Inverter reverts to factory settings. (The flux vector control factory settings will be displayed.)

* 2. The setting range is 1.00 to 3.00 for flux vector control and open-loop vector control 2.

■Carrier Frequency: C6

User constants for the carrier frequency are shown in the following table.

Con-	Name				Charac	(Cont	rol M	ethoo	ls	MEMO	
stant Num- ber	Display	Description	Setting Range	Fac- tory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	BUS Regis- ter	Page
C6-02	Carrier fre- quency selection	Select carrier wave fixed pattern. Select F to enable detailed settings	1 to F	6 *2	No	Q	Q	Q	А	No *5	224H	4-6 4-16
	Carrier Freq Sel	using constants C6-03 to C6-05.		12						. 5		6-38
C6-03	Carrier frequency upper limit	Set the carrier frequency upper limit and lower limit in kHz units. The carrier frequency gain is set as fol-	2.0 to 15.0	15.0 kHz	No	А	А	А	А	No	225H	-
	Carrier Freq Max	lows: With the vector control method, the upper limit of the carrier frequency is	*3 *4	*2								
C6-04	Carrier frequency lower limit	fixed in C6-03.	0.4 to 15.0	15.0 kHz	No	А	А	No	No	No	226H	-
	Carrier Freq Min	C6-C3	*3 *4	*2								
	Carrier fre- quency propor- tional gain	BB-E4 Output frequency x (C6-05) x K Output EI-C4 (Max. output frequency)	00 to									
C6-05	Carrier Freq Gain	K is a coefficient that depends on the setting of C6-03. C6-03 \geq 10.0 kHz: K = 3 10.0 kHz > C6-03 \geq 5.0 kHz: K = 2 5.0 kHz > C6-03: K = 1	99 *4	00	No	А	A	No	No	No	227H	-
C6-11	Carrier fre- quency selection for open- loop vec- tor control 2	Select the carrier frequency when open- loop vector control 2 is used. 1: 2 kHz 2: 4 kHz 3: 6 kHz 4: 8 kHz	1 to 4	4 ^{*2}	No	No *5	No *5	No *5	No *5	Q	22DH	-
	Carrier Freq Sel											

* 1. The setting range depends on the control method of the Inverter.

* 2. The factory setting depends on the capacity of the Inverter.

* 3. The setting range depends on the capacity of the Inverter.

* 4. This constant can be monitored or set only when 1 is set for C6-01 and F is set for C6-02.

* 5. Displayed in Quick Programming Mode when motor 2 is set for a multi-function input.

♦ Reference Constants: d

The following settings are made with the reference constants (d constants): Frequency references.

■Preset Reference: d1

User constants for frequency references are shown in the following table.

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
d1-01	Frequency reference 1 Reference 1	Sets the frequency reference in the units used in o1-03.		0.00 Hz	Yes	Q	Q	Q	Q	Q	280H	4-6 6-5
d1-02	Frequency reference 2 Reference 2	The frequency reference when multi-step speed refer- ence 1 is ON for a multi-func- tion input.		0.00 Hz	Yes	Q	Q	Q	Q	Q	281H	4-6 6-5
d1-03	Frequency reference 3 Reference 3	The frequency reference when multi-step speed refer- ence 2 is ON for a multi-func- tion input.		0.00 Hz	Yes	Q	Q	Q	Q	Q	282H	4-6 6-5
d1-04	Frequency reference 4 Reference 4	The frequency reference when multi-step speed refer- ences 1 and 2 are ON for multi-function inputs.		0.00 Hz	Yes	Q	Q	Q	Q	Q	283H	4-6 6-5
d1-05	Frequency reference 5 Reference 5	The frequency when multi- step speed reference 3 is ON for a multi-function input.		0.00 Hz	Yes	А	А	А	А	А	284H	6-5
d1-06	Frequency reference 6 Reference 6	The frequency reference when multi-step speed refer- ences 1 and 3 are ON for multi-function inputs.	0 to 400.00 *	0.00 Hz	Yes	A	А	А	А	А	285H	6-5
d1-07	Frequency reference 7 Reference 7	The frequency reference when multi-step speed refer- ences 2 and 3 are ON for multi-function inputs.		0.00 Hz	Yes	А	А	А	А	А	286H	6-5
d1-08	Frequency reference 8 Reference 8	The frequency reference when multi-step speed refer- ences 1, 2, and 3 are ON for multi-function inputs.		0.00 Hz	Yes	A	A	А	А	А	287H	6-5
d1-09	Frequency reference 9 Reference 9	The frequency reference when multi-step speed refer- ence 4 is ON for a multi-func- tion input.		0.00 Hz	Yes	A	A	А	А	А	288H	-
d1-10	Frequency reference 10 Reference 10	The frequency reference when multi-step speed refer- ences 1 and 4 are ON for multi-function inputs.		0.00 Hz	Yes	А	А	А	А	А	28BH	-
d1-11	Frequency reference 11 Reference 11	The frequency reference when multi-step speed refer- ences 2 and 4 are ON for a multi-function inputs.		0.00 Hz	Yes	A	A	А	А	А	28CH	-

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
d1-12	Frequency reference 12 Reference 12	The frequency reference when multi-step speed refer- ences 1, 2, and 4 are ON for multi-function inputs.		0.00 Hz	Yes	А	А	A	A	A	28DH	-
d1-13	Frequency reference 13 Reference 13	The frequency reference when multi-step speed refer- ences 3 and 4 are ON for multi-function inputs.		0.00 Hz	Yes	А	А	A	A	A	28EH	-
d1-14	Frequency reference 14	The frequency reference when multi-step speed refer- ences 1, 3, and 4 are ON for		0.00 Hz	Yes	А	А	А	А	A	28FH	-
	Reference 14	multi-function inputs.	0 to									
d1-15	Frequency reference 15	The frequency reference when multi-step speed refer- ences 2, 3, and 4 are ON for	400.00 *	0.00 Hz	Yes	А	А	А	А	А	290H	-
	Reference 15	multi-function inputs.										
d1-16	Frequency reference 16	The frequency reference when multi-step speed refer-		0.00 Hz	Yes	А	А	А	А	А	291H	_
	Reference 16	ences 1, 2, 3, and 4 are ON for multi-function inputs.										
11.45	Jog frequency reference	The frequency reference when the jog frequency refer-		< 00 F				0				4-6
d1-17	Jog Reference	ence selection, FJOG com- mand, or RJOG command is ON.		6.00 Hz	Yes	Q	Q	Q	Q	Q	292H	6-74

Note The unit is set in o1-03 (frequency units of reference setting and monitor). The default for o1-03 is 0 (increments of 0.01 Hz). * The setting range is 0 to 66.0 for open-loop vector control 2.

■Reference Limits: d2

User constants for frequency reference limits are shown in the following table.

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
d2-01	Frequency reference upper limit	Set the output frequency upper limit as a percent, tak- ing the max. output frequency	0.0 to 110.0	100.0%	No	А	А	А	А	А	289H	6-30 6-69
	Ref Upper Limit	to be 100%.	110.0									0-09
d2-02	Frequency reference lower limit	Sets the output frequency lower limit as a percentage of	0.0 to 110.0	0.0%	No	А	А	А	А	А	28AH	6-30 6-69
	Ref Lower Limit		110.0									0-09
d2-03	Master speed reference lower limit	Set the master speed refer- ence lower limit as a percent, taking the max. output fre-	0.0 to 110.0	0.0%	No	А	А	А	А	А	293H	6-30 6-69
	Ref1 Lower Limit	quency to be 100%.	110.0									0-09

5-<u>27</u>

■Jump Frequencies: d3

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
d3-01	Jump fre- quency 1	Set the center values of the jump frequencies in Hz. This function is disabled by		0.0 Hz	No	А	А	А	А	А	294H	6-27
	Jump Freq 1	setting the jump frequency to 0 Hz. Always ensure that the										
d3-02	Jump fre- quency 2	0 Hz. Always ensure that the following applies: d3-01 \ge d3-02 \ge d3-03	0.0 to 400.0	0.0 Hz	No	А	А	А	А	А	295H	6-27
	Jump Freq 2	Operation in the jump fre-										
d3-03	Jump fre- quency 3	Operation in the jump fre- quency range is prohibited but during acceleration and deceleration, speed changes		0.0 Hz	No	А	А	А	А	А	296H	6-27
	Jump Freq 3	smoothly without jump.										
d3-04	Jump fre- quency width	Sets the jump frequency bandwidth in Hz.	0.0 to	1.0 Hz	No	А	А	А	А	А	297H	6-27
u3-04	Jump Band- width	The jump frequency will be the jump frequency \pm d3-04.	20.0	1.0 HZ	NU	A	A	Α	А	А	27/11	0-27

User constants for jump frequencies are shown in the following table.

■Reference Frequency Hold: d4

User constants for the reference frequency hold function are shown in the following table.

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
d4-01	Frequency reference hold function selection MOP Ref Memory	 Sets whether or not frequencies on hold will be recorded. 0: Disabled (when operation is stopped or the power is turned on again starts at 0.) 1: Enabled (when operation is stopped or the power is turned on again starts at the previous hold frequency.) This function is available when the multi-function inputs "accel/decel Ramp Hold" or "up/down" commands are set. 	0 or 1	0	No	А	А	A	А	А	298H	6-68
d4-02	+ - Speed limits Trim Control Lvl	Set the frequency to be add to or subtracted from the analog frequency reference as a per- cent, taking the maximum output frequency to be 100%. Enabled when the increase (+) speed command or decrease (-) speed command	0 to 100	10%	No	A	A	А	А	А	299H	6-72
		is set for a multi-function input.										

■Torque Control: d5

User constants for the torque control are shown in the following table.

	Name						Con	trol Me	ethods	3		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
d5-01	Torque con- trol selection Torq Control Sel	 0: Speed control (C5-01 to C5-07) 1: Torque control This function is only available in flux vector control mode. To use the function for switching between speed and torque control, set to 0 and set the multi-function input to "speed/torque control change." 	0 or 1	0	No	No	No	No	А	А	29AH	-
d5-02	Torque reference delay time	Set the torque reference delay time in ms units. This function can be used to adjust the noise of the torque control signal or the respon- siveness with the host con-	0 to 1000	0 ms^*	No	No	No	No	A	A	29BH	-
	Torq Ref Filter	troller. When oscillation occurs during torque control, increase the set value.										
	Speed limit selection	Set the speed limit command method for the torque control mode.										
d5-03	Speed Limit Sel	 The analog input limit from a frequency refer- ence Limited by d5-04 constant setting values. 	1 or 2	1	No	No	No	No	A	A	29CH	-
d5-04	Speed limit Speed Lmt Value	Set the speed limit during torque control as a percentage of the maximum output fre- quency. This function is enabled when d5-03 is set to 2. Directions are as follows. +: run command direction -: run command opposite direction	-120 to +120	0%	No	No	No	No	A	A	29DH	-
d5-05	Speed limit bias Speed Lmt Bias	Set the speed limit bias as a percentage of the maximum output frequency. Bias is given to the specified speed limit. It can be used to adjust the margin for the speed limit.	0 to 120	10%	No	No	No	No	A	А	29EH	-

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
d5-06	Speed/torque control switching timer Ref Hold Time	Set the delay time from input- ting the multi-function input "speed/torque control change" (from On to OFF or OFF to ON) until the control is actually changed, in ms units. This function is enabled when the multi-function input "speed/torque control change" is set. In the speed/ torque control switching timer, the analog inputs hold the values of when the "speed/torque control change" changes. Always be sure to allow time for this process to finish completely.	0 to 1000	0 ms	No	No	No	No	А	А	29FH	-

* The factory setting will change when the control method is changed.

■Field Control: d6

User constants for the field weakening command are shown in the following table.

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
d6-01	Field weak- ening level Field-Weak Lvl	Set the Inverter output volt- age when the field weakening command is input. It is enabled when the field weakening command is set for a multi-function input. Set the level as a percentage taking the voltage set in the V/f pattern as 100%.	0 to 100	80%	No	А	А	No	No	No	2A0H	-
	Field frequency	Set the lower limit in hertz of the frequency range where										
d6-02	Field-Weak Freq	field control is valid. The field weakening com- mand is valid only at frequen- cies above this setting and only when the speed is in agreement with the current speed reference.	0.0 to 400.0	0.0 Hz	No	А	А	No	No	No	2A1H	-
d6-03	Field forcing function selection	Set the field forcing function. 0: Disabled	0 or 1	0	No	No	No	No	А	A	2A2H	-
	Field Force Sel	1: Enabled										

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
d6-05	AφR time constant A PHI R Filter	Set the factor to multiple times the secondary circuit time constant of the motor to achieve the A ϕ R time constant. A ϕ R time constant = Secondary circuit time constant x d6-05 A ϕ R will not function when d6-05 is 0. If d6-05 is not 0, the lower limit of the value will be internally adjusted to 200 ms in the Inverter.	0.00 to 10.00	1.00	No	No	No	No	No	А	2А4Н	_

Motor Constant Constants: E

The following settings are made with the motor constant constants (E constants): V/f characteristics and motor constants.

■V/f Pattern: E1

User constants for V/f characteristics are shown in the following table.

-	Name						Con	trol M	ethod	s		
Con- stant Num- ber	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO- BUS Regis- ter	Page
E1-01	Input volt- age setting Input Volt- age	Set the Inverter input voltage in 1 volt. This setting is used as a reference value in protection functions.	155 to 255 *1	200 V *1	No	Q	Q	Q	Q	Q	300H	4-5 6- 107
E1-03	V/f pattern selection V/F Selec- tion	0 to E: Select from the 15 preset patterns. F: Custom user-set patterns (Applicable for settings E1-04 to E1-10.)	0 to F	F	No	Q	Q	No	No	No	302H	6- 107
E1-04	Max. output frequency Max Frequency		40.0 to 400.0 *5	60.0 Hz *2	No	Q	Q	Q	Q	Q	303Н	6- 107
E1-05	Max. voltage Max Voltage	Output voltage (V)	0.0 to 255.0 *1	200.0 V *1*2	No	Q	Q	Q	Q	Q	304H	6- 107
E1-06	Base frequency Base Frequency	Output voltage (V)	0.0 to 400.0 *5	60.0 Hz *2	No	Q	Q	Q	Q	Q	305H	6- 107
E1-07	Mid.output frequency Mid Frequency A	To set V/f characteristics in a straight line, set the same values for	0.0 to 400.0	3.0 Hz *2	No	A	А	А	No	No	306H	6- 107
E1-08	Mid. output frequency voltage Mid Voltage A		0.0 to 255.0 *1	11.0 V *1 *2	No	A	А	А	No	No	307H	4-17 6- 107
E1-09	Min.output frequency Min Frequency		0.0 to 400.0 *5	0.5 Hz *2	No	Q	Q	Q	А	Q	308H	6- 107
E1-10	Min. output frequency voltage Min Voltage		0.0 to 255.0 *1	2.0 V *1 *2	No	A	А	А	No	No	309Н	4-16 4-17 6- 107

	Name						Cont	trol M	ethod	S	MEMO-		
Con- stant Num- ber	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	DUIC	Page	
	Mid. output frequency 2		0.0 to	0.0 Hz								6-	
E1-11	Mid Frequency B		400.0 *5	*3	No	Α	Α	A	A	A	30AH	0- 107	
E1-12	Mid.output frequency voltage 2	Set only to fine-adjust V/f for the output range. Normally, this setting is not required.	0.0 to 255.0	0.0 V *3	No	А	А	А	А	А	30BH	6- 107	
	Mid Voltage B	is not required.	*1	*3								107	
E1-13	Base voltage		0.0 to	0.0 V	No	А	А	Q	Q	Q	30CH	6-	
E1-13	Base Voltage		255.0 *1	*4	NO	NO	A	A	X	V V	Q	30CH	107

* 1. These are values for a 200 V Class Inverter. Values for a 400 V Class Inverter are double.

* 2. The factory setting will change when the control method is changed. (Open-loop vector 1 factory settings are given.)

* 3. E1-11 and E1-12 are disregarded when set to 0.0.

* 4. E1-13 is set to the same value as E1-05 by autotuning.

* 5. The setting range is 0 to 66.0 for open-loop vector control 2.

■Motor Setup: E2

User constants for motor 1 are shown in the following table.

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
E2-01	Motor rated current Motor Rated FLA	Sets the motor rated current in 1 A units. These set values will become the reference values for motor protection, torque limits and torque control. This constant is automatically set during autotuning.	0.32 to 6.40 *2	1.90 A *1	No	Q	Q	Q	Q	Q	30EH	6-49 6- 105
E2-02	Motor rated slip Motor Rated Slip	Sets the motor rated slip in Hz units. These set values will become the reference values for slip compensation. This constant is automatically set during autotuning.	0.00 to 20.00	2.90 Hz *1	No	А	А	А	А	А	30FH	6- 103 6- 105
E2-03	Motor no- load current No-Load Current	Sets the motor no-load cur- rent in 1 A units. This constant is automatically set during autotuning.	0.00 to 1.89 *3	1.20 A *1	No	А	А	А	А	А	310H	6- 105
E2-04	Number of motor poles Number of Poles	Sets the number of motor poles. This constant is automatically set during autotuning.	2 to 48	4 poles	No	No	Q	No	Q	Q	311H	6- 105
E2-05	Motor line- to-line resis- tance Term Resis- tance	Sets the motor phase-to-phase resistance in Ω units. This constant is automatically set during autotuning.	0.000 to 65.000	9.842 Ω *1	No	A	A	A	A	A	312H	6- 105

5

	Name						Con	trol Me	ethod	5		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
E2-06	Motor leak inductance Leak Induc- tance	Sets the voltage drop due to motor leakage inductance as a percentage of the motor rated voltage. This constant is automatically set during autotuning.	0.0 to 40.0	18.2% *1	No	No	No	А	А	А	313H	6- 105
E2-07	Motor iron saturation coefficient 1 Saturation Comp1	Sets the motor iron saturation coefficient at 50% of mag- netic flux. This constant is automatically set during autotuning.	0.00 to 0.50	0.50	No	No	No	А	А	А	314H	6- 105
E2-08	Motor iron saturation coefficient 2 Saturation Comp2	Sets the motor iron saturation coefficient at 75% of mag- netic flux. This constant is automatically set during autotuning.	0.00 to 0.75	0.75	No	No	No	А	A	А	315H	6- 105
	Motor mechanical loss	Sets motor mechanical loss as a percentage of motor rated output (W).										
E2-09	Mechanical Loss	 Usually setting is not necessary. Adjust in the following circumstances: When torque loss is large due to motor bearing. When the torque loss in the pump or fan is large. The set mechanical loss will compensate for torque. 	0.0 to 10.0	0.0	No	No	No	No	A	A	316H	
E2-10	Motor iron loss for torque com- pensation Tcomp Iron Loss	Sets motor iron loss in W units.	0 to 65535	14 W *1	No	А	А	No	No	No	317H	6- 105
E2-11	Motor rated output Mtr Rated Power	Set the rated output of the motor in units of 0.01 kW. This constant is automatically set during autotuning.	0.00 to 650.00	0.40 *4	No	Q	Q	Q	Q	Q	318H	-

* 1. The factory setting depends upon the Inverter capacity. The value for a 200 V class Inverter of 0.4 kW is given.
* 2. The setting range is 10% to 200% of the Inverter's rated output current. The value for a 200 V class Inverter of 0.4 kW is given.

* 3. The factory setting depends upon the Inverter capacity. The value for a 200 V class Inverter of 0.4 kW is given.
* 4. The same capacity as the Inverter will be set by initializing the constants.

■ Motor 2 V/f Pattern: E3

User constants for motor 2 V/f characteristics are shown in the following table.

	Name				Change during Opera- tion		Con					
Con- stant Num- ber	Display	Description	Setting Range	Factory Setting		V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO- BUS Regis- ter	Page
E3-01	Motor 2 control method selection	0: V/f control 1: V/f control with PG 2: Open-loop vector control 3: Flux vector control	0 to 4	2	No	А	А	А	А	А	319H	-
	Control Method	4: Open-loop vector control 2										

0.07	Name				01.5		Cont	trol M	ethod		MEMO	
Con- stant Num- ber	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO- BUS Regis- ter	Page
E3-02	Motor 2 max. out- put fre- quency (FMAX)		40.0 to 400.0 *3	60.0 Hz	No	А	А	A	А	А	31AH	-
	Max Fre- quency											
E3-03	Motor 2 max. volt- age (VMAX)		0.0 to 255.0 *1	200.0 V *2	No	А	А	А	А	А	31BH	-
	Max Volt- age											
E3-04	Motor 2 max. volt- age fre- quency (FA)	Output voltage (V)	0.0 to 400.0	60.0 Hz	No	A	A	А	А	А	31CH	-
	Base Fre- quency	E-6										
E3-05	Motor 2 mid. out- put fre- quency 1 (FB)	VC E2-06 WIIN E5 05 TN IH F3 FA TMAX E5 07 E3 05	0.0 to 400.0	3.0 Hz *2	No	А	А	A	No	No	31DH	-
	Mid Fre- quency	Frequency (Hz)										
E3-06	Motor 2 mid. out- put fre- quency voltage 1 (VC) Mid Volt- age	To set V/f characteristics in a straight line, set the same values for E3-05 and E3-07. In this case, the setting for E3-06 will be disregarded. Always ensure that the four frequen- cies are set in the following manner: E3-02 (FMAX) \geq E3-04 (FA) > E3- 05 (FB) > E3-07 (FMIN)	0.0 to 255.0 *1	11.0 V *1	No	А	A	A	No	No	31EH	-
E3-07	Motor 2 min. out- put fre- quency (FMIN)		0.0 to 400.0	0.5 Hz *2	No	A	A	А	А	А	31FH	-
	Min Fre- quency											
E3-08	Motor 2 min. out- put fre- quency voltage (VMIN) Min Volt-		0.0 to 255.0 *1	2.0 V *1	No	А	А	А	No	No	320Н	-
	age											

* 1. These are values for a 200 V class Inverter. Values for a 400 V class Inverter are double.

* 2. The factory setting will change when the control method is changed. (V/f control factory settings are given.)
* 3. The setting range is 0 to 66.0 for open-loop vector control 2.

■Motor 2 Setup: E4

	Name						Con	trol Me	ethods	3		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
E4-01	Motor 2 rated current Motor Rated FLA	Sets the motor rated current in 1 A units. These set values will become the reference values for motor protection, torque limits and torque control. This constant is automatically set during autotuning.	0.32 to 6.40 *2	1.90 A *1	No	А	А	А	А	А	321H	6-49
	Motor 2 rated slip	Sets the motor rated slip in Hz units. These set values will become										
E4-02	Motor Rated Slip	the reference values will become compensation. This constant is automatically set during autotuning.	0.00 to 20.00	2.90 Hz *1	No	А	А	Α	Α	A	322H	-
E4-03	Motor 2 no- load current	Sets the motor no-load cur- rent in 1 A units.	0.00 to 1.89	1.20 A	No	А	А	А	А	А	323H	_
2.00	No-Load Current	This constant is automatically set during autotuning.	*3	*1	110						02011	
E4-04	Motor 2 num- ber of poles (number of poles)	Sets the number of motor poles. This constant is automatically	2 to 48	4 poles	No	No	А	No	А	А	324H	-
	Number of Poles	set during autotuning.										
E4-05	Motor 2 line- to-line resis- tance	Sets the motor phase-to-phase resistance in Ω units. This constant is automatically	0.000 to	9.842 Ω	No	А	А	А	А	А	325H	-
	Term Resis- tance	set during autotuning.	65.000	*1								
	Motor 2 leak inductance	Sets the voltage drop due to motor leakage inductance as a	0.0.1									
E4-06	Leak Induc- tance	percentage of the motor rated voltage. This constant is automatically set during autotuning.	0.0 to 40.0	18.2% *1	No	No	No	А	А	А	326H	-
E4-07	Motor 2 rated capacity	Set the rated output of the motor in units of 0.01 kW.	0.00 to	0.40	No		A	А	٨	А	327H	_
E4-07	Mtr Rated Power	This constant is automatically set during autotuning.	650.00	*4	110	A	A	А	А	A	32/П	-

User constants for motor 2 are shown in the following table.

* 1. The factory setting depends upon the Inverter capacity. The value for a 200 V class Inverter of 0.4 kW is given.

* 2. The setting range is 10% to 200% of the Inverter's rated output current. The values for a 200 V class Inverter of 0.4 kW is given.

* 3. If a multi-function input is set for motor 2 (H1-□□ = 16), the factory setting will depend upon the Inverter capacity. The value for a 200 V class Inverter of 0.4 kW is given.

* 4. The same capacity as the Inverter will be set by initializing the constants.

Option Constants: F

The following settings are made with the option constants (F constants): Settings for Option Cards

■PG Option Setup: F1

User constants for the PG Speed Control Card are shown in the following table.

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
F1-01	PG constant PG Pulses/ Rev	Sets the number of PG (pulse generator or encoder) pulses. Sets the number of pulses per motor revolution.	0 to 60000	600	No	No	Q	No	Q	No	380H	6- 142
F1-02	Operation selection at PG open cir- cuit (PGO) PG Fdbk Loss Sel	 Sets the PG disconnection stopping method. 0: Ramp to stop (Deceleration stop using Deceleration Time 1, C1- 02.) 1: Coast to stop 2: Fast stop (Emergency stop using the deceleration time in C1-09.) 3: Continue operation (To protect the motor or machinery, do not normally make this setting.) 	0 to 3	1	No	No	А	No	А	No	381H	6- 142
F1-03	Operation selection at overspeed (OS) PG Over- speed Sel	 Sets the stopping method when an overspeed (OS) fault occurs. 0: Ramp to stop (Deceleration stop using Deceleration Time 1, C1- 02.) 1: Coast to stop 2: Fast stop (Emergency stop using the deceleration time in C1-09.) 3: Continue operation (To protect the motor or machinery, do not normally make this setting.) 	0 to 3	1	No	No	А	No	А	А	382H	6- 142
F1-04	Operation selection at deviation PG Devia- tion Sel	 Sets the stopping method when a speed deviation (DEV) fault occurs. 0: Ramp to stop (Deceleration stop using Deceleration Time 1, C1- 02.) 1: Coast to stop 2: Fast stop (Emergency stop using the deceleration time in C1-09.) 3: Continue operation (DEV is displayed and operation continued.) 	0 to 3	3	No	No	А	No	А	А	383Н	6- 142

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
F1-05	PG rotation PG Rotation Sel	 0: Phase A leads with forward run command. (Phase B leads with reverse run command.) 1: Phase B leads with forward run command. (Phase A leads with reverse run command.) 	0 or 1	0	No	No	А	No	А	No	384H	6- 142
F1-06	PG division rate (PG pulse moni- tor) PG Output Ratio	Sets the division ratio for the PG speed control card pulse output. Division ratio = $(1+n)/m$ (n=0 or 1 m=1 to 32) $F1-06 = \square \square \square \square m$ This constant is only effective when a PG-B2 is used. The possible division ratio settings are: $1/32 \le F1-06 \le 1$.	1 to 132	1	No	No	А	No	А	No	385H	6- 143
F1-07	Integral value during accel/ decel enable/ disable	Sets integral control during acceleration/deceleration to either enabled or disabled. 0: Disabled (The integral function isn't used while accelerating or decelerating; it is used at	0 or 1	0	No	No	А	No	No	No	386H	6- 143
	PG Ramp PI/I Sel	constant speeds.) 1: Enabled (The integral function is used at all times.)										
F1-08	Overspeed detection level PG Overspd	Sets the overspeed detection method. Frequencies above that set for	0 to 120	115%	No	No	A	No	А	А	387H	6- 143
F1-09	Level Overspeed detection delay time PG Overspd Time	F1-08 (set as a percentage of the maximum output fre- quency) that continue to exceed this frequency for the time set in F1-09 are detected as overspeed faults.	0.0 to 2.0	0.0 s*	No	No	А	No	А	А	388H	6- 143
F1-10	Excessive speed devia- tion detec- tion level	Sets the speed deviation detection method. Any speed deviation above	0 to 50	10%	No	No	A	No	A	А	389H	6- 143
	PG Deviate Level	the F1-10 set level (set as a percentage of the maximum										
F1-11	Excessive speed devia- tion detec- tion delay time	output frequency) that contin- ues for the time set in F1-11 is detected as a speed deviation. Speed deviation is the differ- ence between actual motor speed and the reference com-	0.0 to 10.0	0.5 s	No	No	А	No	А	А	38AH	6- 143
	PG Deviate Time	mand speed.										

* The factory setting will change when the control method is changed. (Flux vector control factory settings are given.)

	Name						Con	trol Me	ethods	5		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
F1-12	Number of PG gear teeth 1	Sets the number of teeth on the gears if there are gears between the PG and the		0	No	No	А	No	No	No	38BH	6- 143
	PG # Gear Teeth1	motor. Input pulses from $PG \times 60$ F1-13	0 to									143
F1-13	Number of PG gear teeth 2	$\frac{1}{F1-01} \times \frac{1}{F1-12}$ A gear ratio of 1 will be used if either of these constants is	1000	0	No	No	А	No	No	No	38CH	6- 143
	PG # Gear Teeth2	set to 0.										143
F1-14	PG open-cir- cuit detection time	Used to set the PG disconnec- tion detection time. PGO will be detected if the detection	0.0 to 10.0	2.0 s	No	No	А	No	А	No	38DH	6- 143
	PGO Detect Time	time continues beyond the set time.	10.0									145

■Analog Reference Card: F2

User constants for the Analog Reference Card are shown in the following table.

	Name						Con	trol Me	ethods	5		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
F2-01	Bi-polar or uni-polar input selec- tion AI-14 Input Sel	Sets the functions for channel 1 to 3 which are effective when the AI-14B Analog Reference Card is used. 0: 3-channel individual (Channel 1: terminal A1, Channel 2: terminal A2, Channel 3: terminal A3) 1: 3-channel addition (Addi- tion values are the fre- quency reference) When set to 0, select 1 for b1- 01. In this case the multi- function input "Option/ Inverter selection" cannot be used.	0 or 1	0	No	А	А	А	А	А	38FH	6- 149

■Digital Reference Card: F3

	Name						Con	trol Me	ethods	3		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
F3-01	Digital input option DI Input	Sets the Digital Reference Card input method. 0: BCD 1% unit 1: BCD 0.1% unit 2: BCD 0.01% unit 3: BCD 1 Hz unit 4: BCD 0.1 Hz unit 5: BCD 0.01 Hz unit 6: BCD special setting (5- digit input) 7: Binary input 6 is only effective when the DI-16H2 is used. When 01-03 is set to 2 or higher, the input will be BCD, and the units will change to the 01-03 setting.	0 to 7	0	No	А	А	A	A	А	390Н	6- 149

■Analog Monitor Cards: F4

User constants for the Analog Monitor Card are shown in the following table.

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
F4-01	Channel 1 monitor selection	Effective when the Analog Monitor Card is used. Monitor selection: Set the number of the monitor	1 to 45	2	No	А	А	А	А	А	391H	6-77
	AO Ch1 Select	item to be output. $(U1-\Box\Box)$ Gain:										
F4-02	Channel 1 gain	Set the multiple of 10 V for outputting monitor items. 4, 10 to 14, 25, 28, 34, 39, 40	0.00 to 2.50	1.00	Yes	А	А	А	А	А	392H	6-77
	AO Ch1 Gain	cannot be set. 29 to 31 and 41	2.50									
F4-03	Channel 2 monitor selection	are not used. When the AO- 12 Analog Monitor Card is used, outputs of \pm 10 V are possible. To output \pm 10 V, set	1 to 45	3	No	А	А	А	А	А	393H	6-77
	AO Ch2 Select	F4-07 or F4-08 to 1. When the AO-08 Analog Monitor										
F4-04	Channel 2 gain	Card is used, only outputs of 0 to +10 V are possible. A meter calibration function	0.00 to 2.50	0.50	Yes	A	A	А	А	А	394H	6-77
	AO Ch2 Gain	is available.	2.30									
F4-05	Channel 1 output moni- tor bias	Sets the channel 1 item bias to 100%/10 V when the ana-	-10.0 to 10.0	0.0%	Yes	А	А	А	А	А	395H	6-77
	AO Ch1 Bias	log monitor card is used.										
F4-06	Channel 2 output moni- tor bias	Sets the channel 2 item bias to 100%/10 V when the ana-	-10.0 to 10.0	0.0%	Yes	А	А	А	А	А	396H	6-77
	AO Ch2 Bias	log monitor card is used.										
F4-07	Analog out- put signal level for channel 1	0: 0 to 10 V 1: -10 to +10 V	0 or 1	0	No	A	A	A	А	A	397H	-
	AO Opt Level Sel											
F4-08	Analog out- put signal level for channel 2	0: 0 to 10 V 1: -10 to +10 V	0 or 1	0	No	A	А	А	А	А	398H	6-77
	AO Opt Level Sel											

■Digital Output Card (DO-02 and DO-08): F5

User constants for the Digital Output Card are shown in the following table.

	Name						Con	trol Me	ethods	\$		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
F5-01	Channel 1 output selec- tion DO Ch1 Select	Effective when a Digital Out- put Card (DO-02 or DO-08) is used. Set the number of the multi- function output to be output.	0 to 37	0	No	А	А	А	А	А	399H	6- 146
F5-02	Channel 2 output selec- tion DO Ch2 Select	Effective when a Digital Out- put Card (DO-02 or DO-08) is used. Set the number of the multi- function output to be output.	0 to 37	1	No	A	А	А	А	А	39AH	6- 146
F5-03	Channel 3 output selec- tion DO Ch3 Select	Effective when a DO-08 Dig- ital Output Card is used. Set the number of the multi- function output to be output.	0 to 37	2	No	А	А	А	A	А	39BH	6- 146
F5-04	Channel 4 output selec- tion DO Ch4 Select	Effective when a DO-08 Dig- ital Output Card is used. Set the number of the multi- function output to be output.	0 to 37	4	No	А	А	А	А	А	39CH	6- 146
F5-05	Channel 5 output selec- tion DO Ch5	Effective when a DO-08 Dig- ital Output Card is used. Set the number of the multi- function output to be output.	0 to 37	6	No	А	А	A	А	А	39DH	6- 146
F5-06	Select Channel 6 output selec- tion DO Ch6 Select	Effective when a DO-08 Dig- ital Output Card is used. Set the number of the multi- function output to be output.	0 to 37	37	No	А	А	А	А	А	39EH	6- 147
F5-07	Channel 7 output selec- tion DO Ch7 Select	Effective when a DO-08 Dig- ital Output Card is used. Set the number of the multi- function output to be output.	0 to 37	0F	No	А	А	А	A	А	39FH	6- 147
F5-08	Channel 8 output selec- tion DO Ch8 Select	Effective when a DO-08 Dig- ital Output Card is used. Set the number of the multi- function output to be output.	0 to 37	0F	No	А	А	А	А	А	ЗАОН	6- 147
F5-09	DO-08 out- put mode selection DO-08 Selec- tion	Effective when a DO-08 Dig- ital Output Card is used. Set the output mode. 0: 8-channel individual out- puts 1: Binary code output 2: Output according to F5-01 to F5-08 settings.	0 to 2	0	No	A	A	А	A	А	3A1H	6- 147

Communications Option Cards: F6

User constants for a Communications Option Card are shown in the following table.

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
F6-01	Operation selection after communica- tions error BUS Fault Sel	 Set the stopping method for communications errors. 0: Deceleration stop using deceleration time in C1-02 1: Coast to stop 2: Emergency stop using deceleration time in C1-09 3: Continue operation 	0 to 3	1	No	А	А	А	А	А	3А2Н	_
F6-02	Input level of external fault from Com- munications Option Card EF0 Detec-	0: Always detect 1: Detect during operation	0 or 1	0	No	А	А	А	А	А	ЗАЗН	-
F6-03	tion Stopping method for external fault from Com- munications Option Card EFO Fault	 0: Deceleration stop using deceleration time in C1-02 1: Coast to stop 2: Emergency stop using deceleration time in C1-09 	0 to 3	1	No	А	А	A	A	A	3A4H	_
F6-04	Action Trace sam- pling from Communica- tions Option Card Trace Sam-	3: Continue operation	0 to 60000	0	No	A	A	А	А	А	3A5H	-
F6-06	ple Tim Torque refer- ence/torque limit selec- tion from optical option Torq Ref/Lmt Sel	 O: Torque reference/torque limit from transmission disabled. 1: Torque reference/torque limit from transmission enabled. 	0 or 1	1	No	No	No	No	А	А	3A7H	-

♦ Terminal Function Constants: H

The following settings are made with the terminal function constants (H constants): Settings for external terminal functions.

■Multi-function Contact Inputs: H1

User constants for multi-function contact inputs are shown in the following tables.

	Name						Con	trol Me	ethods	3		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
H1-01	Terminal S3 function selec- tion Terminal S3	Multi-function contact input	0 to 78	24	No	A	A	А	А	А	400H	-
	Sel Terminal S4 function selec-											
H1-02	tion Terminal S4 Sel	Multi-function contact input 2	0 to 78	14	No	А	Α	A	А	А	401H	-
H1-03	Terminal S5 function selec- tion	Multi-function contact input	0 to 78	3 (0)*	No	А	А	А	A	А	402H	_
	Terminal S5 Sel	5										
H1-04	Terminal S6 function selec- tion	Multi-function contact input	0 to 78	4 (3) [*]	No	А	А	А	А	А	403H	-
	Terminal S6 Sel	7										
H1-05	Terminal S7 function selec- tion	Multi-function contact input	0 to 78	6 (4) [*]	No	А	А	А	А	А	404H	-
	Terminal S7 Sel	5										
H1-06	Terminal S8 function selec- tion	Multi-function contact input	0 to 78	8 (6)	No	А	А	A	А	A	405H	_
	Terminal S8 Sel	6										
H1-07	Terminal S9 function selec- tion	Multi-function contact input	0 to 78	5	No	А	А	A	А	A	406H	-
	Terminal S9 Sel	· /										
H1-08	Terminal S10 function selec- tion	Multi-function contact input	0 to 78	32	No	А	А	А	А	А	407H	-
	Terminal S10 Sel	ř										

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
H1-09	Terminal S11 function selec- tion	Multi-function contact input	0 to 78	7	No	А	A	А	А	А	408H	-
	Terminal S11 Sel	2										
H1-10	Terminal S12 function selec- tion	Multi-function contact input	0 to 78	15	No	А	А	А	А	А	409H	-
	Terminal S12 Sel	10										

* The values in parentheses indicate initial values when initialized in 3-wire sequence.

Multi-function Contact Input Functions

			Cont	rol Me	thods		
Set- ting Value	Function	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	Page
0	3-wire sequence (Forward/Reverse Run command)	Yes	Yes	Yes	Yes	Yes	6-8
1	Local/Remote selection (ON: Operator, OFF: Constant setting)	Yes	Yes	Yes	Yes	Yes	6-66
2	Option/Inverter selection (ON: Option Card)	Yes	Yes	Yes	Yes	Yes	6-73
3	Multi-step speed reference 1 When H3-05 is set to 2, this function is combined with the master/auxiliary speed switch.	Yes	Yes	Yes	Yes	Yes	6-5
4	Multi-step speed reference 2	Yes	Yes	Yes	Yes	Yes	6-5
5	Multi-step speed reference 3	Yes	Yes	Yes	Yes	Yes	6-5
6	Jog frequency command (higher priority than multi-step speed reference)	Yes	Yes	Yes	Yes	Yes	6-5
7	Accel/decel time 1	Yes	Yes	Yes	Yes	Yes	6-16
8	External baseblock NO (NO contact: Baseblock at ON)	Yes	Yes	Yes	Yes	Yes	6-67
9	External baseblock NC (NC contact: Baseblock at OFF)	Yes	Yes	Yes	Yes	Yes	6-67
А	Acceleration/deceleration ramp hold (ON: Acceleration/deceleration stopped, fre- quency on hold)	Yes	Yes	Yes	Yes	Yes	6-68
В	OH2 alarm signal input (ON: OH2 will be displayed)	Yes	Yes	Yes	Yes	Yes	-
С	Multi-function analog input selection (ON: Enable)	Yes	Yes	Yes	Yes	Yes	-
D	No V/f control with PG (ON: Speed feedback control disabled,) (normal V/f con- trol)	No	Yes	No	No	No	-
Е	Speed control integral reset (ON: Integral control disabled)	No	Yes	No	Yes	Yes	-
F	Not used (Set when a terminal is not used)	-	-	-	-	-	-
10	Up command (Always set with the down command)	Yes	Yes	Yes	Yes	Yes	6-69
11	Down command (Always set with the up command)	Yes	Yes	Yes	Yes	Yes	6-69
12	FJOG command (ON: Forward run at jog frequency d1-17)	Yes	Yes	Yes	Yes	Yes	6-74
13	RJOG command (ON: Reverse run at jog frequency d1-17)	Yes	Yes	Yes	Yes	Yes	6-74
14	Fault reset (Reset when turned ON)	Yes	Yes	Yes	Yes	Yes	7-2
15	Emergency stop. (Normally open condition: Deceleration to stop in deceleration time set in C1-09 when ON.)	Yes	Yes	Yes	Yes	Yes	6-14
16	Motor switch command (Motor 2 selection)	Yes	Yes	Yes	Yes	Yes	-

_			Cont	rol Me	thods		
Set- ting Value	Function	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	Page
17	Emergency stop (Normally closed condition: Deceleration to stop in deceleration time set in C1-09 when OFF)	Yes	Yes	Yes	Yes	Yes	6-14
18	Timer function input (Functions are set in b4-01 and b4-02 and the timer function outputs are set in H1- \square and H2- \square .)	Yes	Yes	Yes	Yes	Yes	6-93
19	PID control disable (ON: PID control disabled)	Yes	Yes	Yes	Yes	Yes	6-97
1A	Accel/Decel time 2	Yes	Yes	Yes	Yes	Yes	6-16
1B	Constants write enable (ON: All constants can be written-in. OFF: All constants other than frequency monitor are write protected.)	Yes	Yes	Yes	Yes	Yes	6- 139
1C	Trim control increase (ON: d4-02 frequency is added to analog frequency reference.)	Yes	Yes	Yes	Yes	Yes	6-72
1D	Trim control decrease (ON: d4-02 frequency is subtracted from analog frequency reference.)	Yes	Yes	Yes	Yes	Yes	6-72
1E	Analog frequency reference sample/hold	Yes	Yes	Yes	Yes	Yes	6-73
20 to 2F	External fault (Desired settings possible) Input mode: NO contact/NC contact, Detection mode: Normal/during operation	Yes	Yes	Yes	Yes	Yes	6-75
30	PID control integral reset (reset when reset command is input or when stopped during PID control)	Yes	Yes	Yes	Yes	Yes	6-97
31	PID control integral hold (ON: Hold)	Yes	Yes	Yes	Yes	Yes	6-97
32	Multi-step speed reference 4	Yes	Yes	Yes	Yes	Yes	-
34	PID soft starter	Yes	Yes	Yes	Yes	Yes	6-97
35	PID input characteristics switch	Yes	Yes	Yes	Yes	Yes	6-97
60	DC injection braking command (ON: Performs DC injection braking)	Yes	Yes	Yes	Yes	Yes	6-13
61	External search command 1 (ON: Speed search from maximum output frequency)	Yes	No	Yes	No	Yes	6-57
62	External search command 2 (ON: Speed search from set frequency)	Yes	No	Yes	No	Yes	6-57
63	Field weakening command (ON: Field weakening control set for d6-01 and d6-02)	Yes	Yes	No	No	No	-
64	External speed search command 3	Yes	Yes	Yes	Yes	Yes	-
65	KEB (deceleration at momentary power loss) command (NO contact)	Yes	Yes	Yes	Yes	Yes	-
66	KEB (deceleration at momentary power loss) command (NO contact)	Yes	Yes	Yes	Yes	Yes	-
67	Communications test mode ("Pass" is displayed when the communications test is passed.)	Yes	Yes	Yes	Yes	Yes	6-92
68	High-slip braking (HSB)	Yes	Yes	No	No	No	-
71	Speed/torque control change (ON: Torque control)	No	No	No	Yes	Yes	-
72	Zero-servo command (ON: Zero-servo)	No	No	No	Yes	No	-
77	Speed control (ASR) proportional gain switch (ON: C5-03)	No	No	No	Yes	Yes	-
78	Polarity reversing command for external torque reference	No	No	No	Yes	Yes	-

Multi-function Contact Outputs: H2

User constants for multi-function outputs are shown in the following tables.

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
H2-01	Terminal M1- M2 function selection (contact) Term M1-M2	Multi-function contact output	0 to 37	0	No	А	А	A	A	A	40BH	-
H2-02	Sel Terminal M3- M4 function selection (open collec- tor)	Multi-function contact output	0 to 37	1	No	А	А	A	A	A	40CH	_
	Term M3-M4 Sel											
H2-03	Terminal M5- M6 function selection (open collec- tor)	Multi-function contact output 2	0 to 37	2	No	А	А	А	А	А	40DH	-
	Term M5-M6 Sel											
H2-04	Terminal P3 function selection (open collec- tor)	Multi-function contact output 3	0 to 37	6	No	A	A	А	А	А	40EH	-
	Term P3 Sel											
H2-05	Terminal P4 function selection (open collec- tor)	Multi-function contact output 4	0 to 37	10	No	А	А	A	А	A	40FH	-
	Term P4 Sel											

_			Control Methods				
Set- ting Value	Function	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	Page
0	During run (ON: run command is ON or voltage is being output)	Yes	Yes	Yes	Yes	Yes	-
1	Zero-speed	Yes	Yes	Yes	Yes	Yes	-
2	Frequency agree 1 (L4-02 used.)	Yes	Yes	Yes	Yes	Yes	-
3	Desired frequency agree 1 (ON: Output frequency = \pm L4-01, L4-02 used and during frequency agree)	Yes	Yes	Yes	Yes	Yes	-
4	Frequency (FOUT) detection 1 (ON: +L4-01 \ge output frequency \ge -L4-01, L4-02 used)	Yes	Yes	Yes	Yes	Yes	-
5	Frequency (FOUT) detection 2 (ON: Output frequency \ge +L4-01 or output frequency \le -L4-01, L4-02 used)	Yes	Yes	Yes	Yes	Yes	-
6	Inverter operation ready READY: After initialization, no faults	Yes	Yes	Yes	Yes	Yes	-
7	During DC bus undervoltage (UV) detection	Yes	Yes	Yes	Yes	Yes	-
8	During baseblock (ON: during baseblock)	Yes	Yes	Yes	Yes	Yes	-
9	Frequency reference selection (ON: Frequency reference from Operator)	Yes	Yes	Yes	Yes	Yes	-
А	Run command selection status (ON: Run command from Operator)	Yes	Yes	Yes	Yes	Yes	-
В	Overtorque/undertorque detection 1 NO (NO contact: Overtorque/undertorque detection at ON)	Yes	Yes	Yes	Yes	Yes	6-46
С	Loss of frequency reference (Effective when 1 is set for L4-05)	Yes	Yes	Yes	Yes	Yes	6-62
D	Braking resistor fault (ON: Resistor overheat or braking transistor fault)	Yes	Yes	Yes	Yes	Yes	6-64
Е	Fault (ON: Digital Operator communications error or fault other than CPF00 and CPF01 has occurred.)	Yes	Yes	Yes	Yes	Yes	-
F	Not used. (Set when the terminals are not used.)	-	-	-	-	-	-
10	Minor fault (ON: Alarm displayed)	Yes	Yes	Yes	Yes	Yes	-
11	Fault reset command active	Yes	Yes	Yes	Yes	Yes	-
12	Timer function output	Yes	Yes	Yes	Yes	Yes	6-93
13	Frequency agree 2 (L4-04 used)	Yes	Yes	Yes	Yes	Yes	-
14	Desired frequency agree 2 (ON: Output frequency = L4-03, L4-04 used, and during frequency agree)	Yes	Yes	Yes	Yes	Yes	-
15	Frequency detection 3 (ON: Output frequency ≤ -L4-03, L4-04 used)	Yes	Yes	Yes	Yes	Yes	-
16	Frequency detection 4 (ON: Output frequency \geq -L4-03, L4-04 used)	Yes	Yes	Yes	Yes	Yes	-
17	Overtorque/undertorque detection 1 NC (NC Contact: Torque detection at OFF)	Yes	Yes	Yes	Yes	Yes	6-46
18	Overtorque/undertorque detection 2 NO (NO Contact: Torque detection at ON)	Yes	Yes	Yes	Yes	Yes	6-46
19	Overtorque/undertorque detection 2 NC (NC Contact: Torque detection at OFF)	Yes	Yes	Yes	Yes	Yes	6-46
1A	During reverse run (ON: During reverse run)	Yes	Yes	Yes	Yes	Yes	-
1B	During baseblock 2 (OFF: During baseblock)	Yes	Yes	Yes	Yes	Yes	-
1C	Motor selection (Motor 2 selected)	Yes	Yes	Yes	Yes	Yes	-
1D	During regenerative operation (ON: During regenerative operation)	No	No	No	Yes	Yes	-
1E	Restart enabled (ON: Restart enabled)	Yes	Yes	Yes	Yes	Yes	6-63
1F	Motor overload (OL1, including OH3) pre-alarm (ON: 90% or more of the detection level)	Yes	Yes	Yes	Yes	Yes	6-49
20	Inverter overheat (OH) pre-alarm (ON: Temperature exceeds L8-02 setting)	Yes	Yes	Yes	Yes	Yes	-
30	During torque limit (current limit) (ON: During torque limit)	No	No	Yes	Yes	Yes	-

Multi-function Contact Output Functions

			Cont	rol Me	thods		
Set- ting Value	Function	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	Page
31	During speed limit (ON: During speed limit)	No	No	No	Yes	Yes	-
32	Speed control circuit operating for torque control (except when stopped). The external torque reference will be limited if torque control is selected (internal torque reference < external torque reference). Output when the motor is rotating at the speed limit.	No	No	No	Yes	Yes	6- 116
33	Zero-servo end (ON: Zero-servo function completed)	No	No	No	Yes	No	-
37	During run 2 (ON: Frequency output, OFF: Base block, DC injection braking, ini- tial excitation, operation stop)	Yes	Yes	Yes	Yes	Yes	-

■Analog Inputs: H3

User constants for analog inputs are shown in the following table.

	Name						Con	trol Me	ethods	5		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
H3-01	Signal level selection (ter- minal A1)	0: 0 to ±10V [11-bit + polarity (posi- tive/negative) input]	0 or 1	0	No	А	А	А	А	А	410H	6-24
	Term A1 Sig- nal	1: 0 to ± 10 V										
112.02	Gain (termi- nal A1)	Sets the frequency when 10 V	0.0 to	100.00/	¥						41111	6.24
H3-02	Terminal A1 Gain	is input, as a percentage of the maximum output frequency.	1000.0	100.0%	Yes	A	A	А	А	А	411H	6-24
112.02	Bias (termi- nal A1)	Sets the frequency when 0 V	-100.0	0.00/	V						41011	6.04
H3-03	Terminal A1 Bias	is input, as a percentage of the maximum frequency.	to +100.0	0.0%	Yes	A	A	А	А	А	412H	6-24
H3-04	Signal level selection (ter- minal A3)	0: 0 to ±10V [11-bit + polarity (posi- tive/negative) input]	0 or 1	0	No	А	А	А	A	A	413H	6-24
	Term A3 Sig- nal	1: 0 to $\pm 10V$										
H3-05	Multi-func- tion analog input (termi- nal A3)	Select from the functions listed in the following table. Refer to the next page.	0 to 1F	2	No	А	А	А	А	А	414H	6-24
	Terminal A3 Sel	Refer to the next page.										
H3-06	Gain (termi- nal A3)	Sets the input gain (level) when terminal 16 is 10V.	0.0 to	100.0%	Yes	А	А	А	А	А	415H	6-24
п5-00	Terminal A3 Gain	Set according to the 100% value selected from H3-05.	1000.0	100.0%	ies	A	A	A	A	А	4130	0-24
H3-07	Bias (termi- nal A3)	Sets the input gain (level) when terminal 16 is 10V.	-100.0 to	0.0%	Yes	А	А	А	А	А	416H	6-24
пэ-0/	Terminal A3 Bias	Set according to the 100% value selected from H3-05.	+100.0	0.0%	105	A	A	Α	А	А	41011	0-24

	Name						Con	trol Me	ethods	5		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
H3-08	Multi-func- tion analog input terminal A2 signal level selec- tion Term A2 Sig- nal	 0: Limit negative frequency settings for gain and bias settings to 0. 1: Do not limit negative frequency settings for gain and bias settings to 0 (i.e., allow reverse operation). 2: 4 to 20 mA (9-bit input). Switch current and voltage input using the switch on the control panel. 	0 to 2	2	No	А	А	А	А	А	417H	6-24
H3-09	Multi-func- tion analog input terminal A2 function selection Terminal A2	Select multi-function analog input function for terminal A2. Refer to the next table.	0 to 1F	0	No	А	А	А	А	А	418H	6-25
	Sel											
H3-10	Gain (termi- nal A2)	Sets the input gain (level) when terminal 14 is 10 V (20 mA).	0.0 to	100.0%	Yes	А	А	А	А	А	419H	6-25
H3-10	Terminal A2 Gain	Set according to the 100% value for the function set for H3-09.	1000.0	100.0%	105	A	A	А	А	А	41911	0-25
	Bias (termi- nal A2)	Sets the input gain (level) when terminal 14 is 0 V (4	100.0									
H3-11	Terminal A2 Bias	mA). Set according to the 100% value for the function set for H3-09.	-100.0 to +100.0	0.0%	Yes	A	А	А	А	А	41AH	6-25
H3-12	Analog input filter time constant	Sets primary delay filter time constant in seconds for the two analog input terminal (A1 and A2).	0.00 to 2.00	0.03 s	No	А	А	А	A	А	41BH	6-25
	Filter Avg Time	Effective for noise control etc.	2.00	3								

H3-05,H3-09 Settings

				Cont	rol Me	thods		
Set- ting Value	Function	Contents (100%)	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	Page
0	Add to terminal A1	Maximum output frequency	Yes	Yes	Yes	Yes	Yes	6-26
1	Frequency gain	Frequency reference (voltage) command value	Yes	Yes	Yes	Yes	Yes	6-26
2	Auxiliary frequency reference (2nd step analog)	Maximum output frequency	Yes	Yes	Yes	Yes	Yes	6-26
3	Auxiliary frequency reference 2 (3rd step analog)	Maximum output frequency	Yes	Yes	Yes	Yes	Yes	6-26
4	Voltage bias	Motor rated voltage (E1-05)	Yes	Yes	No	No	No	-
5	Accel/decel change (reduction coefficient)	Set acceleration and deceleration times (C1- 01 to C1-08)	Yes	Yes	Yes	Yes	Yes	6-17
6	DC injection braking current	Inverter rated output current	Yes	Yes	Yes	No	No	6-14
7	Overtorque/undertorque detection level	Motor rated torque for vector control Inverter rated output current for V/f control	Yes	Yes	Yes	Yes	Yes	6-48
8	Stall prevention level during run	Inverter rated output current	Yes	Yes	No	No	No	6-44
9	Frequency reference lower limit level	Maximum output frequency	Yes	Yes	Yes	Yes	Yes	6-31
А	Jump frequency	Maximum output frequency	Yes	Yes	Yes	Yes	Yes	6-28
В	PID feedback	Maximum output frequency	Yes	Yes	Yes	Yes	Yes	6-97
С	PID target value	Maximum output frequency	Yes	Yes	Yes	Yes	Yes	6-97
Е	Motor temperature input	10 V = 100%	Yes	Yes	Yes	Yes	Yes	6-53
10	Positive torque limit	Motor's rated torque	No	No	Yes	Yes	Yes	6-38
11	Negative torque limit	Motor's rated torque	No	No	Yes	Yes	Yes	6-38
12	Regenerative torque limit	Motor's rated torque	No	No	Yes	Yes	Yes	6-38
13	Torque reference/torque limit at speed control	Motor's rated torque	No	No	No	Yes	Yes	6- 116
14	Torque compensation	Motor's rated torque	No	No	No	Yes	Yes	6- 116
15	Positive/negative torque limit	Motor's rated torque	No	No	Yes	Yes	Yes	6-38
1F	Analog input not used.	-	Yes	Yes	Yes	Yes	Yes	6-6
13, 14, 16to 1E	Not used	-	-	-	-	-	-	-

■Multi-function Analog Outputs: H4

User constants for multi-function analog outputs are shown in the following table.

	Name						Con	trol Me	ethods	3		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
H4-01	Monitor selection (terminal FM) Terminal	Sets the number of the monitor item to be output (U1-□□) from terminal FM. 4, 10 to 14, 25, 28, 34, 39, 40 cannot be set. 29 to 31 and 41	1 to 45	2	No	А	A	A	A	А	41DH	6-76
	FM Sel	are not used.										
	Gain (ter- minal FM)	Sets the multi-function analog output 1 voltage level gain. Sets whether the monitor item	0.00 to									
H4-02	Terminal FM Gain	output will be output in multi- ples of 10 V. The maximum output from the terminal is 10 V. A meter cali- bration function is available.	2.50 (0 to 1000.0)	1.00 (100%)	Yes	Q	Q	Q	Q	Q	41EH	4-6 6-76
	Bias (termi- nal FM)	Sets the multi-function analog output 1 voltage level bias. Sets output characteristic up/	-10.0 to +10.0									
H4-03	Terminal FM Bias	down parallel movement as a percentage of 10 V. The maximum output from the terminal is 10 V. A meter cali- bration function is available.	(-100.0 to 100.0)	0.0% (0.0%)	Yes	Α	А	А	Α	А	41FH	4-6
H4-04	Monitor selection (terminal AM)	Sets the number of the monitor item to be output (U1-□□) from terminal AM. 4, 10 to 14, 25, 28, 34, 39, 40 cannot be set. 29 to 31 and 41	1 to 45	3	No	А	А	A	A	А	420H	4-6 6-76
	Terminal AM Sel	are not used.										
	Gain (ter- minal AM)	Set the voltage level gain for multi-function analog output 2. Set the number of multiples of	0.00 to									
H4-05	Terminal AM Gain	10 V to be output as the 100% output for the monitor items. The maximum output from the terminal is 10 V. A meter cali- bration function is available.	2.50 (0 to 1000.0)	0.50 (200%)	Yes	Q	Q	Q	Q	Q	421H	4-6 6-76
	Bias (termi- nal AM)	Sets the multi-function analog output 2 voltage level bias. Sets output characteristic up/	-10.0 to									
H4-06	Terminal AM Bias	down parallel movement as a percentage of 10 V. The maximum output from the terminal is 10 V. A meter cali- bration function is available.	+10.0 (0 to 1000.0)	0.0% (0.0%)	Yes	А	A	А	А	А	422H	-
H4-07	Analog out- put 1 signal level selec- tion	Sets the signal output level for multi-function output 1 (termi- nal FM) 0: 0 to +10 V output	0 or 1	0	No	А	А	A	А	А	423H	-
	AO Level Select1	1: 0 to ± 10 V output										

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
H4-08	Analog out- put 2 signal level selec- tion AO Level Select2	Sets the signal output level for multi-function output 2 (termi- nal AM) 0: 0 to +10 V output 1: 0 to ±10 V output	0 or 1	0	No	А	A	А	А	А	424H	-

■MEMOBUS Communications: H5

User constants for MEMOBUS communications are shown in the following table.

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
H5-01	Station address Serial Comm Adr	Set the Inverter's node address.	0 to 20 *	1F	No	A	A	A	А	A	425H	6-83
H5-02	Communi- cation speed selec- tion	Set the baud rate for 6CN MEMOBUS communications. 0: 1200 bps 1: 2400 bps 2: 4800 bps	0 to 4	3	No	А	А	A	А	А	426H	6-83
	Serial Baud Rate	3: 9600 bps 4: 19200 bps										
H5-03	Communi- cation par- ity selection	Set the parity for 6CN MEMO- BUS communications. 0: No parity	0 to 2	0	No	A	A	А	А	А	427H	6-83
	Serial Com Sel	1: Even parity 2: Odd parity										
H5-04	Stopping method after com- munication error	Set the stopping method for communications errors. 0: Deceleration to stop using deceleration time in C1-02 1: Coast to stop	0 to 3	3	No	А	А	A	А	А	428H	6-83
	Serial Fault Sel	 2: Emergency stop using deceleration time in C1-09 3: Continue operation 										
H5-05	Communi- cation error detection selection	Set whether or not a communi- cations timeout is to be detected as a communications error.	0 or 1	1	No	A	A	А	А	А	429H	6-83
	Serial Flt Dtct	0: Do not detect. 1: Detect										
H5-06	Send wait time	Set the time from the Inverter	5 tr (5	E	N [†] -			٨		*	42AH	6-83
H3-06	Transmit WaitTIM	receiving data to when the Inverter starts to send.	5 to 65	5 ms	No	A	A	A	А	А	42AH	0-83

5**-5**4

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
H5-07	RTS con- trol ON/ OFF RTS Con- trol Sel	Select to enable or disable RTS control. 0: Disabled (RTS is always ON) 1: Enabled (RTS turns ON only when sending)	0 or 1	1	No	A	А	А	А	А	42BH	6-83

* Set H5-01 to 0 to disable Inverter responses to MEMOBUS communications.

■Pulse Train I/O: H6

User constants for pulse I/O are shown in the following table.

	Name						Con	trol Me	ethods	5		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
H6-01	Pulse train input func- tion selec- tion	0: Frequency reference 1: PID feedback value 2: PID target value	0 to 2	0	No	А	А	А	А	А	42CH	6-2 6-29 6-96
	Pulse Input Sel	2. The tanget value										0 70
H6-02	Pulse train input scal- ing	Set the number of pulses in hertz, taking the reference to be	1000 to 32000	1440 Hz	Yes	А	А	А	А	А	42DH	6-2 6-29
	PI Scaling	100%.										
H6-03	Pulse train input gain	Set the input gain level as a per- cent when the pulse train set in	0.0 to	100.0%	Yes	А	А	А	А	А	42EH	6-29
по-05	Pulse Input Gain	H6-02 is input.	1000.0	100.0%	ies	A	A	А	A	A	42EN	0-29
H6-04	Pulse train input bias	Set the input bias when the	-100.0 to	0.0%	Yes	А	А	А	А	А	42FH	6-29
110-04	Pulse Input Bias	pulse train is 0.	100.0	0.0%	165	А	А	А	А	А	42111	0-29
H6-05	Pulse train input filter time	Set the pulse train input pri- mary delay filter time constant	0.00 to	0.10	Yes	А	А	А	А	А	430H	6-29
	PI Filter Time	in seconds.	2.00	S								
H6-06	Pulse train monitor selection	Select the pulse train monitor output items (value of the D part of U1-D).	1, 2, 5, 20, 24,	2	Yes	А	А	А	А	А	431H	6-79
	Pulse Out- put Sel	There are two types of monitor items: Speed-related items and PID-related items.	36									
H6-07	Pulse train monitor scaling	Set the number of pulses output when speed is 100% in hertz. Set H6-06 to 2, and H6-07 to 0,	0 to	1440	Yes	А	A	А	А	А	432H	6-79
	PO Scaling	to make the pulse train monitor output synchronously to the output frequency.	32000	Hz								

Protection Function Constants: L

The following settings are made with the protection function constants (L constants): Motor selection function, power loss ridethrough function, stall prevention function, frequency detection, torque limits, and hardware protection.

Motor Overload: L1

User constants for motor overloads are shown in the following table.

	Name						Con	trol Me	ethods	5		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
	Motor pro- tection selection	Sets whether the motor over- load function is enabled or dis- abled at electric thermal overload relay.										
L1-01	MOL Fault Select	 0: Disabled 1: General-purpose motor protection 2: Inverter motor protection 3: Vector motor protection in some applications when the Inverter power supply is turned off, the thermal value is reset, so even if this constant is set to 1, protection may not be effective. When several motors are connected to one Inverter, set to 0 and ensure that each motor is installed with a protection device. 	0 to 3	1	No	Q	Q	Q	Q	Q	480H	4-5 6-49
	Motor pro- tection time constant	Sets the electric thermal detec- tion time in seconds units. Usually setting is not necessary.										
L1-02	MOL Time Const	The factory setting is 150% overload for one minute. When the motor's overload resistance is known, also set the overload resistance protection time for when the motor is hot started.	0.1 to 5.0	1.0 min	No	А	А	A	A	A	481H	6-49
L1-03	Alarm oper- ation selec- tion during motor over- heating	Set H3-09 to E and select the operation when the input motor temperature (thermistor) input exceeds the alarm detection level (1.17 V). 0: Decelerate to stop	0 to 3	3	No	А	А	А	А	А	482H	6-52
	MOL Thm Input	 Coast to stop Emergency stop using the deceleration time in C1-09. Continue operation (H3 on the Operator flashes). 										

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
L1-04	Motor over- heating operation selection MOL Filter	Set H3-09 to E and select the operation when the motor tem- perature (thermistor) input exceeds the operation detec- tion level (2.34 V). 0: Decelerate to stop 1: Coast to stop	0 to 2	1	No	A	A	А	А	А	483H	6-52
	Time	2: Emergency stop using the deceleration time in C1-09.										
L1-05	Motor tem- perature input filter time con- stant	Set H3-09 to E and set the pri- mary delay time constant for motor temperature (thermistor) inputs in seconds.	0.00 to 10.00	0.20 s	No	А	А	A	A	A	484H	6-52
	MOL Filter Time	inputs in seconds.										

■Power Loss Ridethrough: L2

User constants for power loss ridethroughs are shown in the following table.

	Name						Con	trol Me	ethods			
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
	Momentary power loss detection	0: Disabled (main circuit undervoltage (UV) detection)										
L2-01	PwrL Selection	 Enabled (Restarted when the power returns within the time for L2-02. When L2- 02 is exceeded, main circuit undervoltage detection.) Enabled while CPU is operating. (Restarts when power returns during control operations. Does not detect main circuit undervoltage.) 	0 to 2	0	No	A	A	A	A	А	485H	6-55
L2-02	Momentary power loss ridethru time	Ridethrough time, when Momentary Power Loss Selec- tion (L2-01) is set to 1, in units	0 to 25.5	0.1 s *	No	А	А	А	А	А	486H	6-55
	PwrL Ride- thru t	of seconds.										
	Min. base- block time	Sets the Inverter's minimum baseblock time in units of one										
L2-03	PwrL Base- block t	second, when the Inverter is restarted after power loss ride- through. Sets the time to approximately 0.7 times the motor secondary circuit time constant. When an overcurrent or over- voltage occurs when starting a speed search or DC injection braking, increase the set values.	0.1 to 5.0	0.2 s *1	No	A	А	А	А	А	487H	6-55 6-57

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
	Voltage recovery time	Sets the time required to return the Inverter output voltage to normal voltage at the comple-	0.0 to	0.2								6-55
L2-04	PwrL V/F Ramp t	tion of a speed search, in units of one second. Sets the time required to recover from 0 V to the maxi- mum voltage.	5.0	0.3 s *1	No	Α	A	Α	Α	А	488H	6-55 6-56
	Undervolt- age detec- tion level	Sets the main circuit undervolt- age (UV) detection level (main circuit DC voltage) in V units.	150 to	100 1								
L2-05	PUV Det Level	Usually setting is not necessary. Insert an AC reactor in the Inverter input side to lower the main circuit undervoltage detection level.	210 *2	190 V *2	No	Α	A	A	A	A	489H	6-56
	KEB decel- eration time	Sets in seconds the time required to decelerate from the										
L2-06	KEB Fre- quency	speed where the deceleration at momentary power loss com- mand (KEB) is input to zero speed.	0.0 to 200.0	0.0 s	No	Α	Α	А	A	А	48AH	-
L2-07	Momentary recovery time	Set in seconds the time to accelerate to the set speed after	0.0 to	0.0 s	NI-						48BH	
L2-07	UV RETURN TIME	recovery from a momentary power loss.	25.5	*3	No	A	A	A	A	A	40БП	-
L2-08	Frequency reduction gain at KEB start	Sets as a percent the about to reduce the output frequency at the beginning of deceleration at momentary power loss (KEB).	0 to 300	100%	No	А	A	А	А	А	48CH	-
	KEB Decel Time	Reduction = slip frequency before KEB operation × L2-08 × 2										

* 1. The factory setting depends upon the Inverter capacity. The value for a 200 V Class Inverter of 0.4 kW is given.

* 2. These are values for a 200 V class Inverter. Value for a 400 V class Inverter is double.
* 3. If the setting is 0, the axis will accelerate to the specified speed over the specified acceleration time (C1-01 to C1-08).

■Stall Prevention: L3

	Name						Con	trol Me	ethods	5		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
L3-01	Stall pre- vention selection during accel StallP	 0: Disabled (Acceleration as set. With a heavy load, the motor may stall.) 1: Enabled (Acceleration stopped when L3-02 level is exceeded. Acceleration starts again when the current is returned.) 2: Intelligent acceleration 	0 to 2	1	No	A	А	А	No	No	48FH	6-20
	Accel Sel	mode (Using the L3-02 level as a basis, acceleration is automatically adjusted. Set acceleration time is disregarded.)										
L3-02	Stall pre- vention level dur- ing accel	Effective when L3-01 is set to 1 or 2. Set as a percentage of Inverter rated current. Usually setting is not necessary.	0 to 200	150%	No	А	А	А	No	No	490H	6-20
	StallP Accel Lvl	The factory setting reduces the set values when the motor stalls.										
L3-03	Stall pre- vention limit dur- ing accel	Sets the lower limit for stall prevention during acceleration, as a percentage of the Inverter rated current, when operation is	0 to 100	50%	No	A	A	А	No	No	491H	6-20
	StallP CHP Lvl	in the frequency range above E1-06. Usually setting is not necessary.										
	Stall pre- vention selection during decel	 Disabled (Deceleration as set. If deceleration time is too short, a main circuit overvoltage may result.) Enabled (Deceleration is stopped when the main 										
L3-04	StallP Decel Sel	 circuit voltage exceeds the overvoltage level. Deceleration restarts when voltage is returned.) 2: Intelligent deceleration mode (Deceleration rate is automatically adjusted so that in Inverter can decelerate in the shortest possible time. Set deceleration time is disregarded.) 3: Enabled (with Braking Resistor Unit) When a braking option (Braking Resistor, Braking Resistor Unit) is used, always set to 0 or 3. 	0 to 3*	1	No	Q	Q	Q	Q	Q	492H	4-6 6-22

User constants for the stall prevention function are shown in the following table.

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
L3-05	Stall pre- vention selection during run- ning StallP Run Sel	 0: Disabled (Runs as set. With a heavy load, the motor may stall.) 1: Deceleration time 1 (the deceleration time for the stall prevention function is C1-02.) 2: Deceleration time 2 (the deceleration time for the stall prevention function is C1-04.) 	0 to 2	1	No	А	А	No	No	No	493H	6-43
L3-06	Stall pre- vention level dur- ing running StallP Run Level	Effective when L3-05 is 1 or 2. Set as a percentage of the Inverter rated current. Usually setting is not necessary. The factory setting reduces the set values when the motor stalls.	30 to 200	160%	No	А	А	No	No	No	494H	6-43

* The setting range is 0 to 2 for flux vector control and open-loop vector control 2.

■Reference Detection: L4

User constants for the reference detection function are shown in the following table.

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
L4-01	Speed agreement detection level Spd Agree	Effective when "Desired fre- quency (ref/setting) agree 1," "Frequency detection 1," or "Frequency detection 2" is set for a multi-function output. Frequencies to be detected are	0.0 to 400.0	0.0 Hz	No	A	A	А	A	А	499H	-
	Level	set in Hz units.										
L4-02	Speed agreement detection width	Effective when "Frequency (speed) agree 1," "Desired fre- quency (speed) agree 1," or "Frequency (FOUT) detection	0.0 to	2.0 Hz	No	А	А	А	А	А	49AH	_
	Spd Agree Width	 is set for a multi-function output. Sets the frequency detection width in Hz units. 	20.0									
	Speed agreement detection level (+/-)	Effective when "Desired fre- quency (speed) agree 2," "Desired frequency (speed) agree 1" "Frequency (FOUT)	-400.0								100011	
L4-03	Spd Agree Lvl+-	detection 3," or "Frequency (FOUT) detection 4" is set for a multi-function output. Frequency detection width is set in Hz units.	to +400.0	0.0 Hz	No	A	A	A	A	A	49BH	-

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
L4-04	Speed agreement detection width (+/-)	Effective when "Frequency (speed) agree 2," "Desired fre- quency (speed) agree 1," or "Frequency detection 4" is set	0.0 to 20.0	2.0 Hz	No	А	А	А	А	А	49CH	-
	Spd Agree Wdth+-	for a multi-function output. Frequency detection width is set in Hz units.										
L4-05	Operation when fre- quency ref- erence is missing Ref Loss Sel	 0: Stop (Operation follows the frequency reference.) 1: Operation at 80% speed continues. (At 80% of speed before the frequency reference was lost) Frequency reference is lost: Frequency reference dropped over 90% in 400 ms. 	0 or 1	0	No	А	А	A	А	А	49DH	6-62

■Fault Restart: L5

User constants for restarting faults are shown in the following table.

	Name						Con	trol Me	ethods	5		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
L5-01	Number of auto restart attempts	Sets the number of auto restart attempts. Automatically restarts after a	0 to 10	0	No	А	А	А	А	A	49EH	6-63
	Num of Restarts	fault and conducts a speed search from the run frequency.										
15.02	Auto restart operation selection	Sets whether a fault contact output is activated during fault restart.	0 1	0	NI-						40511	(()
L5-02	Restart Sel	 O: Not output (Fault contact is not activated.) 1: Output (Fault contact is activated.) 	0 or 1	0	No	A	A	A	A	A	49FH	6-63

■Torque Detection: L6

User constants for the torque detection function are shown in the following table.

	Name						Con	trol Me	ethods	3		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
L6-01	Torque detection selection 1 Torq Det 1 Sel	 Overtorque/undertorque detection disabled. Overtorque detection only with speed agreement; operation continues after overtorque (warning). Overtorque detected continuously during operation; operation continues after overtorque (warning). Overtorque detection only with speed agreement; output stopped upon detection (protected operation). Overtorque detected continuously during operation; output stopped upon detection (protected operation). Undertorque detection only with speed agreement; output stopped upon Undertorque detected continuously during operation; output stopped upon detection only with speed agreement; operation continues after overtorque (warning). Undertorque detected continuously during operation; operation continues after overtorque (warning). Undertorque detection only with speed agreement; output stopped upon detection (protected operation). Undertorque detected continuously during operation; output stopped upon detection (protected operation). 	0 to 8	0	No	А	А	А	А	А	4A1H	6-45
L6-02	Torque detection level 1 Torq Det 1 Lvl	Open-loop vector control: Motor rated torque is set as 100%. V/f control: Inverter rated cur- rent is set as 100%.	0 to 300	150%	No	А	А	А	А	A	4A2H	6-45
L6-03	Torque detection time 1 Torq Det 1 Time	Sets the overtorque/under- torque detection time in 1-sec- ond units.	0.0 to 10.0	0.1 s	No	A	A	А	A	A	4A3H	6-45

	Name						Con	trol Me	ethods	5		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
L6-04	Torque detection selection 2		0 to 8	0	No	А	А	А	А	А	4A4H	6-45
	Torq Det 2 Sel	Multi-function output for over- torque detection 1 is output to										
L6-05	Torque detection level 2	multi-function contact output when overtorque detection 1 NO or overtorque detection 1 NC is selected. Multi-function	0 to 300	150%	No	А	А	А	А	А	4A5H	6-45
	Torq Det 2 Lvl	output for overtorque detection 2 is output to multi-function contact output when overtorque	500									
L6-06	Torque detection time 2	detection 2 NO or overtorque detection 2 NC is selected.	0.0 to 10.0	0.1 s	No	А	А	А	А	А	4A6H	6-45
	Torq Det 2 Time		10.0									

■Torque Limits: L7

User constants for torque limits are shown in the following table.

0							Con	trol Me	ethod	s		
Con- stant Num- ber	Name	Description	Setting Range	Fac- tory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
L7-01	Forward drive torque limit		0 to 300	200%	No	No	No	А	А	А	4A7H	6-38
	Torq Limit Fwd											
L7-02	Reverse drive torque limit	Sets the torque limit value as a per- centage of the motor rated torque. Four individual regions can be set.	0 to 300	200%	No	No	No	А	А	А	4A8H	6-38
	Torq Limit Rev	Output torque Positive torque L7–01										
L7-03	Forward regenera- tive torque limit	Reverse Regenerative, state Forward	0 to 300	200%	No	No	No	А	А	А	4A9H	6-38
	Torq Lmt Fwd Rgn	L7–02 Negative torque										
L7-04	Reverse regenera- tive torque limit		0 to 300	200%	No	No	No	А	А	А	4AA H	6-38
	Torq Lmt Rev Rgn											

■Hardware Protection: L8

User constants for hardware protection functions are shown in the following table.

	Name						Con	trol Me	ethods	5		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
L8-01	Protect selec- tion for inter- nal DB resistor (Type ERF) DB Resistor	0: Disabled (no overheating protection) 1: Enabled (overheating protection)	0 or 1	0	No	А	А	А	А	А	4ADH	6-64
	Prot Overheat pre- alarm level	Sets the detection temperature for the Inverter overheat										
L8-02	OH Pre- Alarm Lvl	detection pre-alarm in °C. The pre-alarm detects when the cooling fin temperature reaches the set value.	50 to 130	95 °C*	No	Α	Α	A	A	A	4AEH	6-65
	Operation selection after overheat pre- alarm	Sets the operation for when the Inverter overheat pre- alarm goes ON. 0: Decelerate to stop in deceleration time C1-02.										
L8-03	OH Pre- Alarm Sel	 acceleration time C1-02. 1: Coast to stop 2: Fast stop in fast-stop time C1-09. 3: Continue operation (Monitor display only.) A fault will be given in setting 0 to 2 and a minor fault will be given in setting 3. 	0 to 3	3	No	A	A	Α	А	А	4AFH	6-65
L8-05	Input open- phase protec- tion selection Ph Loss In	0: Disabled 1: Enabled (Detects if input current open-phase, power supply voltage imbalance or main circuit	0 or 1	0	No	А	А	А	А	А	4B1H	-
	Sel	electrostatic capacitor deterioration occurs.)										
L8-07	Output open- phase protec- tion selection Ph Loss Out Sel	0: Disabled 1: Enabled 2: Enabled Output open-phase is detected at less than 5% of Inverter rated current. When applied motor capacity is small for Inverter capacity, output open-phase may be detected inadvertently or open-phase may not be detected. In this case, set to 0.	0 to 2	0	No	А	A	A	А	A	4B3H	-
L8-09	Ground pro- tection selec- tion Ground Fault Sel	0:Disabled 1:Enabled	0 or 1	1	No	A	A	A	A	A	4B5H	-

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
L8-10	Cooling fan control selec- tion	Set the ON/OFF control for the cooling fan. 0: ON only when Inverter is ON	0 or 1	0	No	А	А	A	А	А	4B6H	-
	FAN Control Sel	1: ON whenever power is ON										
L8-11	Cooling fan control delay time	Set the time in seconds to delay turning OFF the cooling fan after the cooling fan OFF	0 to 300	60 s	No	А	А	А	А	A	4B7H	-
	FAN OFF TIM	command is received.	500									
L8-12	Ambient tem- perature	Set the ambient temperature.	45 to 60	45 °C	No	А	А	А	А	А	4B8H	-
	temp		00									
L8-15	OL2 charac- teristics selection at low speeds	 OL2 characteristics at low speeds disabled. OL2 characteristics at 	0 or 1	1	No	А	A	А	А	А	4BBH	-
	OL2 Chara@L- Spd	low speeds enabled.										
L8-18	Soft CLA selection	0: Disable 1: Enable	0 or 1	1	No	А	А	А	А	А	4BFH	-
	Soft CLA Sel											

* The factory setting depends upon the Inverter capacity. The value for a 200 V Class Inverter of 0.4 kW is given.

♦ N: Special Adjustments

The following settings are made with the special adjustments constants (N constants): Hunting prevention and speed feedback detection control.

Hunting Prevention Function: N1

User constants for hunting prevention are shown in the following table.

	Name						Con	trol Me	ethods	5		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
	Hunting-pre- vention func- tion selection	0: Hunting-prevention function disabled 1: Hunting-prevention function enabled The hunting-prevention func- tion suppresses hunting when the motor is operating with a										
N1-01	Hunt Prev Select	light load. This function is enabled in V/ f control method only. If high response is to be given priority over vibration sup- pression, disable the hunting- prevention function.	0 or 1	1	No	А	A	No	No	No	580H	6-36
	Hunting-pre- vention gain	Set the hunting-prevention gain multiplication factor.										
N1-02	Hunt Prev Gain	 Normally, there is no need to make this setting. Make the adjustments as follows: If vibration occurs with light load, increase the setting. If the motor stalls, reduce the setting. If the setting is too large, the voltage will be too suppressed and the motor may stall. 	0.00 to 2.50	1.00	No	A	A	No	No	No	581H	4-16 6-36

■Speed Feedback Protection Control Functions: N2

	Name						Con	trol Me	ethods	3		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
N2-01	Speed feed- back detec- tion control (AFR) gain	 Set the internal speed feedback detection control gain using the multiplication function. Normally, there is no need to make this setting. Adjust this constant as follows: If hunting occurs, increase the set value. If response is low, decrease the set value. Adjust the setting by 0.05 at a time, while checking the response. 	0.00 to 10.00	1.00	No	No	No	A	No	No	584H	4-16 6-37
N2-02	Speed feed- back detec- tion control (AFR) time constant AFR Time	Set the time constant to decide the rate of change in the speed feedback detection control.	0 to 2000	50 ms	No	No	No	А	No	No	585H	6-37
N2-03	Speed feed- back detec- tion control (AFR) time constant 2	Set the time constant to decide the amount of change in the speed.	0 to 2000	750 ms	No	No	No	А	No	No	586H	6-37

User constants for speed feedback protection control functions are shown in the following table.

■High-slip Braking: N3

User constants for high-slip braking are shown in the following table.

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
N3-01	High-slip braking deceleration frequency width	Sets the frequency width for deceleration during high-slip braking as a percent, taking the Maximum Frequency	1 to 20	5%	No	А	А	No	No	No	588H	-
	HSB Down Freq	(E1-04) as 100%.										
	High-slip braking cur- rent limit	Sets the current limit for deceleration during high-slip braking as a percent, taking	100 to									
N3-02	HSB Current	the motor rated current as 100%. The resulting limit must be 150% of the Inverter rated current or less.	200	150%	No	А	А	No	No	No	589H	-

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
N3-03	High-slip braking stop dwell time	Set in seconds the dwell time for the output frequency for FMIN (1.5 Hz) during V/f	0.1 to	1.0 s	No	А	А	No	No	No	58AH	-
	HSB Dwell Time	control. Effective only during deceler- ation for high-slip braking.	10.0									
N3-04	High-slip braking OL time	Set the OL time when the out- put frequency does not change for some reason dur-	30 to	40 s	No	А	А	No	No	No	58BH	-
	HSB OL Time	ing deceleration for high-slip braking.	1200									

■Speed Estimation: N4

User constants for speed estimation are shown in the following table.

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
N4-07	Integral time of speed esti- mator	Set the integral time of the speed estimator for PI con-	0.000 to	0.060 ms	No	No	No	No	No	A	59AH	-
	SPD EST I Time	trol.	9.999									
N4-08	Proportional gain of speed estimator	Set the proportional gain of the speed estimator for PI	0 to 1000	15	No	No	No	No	No	А	59BH	-
	SPD EST P GAIN	control.	1000									
N4-17	Torque adjustment gain	Set the torque adjustment gain for low-speed power.	0.0 to 5.0	0.8	No	No	No	No	No	А	5A4H	-
	TRQ adjust gain	gain for low-speed power.	5.0									
N4-18	Feeder resis- tance adjust- ment gain	Set the gain for the feeder resistance in the speed esti- mator.	0.90 to 1.30	1.00	No	No	No	No	No	А	5A5H	-
	Feeder R gain											

■Feed Forward: N5

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
N5-01	Feed forward control selec- tion Feedfoward	Select the feed forward con- trol. 0: Disabled 1: Enabled	0 or 1	0^{*1}	No	No	No	No	А	А	5B0H	-
	Sel	1. Enabled										
N5-02	Motor acceleration time	Set the time required to accelerate the motor at the rated torque (T ₁₀₀) to the rated speed (Nr). J: GO ² /4, P: Motor rated out- put ta = $\frac{2\pi \cdot J [kgm^2] \cdot Nr [r/min]}{60 \cdot T_{100} [N \cdot m]}$ [s] However, $T_{100} = \frac{60}{2\pi} \cdot \frac{P [kW]}{Nr [n/min]} \times 10^3 [N \cdot m]$	0.000 to 10.000	0.178 s *2	No	No	No	No	А	А	5B1H	-
N5-03	Feed forward proportional gain Feedfoward Gain	Set the proportional gain for feed forward control. Speed reference response will increase as the setting of N5- 03 is increased.	0.00 to 100.00	1.0	No	No	No	No	A	A	5B2H	-

User constants for the feed forward control are shown in the following table.

* 1. The factory setting will change when the control method is changed. (Flux vector control factory settings are given.)

* 2. The factory setting depends on the inverter capacity.

Digital Operator Constants: o

The following settings are made with the Digital Operator constants (o constants): Multi-function selections and the copy function.

■Monitor Select: o1

User constants for Digital Operator Displays are shown in the following table.

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
	Monitor selection	Set the number of the monitor item to be displayed in the										
o1-01	User Monitor Sel	earliest 4 monitor items. (U1- D) The output monitor voltage (factory setting) can be changed.	4 to 45	6	Yes	А	А	А	А	Α	500H	-

	Name						Con	trol Me	ethods	6		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
01-02	Monitor selection after power up	Sets the monitor item to be displayed when the power is turned on. 1: Frequency reference	1 to 4	1	Yes	А	А	А	А	А	501H	6-
01-02	Power-On Monitor	 2: Output frequency 3: Output current 4: The monitor item set for o1-01 	1 10 4	1	103	Α	А	А	А	А	50111	132
	Frequency units of refer- ence setting and monitor	Sets the units that will be set and displayed for the fre- quency reference and fre- quency monitor.										
01-03	Display Scal- ing	 0: 0.01 Hz units 1: 0.01% units (Maximum output frequency is 100%) 2 to 39: min⁻¹ units (Sets the motor poles.) 40 to 39999: User desired display Set the desired values for setting and display for the max. output frequency. Set 4-digit number excluding the decimal point. Set the number of digits below the decimal point to display. Example: When the max. output frequency value is 200.0, set 12000 	0 to 39999	0	No	A	А	А	А	А	502H	6- 132
o1-04	Setting unit for frequency constants related to V/f characteris- tics V/f Display	Set the setting unit for fre- quency reference-related con- stants. 0: Hz 1: min ⁻¹	0 or 1	0	No	No	No	No	А	А	503H	6- 132
o1-05	Unit LCD bright- ness adjust- ment LCD Contrast	Set a smaller value to lighten the LCD and a larger value to darken the LCD (stan- dard: 3).	0 to 5	3	Yes	А	A	А	А	А	504H	-

■Multi-function Selections: o2

User constants for Digital Operator key functions are shown in the following table.

	Name						Con	trol Me	ethods	3		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
o2-01	LOCAL/ REMOTE key enable/ disable Local/ Remote Key	Sets the Digital Operator Local/Remote Key 0: Disabled 1: Enabled (Switches between the Digital Operator and the constant settings.)	0 or 1	1	No	A	А	A	А	А	505H	6- 132
02-02	STOP key during con- trol circuit terminal operation Oper STOP Key	Sets the Stop Key in the run mode. 0: Disabled (When the run command is issued from and external terminal, the Stop Key is disabled.) 1: Enabled (Effective even during run.)	0 or 1	1	No	А	А	А	А	А	506H	6- 132
	User con- stant initial value	Clears or stores user initial values. 0: Stores/not set 1: Begins storing (Records										
02-03	User Defaults	 begins storing (records the set constants as user initial values.) All clear (Clears all recorded user initial values) When the set constants are recorded as user initial val- ues, 1110 will be set in A1- 03. 	0 to 2	0	No	A	A	A	А	А	507H	6- 133
o2-04	kVA selection Inverter Model #	Do not set.	0 to FF	0*	No	А	А	А	А	А	508H	-
02-05	Frequency reference set- ting method selection Operator M.O.P.	When the frequency reference is set on the Digital Operator frequency reference monitor, sets whether the Enter Key is necessary. 0: Enter Key needed 1: Enter Key not needed When set to 1, the Inverter accepts the frequency refer- ence without Enter Key oper- ation.	0 or 1	0	No	A	А	A	А	А	509H	6- 133
	Operation selection when digital operator is disconnected	Sets the operation when the Digital Operator is discon- nected. 0: Disabled (Operation continues even if the Digital Operator is										
02-06	Oper Detec- tion	Digital Operator is disconnected.) 1: Enabled (OPR is detected at Digital Operator disconnection. Inverter output is cut off, and fault contact is operated.)	0 or 1	0	No	Α	A	A	A	A	50AH	_

	Name						Con	trol Me	ethods	3		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
o2-07	Cumulative operation time setting	Sets the cumulative operation time in hour units. Operation time is calculated	0 to 65535	0 hr	No	А	А	A	A	A	50BH	6- 133
	Elapsed Time Set	from the set values.	00000									100
	Cumulative operation time selection	0: Cumulative time when the Inverter power is on. (All time while the Inverter										
o2-08	Elapsed Time Run	power is on is accumulated.) 1: Cumulative Inverter run time. (Only Inverter output time is accumulated.)	0 or 1	0	No	Α	A	А	А	А	50CH	-
o2-10	Fan opera- tion time set- ting	Set the initial value of the fan operation time using time units.	0 to 65535	0 hr	No	А	А	А	А	А	50EH	6- 133
	Fan ON Time Set	The operation time accumu- lates from the set value.	05555									155
o2-12	Fault trace/ fault history clear function	0: Disabled (U2 and U3 con- stants are on hold.) 1: Enabled (Initializes U2	0 or 1	0	No	А	А	А	А	А	510H	-
	Fault Trace Init	and U3 constants.)										

* The factory setting depends upon the Inverter capacity. The value for a 200 V class Inverter of 0.4 kW is given.

■ Copy Function: o3

User constants for the copy function are shown in the following table.

	Name						Con	trol Me	ethods	3		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
	Copy func- tion selection	0: Normal operation 1: READ (Inverter to										
03-01	Copy Func- tion Sel	Operator) 2: COPY (Operator to Inverter) 3: Verify (compare)	0 to 3	0	No	Α	Α	А	А	А	515H	6- 135
-2.02	Read permit- ted selection	0: Read prohibited	0 1	0	NI-			А			51/11	6-
03-02	Copy Allow- able	1: Read permitted	0 or 1	0	No	А	A	А	А	А	516H	135

♦ T: Motor Autotuning

The following settings are made with the motor autotuning constants (T constants): Settings for autotuning.

	Name						Con	trol Me	ethods	5		
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter	Page
T1-00	Motor 1/2 selection Select Motor	Set the location where the autotuned motor constants are to be stored. 1: Motor 1 2: Motor 2	1 or 2	1	No	Yes	Yes	Yes	Yes	Yes	700H	4-12
T1-01	Autotuning mode selec- tion Tuning Mode Sel	Set the autotuning mode. 0: Rotational autotuning 1: Stationary autotuning 2: Stationary autotuning for line-to-line resistance only	0 to 2 *1	0	No	Yes	Yes	Yes	Yes	Yes	701H	4-9 4-12
T1-02	Motor output power Mtr Rated Power	Set the output power of the motor in kilowatts.	0.00 to 650.00	0.40 kW	No	Yes	Yes	Yes	Yes	Yes	702H	4-12
T1-03	Motor rated voltage Rated Voltage	Set the rated voltage of the motor in volts.	0 to 255.0 ^{*2}	200.0 V *2	No	No	No	Yes	Yes	Yes	703H	4-12
T1-04	Motor rated current Rated Current	Set the rated current of the motor in amps.	0.32 to 6.40 ^{*4}	1.90 A *3	No	Yes	Yes	Yes	Yes	Yes	704H	4-12
T1-05	Motor base frequency Rated Fre- quency	Set the base frequency of the motor in hertz.	0 to 400.0 ^{*5}	60.00 Hz	No	No	No	Yes	Yes	Yes	705H	4-12
T1-06	Number of motor poles Number of Poles	Set the number of motor poles.	2 to 48 poles	4 poles	No	No	No	Yes	Yes	Yes	706H	4-12
T1-07	Motor base speed Rated Speed	Set the base speed of the motor in min ^{-1} .	0 to 24000	1750 min ⁻¹	No	No	No	Yes	Yes	Yes	707H	4-13
T1-08	Number of PG pulses when turning PG Pulses/ Rev	Set the number of pulses per revolution for the PG being used (pulse generator or encoder) without any multi- plication factor.	0 to 60000	600	No	No	Yes	No	Yes	No	708H	4-13

* 1. Set T1-02 and T1-04 when 2 is set for T1-01. Only set value 2 is possible for V/f control or V/f control with PG.

* 2. These are values for a 200 V class Inverter. Values for a 400 V class Inverter are double.

* 3. The factory setting depends on the Inverter capacity. (The value for a 200 V Class Inverter for 0.4 kW is given.)

* 4. The setting range is from 10% to 200% of the Inverter rated output current. (The value for a 200 V Class Inverter for 0.4 kW is given.)

 $\ast~$ 5. The upper setting limit will be 150.0 Hz when C6-01 is set to 0.

• U: Monitor Constants

The following settings are made with the monitor constants (U constants): Setting constants for monitoring in drive mode.

Status Monitor Constants: U1

The constants used for monitoring status are listed in the following table.

	Name		Output Signal Level During Multi-Function Analog Output	Min. Unit	Control Methods					
Con- stant Number	Display	Description			V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter
U1-01	Frequency reference	Monitors/sets the fre- quency reference value.*	10 V: Max. frequency (0 to ± 10 V possible)	0.01 Hz	А	А	А	А	А	40H
	Frequency Ref									
U1-02	Output fre- quency	Monitors the output fre- quency.*	10 V: Max. frequency (0 to ± 10 V possible)	0.01 Hz	А	А	А	А	А	41H
	Output Freq									
U1-03	Output cur- rent	Monitors the output cur- rent.	10 V: Inverter rated output current (0 to +10 V, absolute value output)	0.1 A	A	A	А	A	А	42H
	Output Cur- rent									
U1-04	Control method	Checks the current control method.	(Cannot be output.)	-	А	А	А	A	А	43H
	Control Method									
U1-05	Motor speed	Monitors the detected motor speed.*	10 V: Max. frequency (0 to ± 10 V possible)	0.01 Hz	No	А	А	А	А	44H
	Motor Speed									
U1-06	Output volt- age	Monitors the output volt- age reference value in the Inverter.	10 V: 200 VAC (400 VAC) (0 to +10 V output)	0.1 V	А	А	А	А	А	45H
	Output Volt- age									
U1-07	DC bus volt- age	Monitors the main DC voltage in the Inverter.	10 V: 400 VDC (800 VDC) (0 to +10 V output)	1 V	А	А	А	А	А	46H
	DC Bus Voltage									
U1-08	Output power	Monitors the output power (internally detected value).	10 V: Inverter capacity (max. applicable motor capacity) (0 to ± 10 V possible)	0.1 kW	А	А	А	A	А	47H
	Output kWatts									
U1-09	Torque refer- ence	Monitor in internal torque reference value for vector control.	10 V: Motor rated torque (0 to \pm 10 V possible)	0.1%	No	No	А	А	А	48H
	Torque Ref- erence									

* The unit is set in o1-03 (frequency units of reference setting and monitor).

	Name					Con	trol Me	ethods	6	
Con- stant Number	Display	Description	Output Signal Level During Multi-Function Analog Output	Min. Unit	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter
U1-10	Input termi- nal status Input Term Sts	Shows input ON/OFF status. U1-10= 0000000 (S1) is ON. 1: REV command (S2) is ON. 1: Multi input 1 (S3) is ON. 1: Multi input 2 (S4) is ON. 1: Multi input 3 (S5) is ON. 1: Multi input 4 (S6) is ON. 1: Multi input 5 (S7) is ON. 1: Multi input 6 (S8) is ON.	(Cannot be output.)	-	А	А	А	А	А	49H
U1-11	Output ter- minal status Output Term Sts	Shows output ON/OFF status. U1-11= 00000000 U1-11: Multi-function contact output 1 (M1-M2) is ON. -1: Multi-function contact output 2 (P1) is ON. -1: Multi-function contact output 3 (P2) is ON. -1: Error output (MA/AB-MC) is ON.	(Cannot be output.)	-	А	А	A	А	А	4AH
U1-12	Operation status	Inverter operating status. U1-12= 00000000 1: Zero speed 1: Reverse 1: Reset signal input 1: Speed agree 1: Inverter ready 1: Minor fault	(Cannot be output.)	-	A	A	А	A	А	4BH
U1-13	Cumulative operation time Elapsed Time	Monitors the total operating time of the Inverter. The initial value and the oper- ating time/power ON time selection can be set in o2-07 and o2-08.	(Cannot be output.)	1 hr	А	А	A	А	А	4CH
U1-14	Software No. (flash memory) FLASH ID	(Manufacturer's ID number)	(Cannot be output.)	-	A	А	A	A	A	4DH

	Name					Con	trol Me	ethods	6	
Con- stant Number	Display	Description	Output Signal Level During Multi-Function Analog Output	Min. Unit	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter
U1-15	Terminal A1 input voltage Term A1	Monitors the input voltage of the voltage frequency refer- ence. An input of 10 V corre- sponds to 100%.	10 V: 100% (10 V) (0 to ± 10 V possible)	0.1 %	A	А	А	A	А	4EH
U1-16	Level Terminal A2 input voltage Term A2	Monitors the input voltage of the multi-function analog input. An input of 10 V corresponds	10 V: 100% (10 V) (0 to ±10 V possible)	0.1	А	А	A	A	A	4FH
U1-17	Level Terminal A3 input voltage Term 16 Level	to 100%. Monitors the input voltage of the multi-function analog input. An input of 10 V corresponds to 100%.	10 V: 100% (10 V) (0 to ±10 V possible)	0.1 %	А	А	А	А	A	050H
U1-18	Motor sec- ondary cur- rent (Iq) Mot SEC Current	Monitors the calculated value of the motor secondary cur- rent. The motor rated secondary current corresponds to 100%.	10 V: Motor rated secondary current) (0 to ±10 V output)	0.1 %	А	А	A	A	A	51H
U1-19	Motor exciting current (Id) Mot EXC Current	Monitors the calculated value of the motor excitation cur- rent. The motor rated secondary current corresponds to 100%.	10 V: Motor rated secondary current) (0 to ±10 V output)	0.1 %	No	No	А	A	A	52H
U1-20	Output fre- quency after soft- start SFS Output	Monitors the output frequency after a soft start. The frequency given does not include compensations, such as slip compensation. The unit is set in o1-03.	10 V: Max. frequency (0 to ± 10 V possible)	0.0 1Hz	A	А	А	А	А	53H
U1-21	ASR input ASR Input	Monitors the input to the speed control loop. The maximum frequency cor- responds to 100%.	10 V: Max. frequency (0 to ± 10 V possible)	0.0 1%	No	А	No	А	А	54H
U1-22	ASR output ASR Out- put	Monitors the output from the speed control loop. The motor rated secondary current corresponds to 100%.	10 V: Motor rated secondary current) (0 to ± 10 V possible)	0.0 1%	No	А	No	А	А	55H
U1-24	PID feed- back value PID Feed- back	Monitors the feedback value when PID control is used. The input for the max. fre- quency corresponds to 100%.	10 V: Max. frequency (0 to ± 10 V possible)	0.0 1%	А	А	А	А	А	57H
U1-25	DI-16H2 input status DI-16 Ref- erence	Monitors the reference value from a DI-16H2 Digital Refer- ence Card. The value will be displayed in binary or BCD depending on user constant F3-01.	(Cannot be output.)	-	А	А	А	А	А	58H

	Name					Con	trol Me	ethods	6	
Con- stant Number	Display	Description	Output Signal Level During Multi-Function Analog Output	Min. Unit	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter
U1-26	Output volt- age refer- ence (Vq) Voltage Ref (Vq)	Monitors the Inverter internal voltage reference for motor secondary current control.	10 V: 200 VAC (400 VAC) (0 to ± 10 V possible)	0.1 V	No	No	A	A	A	59H
U1-27	Output volt- age refer- ence (Vd) Voltage Ref (Vd)	Monitors the Inverter internal voltage reference for motor excitation current control.	10 V: 200 VAC (400 VAC) (0 to ± 10 V possible)	0.1 V	No	No	A	A	А	5AH
U1-28	Software No. (CPU) CPU ID	(Manufacturer's CPU software No.)	(Cannot be output.)	-	A	A	A	А	А	5BH
U1-32	ACR out- put of q axis ACR(q) Output	Monitors the current control output value for the motor sec- ondary current.	10 V: 100% (0 to ± 10 V possible)	0.1 %	No	No	А	А	А	5FH
U1-33	ACR out- put of d axis ACR(d) Output	Monitors the current control output value for the motor excitation current.	10 V: 100% (0 to ± 10 V possible)	0.1 %	No	No	А	A	А	60H
U1-34	OPE fault constant OPE Detected	Shows the first constant num- ber where an OPE fault was detected.		-	A	A	А	A	А	61H
U1-35	Zero servo movement pulses Zero Servo Pulse	Shows the number of PG pulses times 4 for the move- ment range when stopped at zero.	(Cannot be output.)	1	No	No	No	A	No	62H
U1-36	PID input volume PID Input	PID feedback volume Given as maximum frequency/ 100%	10 V: Max. frequency (0 to ± 10 V possible)	0.0 1%	А	А	A	А	А	63H
U1-37	PID output volume PID Output	PID control output Given as maximum frequency/ 100%	10 V: Max. frequency (0 to \pm 10 V possible)	0.0 1%	A	А	А	А	А	64H
U1-38	PID com- mand PID Set- point	PID command + PID com- mand bias Given as maximum frequency/ 100%	10 V: Max. frequency	0.0 1%	A	A	А	A	А	65H
U1-39	MEMO- BUS communi- cations error code Transmit Err	Shows MEMOBUS errors. U1-40= 00000000 L 1: CRC error - 1: Data length error - Not used (always 0). - 1: Parity error - 1: Overrun error - 1: Timeout Not used (always 0).	(Cannot be output.)	-	A	А	А	A	А	66H

	Name					Con	trol Me	ethods	6	
Con- stant Number	Display	Description	Output Signal Level During Multi-Function Analog Output	Min. Unit	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter
U1-40	Cooling fan operating time	Monitors the total operating	(Cannot be output.)	1	А	А	А	A	А	68H
01-40	FAN Elapsed Time	time of the cooling fan. The time can be set in 02-10.	(Cannot be output.)	hr	A	A	A	A	A	081
U1-42	Estimated motor flux	Monitors the calculated value of the motor flux. 100% is dis-	10 V: Rated motor flux	0.1	No	No	No	No	А	69H
01-42	Mot Flux EST	played for the rated motor flux.	10 V. Kateu hiotoi hux	%	NO	NO	NO	NO	А	0911
U1-43	Motor flux current compensa- tion	Monitors motor flux current compensation value. 100% is displayed for the rated second-	10 V: Rated secondary cur- rent of motor	0.1 %	No	No	No	No	А	6AH
	Id Comp Value	ary current of the motor.	(-10 V to 10 V)							
	ASR out- put without filter	Monitors the output from the speed control loop (i.e., the	10 V: Rated secondary cur-	0.0						
U1-44	ASR Out- put w Fil	primary filter input value). 100% is displayed for rated secondary current of the motor.	rent of motor (-10 V to 10 V)	1%	No	No	No	A	A	6BH
U1-45	Feed for- ward con- trol output	Monitors the output from feed forward control. 100% is dis- played for rated secondary	10 V: Rated secondary cur- rent of motor	0.0	No	No	No	А	А	6CH
	FF Cout Output	current of the motor.	(-10 V to 10 V)	170						

■ Fault Trace: U2

User constants for error tracing are shown in the following table.

	Name		Output Signal			Con	trol Me	ethods	5	
Con- stant Number	Display	Description	Level During Multi-Function Analog Output	Min. Unit	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter
U2-01	Current fault	The contents of the current fault.		_	А	А	А	А	А	80H
02 01	Current Fault		_							0011
U2-02	Previous fault	The contents of the error that occurred just prior to the current		_	А	А	А	А	А	81H
02-02	Last Fault	fault.			Π	Л	А	Л	л	0111
U2-03	Reference frequency at fault	The reference frequency when the previous fault occurred.		0.01 Hz	А	А	А	А	А	82H
	Frequency Ref	the previous fault occurred.		112						
U2-04	Output fre- quency at fault	The output frequency when the previous fault occurred.		0.01 Hz	А	А	А	А	А	83H
	Output Freq									
112.05	Output cur- rent at fault	The output current when the pre-		0.1.4						0.411
U2-05	Output Cur- rent	vious fault occurred.		0.1 A	A	A	А	А	A	84H
U2-06	Motor speed at fault	The motor speed when the previ-	(Cannot be output.)	0.01	No	А	А	А	А	85H
	Motor Speed	ous fault occurred.		Hz						
U2-07	Output volt- age reference at fault	The output reference voltage when the previous fault occurred.		0.1 V	А	А	А	A	A	86H
	Output Volt- age	when the previous rauk occurred.								
U2-08	DC bus volt- age at fault	The main current DC voltage		1 V	А	А	А	А	А	87H
02 00	DC Bus Volt- age	when the previous fault occurred.		1 1	71	21	71	21	71	0/11
U2-09	Output power at fault	The output power when the pre-		0.1				Δ	٨	88H
02-09	Output kWatts	vious fault occurred.		kW	А	A	А	А	A	оон
U2-10	Torque refer- ence at fault	The reference torque when the previous fault occurred. The		0.1%	No	No	А	No		89H
02-10	Torque Refer- ence	motor rated torque corresponds to 100%.		0.1%	110	No	A	INU	A	<u>о</u> 9П

	Name		Output Signal			Con	trol Me	ethods	3	
Con- stant Number	Display	Description	Level During Multi-Function Analog Output	Min. Unit	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	MEMO BUS Regis- ter
U2-11	Input termi- nal status at fault	The input terminal status when the previous fault occurred. The format is the same as for U1-		-	А	А	А	А	А	8AH
	Input Term Sts	10.								
U2-12	Output termi- nal status at fault	The output terminal status when the previous fault occurred. The		-	А	А	А	А	A	8BH
	Output Term Sts	format is the same as for U1-11.	(Cannot be output.)							
U2-13	Operation status at fault	The operating status when the previous fault occurred. The for-		_	А	А	А	А	А	8CH
02-15	Inverter Sta- tus	mat is the same as for U1-12.		-	A	A	А	A	А	осп
U2-14	Cumulative operation time at fault	The operating time when the pre- vious fault occurred.		1 hr	А	А	A	А	А	8DH
	Elapsed time									

Note The following errors are not included in the error trace: CPF00, 01, 02, 03, UV1, and UV2.

5

■Fault History: U3

User constants for the error log are shown in the following table.

	Name					Con	trol Me	ethods	5	
Con- stant Number	Display	Description	Output Signal Level During Multi-Function Analog Output	Min. Unit	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open -loop Vec- tor 2	MEMO BUS Regis- ter
U3-01	Most recent fault	The error contents of 1st previous fault.		-	А	А	А	А	А	90H
	Last Fault									
U3-02	Second most recent fault	The error contents of 2nd			А	А	А	А	А	91H
03-02	Fault Mes- sage 2	previous fault.		-	A	A	А	A	A	9111
112 02	Third most recent fault	The error contents of 3rd								0211
U3-03	Fault Mes- sage 3	previous fault.		-	A	A	A	А	A	92H
U3-04	Fourth/oldest fault	The error contents of 4th								0.211
03-04	Fault Mes- sage 4	previous fault.		-	A	А	А	А	A	93H
U3-05	Cumulative operation time at fault	The total operating time when the 1st previous fault	(Cannot be output.)	1	А	А	А	А	А	94H
	Elapsed Time 1	occurred.		hr						
U3-06	Accumulated time of sec- ond fault	The total operating time when the 2nd previous fault		1	А	А	A	А	А	95H
	Elapsed Time 2	occurred.		hr						
U3-07	Accumulated time of third fault	The total operating time when the 3rd previous fault		1	А	А	A	A	A	96H
	Elapsed Time 3	occurred.		hr						
U3-08	Accumulated time of fourth/oldest fault	The total operating time when the 4th previous fault occurred.		1 hr	А	А	А	А	А	97H
	Elapsed Time 4									

Note The following errors are not recorded in the error log: CPF00, 01, 02, 03, UV1, and UV2.

◆ Factory Settings that Change with the Control Method (A1-02)

The factory settings of the following user constants will change if the control method (A1-02) is changed.

_	Name				Fact	ory Setti	ng	
Con- stant Number	Display	Setting Range	Unit	V/f Control	V/f with PG	Open- loop Vector 1	Flux Vector	Open Loop Vector 2
12.01	Speed search selection	0 / 2			2	-		2
b3-01	SpdSrch at Start	0 to 3	1	2	3	2	-	2
1.2.02	Speed search operating current	0.4- 200	10/	120		100		10
b3-02	SpdSrch Current	0 to 200	1%	120	-	100	-	10
b8-02	Energy-saving gain	0.0 to 10.0	0.1	_		0.7	1.0	0.7
08-02	Energy Save Gain	0.0 to 10.0	0.1	-	-	0.7	1.0	0.7
h9 02	Energy-saving filter time constant	0.0 to 10.00	0.01 a			0.50	0.01	0.50
b8-03	Energy Save F.T	0.0 to 10.00	0.01 s	-	-	0.50	0.01	0.50
C3-01	Slip compensation gain	0.0 += 2.5	0.1	0.0		1.0	1.0	1.0
C3-01	Slip Comp Gain	0.0 to 2.5	0.1	0.0	-	1.0	1.0	1.0
C2 02	Slip compensation primary delay time	0.4- 10000	1	2000		200		
C3-02	Slip Comp Time	0 to 10000	1 ms	2000	-	200	-	-
C4-02	Torque compensation primary delay time constant	0 to 10000	1 ms	200	200	20	-	-
	Torq Comp Time							
C5-01	ASR proportional (P) gain 1	0.00 to 200.00	0.01		0.20		20.00	10.00
C3-01	ASR P Gain 1	0.00 to 300.00	0.01	-	0.20	-	20.00	10.00
C5-02	ASR integral (I) time	0.000 to 10.000	0.001 s	_	0.200	-	0.500	0.500
C3-02	ASR I Time 1	0.000 10 10.000	0.001 s	-	0.200	-	0.300	0.300
C5-03	ASR proportional (P) gain 2	0.00 to 300.00	0.01	_	0.02	_	20.00	10.00
C3-05	ASR P Gain 2	0.00 10 500.00	0.01	-	0.02	-	20.00	10.00
C5-04	ASR integral (I) time 2	0.000 to 10.000	0.001		0.050		0.500	0.500
C3-04	ASR I Time 2	0.000 to 10.000	sec.	-	0.050	-	0.500	0.500
C5-06	ASR primary delay time	0.000 to 0.500	0.001				0.004	0.010
C3-00	ASR Delay Time	0.000 10 0.500	0.001	-	-	-	0.004	0.010
d5-02	Torque reference delay time	0 to 1000	1 ms			-	0	10
u3-02	Torq Ref Filter	0101000	1 1115	-	-	-	0	10
E1-04	Max. output frequency (FMAX)	0.0 to 400.0	0.1 Hz	60.0	60.0	60.0	60.0	60.0
E3-02	Max Frequency	0.0 to 400.0	0.1 HZ	*3	*3	00.0	00.0	00.0
E1-05	Max. voltage (VMAX)	0.0 to 255.0	0.1 M	200.0	200.0	200.0	200.0	200.0
E3-03	Max Voltage	0.0 to 255.0	0.1 V	*3	*3	200.0	200.0	200.0
E1-06	Base frequency (FA)	0.0.4- 400.0	0.1.11-	60.0	60.0	(0.0	(0.0	(0.0
E3-04	Base Frequency	0.0 to 400.0	0.1 Hz	*3	*3	60.0	60.0	60.0
E1-07	Mid. output frequency (FB)	0.0 += 400.0	0.1.11	3.0	3.0	2.0	0.0	0.0
E3-05	Mid Frequency A	0.0 to 400.0	0.1 Hz	*3	*3	3.0	0.0	0.0
E1-08 E3-06	Mid. output frequency voltage $(VC)^{*2}$	0.0 to 255.0 (0.0 to 510.0)	0.1 V	15.0 *3	15.0 *3	11.0	0.0	0.0
20 00	Mid Voltage A	(0.0 10 010.0)		5	5			

	Name				Facto	ory Settii	ng	
Con- stant Number	Display	Setting Range	Unit	V/f Control	V/f with PG	Open- loop Vector 1	Flux Vector	Open Loop Vector 2
E1-09	Min. output frequency (FMIN)	0.0 to 400.0	0.1.117	1.5	1.5	0.5	0.0	0.3
E3-07	Min Frequency	0.0 to 400.0	0.1 Hz	*3	*3	0.5	0.0	0.5
E1-10	Min. output frequency voltage $(VMIN)^{*2}$	0.0 to 255.0	0.1 V	9.0	9.0	2.0	0.0	1.0
E3-08	Min Voltage	(0.0 to 510.0)	0.1 V	*3	*3	2.0	0.0	1.0
F1-09	Overspeed detection delay time	0.0 to 2.0	0.1 s	_	1.0	_	0.0	0.0
F1-09	PG Overspd Time	0.0 10 2.0	0.1 \$	-	1.0	-	0.0	0.0
N5-01	Feed forward control selection	0, 1	1				0	1
193-01	Feedfoward Sel	0, 1	1	-	-	-	0	1

* 1. The settings will be 0.05 (Flux vector)/2.00 (Open-loop vector) for inverters of 55kW or larger.

* 2. The settings shown are for 200 V class Inverters. The values will double for 400 V class Inverters.

* 3. Settings vary as shown in the following tables depending on the Inverter capacity and E1-03.

* 4. The setting range is 0 to 66.0 for open-loop vector control 2.

■200 V and 400 V Class Inverters of 0.4 to 1.5 kW

Con- stant Num- ber	Unit							Fa	actory	Setti	ng							Open Loop Vector Con- trol	Open Loop Vector Con- trol	Flux Vector Con- trol
E1-03	I	0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F	1	2	
E1-04	Hz	50.0	60.0	60.0	72.0	50.0	50.0	60.0	60.0	50.0	50.0	60.0	60.0	90.0	120.0	180.0	60.0	60.0	60.0	60.0
E1-05 *	v	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0
E1-06	Hz	50.0	60.0	50.0	60.0	50.0	50.0	60.0	60.0	50.0	50.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	0.0
E1-07	Hz	2.5	3.0	3.0	3.0	25.0	25.0	30.0	30.0	2.5	2.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0.0
E1-08 *	v	15.0	15.0	15.0	15.0	35.0	50.0	35.0	50.0	19.0	24.0	19.0	24.0	15.0	15.0	15.0	15.0	11.0	13.3	0.0
E1-09	Hz	1.3	1.5	1.5	1.5	1.3	1.3	1.5	1.5	1.3	1.3	1.5	1.5	1.5	1.5	1.5	1.5	0.5	0.3	0.0
E1-10 *	v	9.0	9.0	9.0	9.0	8.0	9.0	8.0	9.0	11.0	13.0	11.0	15.0	9.0	9.0	9.0	9.0	2.0	1.3	0.0

 $^{*}~$ The setting shown are for 200 V class Inverters. The values will double for 400 V class Inverters.

■200 V and 400 V Class Inverters of 2.2 to 45 kW

Con- stant Num- ber	Unit							Fa	actory	Setti	ng							Open Loop Vector Con- trol	Open Loop Vector Con- trol	Flux Vector Con- trol
E1-03	-	0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F	1	2	
E1-04	Hz	50.0	60.0	60.0	72.0	50.0	50.0	60.0	60.0	50.0	50.0	60.0	60.0	90.0	120.0	180.0	60.0	60.0	60.0	60.0
E1-05 *	v	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0
E1-06	Hz	50.0	60.0	50.0	60.0	50.0	50.0	60.0	60.0	50.0	50.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	0.0
E1-07	Hz	2.5	3.0	3.0	3.0	25.0	25.0	30.0	30.0	2.5	2.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0.0
E1-08 *	v	14.0	14.0	14.0	14.0	35.0	50.0	35.0	50.0	18.0	23.0	18.0	23.0	14.0	14.0	14.0	14.0	11.0	13.3	0.0
E1-09	Hz	1.3	1.5	1.5	1.5	1.3	1.3	1.5	1.5	1.3	1.3	1.5	1.5	1.5	1.5	1.5	1.5	0.5	0.3	0.0
E1-10 *	v	7.0	7.0	7.0	7.0	6.0	7.0	6.0	7.0	9.0	11.0	9.0	13.0	7.0	7.0	7.0	7.0	2.0	1.3	0.0

* The setting shown are for 200 V class Inverters. The values will double for 400 V class Inverters.

Con- stant Num- ber	Unit							Fa	ctory	Setti	ng							Open Loop Vector Con- trol	Open Loop Vector Con- trol	Flux Vector Con- trol
E1-03	-	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F	1	2	
E1-04	Hz	50.0	60.0	60.0	72.0	50.0	50.0	60.0	60.0	50.0	50.0	60.0	60.0	90.0	120.0	180.0	60.0	60.0	60.0	60.0
E1-05 *	v	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0	200.0
E1-06	Hz	50.0	60.0	50.0	60.0	50.0	50.0	60.0	60.0	50.0	50.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	0.0
E1-07	Hz	2.5	3.0	3.0	3.0	25.0	25.0	30.0	30.0	2.5	2.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	0.0
E1-08 *	v	12.0	12.0	12.0	12.0	35.0	50.0	35.0	50.0	15.0	20.0	15.0	20.0	12.0	12.0	12.0	12.0	11.0	13.3	0.0
E1-09	Hz	1.3	1.5	1.5	1.5	1.3	1.3	1.5	1.5	1.3	1.3	1.5	1.5	1.5	1.5	1.5	1.5	0.5	0.3	0.0
E1-10 *	v	6.0	6.0	6.0	6.0	5.0	6.0	5.0	6.0	7.0	9.0	7.0	11.0	6.0	6.0	6.0	6.0	2.0	1.3	0.0

■200 V Class Inverters of 55 to 110 kW and 400 V Class Inverters of 55 to 300 kW

 $\,*\,\,$ The setting shown are for 200 V class Inverters. The values will double for 400 V class Inverters.

◆ Factory Settings that Change with the Inverter Capacity (o2-04)

The factory settings of the following user constants will change if the Inverter capacity (o2-04) is changed.

■200 V Class Inverters

Con- stant Number	Name	Unit				Fac	tory Set	ting			
-	Inverter Capacity kW 0.4 0.75 1.5 2.2 3.7						5.5	7.5	11	15	
o2-04	kVA selection	-	0	1	2	3	4	5	6	7	8
b8-03	Energy-saving filter time constant	s		0.50 (Open-loop vector control)							
b8-04	Energy-saving coefficient - 288.20 223.70 169.40 156		156.80	122.90	94.75	72.69	70.44	63.13			
C6-02	Carrier frequency selec- tion ^{*1}	-	6	6	6	6	6	6	6	6	6
C6-11	Carrier frequency selection for open-loop vector control 2*2	-	3	3	3	3	3	3	3	3	3
-	Carrier frequency selection upper limit	-	6	6	6	6	6	6	6	6	6
E2-01 (E4-01)	Motor rated current	А	1.90	3.30	6.20	8.50	14.00	19.60	26.60	39.7	53.0
E2-02 (E4-02)	Motor rated slip	Hz	2.90	2.50	2.60	2.90	2.73	1.50	1.30	1.70	1.60
E2-03 (E4-03)	Motor no-load current	А	1.20	1.80	2.80	3.00	4.50	5.10	8.00	11.2	15.2
E2-05 (E4-05)	Motor line-to-line resis- tance	Ω	9.842	5.156	1.997	1.601	0.771	0.399	0.288	0.230	0.138
E2-06 (E4-06)	Motor leak inductance	%	18.2	13.8	18.5	18.4	19.6	18.2	15.5	19.5	17.2
E2-10	Motor iron loss for torque compensation	W	14	26	53	77	112	172	262	245	272
L2-02	Momentary power loss ride- thru time	s	0.1	0.2	0.3	0.5	1.0	1.0	1.0	2.0	2.0
L2-03	Min. baseblock (BB) time	s	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
L2-04	Voltage recovery time	s	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.6
L8-02	Overheat pre-alarm level	°C	95 95 100 95 95 95 90					100			
N5-02	Motor acceleration time	s	0.178	0.142	0.166	0.145	0.154	0.168	0.175	0.265	0.244

Con- stant Number	Name	Unit				Fac	tory Set	ting			
-	Inverter Capacity	kW	18.5	22	30	37	45	55	75	90	110
o2-04	kVA selection	-	9	А	В	С	D	Е	F	10	11
b8-03	b8-03 Energy-saving filter time constant		0.50 (Open-loop vector control)				2.00 (Open-looj	p vector co	ontrol)	
b8-04	Energy-saving coefficient	-	57.87	51.79	46.27	38.16	35.78	31.35	23.10	20.65	18.12
C6-02	Carrier frequency selection	-	6	4	4	4	4	4	4	1	1
C6-11	Carrier frequency selection for open-loop vector control 2 ^{*2}	-	3	3	3	3	3	3	3	1	1
-	Carrier frequency selection upper limit	-	6	6	4	4	4	4	4	1	1
E2-01 (E4-01)	Motor rated current	А	65.8	77.2	105.0	131.0	160.0	190.0	260.0	260.0	260.0
E2-02 (E4-02)	Motor rated slip	Hz	1.67	1.70	1.80	1.33	1.60	1.43	1.39	1.39	1.39
E2-03 (E4-03)	Motor no-load current	А	15.7	18.5	21.9	38.2	44.0	45.6	72.0	72.0	72.0
E2-05 (E4-05)	Motor line-to-line resis- tance	Ω	0.101	0.079	0.064	0.039	0.030	0.022	0.023	0.023	0.023
E2-06 (E4-06)	Motor leak inductance	%	20.1	19.5	20.8	18.8	20.2	20.5	20.0	20.0	20.0
E2-10	Motor iron loss for torque compensation	W	505	538	699	823	852	960	1200	1200	1200
L2-02	Momentary power loss ride- thru time	s	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
L2-03	Min. baseblock (BB) time	s	1.0	1.1	1.1	1.2	1.2	1.3	1.5	1.7	1.7
L2-04	Voltage recovery time	s	0.6	0.6	0.6	0.6	1.0	1.0	1.0	1.0	1.0
L8-02	Overheat pre-alarm level	°C	90 90 95 100 100		110	100	95	95			
N5-02	Motor acceleration time	s	0.317	0.355	0.323	0.320	0.387	0.317	0.533	0.592	0.646

Note Attach a Momentary Power Interruption Compensation Unit if compensation for power interruptions of up to 2.0 seconds is required for 200 V class Inverters with outputs of 0.4 to 7.5 kW.

* 1. The initial settings for C6-02 are as follows: 0: Low noise PWM, 1: 2.0 kHz, 2: 5.0 kHz, 3: 8.0 kHz, 4: 10 kHz, 5: 12.5 kHz, and 6: 15 kHz. If the carrier frequency is set higher than the factory setting for Inverters with outputs of 5.5 kW or more, the Inverter rated current will need to be reduced.

 $\ast~$ 2. The initial settings for C6-11 are as follows: 1: 2.0 kHz, 2: 4.0 kHz, 3: 6.0 kHz, 4: 8.0 kHz.

■400 V Class Inverters

Con- stant Num- ber	Name	Unit					Factory	[,] Setting	9			
-	Inverter Capacity	kW	0.4	0.75	1.5	2.2	3.7	4.0	5.5	7.5	11	15
o2-04	kVA selection	-	20	21	22	23	24	25	26	27	28	29
b8-03	Energy-saving filter time constant	s				0.50 (C	Dpen-loop	p vector o	control)			
b8-04	Energy-saving coefficient	-	576.40	447.40	338.80	313.60	245.80	236.44	189.50	145.38	140.88	126.26
C6-02	Carrier frequency selec- tion ^{*1}	-	3	3	3	3	3	3	3	3	3	3
C6-11	Carrier frequency selec- tion for open-loop vector control 2 ^{*2}	-	3	3	3	3	3	3	3	3	3	3
-	Carrier frequency selec- tion upper limit	-	3	3	3	3	3	3	3	3	3	3
E2-01 (E4-01)	Motor rated current	А	1.00	1.60	3.10	4.20	7.00	7.00	9.80	13.30	19.9	26.5
E2-02 (E4-02)	Motor rated slip	Hz	2.90	2.60	2.50	3.00	2.70	2.70	1.50	1.30	1.70	1.60
E2-03 (E4-03)	Motor no-load current	А	0.60	0.80	1.40	1.50	2.30	2.30	2.60	4.00	5.6	7.6
E2-05 (E4-05)	Motor line-to-line resis- tance	Ω	38.198	22.459	10.100	6.495	3.333	3.333	1.595	1.152	0.922	0.550
E2-06 (E4-06)	Motor leak inductance	%	18.2	14.3	18.3	18.7	19.3	19.3	18.2	15.5	19.6	17.2
E2-10	Motor iron loss for torque compensation	W	14	26	53	77	130	130	193	263	385	440
L2-02	Momentary power loss ridethru time		0.1	0.2	0.3	0.5	0.5	0.8	0.8	1.0	2.0	2.0
L2-03	Min. baseblock (BB) time	s	0.2	0.3	0.4	0.5	0.6	0.6	0.7	0.8	0.9	1.0
L2-04	Voltage recovery time	s	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.6
L8-02	Overheat pre-alarm level	°C	95	95	95	95	95	95	95	90	95	95
N5-02	Motor acceleration time	s	0.178	0.142	0.166	0.145	0.154	0.154	0.168	0.175	0.265	0.244

Con- stant Number	Name	Unit	Factory Setting							
-	Inverter Capacity	kW	18.5	22	30	37	45			
02-04	kVA selection	-	2A	2B	2C	2D	2E			
b8-03	Energy-saving filter time constant	s	0	.50 (Open	-loop vec	tor contro	1)			
b8-04	Energy-saving coefficient	-	115.74	103.58	92.54	76.32	71.56			
C6-02	Carrier frequency selec- tion ^{*1}	-	3	3	3	3	3			
C6-11	Carrier frequency selection for open-loop vector control 2 ^{*2}	-	3	3	3	3	3			
-	Carrier frequency selection upper limit	-	3	3	3	3	3			
E2-01 (E4-01)	Motor rated current	А	32.9	38.6	52.3	65.6	79.7			
E2-02 (E4-02)	Motor rated slip	Hz	1.67	1.70	1.80	1.33	1.60			
E2-03 (E4-03)	Motor no-load current	А	7.8	9.2	10.9	19.1	22.0			
E2-05 (E4-05)	Motor line-to-line resis- tance	Ω	0.403	0.316	0.269	0.155	0.122			
E2-06 (E4-06)	Motor leak inductance	%	20.1	23.5	20.7	18.8	19.9			
E2-10	Motor iron loss for torque compensation	W	508	586	750	925	1125			
L2-02	Momentary power loss ride- thru time	S	2.0	2.0	2.0	2.0	2.0			
L2-03	Min. baseblock (BB) time	s	1.0	1.1	1.1	1.2	1.2			
L2-04	Voltage recovery time	s	0.6	0.6	0.6	0.6	1.0			
L8-02	Overheat pre-alarm level	°C	95	95	95	95	95			
N5-02	Motor acceleration time	s	0.317	0.355	0.323	0.320	0.387			

Con- stant Number	Name	Unit			Factory	Setting		
-	Inverter Capacity	kW	55	75	90	110	132	160
o2-04	kVA selection	-	2F	30	31	32	33	34
b8-03	Energy-saving filter time constant	s		2.00 (Open-loop	o vector co	ontrol)	
b8-04	Energy-saving coefficient	-	67.20	46.20	38.91	36.23	32.79	30.13
C6-02	Carrier frequency selec- tion ^{*1}	-	2	2	F	F	1	1
C6-11	Carrier frequency selection for open-loop vector control 2*2	-	2	2	1	1	1	1
-	Carrier frequency selection upper limit	-	5.0	5.0	3.0	3.0	2.0	2.0
E2-01 (E4-01)	Motor rated current	А	95.0	130.0	156.0	190.0	223.0	270.0
E2-02 (E4-02)	Motor rated slip	Hz	1.46	1.39	1.40	1.40	1.38	1.35
E2-03 (E4-03)	Motor no-load current	А	24.0	36.0	40.0	49.0	58.0	70.0
E2-05 (E4-05)	Motor line-to-line resis- tance	Ω	0.088	0.092	0.056	0.046	0.035	0.029
E2-06 (E4-06)	Motor leak inductance	%	20.0	20.0	20.0	20.0	20.0	20.0
E2-10	Motor iron loss for torque compensation	W	1260	1600	1760	2150	2350	2850
L2-02	Momentary power loss ride- thru time	s	2.0	2.0	2.0	2.0	2.0	2.0
L2-03	Min. baseblock (BB) time	s	1.3	1.5	1.7	1.7	1.8	1.9
L2-04	Voltage recovery time	s	1.0	1.0	1.0	1.0	1.0	1.0
L8-02	Overheat pre-alarm level	°C	100	105	105	120	115	115
N5-02	Motor acceleration time	s	0.317	0.533	0.592	0.646	0.673	0.777

Note Inverters with a capacity of 185 kW or more are under development.
* 1. The initial settings for C6-02 are as follows: 1: 2.0 kHz, 2: 5.0 kHz, 3: 8.0 kHz, 4: 10 kHz, 5: 12.5 kHz, 6: 15 kHz, and F: User-set (Initial setting for 400-V Inverters with a capacity of 90-kW or 110-kW: 3 kHz.).

* 2. The initial settings for C6-11 are as follows: 1: 2.0 kHz, 2: 4.0 kHz, 3: 6.0 kHz, 4: 8.0 kHz.

6

Constant Settings by Function

Frequency Reference

This section explains how to input the frequency reference.

Selecting the Frequency Reference Source

Set constant b1-01 to select the frequency reference source.

■Related Constants

	Name						Con	trol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open- loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2
	Reference selection	Set the frequency reference input method.								
b1-01	Reference Source	 Digital Operator Control circuit terminal (analog input) MEMOBUS communications Option Card Pulse train input 	0 to 4	1	No	Q	Q	Q	Q	Q
H6-01	Pulse train input func- tion selec- tion	0: Frequency reference 1: PID feedback value 2: PID target value	0 to 2	0	No	А	А	А	А	А
	Pulse Input Sel									
H6-02	Pulse train input scal- ing	Set the number of pulses in hertz, taking the reference to be 100%.	1000 to 32000	1440 Hz	Yes	А	А	А	А	А
	PI Scaling									

■Input the Reference Frequency from the Digital Operator

When b1-01 is set to 0, you can input the reference frequency from the Digital Operator.

Input the reference frequency from the Digital Operator's reference frequency setting display.

For details on setting the reference frequency, refer to Chapter 3 Digital Operator and Modes.

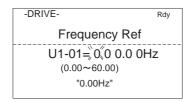


Fig 6.1 Frequency Setting Display

Inputting the Frequency Reference Using Voltage (Analog Setting)

When b1-01 is set to 1, you can input the frequency reference from control circuit terminal A1 (voltage input), or control circuit terminal A2 (voltage or current input).

Inputting Master Speed Frequency Reference Only

When inputting a voltage for the master speed frequency reference, input the voltage to control circuit terminal A1.

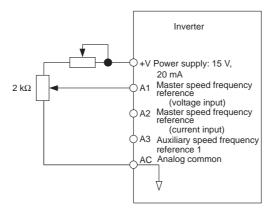


Fig 6.2 Voltage Input for Master Speed Frequency Reference

When inputting a current for the master speed frequency reference, input the current to control circuit terminal A2, input 0 V to terminal A1, set H3-08 (Multi-function analog input terminal A2 signal level selection) to 2 (current input), and set H3-09 (Multi-function analog input terminal A2 function selection) to 0 (add to terminal A1).

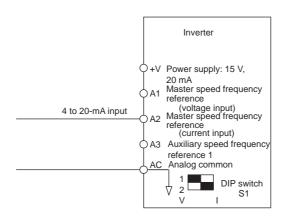


Fig 6.3 Current Input for Master Speed Frequency Reference

Turn ON pin 2 of DIP switch SW1 (toward I), the voltage/current switch, when inputting a current to terminal A2. Turn OFF pin 2 of DIP switch SW1 (toward V), the voltage/current switch, when inputting a voltage to terminal A2. Set H3-08 to the correct setting for the type of input signal being used.

Switch between 2 Step Speeds: Master/Auxiliary Speeds

When switching between the master and auxiliary speeds, connect the master speed frequency reference to control circuit terminal A1 or A2 and connect the auxiliary speed frequency reference to terminal A3. The reference on terminal A1 or A2 will be used for the Inverter frequency reference when the multi-function input allocated to multi-speed command 1 is OFF and the reference on terminal A3 will be used when it is ON. When switching between the master and auxiliary speeds, set H3-05 (Multi-function analog input terminal

A3) to 2 (auxiliary frequency reference, 2nd step analog) and set on of the multi-function input terminals to multi-step speed reference 1.

When inputting a current to terminal A2 for the master speed frequency reference, set H3-08 (Multi-function analog input terminal A2 signal level selection) to 2 (current input), and set H3-09 (Multi-function analog input terminal A2 function selection) to 0 (add to terminal A1).

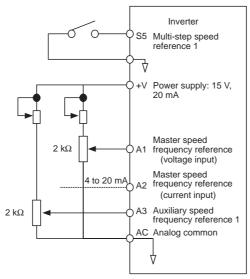


Fig 6.4 Switching between Master and Auxiliary Frequencies

■Setting Frequency Reference Using Pulse Train Signals

When b1-01 is set to 4, the pulse train input to control circuit terminal RP is used as the frequency reference.

Set H6-01 (Pulse Train Input Function Selection) to 0 (frequency reference), and then set the 100% reference pulse frequency to H6-02 (Pulse Train Input Scaling).

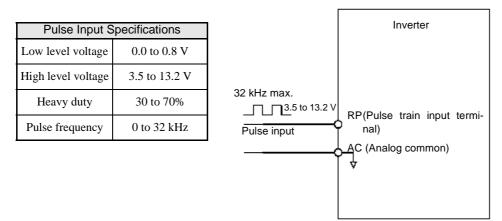


Fig 6.5 Frequency Reference Using Pulse Train Input

Using Multi-Step Speed Operation

With Varispeed-G7 series Inverters, you can change the speed to a maximum of 17 steps, using 16 frequency references, and one jog frequency reference.

The following example of a multi-function input terminal function shows a 9-step operation using multi-step references 1 to 3 and jog frequency selection functions.

Related Constants

To switch frequency references, set multi-step speed references 1 to 3 and the jog reference selection in the multi-function contact inputs.

Multi-function Contact Inputs (H1-01 to H1-10)	

Terminal	Constant Num- ber	Set Value	Details
S5	H1-03	3	Multi-step speed reference 1 (Also used for master speed/auxiliary speed switching when multi-function analog input H3-09 is set to 2 (auxiliary frequency reference).)
S6	H1-04	4	Multi-step speed reference 2
S 7	H1-05	5	Multi-step speed reference 3
S8	H1-06	6	Jog frequency selection (given priority over multi-step speed reference)

Combining Multi-Function References and Multi-Function Contact Inputs

You can change the selected frequency reference by combining the ON/OFF status of S4 to S7 (multi-function contact input terminals) to set multi-step speed references 1 to 3 and the jog frequency selection. The following table shows the possible combinations.

	TerminalS5	TerminalS6	TerminalS7	TerminalS8	
Speed	Multi-step Speed Refer- ence 1	Multi-step Speed Refer- ence 2	Multi-step Speed Refer- ence 3	Jog Fre- quency Selec- tion	Selected Frequency
1	OFF	OFF	OFF	OFF	Frequency reference 1 d1-01, master speed frequency
2	ON	OFF	OFF	OFF	Frequency reference 2 d1-02, auxiliary frequency 1
3	OFF	ON	OFF	OFF	Frequency reference 3 d1-03, auxiliary frequency 2
4	ON	ON	OFF	OFF	Frequency reference 4 d1-04
5	OFF	OFF	ON	OFF	Frequency reference 5 d1-05
6	ON	OFF	ON	OFF	Frequency reference 6 d1-06
7	OFF	ON	ON	OFF	Frequency reference 7 d1-07
8	ON	ON	ON	OFF	Frequency reference 8 d1-08
9	-	-	-	ON^*	Jog frequency d1-17

* Terminal S8's jog frequency selection is given priority over multi-step speed references.

Setting Precautions

When setting analog inputs to step 1 to step 3, observe the following precautions.

- When setting terminal A1's analog input to step 1, set b1-01 to 1, and when setting d1-01 (Frequency Reference 1) to step 1, set b1-01 to 0.
- When setting terminal A2's analog input to step 2, set H3-09 to 2 (auxiliary frequency reference). When setting d1-02 (Frequency Reference 2) to step 2, set H3-09 to 1F (do not use analog inputs).
- When setting terminal A3's analog input to step 3, set H3-05 to 3 (auxiliary frequency reference 2). When setting d1-03(Frequency Reference 3) to step 3, set H3-05 to 1F (Analog input not used).

■Connection Example and Time Chart

The following diagram shows a time chart and control circuit terminal connection example during a 9-step operation.

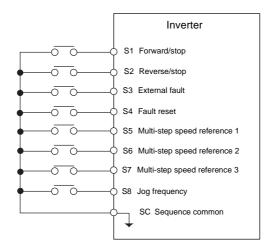


Fig 6.6 Control Circuit Terminal During 9-step Operation

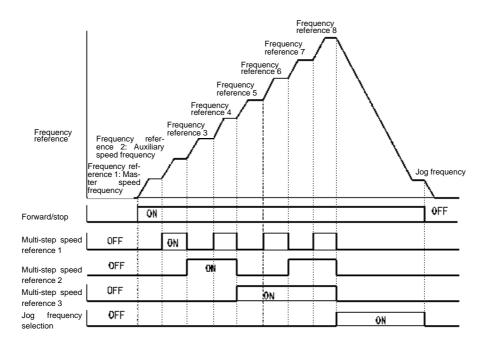


Fig 6.7 Multi-step speed reference/Jog Frequency Selection Time Chart

Run Command

This section explains input methods for the run command.

Selecting the Run Command Source

Set constant b1-02 to select the source for the run command.

Related Constants

	Name						Con	trol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open- loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2
b1-02	Operation method selection Run Source	 Set the run command input method 0: Digital Operator 1: Control circuit terminal (sequence input) 2: MEMOBUS communications 3: Option Card 	0 to 3	1	No	Q	Q	Q	Q	Q

■Performing Operations Using a Digital Operator

When b1-02 is set to 0, you can perform Inverter operations using the Digital Operator keys (RUN, STOP, JOG, and FWD/REV). For details on the Digital Operator, refer to *Chapter 3 Digital Operator and Modes*.

■Performing Operations Using Control Circuit Terminals

When b1-02 is set to 1, you can perform Inverter operations using the control circuit terminals.

Performing Operations Using a 2-wire Sequence

The factory setting is set to a 2-wire sequence. When control circuit terminal S1 is set to ON, forward operation will be performed, and when S1 is turned OFF, the Inverter will stop. In the same way, when control circuit terminal S2 is set to ON, reverse operation will be performed, and when S2 is turned OFF, the Inverter will stop.

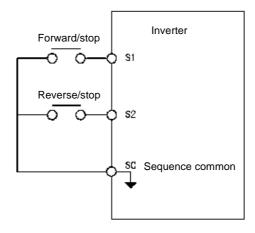


Fig 6.8 2-wire Sequence Wiring Example

Performing Operations Using a 3-wire Sequence

When any constant from H1-01 to H1-10 (multi-function contact input terminals S3 to S12) is set to 0, terminals S1 and S2 are used for a 3-wire sequence, and the multi-function input terminal that has been set functions as a forward/reverse run command terminal.

When the Inverter is initialized for 3-wire sequence control with A1-03, multi-function input 3 becomes the input terminal for the forward/reverse run command.

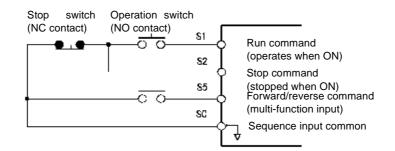


Fig 6.9 3-wire Sequence Wiring Example

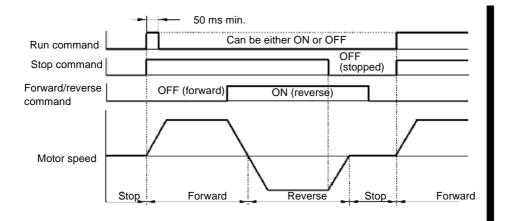


Fig 6.10 Three-wire Sequence Time Chart

Use a sequence that turns ON terminal S1 for 50 ms or longer for the run command. This will make the run command self-holding in the Inverter.

Stopping Methods

This section explains methods of stopping the Inverter.

Selecting the Stopping Method when a Stop Command is Sent

There are four methods of stopping the Inverter when a stop command is sent:

- Deceleration to stop
- Coast to stop
- DC braking stop
- Coast to stop with timer

Set constant b1-03 to select the Inverter stopping method. A DC braking stop and coasting to a stop with a timer cannot be set for flux vector control.

Related Constants

	Name						Con	trol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open- loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2
b1-03	Stopping method selection Stopping Method	 Select stopping method when stop command is sent. 0: Deceleration to stop 1: Coast to stop 2: DC injection braking stop (Stops faster than coast to stop, no regenerative operation.) 3: Coast to stop with timer (Run commands are disregarded during deceleration.) 	0 to 3*	0	No	Q	Q	Q	Q	Q
b1-05	Operation selection for setting E1-09 or less Zero-Speed Oper	 Used to set the method of operation when the frequency reference input is less than the minimum output frequency (E1-09). 0: Run at frequency reference (E1-09 not effective). 1: STOP (Frequencies below E1-09 in the coast to stop state.) 2: Run at min. frequency. (E1-09) 3: Run at zero speed (Frequencies below E1-09 are zero) 	0 to 3	0	No	No	No	No	A	No
b2-01	Zero speed level (DC injection braking starting fre- quency) DCInj Start Freq	Used to set the frequency which starts DC injection braking in units of Hz when deceleration to stop is selected. When b2-01 is less than E1-09, E1-09 becomes the DC injection braking start- ing frequency.	0.0 to 10.0	0.5 Hz	No	A	А	А	A	А
b2-02	DC injec- tion brak- ing current DCInj Cur- rent	Sets the DC injection braking current as a percentage of the Inverter rated current.	0 to 100	50%	No	А	A	A	No	No

	Name						Con	trol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	Change during Opera- tion	V/f	V/f with PG	Open- loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2
b2-03	DC injec- tion brak- ing time at start DCInj Time@Start	Used to set the time to perform DC injec- tion braking at start in units of 1 second. Used to stop coasting motor and restart it. When the set value is 0, DC injection braking at start is not performed.	0.00 to 10.00	0.00 s	No	А	А	А	А	A
b2-04	DC injec- tion brak- ing time at stop DCInj Time@Stop	Used to set the time to perform DC injec- tion braking at stop in units of 1 second. Used to prevent coasting after the stop command is input. When the set value is 0.00, DC injection braking at stop is not performed.	0.00 to 10.00	0.50 s	No	A	А	А	А	A

* The setting range is 0 or 1 for flux vector control and open-loop vector control 2.

Deceleration to Stop

If the stop command is input (i.e., the run command is turned OFF) when b1-03 is set to 0, the motor decelerates to a stop according to the deceleration time that has been set. (Factory setting: C1-02 (Deceleration Time 1))

If the output frequency when decelerating to a stop falls below b2-01, the DC injection brake will be applied using the DC current set in b2-02 only for the time set in b2-04.

For deceleration time settings, refer to page 6-16 Setting Acceleration and Deceleration Times.

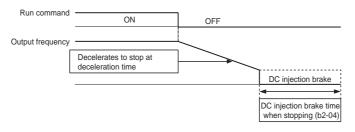
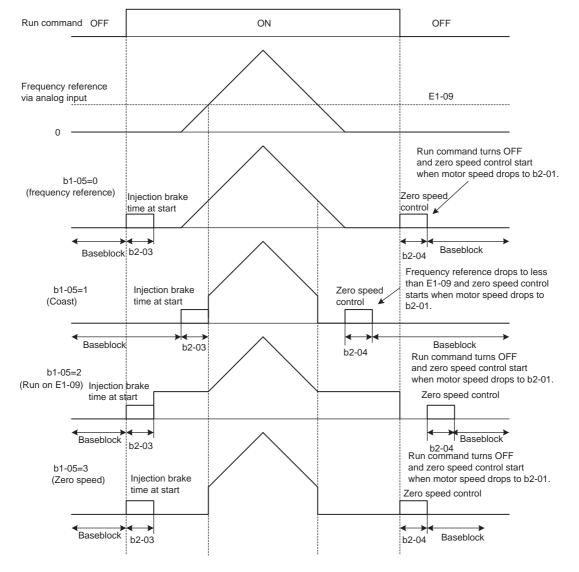



Fig 6.11 Deceleration to Stop

The operation after stopping depends on the setting of b1-05 when flux vector control is selected (A1-02 = 3).

Fig 6.12 Deceleration to Stop (for Flux Vector Control)

■Coast to Stop

If the stop command is input (i.e., the run command is turned OFF) when b1-03 is set to 1, the Inverter output voltage is interrupted. The motor coasts to a stop at the deceleration rate that counterbalances damage to the machine and inertia including the load.

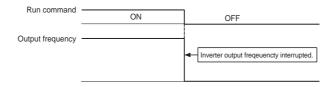


Fig 6.13 Coast to Stop

After the stop command is input, run commands are ignored until the Minimum Baseblock Time (L2-03) has elapsed.

■DC Braking Stop

If the stop command is input (i.e., the run command is turned OFF) when b1-03 is set to 2, a wait is made for the time set in L2-03 (Minimum Baseblock (BB) Time) and then the DC injection brake current set in b2-02 is sent to the motor to apply a DC injection brake to stop the motor. The DC injection brake time is determined by the set value in b2-04 and the output frequency when the stop command is input.

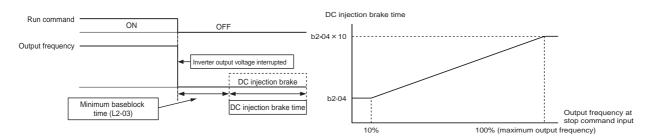


Fig 6.14 DC Injection Braking (DB) Stop

Lengthen the Minimum Baseblock Time (L2-03) when an overcurrent (OC) occurs during stopping.

■Coast to Stop with Timer

If the stop command is input (i.e., the run command is turned OFF) when b1-03 is set to 3, the Inverter output is interrupted to coast the motor to a stop. After the stop command is input, run commands are ignored until the time T has elapsed. The time T depends upon the output frequency when the stop command is input and the deceleration time.

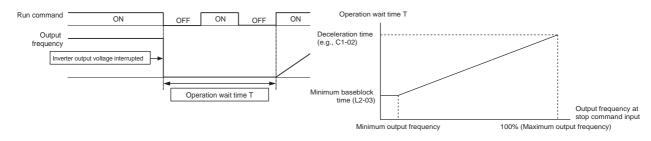


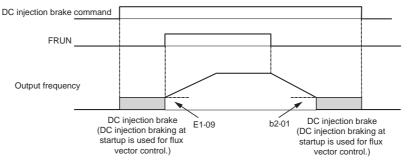
Fig 6.15 Coast to Stop with Timer

Using the DC Injection Brake

Set constant b2-03 to apply the DC injection brake voltage to the motor while it is coasting to a stop, to stop the motor and then restart it.

Set b2-03 to 0 to disable the DC injection brake at start.

Set the DC injection brake current using b2-02. DC injection braking is used at startup for flux vector control with the current set in E2-03 (Motor no-load current).

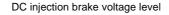

Related	Constants
---------	-----------

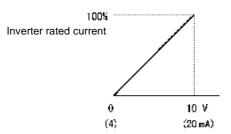
	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
b2-02	DC injection braking current	Sets the DC injection braking cur- rent as a percentage of the Inverter rated current.	0 to 100	50%	No	А	А	А	No	No
	DCInj Current		100							
	DC injection braking time at start	Used to set the time to perform DC injection braking at start in units of 1 second. Used to stop coasting motor and restart it. When the set value is 0, DC injection braking at start is not performed.	0.00							
b2-03	DCInj Time@Start		to 10.00	0.00 s	No	A	A	A	A	A

Inputting the DC Injection Brake Command from Control Circuit Terminals

If you set a multi-function contact input terminal (H1- $\Box\Box$) to 60 (DC injection brake command), you can apply the DC injection brake to the motor by turning ON the terminal for which the DC injection brake command has been set when the Inverter is being stopped. DC injection braking is used at startup for flux vector control.

The time chart for the DC injection brake is shown below.


If you input the DC injection brake command from an external terminal, or if the run command and jog command are input, the DC injection brake will be disabled, and operation will resume.


Fig 6.16 DC Injection Brake Time Chart

Changing the DC Injection Brake Current Using an Analog Input

If you set H3-09 (Multi-function Analog Input Terminal A2 Function Selection) or H3-05 (Multi-function Analog Input Terminal A3 Function Selection) to 6 (DC injection brake current), you can change the DC injection brake current level using the analog input.

At 10 V input (voltage) or 20 mA input (current), 100% of the Inverter rated current will be applied.

Using an Emergency Stop

Set a multi-function input terminal (H1- \square) to 15 or 17 (emergency stop) to decelerate to a stop at the deceleration time set in C1-09. If inputting the emergency stop with an NO contact, set the multi-function input terminal (H1- \square) to 15, and if inputting the emergency stop with an NC contact, set the multi-function input terminal (H1- \square) to 17.

After the emergency stop command has been input, operation cannot be restarted until the Inverter has stopped. To cancel the emergency stop, turn OFF the run command and emergency stop command.

Related parameters

Con- stant Number	Name		Setting Range	Factory Setting	Change during Opera- tion	Control Methods						
	Display	Description				V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2		
	Emergency stop time	The deceleration time when the multi-function input "Emergency (fast) stop" is set to ON. This function can be used a stopped method when a fault has been detected.	0.0 to 6000.0*		No	А	А	А	А			
C1-09	Fast Stop Time			10.0 s						Α		

* The acceleration and deceleration settings range varies depending on the setting in C1-10. When C1-10 is set to 0, the acceleration/deceleration settings range is 0.00 to 600.00 (seconds).

Acceleration and Deceleration Characteristics

This section explains the acceleration and deceleration characteristics of the Inverter.

Setting Acceleration and Deceleration Times

Acceleration time indicates the time taken for the output frequency to climb from 0% to 100%. Deceleration time indicates the time taken for the output frequency to reduce to 0%. The factory setting of the acceleration time is C1-01, and the factory setting of the deceleration time is C1-02.

Related Parameters

	Name				Change		Cont	rol Met	hods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
C1-01	Acceleration time 1	Sets the acceleration time to accelerate from 0 to the maximum			Yes	Q	Q	Q	Q	Q
	Accel Time 1	output frequency, in 1-second units.								
C1-02	Deceleration time 1	Sets the deceleration time to decelerate from the maximum			Yes	Q	Q	Q	Q	Q
	Decel Time 1	output frequency to 0, in 1-second units.							-	_
C1-03	Acceleration time 2	The acceleration time when the multi-function input "accel/decel			Yes	А	А	А	А	А
	Accel Time 2	time 1" is set to ON.	0.0 to							
C1-04	Deceleration time 2	The deceleration time when the multi-function input "accel/decel time 1" is set to ON. The acceleration time when the multi-function input "accel/decel time 2" is set to ON.		10.0 s	Yes	А	А	А	А	А
	Decel Time 2									
C1-05	Acceleration time 3		6000.0*		No	А	А	А	А	А
	Accel Time 3									
C1-06	Deceleration time 3	The deceleration time when the multi-function input "accel/decel			No	А	А	А	А	А
	Decel Time 3	time 2" is set to ON.								
C1-07	Acceleration time 4	The acceleration time when the multi-function input "accel/decel time 1" and "accel/decel time 2"			No	А	А	А	А	А
	Accel Time 4	are set to ON.								
C1-08	Deceleration time 4	The deceleration time when the multi-function input "accel/decel		No	А	А	А	А	А	
	Decel Time 4	time 1" and "accel/decel time 2" are set to ON.								
C1-10	Accel/decel time setting unit	0: 0.01-second units 1: 0.1-second units	0 or 1	1	No	А	А	А	А	А
	Acc/Dec Units									

	Name				Change		Cont	rol Met	hods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
C1-11	Accel/decel time switch- ing frequency	Sets the frequency for automatic acceleration/deceleration switching.								
	Acc/Dec SW Freq	Below set frequency: Accel/decel time 4 Above set frequency: Accel/decel time 1 The multi-function input "accel/ decel time 1" or "accel/decel time 2" take priority.	0.0 to 400.0	0.0 Hz	No	А	А	A	А	А
C2-01	S-curve char- acteristic time at acceleration start	All sections of the S-curve charac- teristic time are set in seconds units. When the S-curve characteristic time is set, the accel/decel times	0.00 to 2.50	0.20 s	No	А	А	А	А	А
	SCrv Acc @ Start									
C2-02	S-curve char- acteristic time at acceleration end		0.00 to 2.50	0.20 s	No	А	А	А	А	А
	SCrv Acc @ End	will increase by only half of the S- curve characteristic times at start								
C2-03	S-curve char- acteristic time at deceleration start	and end. Run command OFF Output frequency ON C2-02 C2-03 C2-04 C2-04 Time	0.00 to 2.50	0.20 s	No	А	А	А	А	А
	SCrv Dec @ Start									
C2-04	S-curve char- acteristic time at deceleration end		0.00 to 2.50	0.00 s	No	А	А	А	А	А
	SCrv Dec @ End									

* The acceleration and deceleration settings range varies depending on the setting in C1-10. When C1-10 is set to 0, the acceleration/deceleration settings range is 0.00 to 600.00 (seconds).

■Setting Acceleration and Deceleration Time Units

Set the acceleration/deceleration time units using C1-10. Constant C1-10 is set to 1 at the factory.

	Set value	Details
ſ	0	The acceleration/deceleration time settings range is 0.00 to 600.00 in units of 0.01 s.
ſ	1	The acceleration/deceleration time settings range is 0.00 to 600.00 in units of 0.1 s.

Switching Acceleration and Deceleration Time Using Multi-Function Input Terminal Commands

Using the Inverter, you can set four acceleration times and four deceleration times. When the multi-function input terminals (H1- $\square\square$) are set to 7 (acceleration/deceleration time selection 1) and 1A (acceleration/deceleration time selection 2), you can switch the acceleration/deceleration time even during operation by combining the ON/OFF status of the terminals.

The following table shows the acceleration/deceleration time switching combinations.

Acceleration/Decelera- tion Time Selection 1 Ter- minal	me Selection 1 Ter- tion Time Selection 2 Ter-		Deceleration Time			
OFF	OFF	C1-01	C1-02			
ON	OFF	C1-03	C1-04			
OFF	ON	C1-05	C1-06			
ON	ON	C1-07	C1-08			

Switching Acceleration and Deceleration Time Automatically

Output frequency

Use this setting when you want to switch acceleration/deceleration time automatically using the set frequency.

When the output frequency reaches the set value in C1-11, the Inverter switches the acceleration/deceleration time automatically as shown in the following diagram.

Set C1-11 to a value other than 0.0 Hz. If C1-11 is set to 0.0 Hz, the function will be disabled.

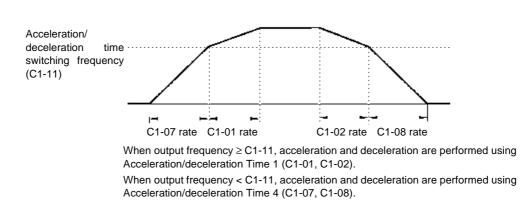
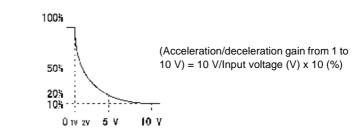


Fig 6.18 Acceleration/deceleration Time Switching Frequency


Adjusting Acceleration and Deceleration Time Using an Analog Input

If you set H3-09 (Multi-function Analog Input Terminal A2 Function Selection) or H3-05 (Multi-function Analog Input Terminal A3 Function Selection) to 5 (acceleration/deceleration time gain), you can adjust the acceleration/deceleration time using terminal A2's input voltage.

The Inverter's acceleration time when the acceleration time has been set in C1-01 is as follows:

Acceleration time = C1-01 set value x acceleration/deceleration time gain

Acceleration/deceleration time gain (set value: 5)

■Entering S-curve Characteristics in the Acceleration and Deceleration Time

By performing acceleration and deceleration using an S-curve pattern, you can reduce shock when starting and stopping the machine.

Using the Inverter, you can set an S-curve characteristic time for each of the following: Acceleration start time, deceleration start time, acceleration end time, and deceleration end time.

Set the S-curve characteristic time to lengthen acceleration/deceleration time as follows: Acceleration time = Selected acceleration time + (Acceleration start time S-curve characteristic time + Acceleration end time S-curve characteristic time) / 2 Deceleration time = Selected deceleration time + (Deceleration start time S-curve characteristic time + Deceleration end time S-curve characteristic time) / 2

Setting Example

The S-curve characteristic when switching operation (forward/reverse) is shown in the following diagram.

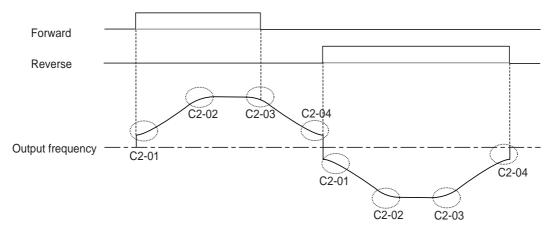


Fig 6.20 S-curve Characteristic during Operation Switching

Accelerating and Decelerating Heavy Loads (Dwell Function)

The dwell function stores the output frequency when starting or stopping heavy loads. By temporarily storing the output frequency, you can prevent the motor from stalling. When using the dwell function, you must select a deceleration stop. Set b1-03 (Stopping Method Selection) to 0.

Related Parameters

_	Name				Change		Con	trol Me	ethods	3
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
b6-01	Dwell fre- quency at start		0.0 to 400.0	0.0 Hz	No	А	А	А	А	А
	Dwell Ref @Start		100.0							
b6-02	Dwell time at start	Run command ON OFF Output frequency	0.0 to	0.0 s	No	А	А	А	А	А
00-02	Dwell Time@Start		10.0	0.0 \$	NO	А	А	А	Л	Λ
b6-03	Dwell fre- quency at stop	b6-02 b6-04 Time	0.0 to 400.0	0.0 Hz	No	А	А	А	А	А
	Dwell Ref @Stop	The dwell function is used to output frequency temporarily when driving a	400.0							
b6-04	Dwell time at stop	motor with a heavy load.	0.0 to	0.0 s	No	А	А	А	А	А
00-04	Dwell Time @Stop		10.0	0.0 \$	110	A	A	A	A	Α

Preventing the Motor from Stalling During Acceleration (Stall Prevention During Acceleration Function)

The Stall Prevention During Acceleration function prevents the motor from stalling if a heavy load is placed on the motor, or sudden rapid acceleration is performed.

If you set L3-01 to 1 (enabled) and the Inverter output current exceeds the -15% level of the set value in L3-02, the acceleration rate will begin to slow down. When L3-02 is exceeded, acceleration will stop.

If you set L3-01 to 2 (optimum adjustment), the motor current accelerates to the value set in L3-02. With this setting, the acceleration time setting is ignored.

	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
L3-01	Stall preven- tion selection during accel	0: Disabled (Acceleration as set. With a heavy load, the motor may stall.)								
	StallP Accel Sel	 Enabled (Acceleration stopped when L3-02 level is exceeded. Acceleration starts again when the current is returned.) Intelligent acceleration mode (Using the L3-02 level as a basis, acceleration is automatically adjusted. Set acceleration time is disregarded.) 	0 to 2	1	No	A	А	A	No	No
L3-02	Stall preven- tion level dur- ing accel StallP Accel	Set as a percentage of Inverter rated current. Usually setting is not necessary. The	0 to 200	150%	No	A	A	А	No	No
	Lvl Stall preven-	factory setting reduces the set val- ues when the motor stalls. Sets the lower limit for stall preven-								
L3-03	tion limit dur- ing accel		0 to 100	50%	No	А	А	А	No	No
	StallP CHP Lvl									

■Related Parameters

■Time Chart

The following figure shows the frequency characteristics when L3-01 is set to 1.

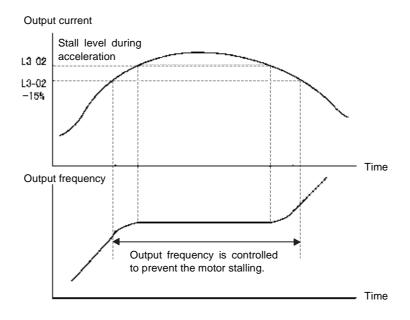
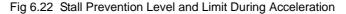



Fig 6.21 Time Chart for Stall Prevention During Acceleration

Setting Precautions

- If the motor capacity is small compared to the Inverter capacity, or if the motor is operated using the factory settings, resulting in the motor stalling, lower the set value of L3-02.
- If using the motor in the constant output range, L3-02 will be automatically lowered to prevent stalling. L3-03 is the limit value to prevent the stall prevention level in the constant output range from being reduced more than necessary.
- Set the constants as a percent taking the inverter rated voltage to be 100%.

Preventing Overvoltage During Deceleration (Stall Prevention During Deceleration Function)

The Stall Prevention During Deceleration function makes the rate of deceleration more gentle to suppress increases in DC bus voltage when the DC bus voltage exceeds the set value during motor deceleration.

This function automatically lengthens the deceleration time with respect to the bus voltage, even if the deceleration time has been set to a considerably small value.

If L3-04 is set to 1 or 2, when the main circuit DC voltage approaches the stall prevention level during deceleration, deceleration stops, and when deceleration falls below the level, is restarted. Using this operation, deceleration time is automatically lengthened. If L3-04 is set to 1, deceleration time returns to the set value, and if L3-04 is set to 2, deceleration is automatically adjusted to a faster deceleration time within the range of the stall prevention level during deceleration.

■Related Constants

	Name					Control Methods							
Con- stant Number	Display	Description	Setting Range	Factory Setting		V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2			
L3-04	Stall preven- tion selection during decel StallP Decel Sel	 0: Disabled (Deceleration as set. If deceleration time is too short, a main circuit overvoltage may result.) 1: Enabled (Deceleration is stopped when the main circuit voltage exceeds the overvoltage level. Deceleration restarts when voltage is returned.) 2: Intelligent deceleration mode (Deceleration rate is automatically adjusted so that in Inverter can decelerate in the shortest possible time. Set deceleration time is disregarded.) 3: Enabled (with Braking Resistor Unit) When a braking option (Braking Resistor, Braking Resistor Unit, Braking Unit) is used, always set to 0 or 3. 	0 to 3*	1	No	Q	Q	Q	Q	Q			

* The setting range is 0 to 2 for flux vector control and open-loop vector control 2.

Setting Example

An example of stall prevention during deceleration when L3-04 is set to 1 as shown below.

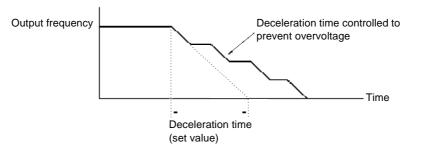


Fig 6.23 Stall Prevention During Deceleration Operation

■Setting Precautions

• The stall prevention level during deceleration differs depending on the Inverter capacity. Refer to the following table for details.

	Inverter Capacity	Stall Prevention Level during Deceleration (V)
200 V class		380
400 W alasa	E1-01 ≥ 400 V	760
400 V class	E1-01 < 400 V	660

- When using the braking option (braking resistor, Braking Resistor Units, and Braking Units), be sure to set constant L3-04 to 0 or 3.
- To decelerate at a shorter time than the deceleration time set when L3-04 is set to 0 with the braking option enabled, set L3-04 to 3.
- The setting of L3-04 is ignored for flux vector control or open-loop vector control 2.

Adjusting Frequency References

This section explains methods of adjusting frequency references.

Adjusting Analog Frequency References

Gain and bias are among the constants used to adjust analog inputs.

	Name				Change	Control Methods						
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2		
H3-01	Signal level selection (ter- minal A1)	0: 0 to ±10V [11-bit + polarity (positive/ negative) input]	0 or 1	0	No	А	А	А	А	А		
	Term A1 Signal	1: 0 to $\pm 10V$										
H3-02	Gain (terminal A1)	Sets the frequency when 10 V is input, as a percentage of the maxi-	0.0 to	100.0%	Yes	А	А	А	А	А		
113 02	Terminal A1 Gain	mum output frequency.	1000.0	100.070	103	21	71	21	11			
112 02	Bias (terminal A1)	Sets the frequency when 0 V is	-100.0	0.0%	Vac	٨	А		٨	А		
H3-03	Terminal A1 Bias	input, as a percentage of the maxi- mum frequency.	to +100.0	0.0%	Yes	A	A	А	А	A		
H3-04	Signal level selection (ter- minal A3)	0: 0 to ±10V [11-bit + polarity (positive/ negative) input]	0 or 1	0	No	А	А	А	А	А		
	Term A3 Signal	1: 0 to ±10V										
H3-05	Multi-function analog input (terminal A3)	Sets the function.	0 to 1F	2	No	А	А	А	А	А		
	Terminal A3 Sel											
H3-06	Gain (terminal A3)	Sets the input gain (level) when terminal 16 is 10V.	0.0 to	100.0%	Yes	А	А	А	А	А		
115-00	Terminal A3 Gain	Set according to the 100% value selected from H3-05.	1000.0	100.0%	105	А	Л	А	Л	Λ		
H3-07	Bias (terminal A3)	Sets the input gain (level) when terminal 16 is 10V.	-100.0 to	0.0%	Yes	А	А	А	А	А		
115-07	Terminal A3 Bias	Set according to the 100% value selected from H3-05.	+100.0	0.0%	105	А	Л	А	Л	Λ		
H2 09	Multi-function analog input terminal A2 signal level selection	 0: Limit negative frequency settings for gain and bias settings to 0. 1: Do not limit negative frequency settings for gain and bias settings to 0 (i.e.) 	0 to 2	2	No		~		٨			
H3-08	Term A2 Signal	frequency settings for gain and bias settings to 0 (i.e., allow reverse operation). 2: 4 to 20 mA (9-bit input).	0 to 2	2	No	A A	А	А	A	А		

	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
H3-09	Multi-function analog input terminal A2 function selec- tion	Select multi-function analog input function for terminal A2.	0 to 1F	0	No	A	A	А	А	А
	Terminal A2 Sel									
H3-10	Gain (terminal A2)	Sets the input gain (level) when terminal 14 is 10 V (20 mA).	0.0 to	100.0%	Yes	А	А	А	А	А
115-10	Terminal A2 Gain		1000.0	100.0%	ies	л	A	A	A	А
H3-11	Bias (terminal A2)	Sets the input gain (level) when terminal 14 is 0 V (4 mA).	-100.0 to	0.0%	Yes	А	А	А	А	А
п5-11	Terminal A2 Bias	Set according to the 100% value for the function set for H3-09.	+100.0	0.0%	105	A	А	A	A	A
H3-12	Analog input filter time con- stant	Sets primary delay filter time con- stant in seconds for the two ana- log input terminal (A1 and A2).	0.00 to 2.00	0.03 s	No	А	А	А	А	А
	Filter Avg Time	Effective for noise control etc.		5						

■Adjusting Analog Frequency Reference Using Constants

The frequency reference is input from the control circuit terminals using analog voltage and current.

If using frequency reference terminal A1 as an input terminal, perform adjustments using constants H3-02 and H3-03. If using multi-function analog input terminal A2 as a frequency reference terminal, perform adjustments using H3-10 and H3-11.

Adjustment can be made using H3-06 and H3-07 when multi-function analog input terminal A3 is used as a frequency reference terminal.

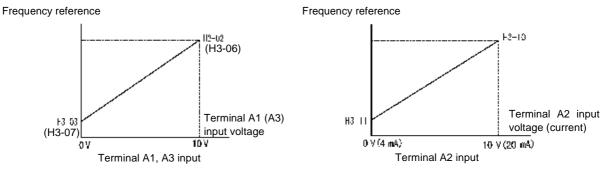


Fig 6.24 Terminals A1 and A2 Inputs

■Adjusting Frequency Gain Using an Analog Input

When H3-09 or H3-05 is set to 1 (frequency gain), you can adjust the frequency gain using the analog input terminal A2 or A3.

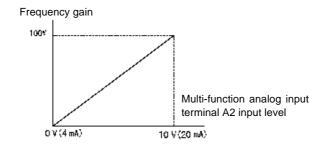
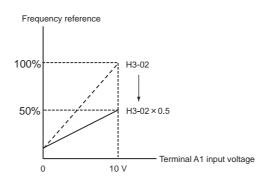



Fig 6.25 Frequency Gain Adjustment (Terminal A2 Input)

The frequency gain for terminal A1 is the sum of H3-02 and terminal A2 gain. For example, when H3-02 is set to 100% and terminal A2 is set to 5 V, the terminal A1 frequency reference will be 50%.

Setting Precautions

H3-05 cannot be set to 0.

■Adjusting Frequency Bias Using an Analog Input

When constant H3-09 or H3-05 is set to 0 (add to terminal A1), the frequency equivalent to the terminal A2 or A3 input voltage is added to A1 as a bias.

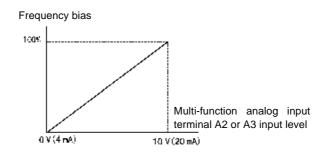
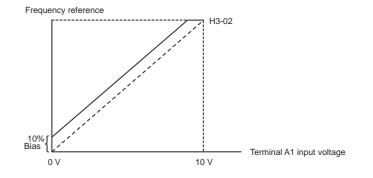



Fig 6.26 Frequency Bias Adjustment (Terminal A2 or A3 Input)

For example, if H3-02 is 100%, H3-03 is 0%, and terminal A2 is set to 1 V, the frequency reference from terminal A1 when 0 V is input to A1 will be 10%.

Operation Avoiding Resonance (Jump Frequency Function)

The jump frequency function operates the motor while avoiding resonance caused by characteristic frequencies in the machinery.

This function is effective in creating a frequency reference dead band.

During constant-speed operation, operation within the jump frequency range is prohibited. Smooth operation still used during acceleration and deceleration, i.e., jumps are not performed.

	Name				Change	Control Methods						
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2		
d3-01	Jump fre- quency 1	Set the center values of the jump frequencies in Hz.		0.0 Hz	No	А	А	А	А	А		
	Jump Freq 1	This function is disabled by set- ting the jump frequency to 0 Hz.										
d3-02	Jump fre- quency 2	Always ensure that the following applies: $d_3-01 \ge d_3-02 \ge d_3-03$	0.0 to 400.0	0.0 Hz	No	А	А	А	А	А		
	Jump Freq 2	Operation in the jump frequency O	400.0									
d3-03	Jump fre- quency 3	range is prohibited but during acceleration and deceleration, speed changes smoothly without		0.0 Hz	No	А	А	А	А	А		
	Jump Freq 3	jump.										
d3-04	Jump fre- quency width	Sets the jump frequency band- width in Hz.	0.0 to	1.0 Hz	No	А	А	А	А	А		
u3-04	Jump Band- width	The jump frequency will be the jump frequency \pm d3-04.	20.0	1.0 HZ	No	A	A	A	A	A		

Related Constants

The relationship between the output frequency and the jump frequency reference is as follows:

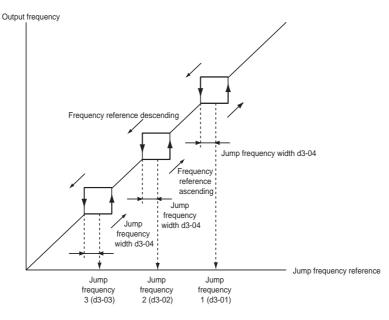


Fig 6.27 Jump Frequency

■Setting Jump Frequency Reference Using an Analog Input

When constant H3-09 (Multi-function Analog Input Terminal A2 Function Selection) or H3-05 (Multi-function Analog Input Terminal A3 Function Selection) is set to A (jump frequency), you can change the jump frequency using the terminal A2 input level.

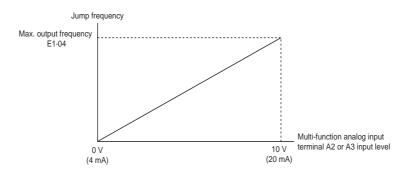
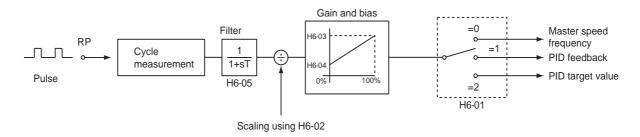


Fig 6.28 Jump Frequency Setting Using an Analog Input

■Setting Precautions

- Set the jump frequency according to the following formula: $d3-01 \ge d3-02 \ge d3-03 >$ Analog input.
- When constants d3-01 to d3-03 are set to 0 Hz, the jump frequency function is disabled.


◆ Adjusting Frequency Reference Using Pulse Train Inputs

The frequency reference can be adjusted when b1-01 (Reference Selection) is set to 4 (Pulse Train Input). Set the pulse frequency in constant H6-02 to 100% reference, and then adjust the gain and bias accordingly using H6-03 and H6-04.

Related Constants

_	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
H6-01	Pulse train input func- tion selection	0: Frequency reference 1: PID feedback value	0 to 2	0	No	А	А	А	А	А
	Pulse Input Sel	2: PID target value								
H6-02	Pulse train input scaling	Set the number of pulses in hertz, taking the reference to be 100%.	1000 to 32000	1440 Hz	Yes	А	А	А	А	А
	PI Scaling	taking the reference to be 100%.	52000							
H6-03	Pulse train input gain	Set the input gain level as a percent	0.0 to	100.0%	Yes	А	А	А	А	А
H0-05	Pulse Input Gain	when the pulse train set in H6-02 is input.	1000.0	100.0%	168	A	А	A	A	A
H6-04	Pulse train input bias	Set the input bias when the pulse	-100.0 to	0.0%	Yes	А	А	А	А	А
10-04	Pulse Input Bias	train is 0.	100.0	0.0%	168	A	А	A	A	A
H6-05	Pulse train input filter time	Set the pulse train input primary delay filter time constant in sec- onds.	0.00 to 2.00	0.10 s	Yes	А	А	А	А	А
	PI Filter Time	0105.	2.00	8						

The following diagram shows the method for adjusting the frequency reference using pulse inputs.

Speed Limit (Frequency Reference Limit Function)

This section explains how to limit the motor speed.

Limiting Maximum Output Frequency

If you do not want the motor to rotate above a given frequency, use constant d2-01.

Set the upper limit value of the Inverter output frequency as a percent, taking E1-04 (Maximum Output Frequency) to be 100%.

■Related Constants

_	Name			Factory Setting	Change	Control Methods						
Con- stant Number	Display	Description	Setting Range		during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2		
d2-01	Frequency ref- erence upper limit	Set the output frequency upper limit as a percent, taking the max.	0.0 to	100.0%	No	А	А	А	А	А		
	Ref Upper Limit	output frequency to be 100%.	110.0									

Limiting Minimum Frequency

If you do not want the motor to rotate at below a given frequency, use constants d2-02 or d2-03.

There are two methods of limiting the minimum frequency, as follows:

- Adjust the minimum level for all frequencies.
- Adjust the minimum level for the master speed frequency (i.e., the lower levels of the jog frequency, multistep speed frequency, and auxiliary frequency will not be adjusted).

	Name			Factory Setting	Change during Opera- tion	Control Methods						
Con- stant Number	Display	Description	Setting Range			V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2		
d2-02	Frequency ref- erence lower limit	Sets the output frequency lower limit as a percentage of the maxi-	0.0 to 110.0	0.0%	No	А	А	А	А	А		
	Ref Lower Limit	mum output frequency.	110.0									
d2-03	Master speed reference lower limit	Set the master speed reference lower limit as a percent, taking the max output frequency to be	0.0 to	0.0%	No	А	А	А	А	А		
	Ref1 Lower Limit	the max. output frequency to be 100%.	110.0	0.070	10							

■Adjusting Frequency Lower Limit Using an Analog Input

If you set constant H3-09 (Multi-function Analog Input Terminal A2 Function Selection) or H3-05 (Multi-function Analog Input Terminal A3 Function Selection) to 9 (output frequency lower level), you can adjust the frequency lower level using the terminal A2 input level.

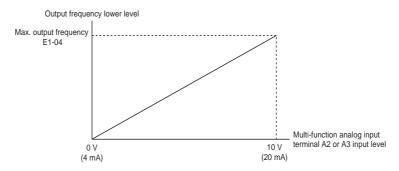


Fig 6.30 Output Frequency Lower Level for Multi-function Analog Input

If constant d2-02 and terminal A2 output frequency lower level have been set at the same time, the larger set value will become the frequency lower limit.

Improved Operating Efficiency

This section explains functions for improving motor operating efficiency.

Reducing Motor Speed Fluctuation (Slip Compensation Function)

When the load is large, the amount of motor slip also grows large and the motor speed decreases. The slip compensation function controls the motor at a constant speed, regardless of changes in load. When the motor is operating at the rated load, constant E2-02 (Motor Rated Slip) \times the frequency in constant C3-01 is added to the output frequency.

■Related Constants

	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
	Slip compensa- tion gain	Used to improve speed accuracy when operating with a load. Usually setting is not necessary.								
C3-01	Slip Comp Gain	 Adjust this constant at the following times. When actual speed is low, increase the set value. When actual speed is high, decrease the set value. 	0.0 to 2.5	1.0*	Yes	A	No	А	A	А
	Slip compensa- tion primary delay time	Slip compensation primary delay time is set in ms units. Usually setting is not necessary. Adjust this constant at the follow-								
C3-02	Slip Comp Time	 Adjust this constant at the following times. Reduce the setting when slip compensation responsive is slow. When speed is not stabilized, increase the setting. 	0 to 10000	200 ms *	No	А	No	A	No	No
C3-03	Slip compensa- tion limit	Sets the slip compensation limit as a percentage of motor rated	0 to	200%	No	А	No	А	No	No
C3-03	Slip Comp Limit	slip.	250	20076	NO	A	NO	A	NO	INO
C3 04	Slip compensa- tion selection during regener- ation	0: Disabled. 1: Enabled. When the slip compensation dur- ing regeneration function has	0 or 1	0	No	А	No	А	No	No
C3-04	Slip Comp Regen	ing regeneration function has been activated, as regeneration capacity increases momentarily, it may be necessary to use a braking option (braking resistor, Braking Resistor Unit or Braking Unit.)	0 01 1	0	NO	A	NO	A	NO	NO
C3-05	Output voltage limit operation selection	0: Disabled. 1: Enabled. (The motor flux will be lowered automatically when the extent values?	0 or 1	0	No	No	No	А	А	А
	Output V limit	when the output voltage become saturated.)								

* The factory setting will change when the control method is changed. (Open-loop vector 1 factory settings are given.)

■Adjusting Slip Compensation Gain

You can switch the C3-01 constant settings as shown below by changing the control method.

- V/f control without PG: 0.0
- Open-loop vector control: 1.0
- Flux vector control: 1.0

Set C3-01 to 1.0 to compensate the rated slip set using the rated torque output status.

Adjust the slip compensation gain using the following procedure.

1. Set E2-02 (Motor Rated Slip) and E2-03 (Motor No-load Current) correctly.

You can calculate the motor rated slip from the values on the motor nameplate using the following formula.

Amount of motor rated slip (Hz) = Motor rated frequency (Hz) - No. of rated rotations $(min^{-1}.) \times No.$ of motor poles / 120

Set the values for rated voltage, rated frequency, and no-load current in the motor unladen current. The motor rated slip is set automatically in the vector control using autotuning.

- 2. In V/f control, set C3-01 to 1.0. Setting this constant to 0.0 disables slip compensation.
- 3. Apply a load, and measure the speed to adjust the slip compensation gain. Adjust the slip compensation gain by 0.1 at a time. If the speed is less than the target value, increase the slip compensation gain, and if the speed is greater than the target value, reduce the slip compensation gain.

For flux vector control, the slip compensation gain is used as the motor temperature compensation gain. When the motor temperate increases, the motor's internal constant increases, resulting in an increase in slip. If C3-01 is set, the amount of slip is adjusted as the temperature rises. Set C3-01 if the amount of torque varies with the temperature when using torque control or a torque limit. The larger the value of C3-01, the larger the compensation.

Adjusting Slip Compensation Primary Delay Time Constant

Set the slip compensation primary delay time constant in ms.

You can switch the factory settings as follows by changing the control method.

- V/f control without PG: 2000 ms
- Open-loop vector control: 200 ms

Normally, there is no need to make these settings. When the slip compensation response is low, lower the set value. When the speed is unstable, increase the set value.

Adjusting Slip Compensation Limit

Set the upper limit for the slip compensation amount as a percent, taking the motor rated slip amount as 100%.

If the speed is lower than the target value but does not change even when you adjust the slip compensation gain, the motor may have reached the slip compensation limit. Increase the limit, and check the speed again. Make the settings, however, to make sure that the value of the slip compensation limit and reference frequency does not exceed the tolerance of the machine.

The following diagram shows the slip compensation limit for the constant torque range and fixed output range.

6

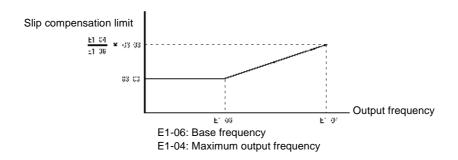


Fig 6.31 Slip Compensation Limit

Selecting Slip Compensation Function During Regeneration

Set whether to enable or disable the slip compensation function during regeneration.

If the slip compensation function operates during regeneration, you might have to use the braking option (braking resistor, Braking Resistor Unit, and Braking Unit) to momentarily increase the regenerative amount.

Selecting Output Voltage Limit Operation

If output voltage saturation occurs while the output voltage limit operation is disabled, the output current will not change, but torque control accuracy will be lost. If torque control accuracy is required, change the settings to enable the output voltage limit operation.

If the output voltage limit operation is enabled, motor magnetic flux current is controlled automatically, and torque control accuracy is maintained to limit the output voltage references. Consequently, the output current will increase by approximately 10% maximum (with rated load) compared with when the output voltage limit operation is disabled, so check the Inverter current margin.

Setting Precautions

- If using the device at medium to low speed only, if the power supply voltage is 10% or more higher than the motor rated voltage, or if the torque control accuracy at high speeds is insufficient, it is not necessary to change the output voltage limit operation.
- If the power supply voltage is too low compared with the motor rated voltage, torque control accuracy may be lost even if the output voltage limit operation is enabled.

Compensating for Insufficient Torque at Startup and Low-speed Operation (Torque Compensation)

The torque compensation function detects that the motor load has increased, and increases the output torque.

V/f control calculates and adjusts the motor primary loss voltage according to the output voltage (V), and compensates for insufficient torque at startup and during low-speed operation. Calculate the compensation voltage as follows: Motor primary voltage loss \times constant C4-01.

Vector control separates the motor excitation current and the torque current by calculating the motor primary current, and controlling each of the two separately.

Calculate the torque current as follows: Calculated torque reference × C4-01

■Related Constants

_	Name				Change		Con	trol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
C4-01	Torque com- pensation gain Torq Comp Gain	 Sets torque compensation gain as a ratio. Usually setting is not necessary. Adjust in the following circumstances: When the cable is long; increase the set value. When the motor capacity is smaller than the Inverter capacity (Max. applicable motor capacity), increase the set values. When the motor is oscillating, decrease the set values. Adjust the output current range at minimum speed rotation so that it does not exceed the Inverter rated output current. Do not alter the torque compensation gain from its default (1.00) when using the open-loop vector control method. 	0.00 to 2.50	1.00	Yes	А	А	А	No	No
C4-02	Torque com- pensation pri- mary delay time constant Torq Comp Time	 The torque compensation delay time is set in ms units. Usually setting is not necessary. Adjust in the following circumstances: When the motor is oscillating, increase the set values. When the responsiveness of the motor is low, decrease the set values. 	0 to 10000	20 ms *	No	А	А	А	No	No

* The factory setting will change when the control method is changed. (Open-loop vector 1 factory settings are given.)

■Adjusting Torque Compensation Gain

Normally, there is no need to make this adjustment. Do not adjust the torque compensation gain when using open-loop vector control.

Adjust the torque compensation gain using V/f control in the following circumstances.

- If the cable is very long, increase the set value.
- If the (maximum applicable) motor capacity is smaller than the Inverter capacity, increase the set value.
- If the motor is vibrating, reduce the set value.

Adjust this constant so that the output current during low-speed rotation does not exceed the Inverter rated output current range.

■Adjusting the Torque Compensation Primary Delay Time Constant

Set the torque compensation function primary delay in ms.

You can switch the factory settings as follows by changing the control method settings:

- V/f control without PG: 200 ms
- V/f control with PG: 200 ms
- Open-loop vector control: 20 ms

Normally, there is no need to make this setting. Adjust the constant as shown below.

- If the motor is vibrating, increase the set value.
- If the motor response is low, decrease the set value.

Hunting-prevention Function

The hunting-prevention function suppresses hunting when the motor is operating with a light load. This function can be used in V/f without PG and V/f with PG.

	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
	Hunting-pre- vention func- tion selection	0: Hunting-prevention function disabled 1: Hunting-prevention function enabled The hunting-prevention function								
N1-01	Hunt Prev Select	The hunting-prevention function suppresses hunting when the motor is operating with a light load. This function is enabled in V/f control method only. If high response is to be given pri- ority over vibration suppression, disable the hunting-prevention function.	0 or 1	1	No	A	A	No	No	No
	Hunting-pre- vention gain	Set the hunting-prevention gain multiplication factor.								
N1-02	Hunt Prev Gain	 Normally, there is no need to make this setting. Make the adjustments as follows: If vibration occurs with light load, increase the setting. If the motor stalls, reduce the setting. If the setting is too large, the voltage will be too suppressed and the motor may stall. 	0.00 to 2.50	1.00	No	А	A	No	No	No

Stabilizing Speed (Speed Feedback Detection Function)

The speed feedback detection control (AFR) function measures the stability of the speed when a load is suddenly applied, by calculating the amount of fluctuation of the torque current feedback value, and compensating the output frequency with the amount of fluctuation.

_	Name			Factory Setting	Change during Opera- tion	Control Methods						
Con- stant Number	Display	Description	Setting Range			V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2		
N2-01	Speed feed- back detection control (AFR) gain AFR Gain	 Set the internal speed feedback detection control gain using the multiplication function. Normally, there is no need to make this setting. Adjust this constant as follows: If hunting occurs, increase the set value. If response is low, decrease the set value. Adjust the setting by 0.05 at a time, while checking the response. 	0.00 to 10.00	1.00	No	No	No	А	No	No		
N2-02	Speed feed- back detection control (AFR) time constant AFR Time	Set the time constant to decide the rate of change in the speed feed- back detection control.	0 to 2000	50 ms	No	No	No	А	No	No		

Machine Protection

This section explains functions for protecting the machine.

Reducing Noise and Leakage Current

The switching frequency of the Inverter's output transistor can be changed to reduce carrier noise and leakage current from the motor.

■Related Constants

Can	Name				Change		Con	trol Me	ethod	S
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
C6-02	Carrier fre- quency selection	Select carrier wave fixed pattern. Select F to enable detailed settings using con-	1 to F	6 *2	No	Q	Q	Q	А	No ^{*5}
	CarrierFreq Sel	stants C6-03 to C6-05.		-						
C6-03	Carrier frequency upper limit	Set the carrier frequency upper limit and lower limit in kHz units. The carrier frequency gain is set as follows:	2.0 to 15.0	15.0 kHz	No	А	А	А	А	No
	CarrierFreq Max With the vector control method, the upper limit of the carrier frequency is fixed in C6- 03.	*3 *4	*2							
C6-04	Carrier frequency lower limit	Carrier frequency	0.4 to 15.0	15.0 kHz	No	А	А	No	No	No
	CarrierFreq Min		*3 *4	*2						
C6-05	Carrier fre- quency pro- portional gain	Output frequency x (C6-05) x K Output EI-C4 frequency (Max. output frequency) K is a coefficient that depends on the setting	00 to 99	00	No	А	А	No	No	No
	CarrierFreq Gain	of C6-03. C6-03 ≥ 10.0 kHz: K = 3 10.0 kHz > C6-03 ≥ 5.0 kHz: K = 2 5.0 kHz > C6-03: K = 1	*4							
C6-11	Carrier fre- quency selection for open-loop vector con- trol 2	Select the carrier frequency when open-loop vector control 2 is used. 1: 2 kHz 2: 4 kHz 3: 6 kHz	1 to 4	4	No	No *5	No *5	No ^{*5}	No *5	Q
	Carrier Freq Sel	4: 8 kHz								

 $\ast\;\;$ 1. The setting range depends on the control method of the Inverter.

* 2. The factory setting depends on the capacity of the Inverter.

* 3. The setting range depends on the capacity of the Inverter.

 $\ast~$ 4. This constant can be monitored or set only when 1 is set for C6-01 and F is set for C6-02.

* 5. Displayed in Quick Programming Mode when motor 2 is set for a multi-function input.

■Control Mode and Carrier Frequency Settings

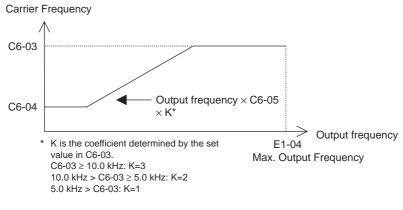
Carrier frequency settings are restricted as listed in the following table according to the control mode selection.

Control Mode	Carrier Frequency
V/f control with or without a PG	1: 2.0 kHz 2: 5.0 kHz 3: 8.0 kHz 4: 10.0 kHz 5: 12.5 kHz 6: 15.0 kHz F: Any setting* Detailed settings are available in C6-03, C6-04, and C6-05.
Open-loop vector control 1 or Flux vector control	1: 2.0 kHz 2: 5.0 kHz 3: 8.0 kHz 4: 10.0 kHz 5: 12.5 kHz 6: 15.0 kHz F: Any setting* The upper limit of the carrier frequency is determined by C6-03.
Open-loop vector control 2	1: 2.0 kHz 2: 4.0 kHz 3: 6.0 kHz 4: 8.0 kHz

* The upper limit of the carrier frequency depends on the Inverter capacity.

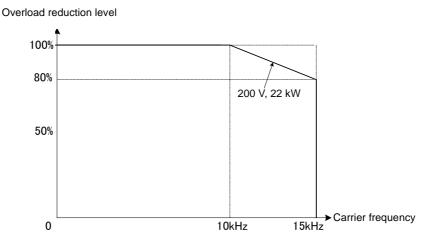
Carrier Frequency Setting Precautions

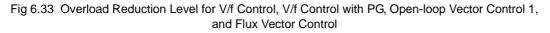
When selecting the carrier frequency, observe the following precautions.


• Adjust the carrier frequency according to the cases shown below.

If the wiring distance between Inverter and motor is long: Set the carrier frequency low. (Use the following values as guidelines.)

Wiring Length	50 m or less	100 m or less	Over 100 m
C6-02 (carrier frequency selection) setting	1 to 6 (15 kHz)	1 to 4 (10 kHz)	1 to 2 (5 kHz)


If speed and torque are inconsistent at low speeds: Set the carrier frequency low. If leakage current from the Inverter is large: Set the carrier frequency low. If metallic noise from the motor is large: Set the carrier frequency high.


• When using V/f control or V/f control with PG, you can vary the carrier frequency according to the output frequency, as shown in the following diagram, by setting C6-03 (Carrier Frequency Upper Limit), C6-04 (Carrier Frequency Lower Limit), and C6-05 (Carrier Frequency Proportional Gain).

- With vector control, the carrier frequency is fixed to the Carrier Frequency Upper Limit in C6-03 if userset or by the carrier frequency set in C6-02.
- To fix the carrier frequency, set C6-03 and C6-04 to the same value, or set C6-05 to 0.
- If the settings are as shown below, OPE11 (Constant setting error) will occur. If Carrier Frequency Proportional Gain (C6-05) > 6 and C6-03 < C6-04.
- Depending on the carrier frequency setting, the Inverter's overload level may be reduced. Even when the overload current falls to below 150%, OL2 (Inverter overload) will be detected. The Inverter overload current reduction level is shown below.

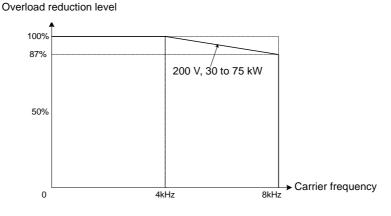


Fig 6.34 Overload Reduction Level for Open-loop Vector Control 2

Limiting Motor Torque (Torque Limit Function)

The motor torque limit function is enabled only with open-loop torque control.

In the open-loop vector control method, the user-set value is applied to the torque limit by calculating internally the torque output by the motor. Enable this function if you do not want a torque above a specified amount to be applied to the load, or if you do not want a regeneration value above a specified amount to occur.

Related Constants

					Change		Con	trol Me	ethods	
Con- stant Number	stant Name Description		Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
L7-01	Forward drive torque limit	0	0 to 300	200%	No	No	No	А	А	А
	Torq Limit Fwd									
L7-02	Reverse drive torque limit	Sets the torque limit value as a percentage of the motor rated torque. Four individual regions can be set.	0 to 300	200%	No	No	No	А	А	А
	Torq Limit Rev	Output torque Positive torque L7-01								
L7-03	Forward regenerative torque limit	Reverse Revers	0 to 300	200%	No	No	No	А	А	А
	Torq Lmt Fwd Rgn	L7-02 Negative torque								
L7-04	Reverse regenerative torque limit		0 to 300	200%	No	No	No	А	А	А
	Torq Lmt Rev Rgn									

Multi-function Analog Input (H3-05, H3-09)

			Control Methods						
Set- ting Value	Function	Contents (100%)		V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2		
10	Positive torque limit	Motor's rated torque	No	No	Yes	Yes	Yes		
11	Negative torque limit	Motor's rated torque	No	No	Yes	Yes	Yes		
12	Regenerative torque limit	Motor's rated torque	No	No	Yes	Yes	Yes		
15	Positive/negative torque limit	Motor's rated torque	No	No	Yes	Yes	Yes		

Note The forward torque limit is the limit value when the analog input signal generates forward torque. This torque limit setting is enabled even when the analog input signal generates forward torque while the motor is operating (regeneration).

Setting the Torque Limit in Constants

Using L7-01 to L7-04, you can set individually four torque limits in the following directions: Forward drive, reverse drive, forward regeneration, and reverse regeneration.

■Set the Torque Limit Value Using an Analog Input

You can change the analog input level torque limit value by setting the torque limit in multi-function analog input terminals A2 and A3.

The analog input terminal signal level is factory-set as follows:

Multi-function analog input terminal A2: 4 to 20 mA Multi-function analog input terminal A3: 0 to 10

The following diagram shows the relationship between the torque limits.

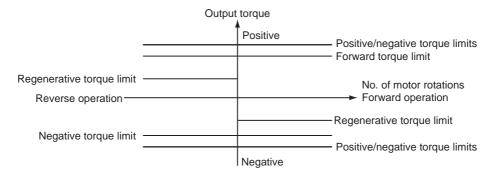
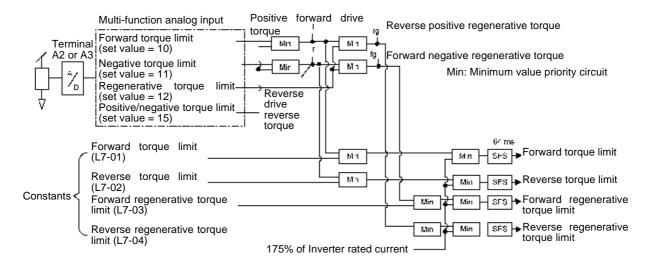



Fig 6.35 Torque Limit by Analog Input

Setting Torque Limits Using Constants and an Analog Input

The following block diagram shows the relationship between torque limit using constants and torque limit using an analog input.

Setting Precautions

- When the torque limit function is operating, control and compensation of the motor speed is disabled because torque control is given priority.
- When using the torque limit to raise and lower loads, do not carelessly lower the torque limit value, as this may result in the motor falling or slipping.
- Torque limits using an analog input are the upper limit value (during 10 V or 20 mA input) of 100% of the motor rated torque. To make the torque limit value during 10 V or 20 mA input 150% of the rated torque, set the input terminal gain to 150.0 (%). Adjust the gain for multi-function analog input terminal A2 using H3-10 and for multi-function analog input terminal A3 using H3-06.
- The torque limit accuracy is $\pm 5\%$ at the output frequency of 10 Hz or above. When output frequency is less than 10 Hz, accuracy is lowered.

Preventing Motor Stalling During Operation

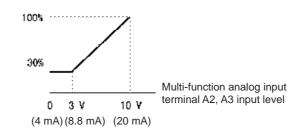
Stall prevention during operation prevents the motor from stalling by automatically lowering the Inverter's output frequency when a transient overload occurs while the motor is operating at a constant speed.

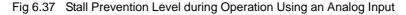
Stall prevention during operation is enabled only during V/f control. If the Inverter output current continues to exceed the setting in constant L3-06 for 100 ms or longer, the motor speed is reduced. Set whether to enable or disable deceleration time using constant L3-05. Set the deceleration time using C1-02 (Acceleration time 1) or C1-04 (Acceleration Time 2).

If the Inverter output current reaches the set value in L3-06 - 2% (Inverter Rated Output Current), the motor will accelerate again at the frequency set or the acceleration time set.

	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
L3-05	Stall preven- tion selection during run- ning StallP Run Sel	 0: Disabled (Runs as set. With a heavy load, the motor may stall.) 1: Deceleration time 1 (the deceleration time for the stall prevention function is C1-02.) 2: Deceleration time 2 (the deceleration time for the stall prevention function is C1-04.) 	0 to 2	1	No	А	А	No	No	No
L3-06	Stall preven- tion level dur- ing running StallP Run Level	Effective when L3-05 is 1 or 2. Set as a percentage of the Inverter rated current. Usually setting is not necessary. The factory setting reduces the set values when the motor stalls.	30 to 200	160%	No	А	А	No	No	No

■Related Constants


6


Changing Stall Prevention Level during Operation Using an Analog Input

If you set H3-09 (Multi-function Analog Input Terminal A2 Function Selection) or H3-05 (Multi-function Analog Input Terminal A3 Function Selection) to 8 (stall prevention level during run), you can change the stall level during operation by setting H3-10 (Gain (Terminal A2)) and H3-11 (Bias (Terminal A2)) or H3-06 (Gain (Terminal A3)) and H3-07 (Bias (Terminal A3).

The stall prevention level during operation enabled is the multi-function analog input terminal A2 or A3 input level or the set value in constant L3-06, whichever is the smaller.

Stall prevention level during operation

If the motor capacity is smaller than the Inverter capacity or the motor stalls when operating at the factory settings, lower the stall prevention level during operation.

Detecting Motor Torque

If an excessive load is placed on the machinery (overtorque) or the load is suddenly lightened (undertorque), you can output an alarm signal to multi-function output terminal M1-M2, M3-M4, M5-M6, P3-C3, or P4-C4.

To use the overtorque/undertorque detection function, set B, 17, 18, 19 (overtorque/undertorque detection NO/ NC) in one of the following constants: H2-01 to H2-05 (multi-function output terminals M1-M2, P1-PC, P2- PC, P3-C3, and P4-C4 function selection).

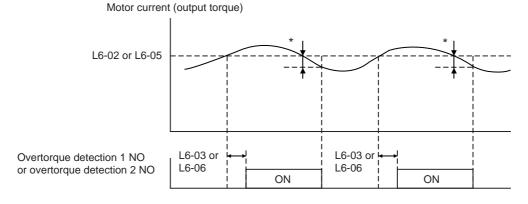
The overtorque/undertorque detection level is the current level (Inverter rated output current 100%) in V/f control, and the motor torque (motor rated torque 100%) in vector control.

	Name				Change		Cor	ntrol Me	ethods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
	Torque detec- tion selection 1	 Overtorque/undertorque detection disabled. Overtorque detection only with speed agreement; operation continues after overtorque (warning). Overtorque detected continuously during operation; operation continues after overtorque (warning). Overtorque detection only with speed agreement; output stopped upon detection (protected operation). Overtorque detected 								
L6-01	Torq Det 1 Sel	 4: Overtorque detected continuously during operation; output stopped upon detection (protected operation). 5: Undertorque detection only with speed agreement; operation continues after overtorque (warning). 6: Undertorque detected continuously during operation; operation continues after overtorque (warning). 7: Undertorque detection only with speed agreement; output stopped upon detection (protected operation). 8: Undertorque detected continuously during operation; output stopped upon detection (protected operation). 	0 to 8	0	No	А	А	A	A	A
L6-02	Torque detec- tion level 1 Torq Det 1	Open-loop vector control: Motor rated torque is set as 100%. V/f control: Inverter rated current is set as 100%.	0 to 300	150%	No	А	А	А	А	А
L6-03	Lvl Torque detec- tion time 1 Torq Det 1 Time	Sets the overtorque/undertorque detection time in 1-second units.	0.0 to 10.0	0.1 s	No	А	A	А	А	А
L6-04	Torque detec- tion selection 2 Torq Det 2 Sel	Multi-function output for over- torque detection 1 is output to multi-function contact output when	0 to 8	0	No	А	А	А	А	А
L6-05	5-03 Torq Det 1 Time Torque detec- tion selection 2 Torq Det 2 Sel Torque detec- tion level 2 Torq Det 2 Lvl Torq Det 2 Torq Det 2 Torque detec- tion level 2	overtorque detection 1 NO or over- torque detection 1 NC is selected. Multi-function output for over- torque detection 2 is output to multi-function contact output when	0 to 300	150%	No	А	А	А	А	А
L6-06		overtorque detection 2 NO or over- torque detection 2 NC is selected.	0.0 to 10.0	0.1 s	No	А	А	А	А	А

Multi-function Output (H2-01 to H2-05)

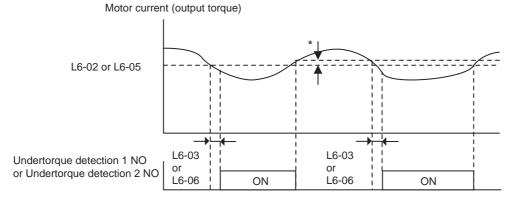
_			Cont	rol Me	thods	
Set- ting Value	Function	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2
В	Overtorque/undertorque detection 1 NO (NO contact: Overtorque/undertorque detec- tion at ON)	Yes	Yes	Yes	Yes	Yes
17	Overtorque/undertorque detection 1 NC (NC Contact: Torque detection at OFF)	Yes	Yes	Yes	Yes	Yes
18	Overtorque/undertorque detection 2 NO (NO Contact: Torque detection at ON)	Yes	Yes	Yes	Yes	Yes
19	Overtorque/undertorque detection 2 NC (NC Contact: Torque detection at OFF)	Yes	Yes	Yes	Yes	Yes

■L6-01 and L6-04 Set Values and LCD Indications


The relationship between alarms displayed by the Digital Operator when overtorque or undertorque is detected, and the set values in L6-01 and L6-04, is shown in the following table.

		LCD Inc	lications
Set Value	Function	Overtorque/ Undertorque	Overtorque/ Undertorque
		Detection 1	Detection 2
0	Overtorque/undertorque detection disabled.	-	-
1	Overtorque detection only with speed matching; operation continues after overtorque (warning).	OL3 flashes	OL4 flashes
2	Overtorque detected continuously during operation; operation continues after overtorque (warning).	OL3 flashes	OL4 flashes
3	Overtorque detection only with speed matching; output stopped upon detec- tion (protected operation).	OL3 lit	OL4 lit
4	Overtorque detected continuously during operation; output stopped upon detection (protected operation).	OL3 lit	OL4 lit
5	Undertorque detection only with speed matching; operation continues after overtorque (warning).	UL3 flashes	UL4 flashes
6	Undertorque detected continuously during operation; operation continues after overtorque (warning).	UL3 flashes	UL4 flashes
7	Undertorque detection only with speed matching; output stopped upon detection (protected operation).	UL3 lit	UL4 lit
8	Undertorque detected continuously during operation; output stopped upon detection (protected operation).	UL3 lit	UL4 lit

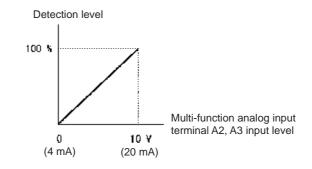
■Setting Example


The following diagram shows the time chart for overtorque and undertorque detection.

• Overtorque Detection

* Overtorque detection disabled band is approximately 10% of the Inverter rated output current (or motor rated torque).

• Undertorque Detection


* The undertorque detection disabled margin is approximately 10% of the Inverter rated output current (or motor rated torque)

Changing Overtorque and Undertorque Detection Levels Using an Analog Input

If you set constant H3-09 (Multi-function Analog Input Terminal A2 Function Selection) or H3-05 (Multi-function Analog Input Terminal A3 Function Selection) to 7 (overtorque/undertorque detection level), you can change the overtorque/undertorque detection level.

If you change the overtorque/undertorque detection level using the multi-function analog input, only overtorque/undertorque detection level 1 will be enabled.

The following diagram shows the overtorque/undertorque detection level using an analog input.

Multi-Function Analog Input (H3-05, H3-09)

Set- ting Value			Control Methods					
	Function	Contents (100%)	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	
7	Overtorque/undertorque detection Motor rated torque for vector control level Inverter rated output current for V/f control		Yes	Yes	Yes	Yes	Yes	

Motor Overload Protection

You can protect the motor from overload using the Inverter's built-in electronic thermal overload relay.

■Related Constants

	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
	Motor rated current	Sets the motor rated current in 1 A units. These set values will become the	0.32 to							
E2-01	Motor Rated FLA	reference values for motor protec- tion, torque limits and torque con- trol. This constant is automatically set during autotuning.	6.40 *2	1.90 A *1	No	Q	Q	Q	Q	Q
	Motor 2 rated current	Sets the motor rated current in 1 A units.								
E4-01	Motor Rated FLA	These set values will become the reference values for motor protec- tion, torque limits and torque con- trol. This constant is automatically set during autotuning.	0.32 to 6.40 *2	1.90 A *1	No	А	А	А	A	А
	Motor protec- tion selection	Sets whether the motor overload function is enabled or disabled at								
L1-01	MOL Fault Select	 electric thermal overload relay. 0: Disabled 1: General-purpose motor protection 2: Inverter motor protection 3: Vector motor protection In some applications when the Inverter power supply is turned off, the thermal value is reset, so even if this constant is set to 1, protection may not be effective. When several motors are con- nected to one Inverter, set to 0 and ensure that each motor is installed with a protection device. 	0 to 3	1	No	Q	Q	Q	Q	Q
L1-02	Motor protec- tion time con- stant MOL Time Const	Sets the electric thermal detection time in seconds units. Usually setting is not necessary. The factory setting is 150% over- load for one minute. When the motor's overload resis- tance is known, also set the over- load resistance protection time for when the motor is hot started.	0.1 to 5.0	1.0 min	No	A	A	А	A	A

* 1. Factory settings depend on Inverter capacity. (The values shown are for a 200 V Class Inverter for 0.4 kW.)

* 2. The settings range is 10% to 200% of the Inverter rated output current. (The values shown are for a 200 V Class Inverter for 0.4 kW.)

Multi-Function Outputs (H2-01 to H2-05)

		Control Methods						
Set- ting Value	ting Function	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2		
1F	Motor overload (OL1, including OH3) pre-alarm (ON: 90% or more of the detection level)	Yes	Yes	Yes	Yes	Yes		

■Setting Motor Rated Current

Set the rated current value on the motor nameplate in constants E2-01 (for motor 1) and E4-01 (for motor 2). This set value is the electronic thermal base current.

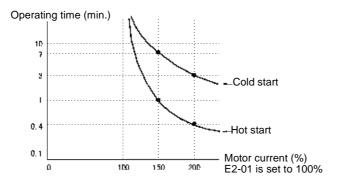
Setting Motor Overload Protection Characteristics

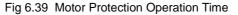
Set the overload protection function in L1-01 according to the applicable motor.

The induction motor's cooling abilities differ according to the speed control range. Consequently, you must select the electronic thermal protection characteristics to match the applicable motor's tolerance load characteristics.

The following table shows the motor type and tolerance load characteristics.

L1-01 Set Value	Motor Type	Tolerance Load Characteristics	Cooling Ability	Electronic Thermal Operation (at 100% Motor Load)
1	General-purpose motor (standard motor)	Short time 60 s. Rated rotation speed = 100% speed 3.7 kW max 5.5 to 15 kW 1 10.5 kW min. 100% ED or 7 gime number Max. 300 min. speed of 200 bL min. 00% ED or 30 min Continuou	Use this motor for operations using a commercial power supply. This motor construction yields best cooling effect when operating at 50/ 60 Hz.	When operating continu- ously at 50/60 Hz or less, motor overload detection (OL1) is detected. The Inverter outputs the error contact, and the motor coasts to a stop.
2	Inverter motor (constant torque) (1:10)	Short time 60 = 100% speed Short time 60 = 100% speed (%) = 000% Joint Frame number Max. speed Good Joint Joint Joint Frame number Max. speed of 150 MJ to 180 LJ Frame number Max. Speed of 200kJ min. Frame number Max. Speed of 132 MJ Kitch Rotation speed (%)	This motor yields a cooling effect even when operating at low speeds (approx. 6 Hz).	Operates continuously at 6 to 50/60 Hz.


L1-01 Set Value	Motor Type	Tolerance Load Characteristics	Cooling Ability	Electronic Thermal Operation (at 100% Motor Load)
3	Vector motor (1:100)	(%) opport Continuous Frame number Max. Short time 60 s. Frame number Max. Short time 60 s. Frame number Max. Speed of 132 MJ Frame number Max. Frame number	This motor yields a cooling effect even when operating at extremely low speeds (approx. 0.6 Hz).	Operates continuously at 0.6 to 60 Hz.


Setting Motor Protection Operation Time

Set the motor protection operation time in L1-02.

If, after operating the motor continuously at the rated current, a 150% overload is experienced, set the (hot start) electronic thermal protection operation time. The factory setting is resistance to 150% for 60 seconds.

The following diagram shows an example of the characteristics of the electronic thermal protection operation time (L1-02 = 1.0 min., operation at 60 Hz, general-purpose motor characteristics, when L1-01 is set to 1)

Setting Precautions

- If multiple motors are connected to one Inverter, set constant L1-01 to 0 (disabled). To protect the motor, install a thermal relay in the motor power cable, and perform overload protection on each motor.
- With applications where the power supply is often turned ON and OFF, there is a risk that the circuit cannot be protected even if this constant has been set to 1 (enabled), because the thermal value will be reset.
- To detect overloads in good time, set the set value in constant L1-02 to a low setting.
- When using a general-purpose motor (standard motor), the cooling ability will be lowered by $f^{1/4}$ (frequency). Consequently, the frequency may cause motor overload protection (OL1) to occur, even below the rated current. If operating using the rated current at a low frequency, use a special motor.

Setting the Motor Overload Pre-Alarm

If the motor overload protection function is enabled (i.e., L1-01 is set to other than 0) and you set H2-01 to H2-05 (multi-function output terminals M1-M2, M3-M4, M5-M6, P3-C3, and P4-C4 function selection) to 1F (motor overload OL1 pre-alarm), the motor overload pre-alarm will be enabled. If the electronic thermal value reaches minimum 90% of the overload detection level, the output terminal that has been set will be turned ON.

Motor Overheating Protection Using PTC Thermistor Inputs

Perform motor overheating protection using the thermistor temperature resistance characteristics of the PTC (Positive Temperature Coefficient) built into the windings of each motor phase.

Con-	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
	Alarm opera- tion selection during motor overheating	Set H3-09 to E and select the opera- tion when the input motor tempera- ture (thermistor) input exceeds the alarm detection level (1.17 V).								
L1-03	MOL Thm Input	 Decelerate to stop Coast to stop Emergency stop using the deceleration time in C1-09. Continue operation (H3 on the Operator flashes). 	0 to 3	3	No	А	Α	А	А	А
L1-04	Motor over- heating oper- ation selection MOL Filter	Set H3-09 to E and select the opera- tion when the motor temperature (thermistor) input exceeds the oper- ation detection level (2.34 V). 0: Decelerate to stop 1: Coast to stop 2: Emergency stop using the	0 to 2	1	No	А	А	А	A	А
	Time	deceleration time in C1-09.								
L1-05	Motor tem- perature input filter time constant	Set H3-09 to E and set the primary delay time constant for motor tem- perature (thermistor) inputs in sec-	0.00 to 10.00	0.20 s	No	А	А	А	А	А
	MOL Filter Time	onds.								

■PTC Thermistor Characteristics

The following diagram shows the characteristics of the PTC thermistor temperature to the resistance value.

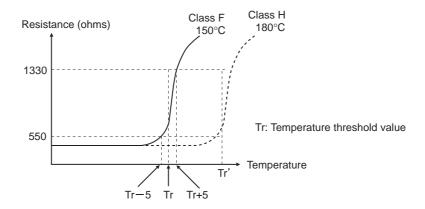


Fig 6.40 PTC Thermistor Temperature-Resistance Value Characteristics

Operation during Motor Overheating

Set the operation if the motor overheats in constants L1-03 and L1-04. Set the motor temperature input filter time constant in L1-05. If the motor overheats, the OH3 and OH4 error codes will be displayed on the Digital Operator.

Error Codes If the Motor Overheats

Error Code	Details
OH3	Inverter stops or continues to operate, according to the setting in L1-03.
OH4	Inverter stops according to the setting in L1-04.

By setting H3-09 (Multi-function Analog Input Terminal A2 Function Selection) or H3-05 (Multi-function Analog Input Terminal A3 Function Selection) to E (Motor temperature input), you can detect alarm OH3 or OH4 using the PTC temperature-resistance characteristics, and protect the motor. The terminal connections are shown in the following diagram.

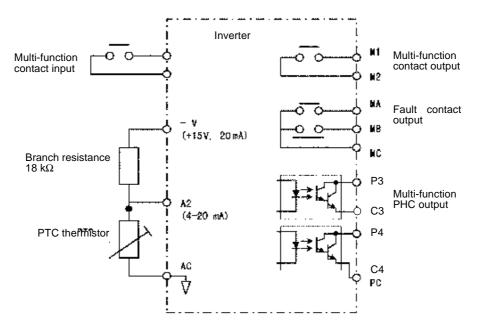


Fig 6.41 Mutual Connections During Motor Overheating Protection

Limiting Motor Rotation Direction

If you set motor reverse rotation prohibited, a reverse run command will not be accepted even if it is input. Use this setting for applications in which reverse motor rotation can cause problems (e.g., fans, pumps, etc.)

	Name				Change	Control Methods					
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2	
b1-04	Prohibition of reverse opera- tion Reverse Oper	0: Reverse enabled 1: Reverse disabled	0 or 1	0	No	А	А	А	А	А	

Continuing Operation

This section explains functions for continuing or automatically restarting Inverter operation even if an error occurs.

Restarting Automatically After Power Is Restored

Even if a temporary power loss occurs, you can restart the Inverter automatically after power is restored to continue motor operation.

To restart the Inverter after power is restored, set L2-01 to 1 or 2.

If L2-01 is set to 1, when power is restored within the time set in L2-02, the Inverter will restart. If the time set in L2-02 is exceeded, alarm UV1 (main circuit undervoltage) will be detected.

If L2-01 is set to 2, when the main power supply is restored while the control power supply (i.e., power supply to the control panel) is backed up, the Inverter will restart. Consequently, alarm UV1 (main circuit undervoltage) will not be detected.

	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
	Momentary power loss detection	0: Disabled (main circuit undervoltage (UV) detection) 1: Enabled (Restarted when the power returns within the time								
L2-01	PwrL Selec- tion	 for L2-02. When L2-02 is exceeded, main circuit undervoltage detection.) 2: Enabled while CPU is operating. (Restarts when power returns during control operations. Does not detect main circuit undervoltage.) 	0 to 2	0	No	А	А	А	Α	А
L2-02	Momentary power loss ridethru time	Ridethrough time, when Momen- tary Power Loss Selection (L2-01)	0 to 25.5	0.1 s *	No	А	A	А	Flux Vec- tor	А
	PwrL Ride- thru t	is set to 1, in units of seconds.								
	Min. base- block time	Sets the Inverter's minimum base- block time in units of one second,								
L2-03	PwrL Base- block t	when the Inverter is restarted after power loss ridethrough. Sets the time to approximately 0.7 times the motor secondary circuit time constant. When an overcurrent or overvoltage occurs when starting a speed search or DC injection braking, increase the set values.	0.1 to 5.0	0.2 s *1	No	А	А	А	A	А
	Voltage recovery time	Sets the time required to return the Inverter output voltage to normal voltage at the completion of a speed	0.0 to	0.3 s						
L2-04	PwrL V/F Ramp t	search, in units of one second. Sets the time required to recover from 0 V to the maximum voltage.	5.0	*1	No	А	A	A	А	А

	Name				Change	Control Methods					
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor A	Open Loop Vector 2	
L2-05	Undervolt- age detection level PUV Det Level	Sets the main circuit undervoltage (UV) detection level (main circuit DC voltage) in V units. Usually setting is not necessary. Insert an AC reactor in the Inverter input side to lower the main circuit undervoltage detection level.	150 to 210 *2	190 V *2	No	А	А	А	А	A	

* 1. Factory settings depend on Inverter capacity. (The values shown are for a 200 V Class Inverter for 0.4 kW.)

 $\ast~$ 2. These values are for a 200 V Class Inverter. For a 400 V Class Inverter, double the values.

Setting Precautions

- Error output signals are not output during momentary power loss recovery.
- To continue Inverter operation after power has been restored, make settings so that run commands from the control main circuit terminal are stored even while power is suspended.
- If the momentary power loss operation selection is set to 0 (Disabled), when the momentary power loss exceeds 15 ms during operation, alarm UV1 (main circuit undervoltage) will be detected.

Speed Search

The speed search function finds the actual speed of the motor that is rotating using inertia, and then starts smoothly from that speed. When restoring power after a temporary power loss, the speed search function switches connection from the commercial power supply, and then restarts the fan that is rotating using inertia.

	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
b3-01	Speed search selection (cur- rent detection or speed cal- culation) SpdSrch at Start	Enables/disables the speed search function for the run command and sets the speed search method. 0:Disabled, speed calculation 1: Enabled, speed calculation 2: Disabled, current detection 3: Enabled, current detection 3: Enabled, current detection Speed Calculation: When the search is started, the motor speed is calculated and acceleration/deceleration is performed from the calculated speed to the specified frequency (motor direction is also searched). Current Detection: The speed search is started from the frequency when power was momentarily lost and the maximum frequency, and the speed is detected at the search current level.	0 to 3	2 ^{*1}	No	Α	А	А	No	А

	Name				Change		Cor	Control Methods		
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
b3-02	Speed search operating cur- rent (current detection)	Sets the speed search operation cur- rent as a percentage, taking the Inverter rated current as 100%. Not usually necessary to set. When	0 to 200	100% ^{*1}	No	А	No	А	Flux Vec-	А
	SpdSrch Cur- rent	restarting is not possible with the factory settings, reduce the value.								
b3-03	Speed search deceleration time (current detection)	Sets the output frequency decelera- tion time during speed search in 1- second units. Set the time for deceleration from	0.1 to 10.0	2.0 s	No	А	No	А	No	No
	SpdSrch Dec Time	the maximum output frequency to the minimum output frequency.							Vec- tor No No A A	
b3-05	Speed search wait time (current detec- tion or speed calculation)	Sets the contactor operating delay time when there is a contactor on the output side of the Inverter. When a speed search is performed after recovering from a momentary power loss, the search operation is	0.0 to 20.0	0.2 s	No	А	А	А	А	A
	Search Delay	delayed by the time set here.								
	Min. base- block time	Sets the Inverter's minimum base- block time in units of one second,								
L2-03	PwrL Base- block t	when the Inverter is restarted after power loss ridethrough. Sets the time to approximately 0.7 times the motor secondary circuit time constant. When an overcurrent or overvolt- age occurs when starting a speed search or DC injection braking, increase the set values.	0.1 to 5.0	0.5 s *2	No	A	A	А	A	А
	Voltage recov- ery time	Sets the time required to return the Inverter output voltage to normal voltage at the completion of a gread	0.0 to	0.2					No A A	
L2-04	PwrL V/F Ramp t	voltage at the completion of a speed search, in units of one second. Sets the time required to recover from 0 V to the maximum voltage.	5.0	0.3 s *2	No	А	А	A	A	A

* 1. The factory setting will change when the control method is changed. (Open-loop vector control 1 factory settings are given.)

* 2. Factory settings depend on Inverter capacity. (The values shown are for a 200 V Class Inverter for 0.4 kW.)

Multi-function Contact Inputs (H1-01 to H1-10)

		Control Methods						
Set- ting Value	Function	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2		
61	External search command 1 (ON: Speed search from maximum output frequency)	Yes	No	Yes	No	Yes		
62	External search command 2 (ON: Speed search from set frequency)	Yes	No	Yes	No	Yes		

Setting Precautions

- When both external search commands 1 and 2 are set for the multi-function contact terminals, an OPE03 (invalid multi-function input selection) operation error may occur. Set either external search command 1 or external search command 2.
- If speed search during startup is selected when using V/f control with PG, the Unit will start from the frequency detected by PG.
- If performing speed search using external search commands, add an external sequence so that the period when the run command and external search command are both ON is at the very least the Minimum Baseblock Time (L2-03).
- If the Inverter output is equipped with a contact, set the contact operation delay time in the Speed Search Wait Time (b3-05). The factory setting is 0.2 s. When not using the contact, you can reduce the search time by making the setting 0.0 s. After waiting for the speed search wait time, the Inverter starts the speed search.
- Constant b3-02 is a current detection speed search (current detection level for search completion). When the current falls below the detection level, the speed search is viewed as completed, and the motor accelerates or decelerates to the set frequency. If the motor cannot restart, lower the set value.
- If an overcurrent (OC) is detected when using speed search after recovery following a power loss, lengthen the Minimum Baseblock Time (L2-03).

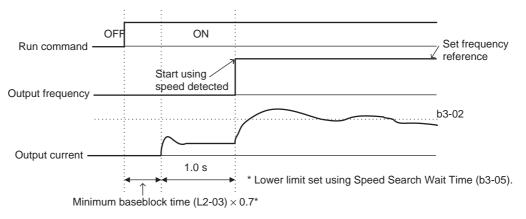
■Application Precautions for Speed Searches Using Estimated Speed

- When using V/f control with or without a PG, always perform stationary autotuning for only line-to-line resistance before using speed searches based on estimated speeds.
- When using open-loop vector control, always perform rotational autotuning before using speed searches based on estimated speeds.
- If the cable length between the motor and Inverter is changed after autotuning has been performed, perform stationary autotuning for only line-to-line resistance again.

The motor will not operate when stationary autotuning or stationary autotuning only for line-to-line resistance is performed.

■Speed Search Selection

Set whether to enable or disable speed search at startup, and set the type of speed search (estimated speed or current detection) using setting b3-01. To perform speed search when inputting the run command, set b3-01 to 1 or 3.

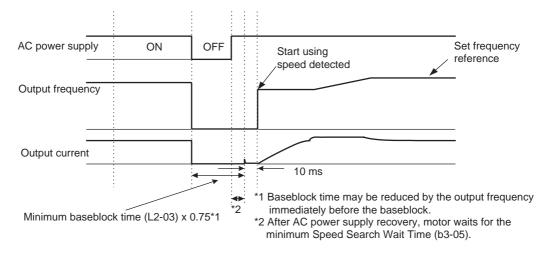

Search Name	Estimated Speed	Current Detection
Search Method	Estimates the motor speed when the search starts, and accelerates and decelerates from the estimated speed to the set frequency. You can also search including direction of motor rota- tion.	Starts speed search from the frequency when the temporary power loss was detected, or from the highest frequency, and performs speed detection at the current level during the search.
External Speed Search Command	External search command 1 and external search command 2 become the same operation, estimating the motor speed and starting the search from the estimated speed.	External speed search command 1: Starts speed search from the maximum output frequency. External speed search command 2: Starts speed search from the frequency refer- ence set before the search command.
Application Precau- tions	Cannot be used multi-motor drives, motors two or more frames smaller than the Inverter capac- ity, and high-speed motors (130 Hz min.)	In control method without PG, the motor may accelerate suddenly with light loads.

Estimated Speed Search

The time chart for estimated speed searches is shown below.

Search at Startup

The time chart for when speed search at startup and speed search to multi-function input terminals us shown below.



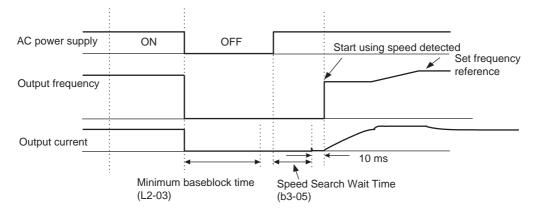
Note: If the stopping method is set to coast to stop, and the run command turns ON in a short time, the operation may be the same as the search in case 2.

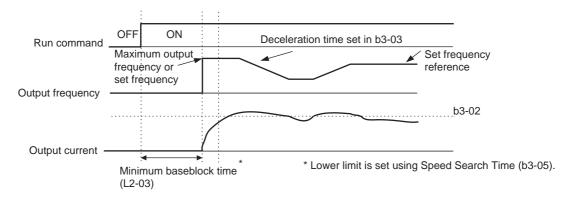
Fig 6.42 Speed Search at Startup (Estimated Speed)

Speed Search after Short Baseblock (during Power Loss Recovery, etc.)

• Loss Time Shorter Than the Minimum Baseblock Time (L2-03)

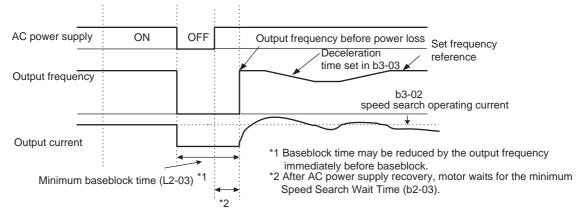
• Loss Time Longer Than the Minimum Baseblock Time (L2-03)



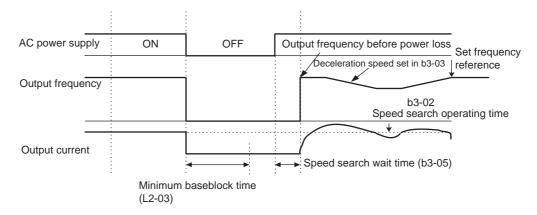

Fig 6.44 Speed Search After Baseblock (Estimated Speed: Loss Time > L2-03)

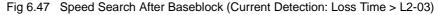
■Current Detection Speed Search

The time charts for current detection speed search is shown below.


Speed Search at Startup

The time chart when speed search at startup or external speed search command is selected is shown below.


Speed Search after Short Baseblock (during Power Loss Recovery, etc.)



• Loss Time Shorter Than Minimum Baseblock Time

• Loss Time Longer Than Minimum Baseblock Time

Continuing Operation at Constant Speed When Frequency Reference Is Lost

The frequency reference loss detection function continues operation using 80% speed of the frequency reference before loss when the frequency reference using an analog input is reduced 90% or more in 400 ms.

When the error signal during frequency reference loss is output externally, set H2-01 to H2-05 (multi-function contact output terminal M1-M2, M3-M4, M5-M6, P3-C3, and P4-C4 function selection) to C (frequency reference lost).

■Related Constants

	Name		Change Control Methods							
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
L4-05	Operation when fre- quency refer- ence is missing Ref Loss Sel	 0: Stop (Operation follows the frequency reference.) 1: Operation at 80% speed continues. (At 80% of speed before the frequency reference was lost) Frequency reference is lost: Frequency reference dropped over 90% in 400 ms. 	0 or 1	0	No	A	A	А	A	А

Restarting Operation After Transient Error (Auto Restart Function)

If an Inverter error occurs during operation, the Inverter will perform self-diagnosis. If no error is detected, the Inverter will automatically restart. This is called the auto restart function.

Set the number of auto restarts in constant L5-01.

The auto restart function can be applied to the following errors. If an error not listed below occurs, the protection function will operate and the auto restart function will not.

- OC (Overcurrent)
- GF (Ground fault)
- PUF (Fuse blown)
- OV (Main circuit overvoltage)
- UV1 (Main Circuit Undervoltage, Main Circuit MC Operation Failure)*
- PF (Main circuit voltage fault)
- LF (Output phase failure)
- * When L2-01 is set to 1 or 2 (continue operation during momentary power loss)

■Auto Restart External Outputs

To output auto restart signals externally, set H2-01 to H2-05 (multi-function contact output terminals M1-M2, M3-M4, M5-M6, P3-C3, and P4-C4 function selection) to 1E (auto restart).

Related Constants

_	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
L5-01	Number of auto restart attempts	Sets the number of auto restart attempts. Automatically restarts after a fault and conducts a speed search from	0 to 10	0	No	А	A	А	А	А
	Num of Restarts	the run frequency.								
L5-02	Auto restart operation selection	Sets whether a fault contact output is activated during fault restart. 0: Not output (Fault contact is not	0 or 1	0	No	А	А	А	А	А
	Restart Sel	activated.) 1: Output (Fault contact is activated.)	0 or 1	0	INO		1	71		

Application Precautions

- The number of auto restarts count is reset under the following conditions: After auto restart, normal operation has continued for 10 minutes.
 - After the protection operation has been performed, and the error has been verified, and an fault reset has been input.
 - After the power supply is turned OFF, and then ON again.
- Do not use the auto restart function with variable loads.

- RH (Braking resistor overheated)
- RR (Braking transistor error)
- OL1 (Motor overload)
- OL2 (Inverter overload)
- OH1 (Motor overheat)
- OL3 (Overtorque)
- OL4 (Overtorque)

Inverter Protection

This section explains the functions for protecting the Inverter and the braking resistor.

Performing Overheating Protection on Mounted Braking Resistors

Perform overheating protection on Inverter-mounted braking resistors (Model: ERF-150WJ \Box).

When overheating in a mounted braking resistor is detected, an alarm RH (Mounted braking resistor overheating) is displayed on the Digital Operator, and the motor coasts to a stop.

Related Constants

	Name		Setting Range		Change		Control Methods				
Con- stant Number	Display	Description		Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2	
L8-01	Protect selec- tion for internal DB resistor (Type ERF) DB Resistor Prot	0: Disabled (no overheating protection)1: Enabled (overheating protection)	0 or 1	0	No	А	А	А	А	A	

Multi-function Contact Outputs (H2-01 to H2-05)

		Control Methods						
Set- ting Value	Function	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2		
D	Braking resistor fault (ON: Resistor overheat or braking transistor fault)	Yes	Yes	Yes	Yes	Yes		

The most likely causes of RH (Mounted braking resistor overheating) being detected are that the deceleration time is too short or that the motor regeneration energy is too large. In these cases, lengthen the deceleration time or replace the Braking Resistor Unit with one with a higher breaking capacity.

Reducing Inverter Overheating Pre-Alarm Warning Levels

The Inverter detects the temperature of the cooling fins using the thermistor, and protects the Inverter from overheating. You can receive Inverter overheating pre-alarms in units of 10°C.

The following overheating pre-alarm warnings are available: Stopping the Inverter as error protection, and continuing operation, with the alarm OH (Radiation fins overheating) on the Digital Operator flashing.

Related Constants

	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
	Overheat pre- alarm level	Sets the detection temperature for the Inverter overheat detection	50.4							
L8-02	OH Pre-Alarm Lvl	pre-alarm in °C. The pre-alarm detects when the cooling fin temperature reaches the set value.	50 to 130	95 °C*	No	А	А	Α	А	Α
L8-03	Operation selection after overheat pre- alarm OH Pre-Alarm Sel	 Sets the operation for when the Inverter overheat pre-alarm goes ON. 0: Decelerate to stop in deceleration time C1-02. 1: Coast to stop 2: Fast stop in fast-stop time C1- 09. 3: Continue operation (Monitor display only.) A fault will be given in setting 0 to 2 and a minor fault will be given in setting 3. 	0 to 3	3	No	A	A	А	A	А

* The factory setting depends upon the Inverter capacity. The value for 200 V Class Inverter of 0.4 kW is given.

Input Terminal Functions

This section explains input terminal functions, which set operating methods by switching functions for the multi-function contact input terminals (S3 to S12).

Temporarily Switching Operation between Digital Operator and Control Circuit Terminals

You can switch the Inverter run command inputs and frequency reference inputs between local (i.e., Digital Operator) and remote (input method using b1-01 and b1-02).

You can switch between local and remote by turning ON and OFF the terminals if an output from H1-01 to H1-10 (multi-function contact input terminal S3 to S12 function selection) has been set to 1 (local/remote selection).

To set the control circuit terminals to remote, set b1-01 and b1-02 to 1 (Control circuit terminals).

■Related Constants

	Name				Change		Cor	trol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
	Reference selection	Set the frequency reference input method.								
b1-01	Reference Source	 Digital Operator Control circuit terminal (analog input) MEMOBUS communications Option Card Pulse train input 	0 to 4	1	No	Q	Q	Q	Q	Q
b1-02	Operation method selec- tion	Set the run command input method. 0: Digital Operator 1: Control circuit terminal (sequence input)	0 to 3	1	No	Q	Q	Q	Q	Q
	Run Source	2: MEMOBUS communications 3: Option Card								

You can also perform local/remote switching using the LOCAL/REMOTE Key on the Digital Operator. When the local/remote function has been set in the external terminals, the LOCAL/REMOTE Key function on the Digital Operator will be disabled.

Blocking Inverter Outputs (Baseblock Commands)

Set 8 or 9 (Baseblock command NO/NC) in one of the constants H1-01 to H1-10 (multi-function contact input terminal S3 to S12 function selection) to perform baseblock commands using the terminal's ON/OFF operation, and prohibit Inverter output using the baseblock commands.

Clear the baseblock command to restart the operating using speed search from frequency references from the previous baseblock command input.

Multi-function Contact Inputs (H1-01 to H1-10)

		Control Methods						
Set- ting Value	Function	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2		
8	External baseblock NO (NO contact: Baseblock at ON)	Yes	Yes	Yes	Yes	Yes		
9	External baseblock NC (NC contact: Baseblock at OFF)	Yes	Yes	Yes	Yes	Yes		

■Time Chart

The time chart when using baseblock commands is shown below.

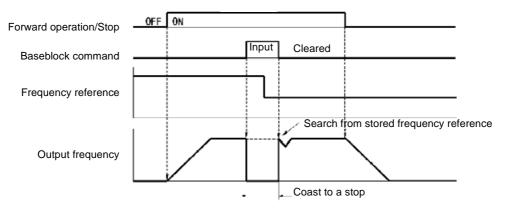


Fig 6.48 Baseblock Commands

If using baseblock commands with a variable load, do not frequently input baseblock commands during operation, as this may cause the motor to suddenly start coasting, and may result in the motor falling or slipping.

Stopping Acceleration and Deceleration (Acceleration/Deceleration Ramp Hold)

The acceleration/deceleration ramp hold function stops acceleration and deceleration, stores the output frequency at that point in time, and then continues operation.

Set one of the constants H1-01 to H1-10 (multi-function contact input terminal S3 to S12 function selection) to A (acceleration/deceleration ramp hold) to stop acceleration and deceleration when the terminal is turned ON and to store the output frequency at that point in time. Acceleration and deceleration will restart when the terminal is turned OFF.

If d4-01 is set to 1 and the Acceleration/Deceleration Ramp Hold command is input, the output frequency is still stored even after the power supply is turned OFF.

Related Constants

	Name				Change		Cor	with Vector PG 1		
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	with	Loop	Vec-	Open Loop Vector 2
d4-01	Frequency ref- erence hold function selec- tion MOP Ref Memory	 Sets whether or not frequencies on hold will be recorded. 0: Disabled (when operation is stopped or the power is turned on again starts at 0.) 1: Enabled (when operation is stopped or the power is turned on again starts at the previous hold frequency.) This function is available when the multi-function inputs "accel/ decel Ramp Hold" or "up/down" commands are set. 	0 or 1	0	No	A	А	A	A	A

■Time Chart

The time chart when using Acceleration/Deceleration Ramp Hold commands is given below.

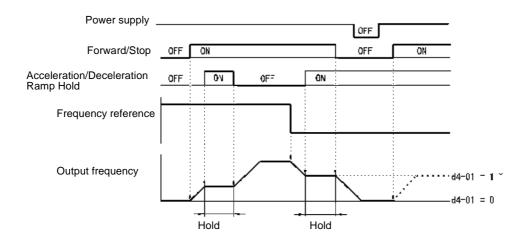


Fig 6.49 Acceleration/Deceleration Ramp Hold

■Application Precautions

- When d4-01 is set to 1, the output frequency on hold is stored even after the power supply is turned OFF. If performing operations using this frequency after the Inverter has also been turned OFF, input the run command with the Acceleration/Deceleration Ramp Hold turned ON.
- When d4-01 is set to 0 and a run command is input while the Acceleration/Deceleration Ramp Hold is turned ON, the output frequency will be set to zero.
- If you input an Acceleration/Deceleration Ramp Hold command by error when decelerating during positioning, deceleration may be canceled.

Raising and Lowering Frequency References Using Contact Signals (UP/ DOWN)

The UP and DOWN commands raise and lower Inverter frequency references by turning ON and OFF a multifunction contact input terminal S3 to S7.

To use this function, set one of the constants H1-01 to H1-10 (multi-function contact input terminal S3 to S12 function selection) to 10 (UP command) and 11 (DOWN command). Be sure to allocate two terminals so that the UP and DOWN commands can be used as a pair.

The output frequency depends on the acceleration and deceleration time. Be sure to set b1-02 (Run command selection) to 1 (Control circuit terminal).

_	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
d2-01	Frequency ref- erence upper limit	Set the output frequency upper limit as a percent, taking the max.	0.0 to 110.0	100.0%	No	А	А	А	А	А
	Ref Upper Limit	output frequency to be 100%.	110.0							
d2-02	Frequency ref- erence lower limit	Sets the output frequency lower limit as a percentage of the maxi-	0.0 to	0.0%	No	А	А	А	А	А
	Ref Lower Limit	mum output frequency.	110.0							
d2-03	Master speed reference lower limit	Set the master speed reference lower limit as a percent, taking the max_output frequency to be	0.0 to	0.0%	No	А	А	А	А	А
1	Ref1 Lower Limit	the max. output frequency to be 100%.	110.0							

Related Constants

Precautions

When setting and using UP and DOWN commands, observe the following precautions.

Setting Precautions

If multi-function input terminals S3 to S12 are set as follows, operation error OPE03 (Invalid multi-function input selection) will occur:

• Only either the UP command or DOWN command has been set.

• UP/DOWN commands and Acceleration/Deceleration Ramp Hold have been allocated at the same time.

Application Precautions

- Frequency outputs using UP/DOWN commands are limited by the frequency reference upper and lower limits set in constants d2-01 to d2-03. Here, frequency references from analog frequency reference terminal A1 becomes the frequency reference lower limit. If using a combination of the frequency reference from terminal A1 and the frequency reference lower limit set in either constant d2-02 or d2-03, the larger lower limit will become the frequency reference lower limit.
- If inputting the run command when using UP/DOWN commands, the output frequency accelerates to the frequency reference lower limit.
- When using UP/DOWN commands, multi-step operations are disabled.
- When d4-01 (Frequency Reference Hold Function Selection) is set to 1, the frequency reference held using the UP/DOWN functions is stored even after the power supply is turned OFF. When the power supply is turned ON and the run command is input, the motor accelerates to the frequency reference that has been stored. To reset (i.e., to 0 Hz) the stored frequency reference, turn ON the UP or DOWN command while the run command is ON.

■Connection Example and Time Chart

The time chart and settings example when the UP command is allocated to the multi-function contact input terminal S3, and the DOWN command is allocated to terminal S4, are shown below.

Constant	Name	Set Value
H1-01	Multi-function input (terminal S3)	10
H1-02	Multi-function input (terminal S4)	11

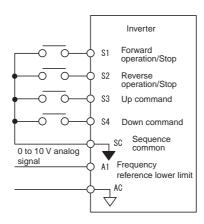


Fig 6.50 Connection Example when UP/DOWN Commands Are Allocated

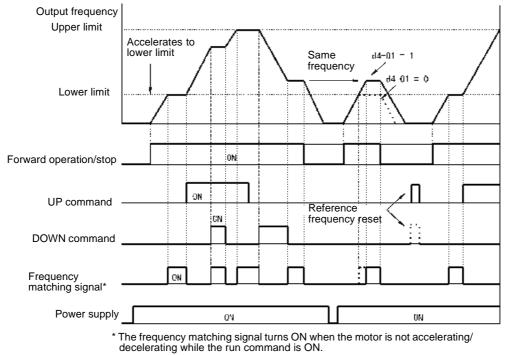


Fig 6.51 UP/DOWN Commands Time Chart

6

Accelerating and Decelerating Constant Frequencies in the Analog References (+/- Speed)

The +/- speed function increments or decrements the frequency set in analog frequency reference d4-02 (+/- Speed Limit) using two contact signal inputs.

To use this function, set One of the constants H1-01 to H1-10 (multi-function contact terminal inputs S3 to S12 function selection) to 1C (Trim Control Increase command) and 1D (Trim Control Decrease command). Be sure to allocate two terminals so that the Trim Control Increase command and Trim Control Decrease command can be used as a pair.

Related Constants

	Name				Change	e Control Methods						
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2		
	+ - Speed limits	Set the frequency to be add to or										
d4-02	Trim Control Lvl	subtracted from the analog fre- quency reference as a percent, taking the maximum output fre- quency to be 100%. Enabled when the increase (+) speed command or decrease (-) speed command is set for a multi- function input.	0 to 100	10%	No	A	А	А	А	А		

■Trim Control Increase/Decrease Command and Frequency Reference

The frequency references using Trim Control Increase/Decrease command ON/OFF operations are shown below.

Frequency Reference	Set Frequency Reference + d4-02	Set Frequency Reference - d4-02	Set Frequency Command		
Trim Control Increase Command Terminal	ON	OFF	ON	OFF	
Trim Control Decrease Command Terminal	OFF	ON	ON	OFF	

■Application Precautions

- Trim Control Increase/Decrease command is enabled when speed reference > 0 and the speed reference is from an analog input.
- When the analog frequency reference value d4-02 < 0, the frequency reference is set to 0.
- If only the Trim Control Increase command or Trim Control Decrease command has been set for a multifunction contact input terminal S3 to S12, operation error OPE03 (invalid multi-function input selected) will occur.

Hold Analog Frequency Using User-set Timing

When one of H1-01 to H1-10 (multi-function contact input terminal S3 to S12 function selection) is set to 1E (sample/hold analog frequency command), the analog frequency reference will be held from 100 ms after the terminal is turned ON, and operation will continue thereafter at that frequency.

The analog value 100 ms after the command is turned ON is used as the frequency reference.

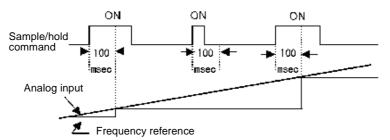


Fig 6.52 Sample/Hold Analog Frequency

Precautions

When setting and executing sample and hold for analog frequency references, observe the following precautions.

Setting Precautions

When using sample/hold of analog frequency reference, you cannot use the following commands at the same time. If these commands are used at the same time, operation error OPE03 (invalid multi-function input selection) will occur.

- Acceleration/Deceleration Ramp Hold command
- UP/DOWN command
- Trim Control Increase/Decrease command

Application Precautions

- When performing sample/hold of analog frequency references, be sure to store references of 100 ms minimum. If the reference time is less than 100 ms, the frequency reference will not be held.
- The analog frequency reference that is held will be deleted when the power supply is turned OFF.

Switching Operations between a Communications Option Card and Control Circuit Terminals

You can switch reference input between the Communications Option Card and the control circuit terminals. Set one of the constants H1-01 to H1-10 (multi-function contact input terminal S3 to S12 function selection) to 2 (Option/Inverter selection) to enable switching reference input using the terminal ON/OFF status when the Inverter is stopped.

■Setting Precautions

To switch command inputs between the Communications Option Card and the control circuit terminals, set the following constants.

- Set b1-01 (Reference Selection) to 1 (Control circuit terminal [analog input])
- Set b1-02 (Operation Method Selection to 1 (Control circuit terminal (sequence inputs])
- Set one of the constants H1-01 to H1-10 (multi-function contact input terminal S3 to S12 function selection) to 2 (Option/Inverter selection).

Terminal Status	Frequency Reference and Run Command Selection
OFF	Inverter (Can be operated from frequency reference or control circuit terminal from analog input termi- nal.)
ON	Communications Option Card (Frequency reference and run command are enabled from communications Option Card.)

Jog Frequency Operation without Forward and Reverse Commands (FJOG/RJOG)

The FJOG/RJOG command functions operate the Inverter using jog frequencies by using the terminal ON/ OFF operation. When using the FJOG/RJOG commands, there is no need to input the run command.

To use this function, set one of the constants H1-01 to H1-10 (multi-function contact input terminal S3 to S12 function selection) to 12 (FJOG command) or 13 (RJOG command).

Related Constants

	Name		Setting Range	Factory Setting	Change during Opera- tion	Control Methods					
Con- stant Number	Display	Description				V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2	
d1-17	Jog frequency reference	The frequency reference when the jog frequency reference selec-	0 to	6.00 Hz	Yes	Q	Q	Q	Q	Q	
	Jog Reference	tion, FJOG command, or RJOG command is ON.	400.00			,	,	,	,		

Multi-Function Contact Inputs (H1-01 to H1-10)

_		Control Methods						
Set- ting Value	Function	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2		
12	FJOG command (ON: Forward run at jog frequency d1-17)		Yes	Yes	Yes	Yes		
13	RJOG command (ON: Reverse run at jog frequency d1-17)	Yes	Yes	Yes	Yes	Yes		

Application Precautions

- Jog frequencies using FJOG and RJOG commands are given priority over other frequency references.
- When both FJOG command and RJOG commands are ON for 500 ms or longer at the same time, the Inverter stops according to the setting in b1-03 (stopping method selection).

Stopping the Inverter by Notifying Programming Device Errors to the Inverter (External Fault Function)

The external fault function performs the error contact output, and stops the Inverter operation if the Inverter peripheral devices break down or an error occurs. The digital operator will display EFx (External fault [input terminal Sx]). The x in EFx shows the terminal number of the terminal that input the external fault signal. For example, if an external fault signal is input to terminal S3, EF3 will be displayed.

To use the external fault function, set one of the values 20 to 2F in one of the constants H1-01 to H1-10 (multifunction contact input terminal S3 to S12 function selection).

Select the value to be set in H1-01 to H1-10 from a combination of any of the following three conditions.

- Signal input level from peripheral devices
- External fault detection method
- Operation during external fault detection

The following table shows the relationship between the combinations of conditions and the set value in H1- $\Box\Box$.

Set		Level lote 1.)		tion Method lote 2.)	Ope	eration During	g Error Detec	tion
Value	NO Con- tact	NC Con- tact	Constant Detection	Detection During Operation	Deceler- ate to Stop (Error)	Coast to Stop (Error)	Emer- gency Stop (Error)	Continue Operation (Warning)
20	Yes		Yes		Yes			
21		Yes	Yes		Yes			
22	Yes			Yes	Yes			
23		Yes		Yes	Yes			
24	Yes		Yes			Yes		
25		Yes	Yes			Yes		
26	Yes			Yes		Yes		
27		Yes		Yes		Yes		
28	Yes		Yes				Yes	
29		Yes	Yes				Yes	
2A	Yes			Yes			Yes	
2B		Yes		Yes			Yes	
2C	Yes		Yes					Yes
2D		Yes	Yes					Yes
2E	Yes			Yes				Yes
2F		Yes		Yes				Yes

Note 1. Set the input level to detect errors using either signal ON or signal OFF. (NO contact: External fault when ON; NC contact: External fault when OFF).

2. Set the detection method to detect errors using either constant detection or detection during operation.

Constant detection: Detects while power is supplied to the Inverter. Detection during operation: Detects only during Inverter operation. 6

Monitor Constants

This section explains the analog monitor and pulse monitor constants.

Using the Analog Monitor Constants

This section explains the analog monitor constants.

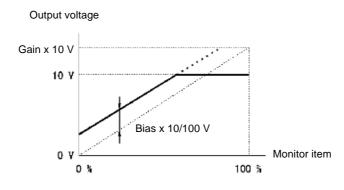
■Related Constants

	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
H4-01	Monitor selection (ter- minal FM)	Sets the number of the monitor item to be output $(U1-\Box\Box)$ from terminal FM.	1 to 45	2	No	А	А	А	А	А
Terminal FM Sel	4, 10 to 14, 25, 28, 34, 39, 40 cannot be set. 29 to 31 and 41 are not used.									
	Gain (termi- nal FM)	Sets the multi-function analog out- put 1 voltage level gain.	0.00 to							
H4-02	Terminal FM Gain	Sets whether the monitor item out- but will be output in multiples of 10 V. The maximum output from the ter- ninal is 10 V. A meter calibration function is available. Sets the multi-function analog out-	2.50 (0 to 1000.0)	1.00 (100%)	Yes	Q	Q	Q	Q	Q
	Bias (termi- nal FM)	Sets the multi-function analog out- put 1 voltage level bias.								
H4-03	Terminal FM Bias	Sets output characteristic up/down parallel movement as a percentage of 10 V. The maximum output from the ter- minal is 10 V. A meter calibration function is available.	-10.0 to +10.0 (-100.0 to 100.0)	0.0% (0.0%)	Yes	А	A	A	А	А
H4-04	Monitor selection (ter- minal AM)	Sets the number of the monitor item to be output $(U1-\Box\Box)$ from terminal AM.	1 to 45	3	No	А	А	А	А	А
	Terminal AM Sel	4, 10 to 14, 25, 28, 34, 39, 40 cannot be set. 29 to 31 and 41 are not used.								
	Gain (termi- nal AM)	Set the voltage level gain for multi- function analog output 2.								
H4-05	Terminal AM Gain	Set the number of multiples of 10 V to be output as the 100% output for the monitor items. The maximum output from the terminal is 10 V. A meter calibration function is avail- able.	0.00 to 2.50 (0 to 1000.0)	0.50 (200%)	Yes	Q	Q	Q	Q	Q
	Bias (termi- nal AM)	Sets the multi-function analog out- put 2 voltage level bias. Sets output characteristic up/down	10.0 to							
H4-06	Terminal AM Bias	Sets output characteristic up/down parallel movement as a percentage of 10 V. The maximum output from the ter- minal is 10 V. A meter calibration function is available.	-10.0 to +10.0 (0 to 1000.0)	0.0% (0.0%)	Yes	Α	А	А	A	А

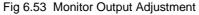
	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
H4-07	Analog out- put 1 signal level selec- tion AO Level Select1	Sets the signal output level for multi-function output 1 (terminal FM) 0: 0 to +10 V output 1: 0 to ±10 V output	0 or 1	0	No	А	А	A	А	A
F4-01	Channel 1 monitor selection AO Ch1 Select	Effective when the Analog Monitor Card is used. Monitor selection: Set the number of the monitor item to be output. (U1-□□)	1 to 45	2	No	А	А	А	А	А
F4-02	Channel 1 gain AO Ch1 Gain	Gain: Set the multiple of 10 V for output- ting monitor items. 4, 10 to 14, 25, 28, 34, 39, 40 cannot	0.00 to 2.50	1.00	Yes	А	А	А	А	А
F4-03	Channel 2 monitor selection	be set. 29 to 31 and 41 are not used. When the AO-12 Analog Monitor Card is used, outputs of \pm 10 V are possible. To output \pm 10 V, set F4- 07 or F4-08 to 1. When the AO-08 Analog Monitor Card is used, only	1 to 45	3	No	А	А	A	A	А
	AO Ch2 Select									
F4-04	Channel 2 gain	outputs of 0 to +10 V are possible. A meter calibration function is available.	0.00 to 2.50	0.50	Yes	А	А	А	А	А
F4-05	AO Ch2 Gain Channel 1 output moni- tor bias AO Ch1 Bias	Sets the channel 1 item bias to 100%/10 V when the analog moni- tor card is used.	-10.0 to 10.0	0.0	Yes	A	A	А	А	А
F4-06	Channel 2 output moni- tor bias AO Ch2 Bias	Sets the channel 2 item bias to 100%/10 V when the analog moni- tor card is used.	-10.0 to 10.0	0.0	Yes	A	A	А	А	А
F4-07	Analog out- put signal level for channel 1	0: 0 to 10 V 1: -10 to +10 V	0 or 1	0	No	А	А	А	А	А
	AO Opt Level Sel									
F4-08	Analog out- put signal level for channel 2	0: 0 to 10 V 1: -10 to +10 V	0 or 1	0	No	А	А	А	А	А
	AO Opt Level Sel									

Selecting Analog Monitor Items

The digital operator monitor items (U1- $\Box\Box$ [status monitor]) are output from multi-function analog output terminals FM-AC and AM-AC. Refer to *Chapter 5 User Constants*, and set the values for the $\Box\Box$ part of U1- $\Box\Box$ (status monitor).


Alternatively, you can output monitor items (U1- $\Box\Box$ [status monitor]) from analog output option terminal channels 1 and 2 on analog monitor cards AO-08 and AO-12. Refer to the table of constants, and set the values.

Adjusting the Analog Monitor Items


Adjust the output voltage for multi-function analog output terminals FM-AC and AM-AC using the gain and bias in H4-02, H4-03, H4-05, and H4-06. Also, adjust the output voltage for output channels 1 and 2 of Analog Output Option Cards AO-08 and AO-12 using the gain and bias in F4-02, F4-04, and F4-06.

Adjusting the Meter

Display the data setting display for the gain and bias constants corresponding to the output channel of the Inverter Unit and the AO Option Card while the Inverter is stopped to output the following voltages to the analog monitor terminal, to enable meter adjusting while the Inverter is stopped.

10 V/100% monitor output × output gain + output bias

Switching Analog Monitor Signal Levels

Monitor items corresponding to 0 to ± 10 V output 0 to 10 V signals when the monitor value is positive (+), and 0 to -10 V signals when the monitor value is negative (-). For monitor items corresponding to 0 to ± 10 V, refer to *Chapter 5 User Constants*.

You can select the signal levels separately for multi-function analog output terminals and analog output option terminals.

INFO

Using Pulse Train Monitor Contents

This section explains pulse monitor constants.

Related Constants

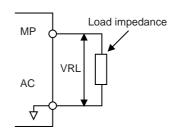
	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
Н6-06	Pulse train monitor selection	Select the pulse train monitor output items (value of the \Box part of U1- \Box).	1, 2, 5, 20, 24,	2	Yes	А	А	А	А	А
	Pulse Output Sel	There are two types of monitor items: Speed-related items and PID- related items.	36							
H6-07	Pulse train monitor scal- ing	Set the number of pulses output when speed is 100% in hertz. Set H6-06 to 2, and H6-07 to 0, to	0 to	1440 Hz	Yes	А	А	А	А	А
	PO Scaling	make the pulse train monitor output synchronously to the output fre- quency.	32000							

Selecting Pulse Monitor Items

Output digital operator monitor items (U1- $\Box\Box$ [status monitor]) from pulse monitor terminal MP-SC. Refer to *Chapter 5 User Constants*, and set the $\Box\Box$ part of U1- $\Box\Box$ (Status monitor). The possible monitor selections are limited as follows: U1-01, 02, 05, 20, 24, 36.

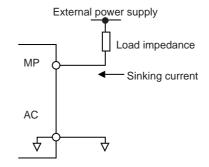
Adjusting the Pulse Monitor Items

Adjust the pulse frequency output from pulse monitor terminal MP-SC. Set the pulse frequency output when 100% frequency is output to H6-07.


Set H6-06 to 2, and H6-07 to 0, to output the frequency synchronous with the Inverter's U-phase output.

■Application Precautions

When using a pulse monitor constant, connect a peripheral device according to the following load conditions. If the load conditions are different, there is a risk of characteristic insufficiency or damage to the machinery.


Using a Sourcing Output

Output Voltage (Isolated) VRL (V)	Load Impedance (k Ω)
+5 V min.	1.5 k Ω min.
+8 V min.	3.5 k Ω min.
+10 V min.	$10 \mathrm{k}\Omega$ min.

Using a Sinking Input

External Power	12 VDC±10%,
Supply (V)	15 VDC±10%
Sink Current (mA)	16 mA Max

Individual Functions

This section explains the individual functions used in special applications.

Using MEMOBUS Communications

You can perform serial communications with MEMOCON-series Programmable Controllers (PLCs) or similar devices using the MEMOBUS protocol.

MEMOBUS Communications Configuration

MEMOBUS communications are configured using 1 master (PLC) and a maximum of 31 slaves. Serial communications between master and slave are normally started by the master, and the slave responds.

The master performs signal communications with one slave at a time. Consequently, you must set the address of each slave beforehand, so the master can perform signal communications using that address. Slaves receiving commands from the master perform the specified function, and send a response to the master.

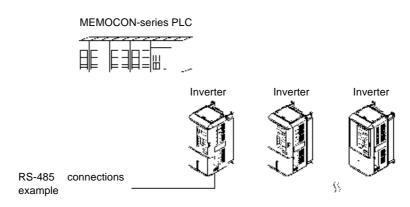


Fig 6.54 Example of Connections between PLC and Inverter

Communications Specifications

The MEMOBUS communications specifications are shown in the following table.

Item		Specifications				
Interface	RS-422, RS-48	S-422, RS-485				
Communications Cycle	Asynchronous	(Start-stop synchronization)				
	Baud rate:	Select from 1,200, 2,400, 4,800, 9,600, and 19,200 bps.				
Communications Parameters	Data length: 8 bits fixed					
Communications Parameters	Parity:	Select from even, odd, or none.				
	Stop bits:	1 bit fixed				
Communications Protocol	MEMOBUS (RTU mode only)					
Number of Connectable Units	31 units max. (v	when using RS-485)				

■Communications Connection Terminal

MEMOBUS communications use the following terminals: S+, S-, R+, and R-. Set the terminating resistance by turning ON pin 1 of switch S1 for the last Inverter only, as seen from the PLC.

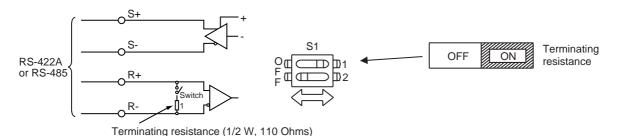
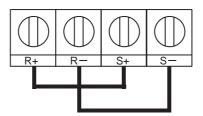



Fig 6.55 Communications Connection Terminal

Separate the communications cables from the main circuit cables and other wiring and power cables.
 Use shielded cables for the communications cables, connect the shield cover to the Inverter earth terminal, and arrange the terminals so that the other end is not connected to prevent operating errors due to noise.

3. When using RS-485 communications, connect S+ to R+, and S- to R-, on the Inverter exterior.

■Procedure for Communicating with the PLC

Use the following procedure to perform communications with the PLC.

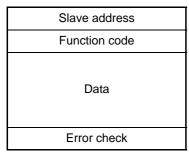
- 1. Turn OFF the power supply turned and connect the communications cable between the PLC and the Inverter.
- 2. Turn ON the power supply.
- 3. Set the required communications constants (H5-01 to H5-07) using the Digital Operator.
- 4. Turn OFF the power supply, and check that the Digital Operator display has completely disappeared.
- 5. Turn ON the power supply once again.
- 6. Perform communications with the PLC.

Set the timer on the master to monitor response time from the slave. Set the master so that if the slave does not respond to the master within the set time, the same command message will be sent from the master again.

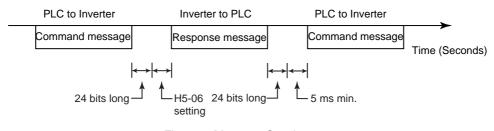
■Related Constants

	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
b1-01	Reference selection Reference Source	 Set the frequency reference input method. 0: Digital Operator 1: Control circuit terminal (analog input) 2: MEMOBUS communications 3: Option Card 4: Pulse train input 	0 to 4	1	No	Q	Q	Q	Q	Q
b1-02	Operation method selec- tion	Set the run command input method. 0: Digital Operator 1: Control circuit terminal	0 to 3	1	No	Q	Q	Q	Q	Q
	Run Source	(sequence input) 2: MEMOBUS communications 3: Option Card								
H5-01	Station address	Set the Inverter's node address.	0 to 20	1F	No	А	А	А	А	А
	Serial Comm Adr		*							
H5-02	Communica- tion speed selection	Set the baud rate for 6CN MEMO- BUS communications. 0: 1200 bps 1: 2400 bps	0 to 4	3	No	A	А	А	A	А
	Serial Baud Rate	2: 4800 bps 3: 9600 bps 4: 19200 bps								
H5-03	Communica- tion parity selection	Set the parity for 6CN MEMOBUS communications. 0: No parity	0 to 2	0	No	А	А	А	А	А
	Serial Com Sel	1: Even parity 2: Odd parity								
Н5-04	Stopping method after communica- tion error	Set the stopping method for com- munications errors. 0: Deceleration to stop using deceleration time in C1-02 1: Coast to stop	0 to 3	3	No	А	A	А	А	А
	Serial Fault Sel	 2: Emergency stop using deceleration time in C1-09 3: Continue operation 								
H5-05	Communica- tion error detection selection	Set whether or not a communica- tions timeout is to be detected as a communications error. 0: Do not detect.	0 or 1	1	No	А	А	А	А	А
	Serial Flt Dtct	1: Detect								
H5-06	Send wait time	Set the time from the Inverter	5 to 65	5 ms	No	А	А	А	А	А
115-00	Transmit WaitTIM	starts to send.		5 1115	110	п	п	Л	п	л
H5-07	RTS control ON/OFF	Select to enable or disable RTS control. 0: Disabled (RTS is always ON)	0 or 1	1	No	А	А	А	А	А
	RTS Control Sel	1: Enabled (RTS turns ON only when sending)								

* Set H5-01 to 0 to disable Inverter responses to MEMOBUS communications.


MEMOBUS communications can perform the following operations regardless of the settings in b1-01 and b1-02.

- Monitoring operation status from the PLC
- Setting and reading constants
- Resetting errors
- Inputting multi-function commands


An OR operation is performed between the multi-function commands input from the PLC and commands input from multi-function contact input terminals S3 to S7.

Message Format

In MEMOBUS communications, the master sends commands to the slave, and the slave responds. The message format is configured for both sending and receiving as shown below, and the length of data packets is changed by the command (function) contents.

The space between messages must support the following.

Slave Address

Set the Inverter address from 0 to 32. If you set 0, commands from the master will be broadcast (i.e., the Inverter will not return responses).

Function Code

The function code specifies commands. There are three function codes, as shown below.

Function Code		Command Message		Response Message	
(Hexadecimal)	Function	Min. (Bytes)	Max. (Bytes)	Min. (Bytes)	Max. (Bytes)
03H	Read storage register contents	8	8	7	37
08H	Loopback test	8	8	8	8
10H	Write multiple storage registers	11	41	8	8

Data

Configure consecutive data by combining the storage register address (test code for a loopback address) and the data the register contains. The data length changes depending on the command details.

Error Check

Errors are detected during communications using CRC-16. Perform calculations using the following method.

- 1. The factory setting for CRC-16 communications is usually 0, but when using the MEMOBUS system, set the factory setting to 1 (i.e., set all 16 bits to 1).
- 2. Calculate CRC-16 using MSB as slave address LSB, and LSB as the MSB of the final data.
- 3. Also calculate CRC-16 for response messages from the slaves, and compare them to the CRC-16 in the response messages.

MEMOBUS Message Example

An example of MEMOBUS command/response messages is given below.

Reading Storage Register Contents

Read the contents of the storage register only for specified quantities whose addresses are consecutive, starting from a specified address. The contents of the storage register are separated into higher place 8 bits and lower place 8 bits, and comprise the data within response messages in address order.

The following table shows message examples when reading status signals, error details, data link status, and frequency references from the slave 2 Inverter.

Com	mand Mess	age	
Slave Addre	SS	02H	Sla
Function Co	de	03H	Fu
Start	Higher place	00H	
Address	Lower place	20H	L
	Higher place	00H	ag
Quantity	Lower place	04H	N
CRC-16	Higher place	45H	ag
	Lower place	F0H	N

Response Message (During Normal Operation)			
Slave Addre	ss	02H	
Function Co	de	03H	
Data qu	antity	08H	
Lead stor-	Higher place	00H	
age register	Lower place	65H	
Next stor-	Higher place	00H	
age register	Lower place	00H	
Next stor- age register	Higher place	00H	
	Lower place	00H	
Next stor-	Higher place	01H	
age register	Lower place	F4H	
CRC-16	Higher place	AFH	
CKC-10	Lower place	82H	

Response Message (During Error)

Slave Address		02H
Function Code		83H
Error code		03H
CRC-16	Higher place	F1H
CKC-10	Lower place	31H

Loopback Test

The loopback test returns command messages directly as response messages without changing the contents to check the communications between the master and slave. You can set user-defined test code and data values.

The following table shows a message example when performing a loopback test with the slave 1 Inverter.

Command Message

Slave address		01H
Function coo	le	08H
Test Code	Higher place	00H
lest code	Lower place	00H
Data	Higher place	A5H
	Lower place	37H
CRC-16	Higher place	DAH
CRC-10	Lower place	8DH

Response Message (During Normal Operation)				
Slave address		01H		
Function cod	le	08H		
Test Code	Higher place	00H		
	Lower place	00H		
Data	Higher place	A5H		
	Lower place	37H		
CRC-16	Higher place	DAH		
	Lower place	8DH		

Response Message	
(During Error)	

(During Erior)			
Slave address		01H	
Function code		89H	
Error Code		01H	
CRC-16	Higher place	86H	
ene-10	Lower place	50H	

Writing to Multiple Storage Registers

Write the specified data to each specified storage register from the specified addresses. The written data must be in the following order in the command message: Higher place 8 bits, then lower place 8 bits, in storage register address order.

The following table shows an example of a message when forward operation has been set at a frequency reference of 60.0 Hz in the slave 1 Inverter by the PLC.

Command Message				
Slave Addre	SS	01H		
Function Co	de	10H		
Start	Higher place	00H		
Address	Lower place	01H		
Quantity	Higher place	00H		
Quantity	Lower place	02H		
No. of data		04H		
Lead data	Higher place	00H		
	Lower place	01H		
Next data	Higher place	02H		
IVEXt data	Lower place	58H		
CRC-16	Higher place	63H		
CRC-10	Lower place	39H		

Response Message (During Normal Operation)				
Slave Addre	ss	01H		
Function Co	de	10H		
Start	Higher place	00H		
Address	Lower place	01H		
Quantity	Higher place	00H		
Quantity	Lower place	02H		
CRC-16	Higher place	10H		
CKC-10	Lower place	08H		

Response Message
(During Error)

Slave Address		01H
Function Code		90H
Error code		02H
CRC-16	Higher place	CDH
CKC-10	Lower place	C1H

Set the number of data specified using command messages as quantity of specified messages x 2. Handle response messages in the same way.

■Data Tables

The data tables are shown below. The types of data are as follows: Reference data, monitor data, and broadcast data.

Reference Data

The reference data table is shown below. You can both read and write reference data.

Register No.	Contents							
0000H	Not used							
	Frequency ref	erence						
	Bit 0	Run/stop command 1: Run 0: Stop						
	Bit 1	Forward/reverse operation 1: Reverse 0: Forward						
	Bit 2	External fault 1: Error (EFO)						
	Bit 3	Fault reset 1: Reset command						
	Bit 4	ComNet						
	Bit 5	ComCtrl						
	Bit 6	Multi-function input command 3						
0001H	Bit 7	Multi-function input command 4						
	Bit 8	Multi-function input command 5						
	Bit 9	Multi-function input command 6						
	Bit A	Multi-function input command 7						
	Bit B	Multi-function input command 8						
	Bit C	Multi-function input command 9						
	Bit D	Multi-function input command 10						
	Bit E	Multi-function input command 11						
	Bit F	r i i i r i r i						
0002H	Frequency reference (Set units using constant o1-03)							
0003H	Not used							
0004H	-	Torque reference						
0005H	Torque compe							
0006H 0007H	-	PID target value						
0007H		Analog output 1 setting (-11 V/-1540 to 10 V/1540)						
00081	Analog output 2 setting (-11 V/-1540 to 11 V/1540) Multi-function contact output setting							
	Bit 0	Contact output (terminal M1-M2) 1: ON 0: OFF						
	Bit 0 Bit 1							
		Contact output (terminal M3-M4) 1: ON 0: OFF						
	Bit 2	Contact output (terminal M5-M6) 1: ON 0: OFF						
0009H	Bit 3	PHC3(Contact P3-C3) 1: ON 0: OFF						
	Bit 4	PHC4(Contact P4-C4) 1: ON 0: OFF						
	Bit 5	Not used						
	Bit 6	Set error contact (terminal MA-MC) output using bit 7. 1: ON 0: OFF						
	Bit 7	Error contact (terminal MA-MC) 1: ON 0: OFF						
	Bits 8 to F	Not used						
000AH to 000EH	Not used							

Register No.	Contents			
	Reference sele	Reference selection settings		
	Bit 0	Not used		
	Bit 1	Use MEMOBUS 0006H PID target value		
000FH	Bits 2 to B	Not used		
	С	Broadcast data terminal S5 input 1: Enabled 0: Disabled		
	D	Broadcast data terminal S6 input 1: Enabled 0: Disabled		
	Е	Broadcast data terminal S7 input 1: Enabled 0: Disabled		
	F	Broadcast data terminal S8 input 1: Enabled 0: Disabled		

Note Write 0 to all unused bits. Also, do not write data to reserved registers.

Monitor Data

The following table shows the monitor data. Monitor data can only be read.

Register No.	Contents						
	Inverter status						
	Bit 0	Operation 1: Operating 0: Stopped					
	Bit 1	Reverse operation 1: Reverse operation 0: Forward operation					
	Bit 2	Inverter startup complete 1: Completed 2: Not completed					
	Bit 3	Error 1: Error					
002011	Bit 4	Data setting error 1: Error					
0020H	Bit 5	Multi-function contact output 1 (terminal M1 - M2) 1: ON 0: OFF					
	Bit 6	Multi-function contact output 2 (terminal M3 - M4) 1: ON 0: OFF					
	Bit 7	Multi-function contact output 3 (terminal M5 - M6) 1: ON 0: OFF					
	Bit 8	Multi-function PHC output 3 (terminal P3 - C3) 1: ON 0: OFF					
	Bit 9	Multi-function PHC output 4 (terminal P4 - C4) 1: ON 0: OFF					
	Bits A and B	Not used					
	Error details						
	Bit 0	Overcurrent (OC) Ground fault (GF)					
	Bit 1	Main circuit overvoltage (OV)					
	Bit 2	Inverter overload (OL2)					
	Bit 3	Inverter overheat (OH1, OH2)					
	Bit 4	Injection brake transistor resistance overheat (rr, rH)					
	Bit 5	Fuse blown (PUF)					
	Bit 6	PID feedback reference lost (FbL)					
0021H	Bit 7	External fault (EF, EFO)					
0021H	Bit 8	Hardware error (CPF)					
	Bit 9	Motor overload (OL1), overtorque 1 (OL3) detected, or overtorque 2 (OL4) detected					
	Bit A	PG broken wire detected (PGO), Overspeed (OS), Speed deviation (DEV)					
	Bit B	Main circuit undervoltage (UV) detected					
	DitC	Main circuit undervoltage (UV1), control power supply error (UV2), inrush preven-					
	Bit C	tion circuit error (UV3), power loss					
	Bit D	SPO output phase open, SPI output phase open					
	Bit E	MEMOBUS communications error (CE)					
	Bit F	Operator disconnected (OPR)					
	Data link statu	S					
	Bit 0	Writing data					
	Bit 1	Not used					
0022H	Bit 2	Not used					
	Bit 3	Upper and lower limit errors					
	Bit 4	Data integrity error					
	Bits 5 to F	Not used					
0023H	Frequency refe	uency reference (U1-01)					
0024H	Output freque	• • •					
0025H	Output voltage	e reference (U1-06)					
0026H	Output current	(U1-03)					
0027H	Output power	(U1-08)					
0028H	Torque referen	ce (U1-09)					

Register No.	Contents						
0029H	Not used						
002AH	Not used						
	Sequence input status						
	Bit 0						
	Bit 1	1: Control circuit terminal S2 ON					
	Bit 2	1: Control circuit terminal S3 ON					
	Bit 3	1: Control circuit terminal S4 ON					
	Bit 4	1: Control circuit terminal S5 ON					
	Bit 5	1: Control circuit terminal S6 ON					
002BH	Bit 6	1: Control circuit terminal S7 ON					
	Bit 7	1: Control circuit terminal S8 ON					
	Bit 8	1: Control circuit terminal S9 ON					
	Bit 9	1: Control circuit terminal S10 ON					
	Bit A	1: Control circuit terminal S11 ON					
	Bit B	1: Control circuit terminal S12 ON					
	Bits C to F	Not used					
	Inverter status						
	Bit 0	Operation 1: Operat	ing				
	Bit 1	Zero speed 1: Zero s					
	Bit 2	Frequency matching 1: Matche					
	Bit 3						
		User-defined speed matching 1: Matche	ed				
	Bit 4 Bit 5	Frequency detection 1 Frequency detection 2					
			11				
002011	Bit 6		completed				
002CH	Bit 7	Low voltage detection 1: Detect					
	Bit 8		er output baseblock				
	Bit 9	Frequency reference mode 1: Not co	mmunications 0: Communications				
	Bit A	Run command mode 1: Not co	mmunications 0: Communications				
	Bit B	Overtorque detection 1: Detected	ed				
	Bit C	Frequency reference lost 1: Lost					
	Bit D	Retrying error 1: Retryi					
	Bit E	Error (including MEMOBUS communications time-out) 1:Error occurred					
	Bit F	MEMOBUS communications time-out 1: Timed out					
	Multi-function	contact output status					
	Bit 0	Multi-function contact output 1 (terminal M1 - M2) 1: ON 0: OFF					
	Bit 1	Multi-function contact output 2 (terminal M3 - M4) 1: ON 0: OFF					
002DH	Bit 2	Multi-function contact output 3 (terminal M5 - M6) 1: ON 0: OFF					
	Bit 3	Multi-function PHC output 3 (terminal P3 - C3) 1: ON 0: OFF					
	Bit 4	Multi-function PHC output 4 (terminal P4 - 0	C4) 1: ON 0: OFF				
	Bits 5 to F						
002EH - 0030H	Not used						
0031H	Main circuit DO	2 voltage					
0032H	Torque monitor						
0033H	Output power (U1-08)						
0034H - 0037H	Not used						
0038H	PID feedback quantity (Input equivalent to 100%/Max. output frequency; 10/1%; without sign)						
0039H	PID input quantity (±100%/±Max. output frequency; 10/1%; with sign)						
003AH	PID output quantity (±100%/±Max. output frequency; 10/1%; with sign)						
003BH	CPU software number						
003CH	Flash software number						

Register No.	Contents			
	Communication	ns error details		
	Bit 0	CRC error		
	Bit 1	Invalid data length		
	Bit 2	Not used		
003DH	Bit 3	Parity error		
	Bit 4	Overrun error		
	Bit 5	Framing error		
	Bit 6	Time-out		
	Bits 7 to F	Not used		
003EH	kVA setting			
003FH	Control method			

Note Communications error details are stored until an fault reset is input (you can also reset while the Unit is operating).

Broadcast Data

The following table shows the broadcast data. You can also write this data.

Register Address	Contents				
	Operation signal				
	Bit 0	Run command 1: Operating 0: Stopped			
	Bit 1	Reverse operation command 1: Reverse 0: Forward			
	Bits 2 and 3	Not used			
	Bit 4	External fault 1: Error (set using H1-01)			
0001H	Bit 5	Fault reset 1: Reset command (set using H1-02)			
	Bits 6 to B	Not used			
	Bit C	Multi-function contact input terminal S5 input			
	Bit D	Multi-function contact input terminal S6 input			
	Bit E	Multi-function contact input terminal S7 input			
	Bit F	Multi-function contact input terminal S8 input			
0002H	Frequency ref- erence	130000/100%			

Note Bit signals not defined in the broadcast operation signals use local node data signals continuously.

■ENTER Command

When writing constants to the Inverter from the PLC using MEMOBUS communications, the constants are temporarily stored in the constant data area in the Inverter. To enable these constants in the constant data area, use the ENTER command.

There are two types of ENTER commands: ENTER commands that enable constant data in RAM, and ENTER commands that write data to EEPROM (non-volatile memory) in the Inverter at the same time as enabling data in RAM.

The following table shows the ENTER command data. ENTER command data can only be written.

The ENTER command is enabled by writing 0 to register number 0900H or 0910H.

Register No.	Contents		
0900H	Write constant data to EEPROM		
0910H	Constant data is not written to EEPROM, but refreshed in RAM only.		

The maximum number of times you can write to EEPROM using the Inverter is 100 thousand. Do not frequently execute ENTER commands (0900H) written to EEPROM.

The ENTER command registers are write-only. Consequently, if reading these registers, the register address will become invalid (Error code: 02H).

■Error Codes

Error Code	Contents				
01H	Function code error A function code other than 03H, 08H, or 10H has been set by the PLC.				
02H	Invalid register number errorThe register address you are attempting to access is not recorded anywhere.With broadcast sending, a start address other than 0000H, 0001H, or 0002H has been set.				
03H	Invalid quantity errorThe number of data packets being read or written is outside the range 1 to 16.In write mode, the number of data packets in the message is not No. of packets x 2.				
21H	 Data setting error A simple upper limit or lower limit error has occurred in the control data or when writing constants. When writing constants, the constant setting is invalid. 				
22Н	 Write mode error Attempting to write constants from the PLC during operation. Attempting to write via ENTER commands from the PLC during operation. Attempting to write constants other than A1-00 to A1-05, E1-03, or 02-04 when warning alarm CPF03 (defective EEPROM) has occurred. Attempting to write read-only data. 				
23Н	 Writing during main circuit undervoltage (UV) error Writing constants from the PLC during UV (main circuit undervoltage) alarm. Writing via ENTER commands from the PLC during UV (main circuit undervoltage) alarm. 				
24H	Writing error during constants processing Attempting to write constants from the PLC while processing constants in the Inverter.				

The following table shows MEMOBUS communications error codes.

■Slave Not Responding

In the following cases, the slave will ignore the write function. If the slave address specified in the command message is 0, all slaves execute the write function, but do not return response messages to the master.

- When a communications error (overrun, framing, parity, or CRC-16) is detected in the command message.
- When the slave address in the command message and the slave address in the Inverter do not agree.
- When the data that configures the message and the data time length exceeds 24 bits.
- When the command message data length is invalid.

Application Precautions

Set a timer in the master to monitor response time from the slaves. Make the setting so that if no response is sent to the master from the slave within the set time, the same command message is sent again from the master.

■Self-Diagnosis

The Inverter has a built-in function for self-diagnosing the operations of serial communications interface circuits. This function is called the self-diagnosis function. The self-diagnosis function connects the communications parts of the send and receive terminals, receives the data sent by the Inverter, and checks if communications are being performed normally.

Perform the self-diagnosis function using the following procedure.

- 1. Turn ON the power supply to the Inverter, and set 67 (communications test mode) in constant H1-05 (Terminal S7 Function Selection).
- 2. Turn OFF the power supply to the Inverter.
- 3. Perform wiring according to the following diagram while the power supply is turned OFF.
- 4. Turn ON the terminating resistance. (Turn ON pin 1 on DIP switch 1.)
- 5. Turn ON the power supply to the Inverter again.

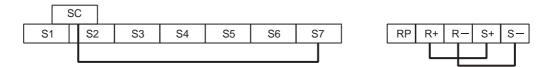


Fig 6.57 Details of Communications Terminals

"Pass" will be displayed if self-diagnosis is completed without an error occurring.

If an error occurs, a CE (MEMOBUS communications error) alarm will be displayed on the Digital Operator, the error contact output will be turned ON, and the Inverter operation ready signal will be turned OFF.

Using the Timer Function

Multi-function contact input terminals S3 to S7 can be designated as timer function input terminals, and multi-function output terminals M1-M2, M3-M4, and M5-M6 can be designated as timer function output terminals. By setting the delay time, you can erase chattering from the sensors and switches.

- Set one of the constants H1-01 to H1-10 (multi-function contact input terminal S3 to S12) to 18 (timer function input).
- Set H2-01 to H2-03 (multi-function output terminals M1-M2, M3-M4, M5-M6, P3-C3, and P4-C4 function selection) to 12 (timer function output).

Related	Constants
---------	-----------

Con- stant Number	Name		Setting Range	Factory Setting	Change during Opera- tion	Control Methods				
	Display	Description				V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
b4-01	Timer function ON-delay time	Sets the timer function output ON-delay time (dead band) for the timer function input, in 1-sec- ond units. Enabled when a timer function is set in H1- $\Box\Box$ or H2- $\Box\Box$.	0.0 to 300.0	0.0 s	No	А	А	А	А	А
	Delay-ON Timer									
b4-02	Timer function OFF-delay time Delay-OFF Timer	Sets the timer function output OFF-delay time (dead band) for the timer function input, in 1-sec- ond units. Enabled when a timer function is set in H1- $\Box\Box$ or H2- $\Box\Box$.	0.0 to 300.0	0.0 s	No	А	А	А	А	А

■Setting Example

When the timer function input ON time is longer than the value set in b4-01, the timer output function is turned ON. When the timer function input OFF time is longer than the value set in b4-02, the timer output function is turned OFF. An example of timer function operation is given in the following diagram.

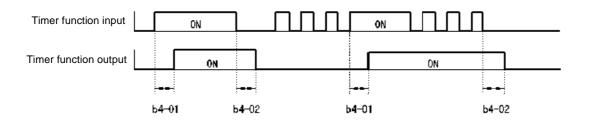


Fig 6.58 Timer Function Operation Example

Using PID Control

PID control is a method of making the feedback value (detection value) match the set target value. By combining proportional control (P), integral control (I), and derivative control (D), you can even control targets (machinery) with play time.

The characteristics of the PID control operations are given below.

- P control Outputs the amount of operation proportional to the deviation. You cannot, however, set the deviation to zero using P control alone.
- I control Outputs the amount of operation that integrates the deviation. Used for matching feedback value to the target value. I control is not suited, however, to rapid variations.
- D control Outputs the amount of operation derived from the deviation. Can respond promptly to rapid variations.

■PID Control Operation

To understand the differences between each PID control operation (P, I, and D, the variation in the amount of operation (output frequency) is as shown in the following diagram when the deviation (i.e., the difference between the target value and feedback value) is fixed.

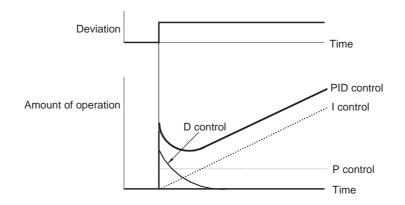


Fig 6.59 PID Control Operation

■PID Control Applications

The following table shows examples of PID control applications using the Inverter.

Applica- tion	Control Details	Example of Sen- sor Used
Speed Con- trol	 Feeds back machinery speed information, and matches speed to the target value. Inputs speed information from other machinery as the target value, and performs synchronous control using the actual speed feedback. 	Tachometer genera- tor
Pressure Control	Feeds back pressure information, and performs constant pressure control.	Pressure sensor
Flow Rate Control	Feeds back flow rate information, and controls the flow rate highly accurately.	Flow rate sensor
Tempera- ture Con- trol	Feeds back temperature information, and performs temperature adjustment control by rotating the fan.	ThermocoupleThermistor

■Related Constants

_	Name				Change		Cor	trol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
b5-01	PID control mode selection	 0: Disabled 1: Enabled (Deviation is D- controlled.) 2: Enabled (Feedback value is D- controlled.) 3: PID control enabled (frequency reference + PID output, D control of deviation) 4: PID control enabled (frequency reference + PID output, D control of feedback value). 	0 to 4	0	No	A	A	А	A	А
b5-02	Proportional gain (P) PID Gain	Sets P-control proportional gain as a percentage. P-control is not performed when the setting is 0.00.	0.00 to 25.00	1.00	Yes	А	А	А	А	А
b5-03	Integral (I) time	Sets I-control integral time in 1- second units.	0.0 to	1.0 s	Yes	А	A	А	А	А
	PID I Time	I-control is not performed when the setting is 0.0.	360.0					A A A A		
b5-04	Integral (I) limit PID I Limit	Sets the I-control limit as a per- centage of the maximum output frequency.	0.0 to 100.0	100.0%	Yes	А	А	А	А	А
b5-05	Derivative (D) time PID D Time	Sets D-control derivative time in 1-second units. D-control is not performed when	0.00 to 10.00	0.00 s	Yes	А	А	А	А	А
b5-06	PID limit PID Limit	the setting is 0.00. Sets the limit after PID-control as a percentage of the maximum out- put frequency.	0.0 to 100.0	100.0%	Yes	А	А	A	А	А
b5-07	PID offset adjustment PID Offset	Sets the offset after PID-control as a percentage of the maximum output frequency.	-100.0 to +100.0	0.0%	Yes	A	A	А	А	А
b5-08	PID primary delay time con- stant PID Delay Time	Sets the time constant for low pass filter for PID-control outputs in 1-second units. Not usually necessary to set.	0.00 to 10.00	0.00 s	Yes	А	А	А	А	А
b5-09	PID output characteristics selection Output Level Sel	Select forward/reverse for PID output. 0: PID output is forward. 1: PID output is reverse (highlights the output code)	0 or 1	0	No	А	А	А	А	А
b5-10	PID output gain Output Gain	Sets output gain.	0.0 to 25.0	1.0	No	А	А	А	А	А
b5-11	PID reverse output selection Output Rev Sel	 0: 0 limit when PID output is negative. 1: Reverses when PID output is negative. 0 limit when reverse prohibit is selected using b1-04. 	0 or 1	0	No	A	A	A	A	А

	Name				Change		Con	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
b5-12	Selection of PID feedback command loss detection	 No detection of loss of PID feedback. Detection of loss of PID feedback. Operation continues during 								
	Fb los Det Sel	 detection, with the malfunctioning contact not operating. 2: Detection of loss of PID feedback. Coasts to stop during detection, and fault contact operates. 	0 to 2	0	No	A	Α	Α	A	Α
b5-13	PID feedback command loss detection level	Sets the PID feedback loss detec- tion level as a percent units, with the maximum output frequency at	0 to 100	0%	No	А	A	А	A	А
	Fb los Det Lvl	100%.								
b5-14	PID feedback command loss detection time	Sets the PID feedback loss detec- tion level in s units.	0.0 to 25.5	1.0 s	No	А	A	А	A	А
	Fb los Det Time									
b5-15	PID sleep func- tion operation level	Set the PID sleep function start level as a frequency.	0.0 to 400.0	0.0 Hz	No	А	А	А	А	А
	PID Sleep Level	iever us a nequency.	100.0							
b5-16	PID sleep oper- ation delay time	Set the delay time until the PID sleep function starts in seconds.	0.0 to 25.5	0.0 s	No	А	А	А	А	А
	PID Sleep Time									
b5-17	Accel/decel time for PID reference	Set the accel/decel time for PID reference in seconds.	0.0 to 25.5	0.0 s	No	А	А	А	А	А
	PID SFS Time									
H6-01	Pulse train input function selection	0: Frequency reference 1: PID feedback value 2: PID target value	0 to 2	0	No	А	А	А	А	А
	Pulse Input Sel	2. The target value								

	Name					Con	trol Me	thods	
Con- stant Number	Display	Description	Output Signal Level Dur- ing Multi-Function Ana- log Output	Min. Unit	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2
U1-24	PID feed- back value	Monitors the feedback value when PID control is used.	10 V: Max. frequency	0.01 %	А	А	А	А	А
01 24	PID Feed- back	The input for the max. frequency corresponds to 100%.	$(0 \text{ to } \pm 10 \text{ V possible})$						
U1-36	PID input volume	PID feedback volume Given as maximum frequency/	10 V: Max. frequency	0.01	А	А	А	pp c- r Flux Vec- tor Loo Vec tor A A A A A A	А
	PID Input	100%	$(0 \text{ to } \pm 10 \text{ V possible})$	%					
U1-37	PID output volume	PID control output Given as maximum frequency/	10 V: Max. frequency (0 to \pm 10 V possible)	0.01 %	А	А	А	А	А
	PID Output	100%	$(0.00 \pm 10^{\circ} \text{ possible})$						

	Name				Control Methods					
Con- stant Number	Display		Output Signal Level Dur- ing Multi-Function Ana- log Output	Min. Unit	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	
U1-38	PID com- mand PID Setpoint	PID command + PID command bias Given as maximum frequency/ 100%	10 V: Max. frequency	0.01 %	А	А	A	A	А	

Multi-Function Contact Inputs (H1-01 to H1-10)

			Cont	rol Me	thods	
Set- ting Value	Function	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2
19	PID control disable (ON: PID control disabled)	Yes	Yes	Yes	Yes	Yes
30	PID control integral reset (reset when reset command is input or when stopped during PID control)	Yes	Yes	Yes	Yes	Yes
31	PID control integral hold (ON: Hold)	Yes	Yes	Yes	Yes	Yes
34	PID soft starter	Yes	Yes	Yes	Yes	Yes
35	PID input characteristics switch	Yes	Yes	Yes	Yes	Yes

Multi-Function Analog Input (H3-05, H3-09)

-			Control Methods					
Set- ting Value	Function	Contents (100%)	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	
В	PID feedback	Maximum output frequency	Yes	Yes	Yes	Yes	Yes	
С	PID target value	Maximum output frequency	Yes	Yes	Yes	Yes	Yes	

■PID Control Methods

There are four PID control methods. Select the method by setting constant b5-01.

Set Value	Control Method
1	PID output becomes the Inverter output frequency, and D control is used in the difference between PID target value and feedback value.
2	PID output becomes the Inverter output frequency, and D control is used in the PID feedback value.
3	PID output is added as compensation value of the Inverter output frequency, and D control is used in the difference between PID target value and feedback value.
4	PID output is added as compensation value of the Inverter output frequency, and D control is used in the PID feedback value.

■PID Input Methods

Enable PID control using constant b5-01, and set the PID target value and PID feedback value.

PID Target Value Input Methods

Select the PID control target value input method according to the setting in b1-01 (Reference Selection). Normally, the frequency reference selected in b1-01 is the PID target value, but you can also set the PID target value as shown in the following table.

PID Target Input Method	Setting Conditions
Multi-Function Analog Ter- minal A2 Input	Set H3-05 or H3-09 to C (PID target value). Also, be sure to set H6-01 (pulse train input function selection) to 1 (PID feedback value).
MEMOBUS register 0006H	Set MEMOBUS bit 1 in register address 000FH to 1 to be able to use register number 0006H as the PID target value.
Pulse train input	Set H6-01 to 2 (PID target value).

PID Feedback Input Methods

Select one of the following PID control feedback input methods.

Input Method	Setting Conditions
Multi-function analog input	Set H3-09 (Multi-function Analog Input Terminal A2 Selection) or H3-05 (Multi-func- tion Analog Input Terminal A3 Function Selection) to B (PID feedback).
Pulse train input	Set H6-01 to 1 (PID feedback).

Adjust PID target value and PID feedback value using the following items.

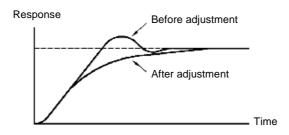
• Analog input: Adjust using the analog input terminal gain and bias.

• Pulse train input: Adjust using pulse train scaling, pulse train input gain, and pulse train input bias.

■PID Adjustment Methods

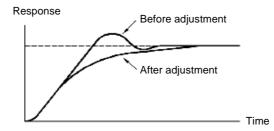
Use the following procedure to adjust PID while performing PID control and measuring the response waveform.

- 1. Set b5-01 (PID Control Mode Selection) to 1 or 2 (PID control enabled).
- 2. Increase b5-02 (Proportional Gain (P)) to within a range that does not vibrate.
- 3. Reduce b5-03 (Integral (I) time) to within a range that does not vibrate.
- 4. Increase b5-05 (Derivative (D) time) to within a range that does not vibrate.

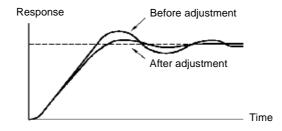

Individual Functions

■PID Fine Adjustment Methods

This section explains the fine adjustment of PID after setting the PID control constants.

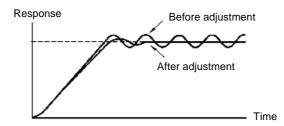

Suppressing Overshoot

If overshoot occurs, reduce derivative time (D), and increase integral time (I).


Set a Rapidly Stabilizing Control Condition

To rapidly stabilize the control even if overshoot occurs, reduce integral time (I), and lengthen derivative time (D).

Suppressing Long-cycle Vibration


If vibration occurs with a longer cycle than the integral time (I) set value, the integral operation is too strong. Lengthen the integral time (I) to suppress the vibration.

Suppressing Short Cycle Vibration

If vibration occurs when the vibration cycle is short, and the cycle is almost identical to the derivative time (D) set value, the differential operation is too strong. Shorten the derivative time (D) to suppress the vibration.

If vibration continues even when the derivative time (D) is set to 0.00 (D control disabled), reduce the proportional gain (P), or increase the PID primary delay time constant.

Setting Precautions

- In PID control, the b5-04 constant is used to prevent the calculated integral control value from exceeding a specified amount. When the load varies rapidly, Inverter response is delayed, and the machine may be damaged or the motor may stall. In this case, reduce the set value to speed up Inverter response.
- The b5-06 constant is used to prevent the arithmetic operation following the PID control calculation from exceeding a specified amount. Set taking the maximum output frequency to be 100%.
- The b5-07 constant is used to adjust PID control offset. Set in increments of 0.1%, taking the maximum output frequency to be 100%.
- Set the low pass filter time constant for the PID control output in b5-08. Enable this constant to prevent machinery resonance from occurring when machinery adhesive abrasion is great, or rigidity is poor. In this case, set the constant to be greater than the resonance frequency cycle. Increase this time constant to reduce Inverter responsiveness.
- Using b5-09, you can invert the PID output polarity. Consequently, if you increase the PID target value, you can apply this constant to applications to lower the Inverter output frequency.
- Using b5-10, you can apply gain to the PID control output. Enable this constant to adjust the amount of compensation if adding PID control output to the frequency reference as compensation.
- When PID control output is negative, you can use constant b5-11 to invert the Inverter. When b1-04 (Prohibition of Reverse Operation) is set to 1 (enabled), however, PID output limit is 0.
- With the Inverter, by setting an independent acceleration/deceleration time in constant b5-17, you can increase or decrease the PID target value using the acceleration/deceleration time. The acceleration/ deceleration function (constant C1) used normally, however, is allocated after PID control, so depending on the settings, resonance with PID control and hunting in the machinery may occur. If this happens, reduce constant C1 until hunting does not occur, and maintain the acceleration/deceleration time using b5-17. Also, you can disable the set value in b5-17 from the external terminals during operation using multi-function input set value 34 (PID soft starter).

■PID Control Block

The following diagram shows the PID control block in the Inverter.

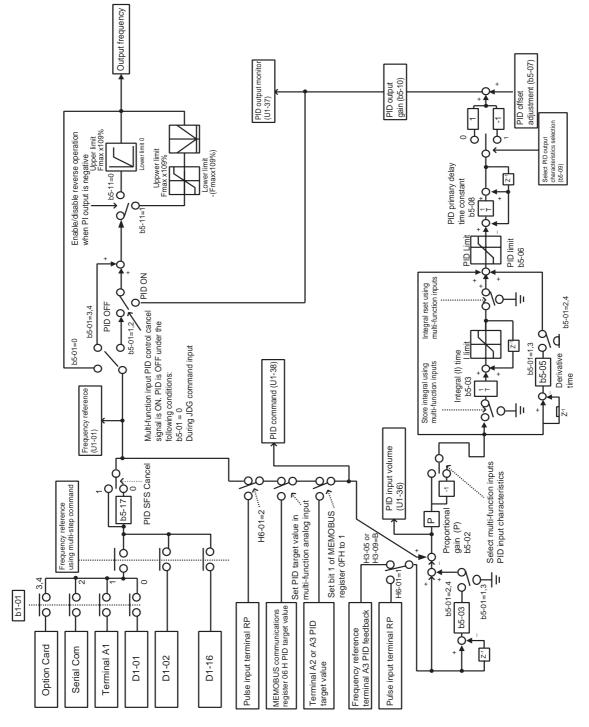


Fig 6.60 PID Control Block

6

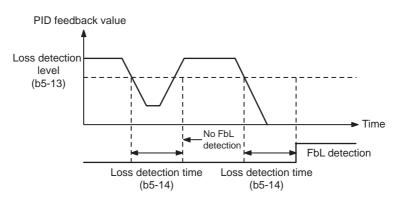
■PID Feedback Loss Detection

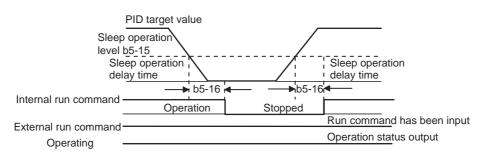
When performing PID control, be sure to use the PID feedback loss detection function. If PID feedback is lost, the Inverter output frequency may accelerate to the maximum output frequency.

When setting b5-12 to 1 and the status of the PID feedback value detection level in b5-13 is insufficient and continues for the time set in b5-14, an FbL (PID feedback reference lost) alarm will be displayed on the Digital Operator and Inverter operation will continue.

When b5-12 is set to 2, an FbL (PID feedback reference lost) error alarm will be displayed on the Digital Operator, the error contact will operate, and Inverter operation will be stopped.

The time chart for PID feedback loss detection (set b5-12 to 2) is shown below.




Fig 6.61 PID Feedback Loss Detection Time Chart

■PID Sleep

The PID sleep function stops the Inverter when the PID sleep function delay time continues while the PID control target value is at an insufficient level to operate the PID sleep function. When the PID sleep delay time continues and the PID control target value is above the PID sleep function operation level, Inverter operation will automatically resume.

When PID control is disabled, the PID sleep function is also disabled. When using the PID sleep function, select decelerate to stop or coast to stop as the stopping method.

The PID sleep time chart is shown below.

Energy-saving

To perform energy saving, set b8-01 (Energy Saving Mode Selection) to 1. Energy-saving control can be performed using both V/f control and open-loop vector control. The constants to be adjusted are different for each. In V/f control, adjust b8-04 to b8-06, and in vector control, adjust b8-02 and b8-03.

Related Constants

_	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
b8-01	Energy-saving mode selection Energy Save Sel	Select whether to enable or dis- able energy-saving control. 0: Disable 1: Enable	0 or 1	0	No	А	А	А	А	А
b8-02	Energy-saving gain Energy Save Gain	Set the energy-saving gain with the open-loop vector control method.	0.0 to 10.0	0.7 *1	Yes	No	No	A	A	A
b8-03	Energy-saving filter time con- stant Energy Save F.T	Set the energy-saving filter time constant with the open-loop vec- tor control method.	0.00 to 10.0	0.50 s *2	Yes	No	No	А	A	А
b8-04	Energy-saving coefficient Energy Save COEF	Set the maximum motor effi- ciency value. Set the motor rated capacity in E2-11, and adjust the value by 5% at a time until output power reaches a minimum value.	0.0 to 655.00	*3 *4	No	А	А	No	No	No
b8-05	Power detection filter time con- stant kW Filter Time	Set the time constant for output power detection.	0 to 2000	20 ms	No	A	A	No	No	No
b8-06	Search opera- tion voltage limiter Search V Limit	Set the limit value of the voltage control range during search opera- tion. Perform search operation to opti- mize operations using minute variations in voltage using energy-saving control. Set to 0 to disable the search operation. 100% is the motor base voltage.	0 to 100	0%	No	A	A	No	No	No
E2-02	Motor rated slip Motor Rated Slip	Sets the motor rated slip in Hz units. These set values will become the reference values for slip compen- sation. This constant is automatically set during autotuning.	0.00 to 20.00	2.90 Hz *4	No	А	А	А	А	A
E2-11	Motor rated output Mtr Rated Power	Set the rated output of the motor in units of 0.01 kW. This constant is automatically set during autotuning.	0.00 to 650.00	0.40 *3	No	Q	Q	Q	Q	Q

* 1. The factory setting is 1.0 when using V/f control with PG.

* 2. The factory setting is 2.00 s when Inverter capacity is 55 kW min. The factory setting will change when the control method is changed. (Open-loop vector 1 factory settings are given.)

* 3. The same capacity as the Inverter will be set by initializing the constants.

* 4. The factory settings depend on the Inverter capacity.

Adjusting Energy-saving Control

The method of adjustment during energy-saving control operations differs depending on the control method. Refer to the following when making adjustments.

V/f Control

In V/f control method, the voltage for optimum motor efficiency is calculated and becomes the output voltage reference.

- b8-04 (Energy-saving Coefficient) is set at the factory for motor use applied to the Inverter. If the motor capacity differs from the motor applied to the Inverter, set the motor capacity in E2-11 (Motor Rated Output). Also, adjust the output voltage in steps of 5 until it reaches minimum. The larger the energy-saving coefficient, the greater the output voltage.
- To improve response when the load fluctuates, reduce the power detection filter time constant b8-05. If b8-05 is set too small, however, motor rotations when the load is light may become unstable.
- Motor efficiency varies due to temperature fluctuations and differences in motor characteristics. Consequently, control motor efficiency online to optimize efficiency by causing minute variations in voltage using the search operation. Constant b8-06 (Search Operation Voltage Limiter) controls the range that control the voltage using the search operation. For 200 V Class Inverters, set the range to 100%/200 V, and for 400 V Class Inverters, set the range to 100%/400 V. Set to 0 to disable the search operation.

Vector Control

In vector control method, control the slip frequency so that motor efficiency is maximized.

- Taking the motor rated slip for the base frequency as optimum slip, calculate the optimum slip for motor efficiency for each frequency. In vector control, be sure to perform autotuning, and set the motor rated slip.
- If the motor performs hunting when using energy-saving control in vector control, reduce the set value in b8-02 (Energy-saving Gain), or increase the set value in b8-03 (Energy-saving Filter Time Constant).

Setting Motor Constants

In vector control method, the motor constants are set automatically using autotuning. If autotuning does not complete normally, set them manually.

Related Constants

	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
E2-01	Motor rated current Motor Rated FLA	Sets the motor rated current in 1 A units. These set values will become the reference values for motor protec- tion, torque limits and torque con- trol. This constant is automatically set during autotuning.	0.32 to 6.40 *2	1.90 A *1	No	Q	Q	Q	Q	Q
E2-02	Motor rated slip Motor Rated Slip	Sets the motor rated slip in Hz units. These set values will become the reference values for slip compen- sation. This constant is automatically set during autotuning.	0.00 to 20.00	2.90 Hz *1	No	А	A	A	А	А
E2-03	Motor no-load current No-Load Cur- rent	Sets the motor no-load current in 1 A units. This constant is automatically set during autotuning.	0.00 to 1.89 *3	1.20 A *1	No	А	А	А	А	А
E2-04	Number of motor poles Number of Poles	Sets the number of motor poles. This constant is automatically set during autotuning.	2 to 48	4 poles	No	No	Q	No	Q	Q
E2-05	Motor line-to- line resistance Term Resis- tance	Sets the motor phase-to-phase resistance in Ω units. This constant is automatically set during autotuning.	0.000 to 65.000	9.842 Ω *1	No	А	А	А	А	А
E2-06	Motor leak inductance Leak Induc- tance	Sets the voltage drop due to motor leakage inductance as a percent- age of the motor rated voltage. This constant is automatically set during autotuning.	0.0 to 40.0	18.2% *1	No	No	No	А	А	А
E2-07	Motor iron sat- uration coeffi- cient 1 Saturation Comp1	Sets the motor iron saturation coefficient at 50% of magnetic flux. This constant is automatically set during autotuning.	0.00 to 0.50	0.50	No	No	No	А	А	А
E2-08	Motor iron sat- uration coeffi- cient 2 Saturation Comp2	Sets the motor iron saturation coefficient at 75% of magnetic flux. This constant is automatically set during autotuning.	0.00 to 0.75	0.75	No	No	No	А	А	А
E2-10	Motor iron loss for torque com- pensation Tcomp Iron Loss	Sets motor iron loss in W units.	0 to 65535	14 W *1	No	А	А	No	No	No

* 1. The factory settings depend on Inverter capacity (the values shown are for a 200 V Class Inverter for 0.4 kW).

* 2. The setting range is 10% to 200% of the Inverter rated output current (the values shown are for a 200 V Class Inverter for 0.4 kW).

* 3. The setting range depends on Inverter capacity (the values shown are for a 200 V Class Inverter for 0.4 kW).

Manual Motor Constant Setting Methods

The motor constants settings methods are given below. Make (enter) settings referring to the motor test report.

Motor Rated Voltage Setting

Set E2-01 to the rated current on the motor nameplate.

Motor Rated Slip Setting

Set E2-02 to the motor rated slip calculated from the number of rated rotations on the motor nameplate.

Amount of motor rated slip = Motor rated frequency (Hz) - No. of rated rotations (min^{-1}) x No. of motor poles/120.

Motor No-Load Current Setting

Set E2-03 to the motor no-load current using the rated voltage and rated frequency. The motor no-load current is not normally written on the motor nameplate. Consult the motor manufacturer.

Factory setting is the no-load current value for a standard Yaskawa 4-pole motor.

Number of Motor Poles Setting

E2-04 is displayed only when V/f control method with PG is selected. Set the number of motor poles (number of poles) as written on the motor nameplate.

Motor Line-to-Line Resistance Setting

E2-05 is set automatically when performing motor line-to-line resistance autotuning. When you cannot perform tuning, consult the motor manufacturer for the line-to-line resistance value. Calculate the resistance from the line-to-line resistance value in the motor test report using the following formula, and then make the setting accordingly.

- E-type isolation: [Line-to line resistance (Ω) at 75°C of test report] × 0.92 (Ω)
- B-type isolation: [Line-to line resistance (Ω) at 75°C of test report] × 0.92 (Ω)
- F-type isolation: [Line-to line resistance (Ω) at 115°C of test report] × 0.87 (Ω)

Motor Leak Inductance Setting

Set the amount of voltage drop due to motor leak inductance in E2-06 using the percentage over the motor rated voltage. Make this setting when the high-speed motor inductance is small. If the inductance is not written on the motor nameplate, consult the motor manufacturer.

Motor Iron Saturation Coefficients 1 and 2 Settings

E2-07 and E2-08 are set automatically using autotuning.

Motor Iron Loss for Torque Compensation Setting

E2-10 is displayed only when in V/f control method. To increase the torque compensation accuracy when in V/f control method, set the motor iron loss in Watts.

Motor Mechanical Loss

When using flux vector control, adjust mechanical loss in the following cases. (There is normally no reason to make this adjustment.) The mechanical loss setting is used to compensate the torque.

- There is excessive torque loss from the motor bearings.
- There is excessive torque loss from a fan, pump, etc.

Setting the V/f Pattern

In V/f control method, you can set the Inverter input voltage and the V/f pattern as the need arises.

■Related Constants

_	Name				Change		Con	trol Me	ethods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
E1-01	Input volt- age setting	Set the Inverter input voltage in 1 volt. This setting is used as a reference value in protection functions.	155 to 255 *1	200 V *1	No	Q	Q	Q	Q	Q
	Input Voltage	In protection functions.	~1							
E1-03	V/f pattern selection	0 to E: Select from the 15 preset patterns.	0 to F	F	No	Q	Q	No	No	No
	V/F Selec- tion	F: Custom user-set patterns (Applicable for settings E1-04 to E1-10.)				×.	× ·			
E1-04	Max. output frequency		40.0 to	60.0 Hz	No	Q	Q	Q	Q	Q
L1-04	Max Frequency		400.0 ^{*5}	*2	NO	Q	Q	Q	Ŷ	Ŷ
E1-05	Max. voltage		0.0 to 255.0	200.0 V	No	Q	Q	Q	Q	Q
E1-05	Max Voltage		*1	*1*2	NO	Q	Q	Q	Q	Q
E1-06	Base frequency	Output voltage (V)	0.0 to	60.0 Hz	No	Q	Q	Q	Q	Q
L1-00	Base Frequency		400.0*5	*2	NO	Q	Q	Q	Q	Q
E1-07	Mid. output frequency	(91-94) (94) (61-92) (61-92) (61-92) (7-1	0.0 to	3.0 Hz	No	А	А	А	No	No
E1-07	Mid Frequency A	Frequency (Hz) To set V/f characteristics in a straight	400.0	*2	NO	А	л	А	NO	NO
E1-08	Mid. output frequency voltage	line, set the same values for E1-07 and E1-09. In this case, the setting for E1-08 will be disregarded.	0.0 to 255.0 *1	11.0 V *1 *2	No	А	А	А	No	No
	Mid Voltage A	Always ensure that the four frequencies are set in the following manner: E1-04 (FMAX) \geq E1-06 (FA) > E1-07	255.0	1.1.2						
E1-09	Min. output frequency	$(FB) \ge E1-09 (FMIN)$	0.0 to	0.5 Hz	No	0	0	0	٨	
E1-09	Min Frequency		400.0*5	*2	No	Q	Q	Q	А	Q
E1-10	Min. output frequency voltage		0.0 to 255.0 *1	2.0 V *1 *2	No	А	А	А	No	No
	Min Voltage		1							

	Name				Change		Con	trol Me	ethods	
Con- stant Number	Diamlay		Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
E1-11	Mid. output frequency 2		0.0 to	0.0 Hz	No	А	А	А	А	А
LI-II	Mid Frequency B		400.0*5	*3	NO	А	А	А	Л	Λ
E1-12	Mid. output frequency voltage 2	Set only to fine-adjust V/f for the output range. Normally, this setting is not required.	0.0 to 255.0	0.0 V *3	No	А	А	А	А	А
	Mid Voltage B		*1	.2						
E1 12	Base voltage		0.0 to	0.0 V	No	٨		0	0	
E1-13	Base Voltage		255.0 *1	*4	No	А	А	Q	Q	Q

* 1. These are values for a 200 V Class Inverter. Values for a 400 V Class Inverter are double.

* 2. The factory setting will change when the control method is changed. (Open-loop vector control factory settings are given.)

 $\ast~$ 3. The contents of constants E1-11 and E1-12 are ignored when set to 0.00.

* 4. E1-13 is set to the same value as E1-05 by autotuning.

* 5. The setting range is 0 to 66.0 for open-loop vector control 2.

Setting Inverter Input Voltage

Set the Inverter input voltage correctly in E1-01 to match the power supply voltage. This set value will be the standard value for the protection function and similar functions.

■Setting V/f Pattern

Set the V/f pattern in E1-03 when using V/f control (with or without a PG). There are two methods of setting the V/f pattern: Select one of the 15 pattern types (set value: 0 to E) that have been set beforehand, or set a user-defined V/f pattern (set value: F).

The factory setting for E1-03 is F. The contents of E1-03 when factory-set to F are the same as when E1-03 is set to 1.

Characteristic	c Application Set Value		Specifications
		0	50 Hz specifications
	This pattern is used in general applications.	1 (F)	60 Hz specifications
Constant Torque Characteristic	Used when the load torque is fixed, regard- less of rotation speed, for linear transport systems.	2	60 Hz specifications, voltage saturation at 50 Hz
	systems.	3	72 Hz specifications, voltage saturation at 60 Hz
		4	50 Hz specifications,× 3 decrement
Variable torque	This pattern is used for loads with torque proportional to two or three times the rota-	5	50 Hz specifications, \times 2 decrement
characteristic	tion speed, such as fans and pumps.	6	60 Hz specifications, \times 3 decrement
		7	60 Hz specifications, \times 2 decrement

To select one of the existing patterns, refer to the following table.

Characteristic	Application	Set Value	Specifications
	Select the high startup torque V/f pattern only in the following cases.	8	50 Hz specifications, medium startup torque
High Startup	 The wiring distance between Inverter and motor is large (approx. 150 m min.) A large torque is required at startup (ele- 	9	50 Hz specifications, large startup torque
Torque (See Note) [*]	vator loads, etc.)An AC reactor is inserted in the Inverter input or output.You are operating a motor that is less than optimum.	А	60 Hz specifications, medium startup torque
		В	60 Hz specifications, large startup torque
		С	90 Hz specifications, voltage saturation at 60 Hz
Fixed Output Operation	This pattern is used for frequencies of 60 Hz or higher. A fixed voltage is applied.	D	120 Hz specifications, voltage saturation at 60 Hz
		Е	180 Hz specifications, voltage saturation at 60 Hz

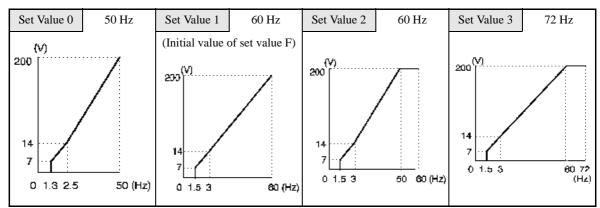
* The torque is protected by the fully automatic torque boost function, so normally there is no need to use this pattern.

When you select these patterns, the values of constants E1-04 to E1-10 are changed automatically. There are three types of values for E1-04 to E1-10, depending on the Inverter capacity.

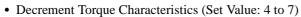
- 0.4 to 1.5 kW V/f pattern
- 2.2 to 45 kW V/f pattern
- 55 to 300 kW V/f pattern

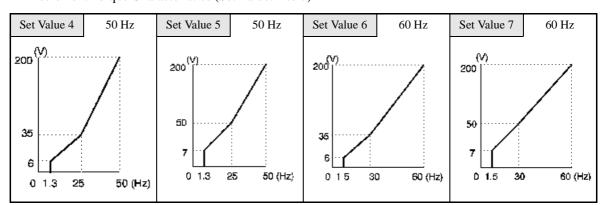
The characteristics diagrams for each are shown in the following pages.

6

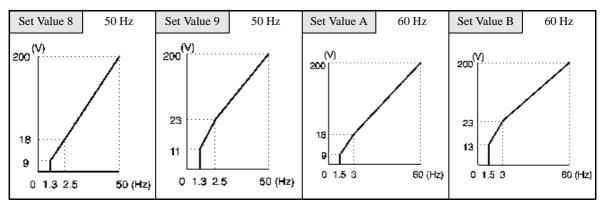

0.4 to 1.5 kW V/f Pattern

The diagrams show characteristics for a 200-V class motor. For a 400-V class motor, multiply all voltages by 2.

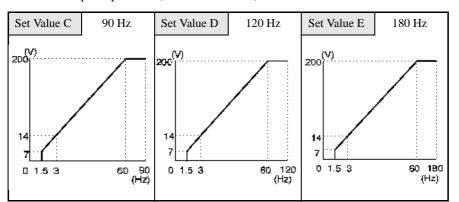

- 50 Hz Set Value 0 Set Value 1 60 Hz Set Value 2 60 Hz Set Value 3 72 Hz (Initial value of set value F) 200 (V) 200⁰ ~(V) 200 $\langle V \rangle$ 200 15 15 15 9 15 ġ. 9 9 D 1.5 3 50 60 (Hz) D 153 6072 (Hz) 0 1.3 2.5 50 (Hz) 0 1.5 3 60 (Hz) • Decrement Torque Characteristics (Set Value: 4 to 7) Set Value 4 50 Hz Set Value 5 50 Hz Set Value 6 60 Hz Set Value 7 60 Hz 200 ^{(V} 200 (V 200 200 50 50 35 35 9 9 8 8 60 (Hz) 30 0 1.5 60 (Hz) 0 1.3 25 50 (Hz) 0 1.3 25 50 (Hz) 0 1.5 30 • High startup torque (Set value 8: to b) Set Value 8 50 Hz 50 Hz 60 Hz Set Value 9 Set Value A Set Value B 60 Hz 200 200 200 N (V)200 24 24 19 19 15 13 11 11 0 1.5 3 80 (Hz) 0 1.5 3 0 1.3 2.5 50 (Hz) 60 (Hz) 0 1.3 2.5 60 (Hz) • Fixed Output Operation (Set Value: C to E) Set Value C 90 Hz Set Value D 120 Hz Set Value E 180 Hz (V)2001200 200] 15 15 15 9 9 9 0 1.5 3 0 1.5 3 60120 (Hz) 60 90 (Hz) 0153 60180 (Hz)
- Constant Torque Characteristics (Set Value: 0 to 3)


2.2 to 45 kW V/f Pattern

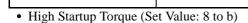
The diagrams show characteristics for a 200-V class motor. For a 400-V class motor, multiply all voltages by 2.



• Constant Torque Characteristics (Set Value: 0 to 3)



• Fixed Output Operation (Set Value: C to E)

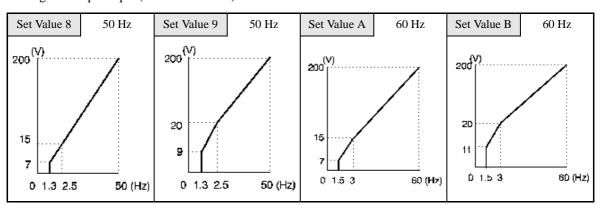


6

55 to 300 kW V/f Pattern

The diagrams show characteristics for a 200-V class motor. For a 400-V class motor, multiply all voltages by 2.

- Set Value 0 50 Hz Set Value 1 60 Hz Set Value 2 60 Hz Set Value 3 72 Hz (Initial value of set value F) (V 200 [200^(Y) 200` (V) 200 r 12 12 12 12 ð 6 θ 0 1.5 3 50 60 (Hz) 0 1.5 3 60 72 (Hz) 50 (Hz) 0 1.3 2.5 0 1.5 3 60 (Hz) • Decrement Torque Characteristics (Set Value: 4 to 7) 50 Hz Set Value 4 Set Value 5 50 Hz Set Value 6 60 Hz Set Value 7 60 Hz 200 ^(V) 200 200 (V (V)200 50 50 35 35 6 6 5 5
- Constant Torque Characteristics (Set Value: 0 to 3)


50 (Hz)

0.1.3

25

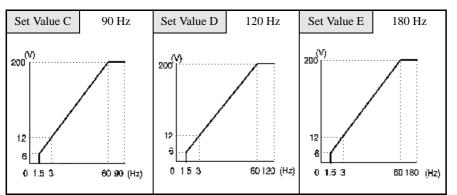
0 1.3

25

50 (Hz)

0 1.5

30


0 1.5

60 (Hz)

30

60 (Hz)

• Fixed Output Operation (Set Value: C to E)

When E1-03 is set to F (User-defined V/f pattern), you can set constants E1-04 to E1-10. If E1-03 is set to anything other than F, you can only refer to constants E1-04 to E1-10. If the V/f characteristics are linear, set E1-07 and E1-09 to the same value. In this case, E1-08 will be ignored.

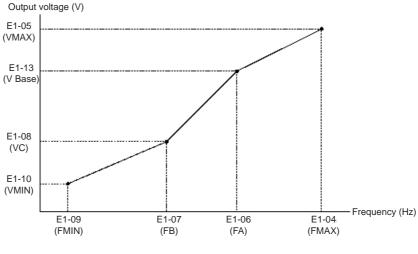


Fig 6.63 User-Set V/f Pattern

■Setting Precautions

When the setting is to user-defined V/f pattern, beware of the following points.

- When changing control method, constants E1-07 to E1-10 will change to the factory settings for that control method.
- Be sure to set the four frequencies as follows: E1-04 (FMAX) ≥ E1-06 (FA) > E1-07 (FB) ≥ E1-09 (FMIN)

♦ Torque Control

With flux vector control or open-loop vector control 2, the motor's output torque can be controlled by a torque reference from an analog input. Set d5-01 to 1 to control torque.

■Related Constants

	Name				Change		Cor	trol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
	Torque control selection	0: Speed control (C5-01 to C5- 07) 1: 0 to -10 V, no lower limit								
d5-01	Torq Control Sel	To use the function for switching between speed and torque control, set to 0 and set the multi-function input to "speed/torque control change."	0 or 1	0	No	No	No	No	А	А
	Torque reference delay time	Set the torque reference filter pri- mary delay time in ms units. This function can be used to	0 to							
d5-02	2 adjust the noise of the torque con- trol signal or the responsiveness 1000 0 ms [*] No with the host controller. When oscillation occurs during torque control, increase the set value.		No	No	No	No	А	А		
	Speed limit selection	Set the speed limit command method for the torque control mode.								
d5-03	Speed Limit Sel	 The analog input limit from a frequency reference Limited by d5-04 constant set- ting values. 	1 or 2	1	No	No	No	No	А	А
	Speed limit	Set the speed limit during torque control as a percentage of the								
d5-04	Speed Lmt Value	maximum output frequency. This function is enabled when d5- 03 is set to 2. Directions are as follows: +: Run command direction -: Opposite of run command	-120 to +120	0%	No	No	No	No	A	А
	Speed limit bias	Set the speed limit bias as a per-								
d5-05	Speed Lmt Bias	centage of the maximum output frequency. Bias is applied to the specified speed limit. It can be used to adjust the margin for the speed limit.	0 to 120	10%	No	No	No	No	А	А

	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
	Speed/torque control switching timer	Set the delay time from inputting the multi-function input "speed/ torque control change" (from ON to OFF or OFF to ON) until the control is actually changed in ms units.								
d5-06	Ref Hold Time	This function is enabled when the multi-function input "speed/ torque control change" is set. In the speed/torque control switch- ing timer, the analog inputs hold the values of when the "speed/ torque control change" changes. Always be sure to allow time for this process to finish completely.	0 to 1000	0 ms	No	No	No	No	A	Α
H3-04	Signal level selection (ter- minal A3) Term A3 Signal	0: 0 to ±10 V [11-bit + polarity (positive/ negative) input] 1: 0 to ±10 V	0 or 1	0	No	А	А	А	А	А
H3-05	Multi-function analog input (terminal A3)	Select from the functions listed in the following table. Refer to the	0 to 1F	2	No	А	А	А	А	А
	Terminal A3 Sel	next page.								
H3-06	Gain (terminal A3)	Sets the input gain (level) when terminal 16 is 10 V. Set according to the 100% value	0.0 to 1000.0	100.0%	Yes	А	А	А	А	А
	Terminal A3 Gain	selected from H3-05.	1000.0							
H3-07	Bias (terminal A3) Terminal A3	Sets the input gain (level) when terminal 16 is 0 V. Set according to the 100% value selected from H3-05.	-100.0 to +100.0	0.0%	Yes	А	А	A	А	А
	Bias Multi-function	0: Limit negative frequency set-								
H3-08	analog input terminal A2 signal level selection	 tings for gain and bias settings to 0. Do not limit negative fre- quency settings for gain and bias settings to 0 (i.e., allow 	0 to 2	2	No	А	А	А	А	А
113 00	Term A2 Signal	reverse operation). 2: 4 to 20 mA (9-bit input). Switch current and voltage input using the switch on the control panel.	0.02	2	10	71	11	1	11	21
H3-09	Multi-function analog input terminal A2 function selec- tion	Select multi-function analog input function for terminal A2. Refer to the next table.	0 to 1F	0	No	A	A	А	A	А
	Terminal A2 Sel									
H3-10	Gain (terminal A2)	Sets the input gain (level) when terminal 14 is 10 V (20 mA). Set according to the 100% value	0.0 to	100.0%	Yes	А	A	А	А	А
113-10	Terminal A2 Gain	for the function set for H3-09.	1000.0	100.0%	105	Α	Α	Α	Α	А

	Name				Change	Control Methods						
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2		
	Bias (terminal A2)	Sets the input gain (level) when terminal 14 is 0 V (4 mA).	-100.0									
H3-11	Terminal A2 Bias	Set according to the 100% value for the function set for H3-09.	to +100.0	0.0%	Yes	A	A	A	A	A		

* Factory settings will change if the control mode is changed.

Multi-function Contact Input Functions (H1-01 to H1-10)

_		Control Methods						
Set- ting Value	Function	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2		
71	Speed/torque control change (ON: Torque control)	No	No	No	Yes	Yes		
78	Polarity reverse command for external torque reference		No	No	Yes	Yes		

Multi-function Contact Output Functions (H2-01 to H2-05)

		Control Methods						
Set- ting Value	Function	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2		
32	Speed control circuit operating for torque control (except when stopped). The external torque reference will be limited if torque control is selected. Output when the motor is rotating at the speed limit.	No	No	No	Yes	Yes		

Multi-function Analog Inputs (H3-05, H3-09)

			Control Methods					
Set- ting Value	Function	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2		
0	Add to terminal A1	Yes	Yes	Yes	Yes	Yes		
13	Torque reference/torque limit at speed control	No	No	No	Yes	Yes		
14	Torque compensation	No	No	No	Yes	Yes		

Monitor Function

	Name					Con	trol Me	ethods	
Con- stant Number	Display	Description	Output Signal Level Dur- ing Multi-Function Ana- log Output	Min. Unit	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2
U1-09	Torque refer- ence	Monitor in internal torque reference value for vector	10 V: Motor rated torque	0.1%	No	No	А	А	
01-09	Torque Refer- ence	control.	(0 to \pm 10 V possible)	0.1%	110	INO	A	A	A

Inputting Torque References and Torque Reference Directions

The torque reference can be changed according to an analog input by setting H3-09 (Multi-function analog input terminal A2 selection) or H3-05 (Multi-function analog input terminal A3 selection) to 13 (torque reference) or 14 (torque compensation). The torque reference input methods are listed in the following table.

Torque Reference Input Method	Reference Location	Selection Method	Remarks
	Between A3 and AC	H3-04 = 1 H3-05 = 13	Set H3-04 to 0 for a 0 to 10-V torque ref- erence. To switch the torque reference between positive and negative torque, set a multi- function analog input to 78.
Voltage input (0 to ±10 V)	Between A2 and AC (Turn OFF pin 2 of SW1.)	H3-08 = 1 H3-09 = 13	Set H3-08 to 0 for a 0 to 10-V torque ref- erence. To switch the torque reference between positive and negative torque, set a multi- function analog input to 78. The input can be used for torque compen- sation by setting H3-09 to 14.
Current input (4 to 20 mA)	Between A2 and AC (Turn ON pin 2 of SW1.)	H3-08 = 2 H3-09 = 13	To switch the torque reference between positive and negative torque, set a multi- function analog input to 78. The input can be used for torque compen- sation by setting H3-09 to 14.
Option Card (AI-14B) (0 to ±10 V)	Between TC2 and TC4	F2-01 = 0 H3-08 = 1 H3-09 = 13	The input can be used for torque compen- sation by setting H3-05 to 14.

The direction of the torque output from the motor will be determined by the sign of the analog signal input. It does not depend on the direction of the run command. The direction of torque will be as follows:

- Positive analog reference: Torque reference for forward motor rotation (counterclockwise as viewed from the motor output axis).
- Negative analog reference: Torque reference for reverse motor rotation (clockwise as viewed from the motor output axis).

Application Precautions

If the analog signal input level is 0 to 10 V or 4 to 20 mA, a forward torque reference will not be applied. To apply reverse torque, use an input level of -10 V to 10 V or switch the direction using a multi-function input set to 78 (polarity reverse command for external torque reference).

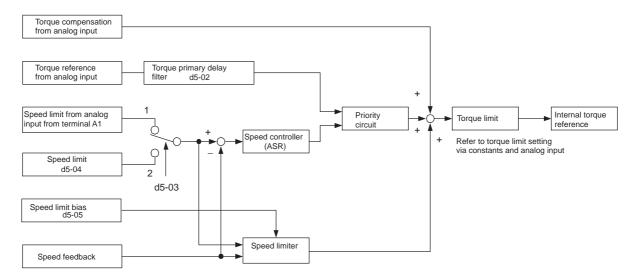


Fig 6.64 Torque Control Block Diagram

Speed Limiter and Priority Circuit (Speed Limit Function)

If the external torque reference and load are not balanced during torque control, the motor will accelerate in either the forward or reverse direction. The speed limit function is used to limit the speed to a specified value and it consists of the speed limiter circuit and priority circuit. The speed limit circuit

Application Precautions

There are two ways to set a speed limit: using an input from an analog input terminal and setting a speed limit in d5-04. The inputs methods for a speed limit are listed in the following table.

Speed Limit Input Method	Location of Refer- ence	Constant Set- tings	Remarks	
	Set in d5-04	d5-03 = 2	-	
	Between A1 and AC	Between A1 and AC $b1-01 = 1$ H3-01 = 1 $b1-01 = 1$ Set H3-01 to 0 if to be positive.		
Voltage input (0 to ±10 V)	Between A2 and AC	b1-01 = 0 H3-08 = 1 H3-09 = 1	The value will be added to the value input on A1 to determine the speed limit. Set H3-03 to 0 if the speed limit input on A2 is always to be positive. Turn OFF (V side) pin 2 of DIP switch S1 on the terminal board.	
Current input (4 to 20 mA)	Between A2 and AC	b1-01 = 0 H3-08 = 2 H3-09 = 1	The value will be added to the value input on A1 to determine the speed limit. Turn ON (I side) pin 2 of DIP switch S1 on the terminal board.	
Option Card (AI-4B) (0 to ±10 V)	Between TC1 and TC4	b1-01 = 3 F2-01 = 0	If H3-09 is set to 0, the sum of the input between TC2 and TC4 will be added the input between TC1 and TC4 to determine the speed limit.	

The direction in which speed is controlled is determined by the sign of the speed limit signal and the direction of the run command.

Positive voltage applied: The speed in the forward direction will be limited for forward operation.

• Negative voltage applied: The speed in the reverse direction will be limited for reverse operation. If the direction of motor rotation and the command direction are not the same, speed will be limited to 0 as long as b5-05 is set to 0.

Speed Limit Bias Setting

The speed limit bias can be set to limit both the forward and reverse speed to the same value. This differs from the operation of the speed limit setting. To use the speed limit bias, set d5-04 to 0 and set the bias in d5-05 as a percentage of the maximum output frequency.

To set 50% forward and reverse speed limits, set the speed limit setting to 0 (d5-03 = 2, d5-04 = 0, and d5-05 = 50). The range of torque control will be from -50% to 50% of the maximum output speed.

When using both the speed limit and the speed limit bias, the range of torque control will be positive and negative speed limits with the speed limit bias added to each.

The range of torque control when the forward speed limit is 50% and the speed limit bias is 10% is shown in the following figure. This figure does not take the priority circuit into account.

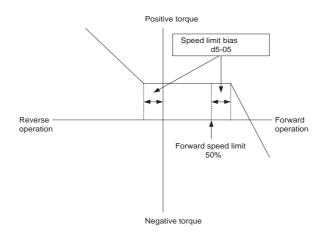


Fig 6.65 Speed Limit Bias Setting

Torque Limit Operation Examples

Operation examples will be described separately for winding operation, in which the speed and motor torque are in the same directions, and rewinding operation, in which the speed and motor torque are in opposite directions.

Winding Operation

In a winding operation, the line (speed) and torque generated by the motor are in the same direction. For the winding operation, both the speed limit and the torque reference input are positive. The motor will accelerate when the torque reference input is larger than the load and will decelerate when it is smaller than the load. If the motor turns faster than the speed limit, a negative compensation value is output from the speed limiter circuit. When the speed then drops below the speed limit, a positive compensation value is output. The torque compensation is proportional to the ASR proportional gain. When the sum of the torque reference and the torque compensation output by the speed limiter is the same as the actual load, the motor will stop accelerating and run at a constant speed.

Rewinding Operation

In a rewinding operation, the line (speed) and torque generated by the motor are in the opposite directions. (In this example, we'll assume that the line speed is positive and the torque reference input is negative.) For the rewinding operation, the speed limit is positive and the torque reference input is negative. If the motor turns faster than the speed limit, a negative compensation value is output from the speed limiter circuit. If the motor is rotating in reverse, a negative compensation value is output. If the speed is 0 or is below the speed limit, a 0 compensation value is output. In this way, the output from the speed limiter is used to maintain the motor speed between 0 and the speed limit. When the sum of the torque reference and the torque compensation output by the speed limiter is the same as the actual load, the motor will stop accelerating and run at a constant speed.

	Winding	Operation	Rewinding Operation				
Configuration	Line direction	N T (X) Motor		Line direction			
Normal Rotation Direction	Horward Reverse		Forward	Reverse			
Torque Reference Polarity (TREF)			Θ	+			
Speed Limit Polar- ity (SLIM)	(+)	Θ	(\pm)	Θ			
Generated Torque	Torque Torque Imit TREF -(d5-05) 0 Speed Torque Imit TREF(24)	Torque Imit SLIM (d5-05) Corque Imit TREF Limit TREF(%)	TREF Torque	Torque limit TREF SLIM (d5-05) Torque limit Torque limit Tref Torque Torque			
	$\Delta N(\%) = \frac{\text{TREF}(\%)}{\text{C5-01}}$	∆ N(%)= <u>TREF(%)</u> C5-01	$\Delta N(\%) = \left\{ \begin{array}{c} 1121 \\ C5-01 \\ d5-05(\%) \end{array} \right\} \text{ of these}$	$\Delta N(\%) = \left\{ \frac{1 \times E^{-(76)}}{C5 \cdot 01} \\ \frac{1}{d5 \cdot 05(\%)} \right\}^{\text{The sinale}} \text{ of these}$			

■Torque Reference Adjustment

Consider the following information when adjusting the torque.

Torque Reference Delay Time: d5-02

The time constant of the primary filter in the torque reference section can be adjusted. This constant is used to eliminate noise in the torque reference signal and adjust the responsiveness to the host controller. Increase the setting if oscillation occurs during torque control.

Setting the Torque Compensation

Set multi-function analog input A2 or A3 to torque compensation (setting 14). When the amount of torque loss for mechanical loss or other factor at the load is input to one of these terminals, it is added to the torque reference to compensate for the loss. The direction of torque will be as follows:

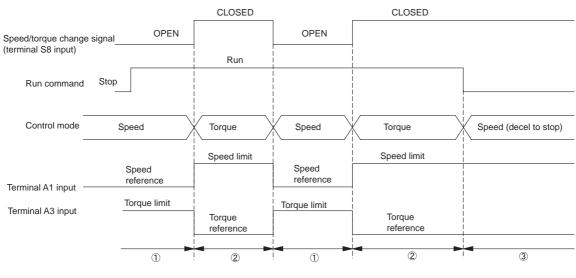
• Positive voltage (current): Torque compensation reference for forward motor rotation (counterclockwise as viewed from the motor output axis).

• Negative voltage: Torque compensation reference for reverse motor rotation (clockwise as viewed from the motor output axis).

Since the polarity of the voltage input determines the direction, only forward torque compensation can be input when the 0 to 10 V or 4 to 20 mA signal level has been selected. If you want to input reverse torque compensation, be sure to select the 0 to ± 10 V signal level.

Speed/Torque Control Switching Function

It is possible to switch between speed control and torque control when one of the multi-function inputs (H1-01 to H1-10) is set to 71 (Speed/Torque Control Change). Speed control is performed when the input is OFF and torque control is performed when the input is ON. Set d5-01 to switch speed/torque control.

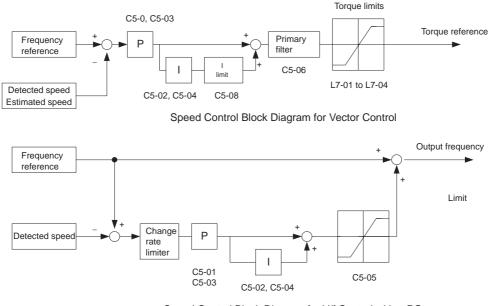

Setting the Speed/Torque Control Switching Timer

The delay between a change in the speed/control switching function input (ON to OFF or OFF to ON) and the corresponding change in the control mode can be set in d5-06. During the timer delay, the value of the 3 analog inputs will retain the values they had when the ON/OFF status of speed/torque control switching signal was changed. Use this delay to complete any changes required in external signals.

Application Precautions

- The frequency reference (during speed control) is set in b1-01. The speed limit during torque control is set in d5-03.
- If the torque reference has been assigned to a multi-function analog input, terminal A2, or terminal A3, the input function changes when the control mode is switched between torque control and speed control. During speed control: The analog input terminal is used as the torque limit input. During torque control: The analog input terminal is used as the torque reference input.
- When the run command turns OFF, the control method when stopped will be for speed control. Even from the torque control mode, the system will automatically change to speed control and decelerate to a stop when the run command turns OFF.
- When A1-02 (control method selection) is set to 3 (flux vector control), the speed/torque change command (a setting of 71) can be set for a multi-function input (H1-01 to H1-10) to switch between speed and torque control during operation. An example is shown below.

Terminal No.	User Constant No.	Factory Setting	Setting	Function
8	H1-06	8	71	Speed/torque control change
A1	b1-01	1	1	Frequency reference selection (terminals A1, A2)
	C5-03	1	1	Speed limit (terminals A1, A2)
A3	H3-05	0	13	Torque reference/torque limit



A timing chart for switching between speed and torque control is shown in the following figure.

Speed Control (ASR) Structure

Speed control (ASR) during vector control adjusts the torque reference so that the deviation between the speed reference and the estimated speed (PG feedback or speed estimator) is 0. Speed control (ASR) during V/ f control with a PG adjusts the output frequency so that the deviation between the speed reference and the estimated speed (PG feedback or speed estimator) is 0. The following block diagram shows the structure of the speed control for vector or V/f control with a PG.

Speed Control Block Diagram for V/f Control with a PG

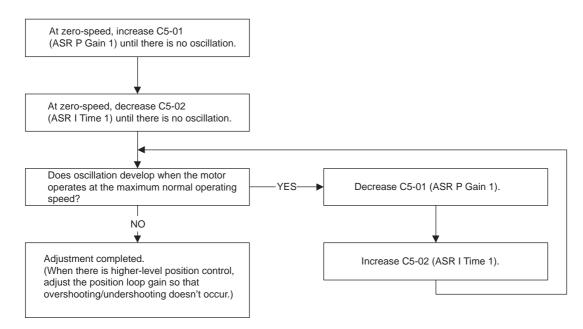
Fig 6.67 Speed Control Block Diagrams

■Related Constants

-	Name				Change		Con	trol Me	thods	6	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2	
C5-01	ASR propor- tional gain 1	Sets the proportional gain of the speed loop	0.00 to 300.00	20.00	Yes	No	А	No	А	А	
	ASR P Gain 1	(ASR.)	*2	*1						Por Hux Vec- tor V 0 A I 0 A I 0 A I 0 A I 0 A I 0 A I 0 A I 0 A I 0 A I 0 A I 0 A I 0 A I 0 A I	
C5-02	ASR inte- gral (I) time 1	Sets the integral time of the speed loop	0.000 to	0.500 s ^{*1}	Yes	No	А	No	А	А	
	ASR I Time 1	(ASR) in 1-second units.	10.000	S T					Pop Vec- V Vec- NoPux V NoDADADADADADADADADA		
C5-03	ASR propor- tional gain 2	Usually setting is not necessary.	0.00 to 300.00	20.00	Yes	No	А	No	А	А	
	ASR P Gain 2	P, I	*2	*1							
C5-04	ASR inte- gral (I) time 2	I=C5-02 P=C5-03 I=C5-04	0.000 to	$0.500 \\ s^{*1}$	Yes	No	А	No	А	А	
	ASR I Time 2	0 E1-04 Motor speed (Hz)	10.000	s					A A A No A		
G5 05	ASR limit	Sets the upper limit for the compensation frequency for the speed control loop (ASR)	0.0 to	5.000	N	Ŋ		N		N	
C5-05	ASR Limit	to a percentage of the maximum output fre- quency.	20.0	5.0%	No	No	А	No	Flux Vec- tor A A A No A A	No	
C5-06	ASR pri- mary delay time	Sets the filter time constant, the time from the speed loop to the torque command out- put, in units of 1-second.	0.000 to	0.004	0.004 *1 No	No	No	No	A A A A A	A ^{*1}	
	ASR Delay Time	Usually setting is not necessary.	0.500	1							
C5-07	ASR switch- ing fre- quency	Set the frequency for switching between Proportion Gain 1, 2 and Integral Time 1, 2 in Hz units.	0.0 to	0.0	No	No	No	No	A	А	
	ASR Gain SW Freq	Speed control (ASR) proportional gain switching for a multi-function input takes priority.	400.0								
C5-08	ASR inte- gral (I) limit	Set the upper limit of the speed control loop integral as a percentage of the value at the roted head	0 to 400	400	No	No	No	No	A	А	
	ASR I Limit	rated load.									

* 1. When the control method is changed, the Inverter reverts to factory settings. (Refer to section on constants with factory setting that depend on the control mode.)

* 2. The setting range is 1.00 to 3.00 for flux vector control and open-loop vector control 2.


Multi-function Contact Input Functions (H1-01 to H1-10)

			Control Methods						
Set- ting Value	Function	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2			
D	Speed control disable setting for V/f control with PG OFF: Use speed control V/f control with PG ON: Do not use speed control for V/f control with PG	No	Yes	No	No	No			

_			Control Methods						
Set- ting Value	Function	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2			
Е	Speed control integral reset Enables switching between PI and P control for the speed control loop.	No	No	No	Yes	Yes			
77	Speed control (ASR) proportional gain switch (switching between C5-01 and C5-03) OFF: Use proportional gain in C5-01 ON: Use proportional gain in C5-03	No	No	No	Yes	Yes			

Speed Control (ASR) Gain Adjustment for Vector Control

Use the following procedure to adjust C5-01 and C5-03 with the mechanical system and actual load connected.

Fine Adjustments

When you want even finer gain adjustment, adjust the gain while observing the speed waveform. Constant settings like those shown in the following table will be necessary to monitor the speed waveform.

Constant No.	Name	Setting	Explanation
H4-01	Multi-function analog output 1 terminal FM monitor selection	2	Settings that allow multi-func-
H4-02	Multi-function analog output 1 terminal FM output gain	1.00	tion analog output 1 to be used
H4-03	Multi-function analog output 1 terminal FM bias	0.0	to monitor the output frequency.
H4-04	Multi-function analog output 2 terminal AM monitor selection	5	Settings that allow multi-func-
H4-05	Multi-function analog output 2 terminal AM output gain	1.00	tion analog output 2 to be used
H4-06	Multi-function analog output 2 terminal AM bias selection	0.00	to monitor the motor speed.
H4-07	Multi-function analog output 1 terminal signal level selection	1	Settings that allow a 0 to ± 10 V
H4-08	Multi-function analog output 2 terminal signal level selection	1	signal range to be monitored.

The multi-function analog outputs have the following functions with these constant settings.

- Multi-function analog output 1 (terminal FM): Outputs Inverter's output frequency (0 to ± 10 V).
- Multi-function analog output 2 (terminal AM): Outputs actual motor speed (0 to ± 10 V).

Terminal AC is the multi-function analog output common.

We recommend monitoring both the output frequency and the motor speed to monitor the response delay or deviations from the reference value, as shown in the following diagram.

Adjusting ASR Proportional Gain 1 (C5-01)

This gain setting adjusts the responsiveness of the speed control (ASR). The responsiveness is increased when this setting is increased. Usually this setting is higher for larger loads. Oscillation will occur if this setting is increased too much.

The following diagram shows the type of changes that can occur in the response when the ASR proportional gain is changed.

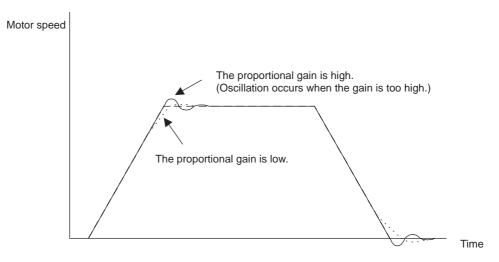


Fig 6.68 Responsiveness for Proportional Gain

Adjusting ASR Integral Time 1 (C5-02)

This constant sets the speed control (ASR) integral time.

Lengthening the integral time lowers the responsiveness, and weakens the resistance to external influences. Oscillation will occur if this setting is too short. The following diagram shows the type of changes that can occur in the response when the ASR integral time is changed.

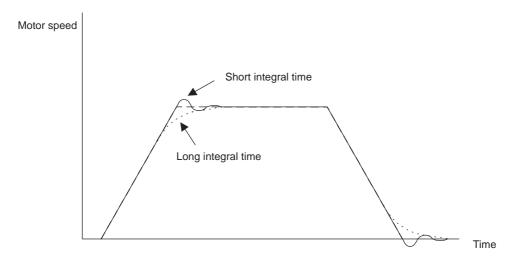
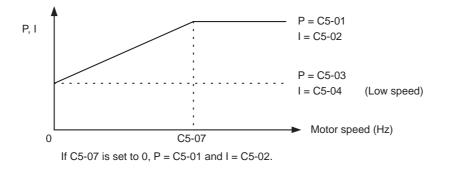
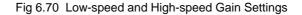




Fig 6.69 Responsiveness for Integral Time

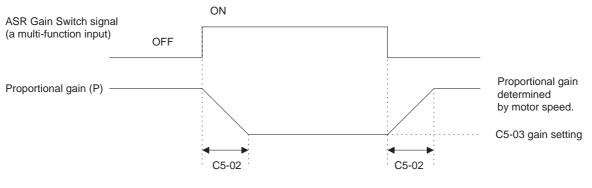
Different Gain Settings for Low-speed and High-speed

Switch between low-speed and high-speed gain when oscillation occurs because of resonance with the mechanical system at low speed or high speed. The proportional gain P and integral time I can be switched according to the motor speed, as shown below.

Setting the Gain Switching Frequency (C5-07)

Set the switching frequency to about 80% of the motor operating frequency or the frequency at which oscillation occurs.

Low-speed Gain Adjustments (C5-03, C5-04)


Connect the actual load and adjust these constants at zero-speed. Increase C5-03 (ASR proportional gain 2) until there is no oscillation. Decrease C5-04 (ASR integral time 2) until there is no oscillation.

High-speed Gain Adjustments (C5-01, C5-02)

Adjust these constants at normal operating speed. Increase C5-01 (ASR proportional gain 1) until there is no oscillation. Decrease C5-02 (ASR integral time 1) until there is no oscillation. Refer to *Fine Adjustments* on page 6 - 124 for details on making fine adjustments of high-speed operation.

ASR Proportional Gain Switch Setting

When one of the multi-function inputs (H1-01 to H1-10) is set to 77, the input can be used to switch between C5-01 (proportional gain 1) and C5-03 (proportional gain 2). Proportional gain 2 is used when the multi-function input is ON. This input has higher priority than the ASR switching frequency set in C5-07.

The gain is changed linearly in integral time 1 (C5-02).

Fig 6.71 ASR Proportional Gain Switch

Gain Adjustment for Speed Control during V/f Control with PG

When using V/f control with PG, set the proportional gain (P) and the integral time (I) at E1-09 (minimum output frequency) and E1-04 (maximum output frequency). *Fig 6.72 Speed Control Gain Integral Time Adjustment for V/f Control with PG* shows how the proportional gain and integral time change in linear fashion based on the speed.

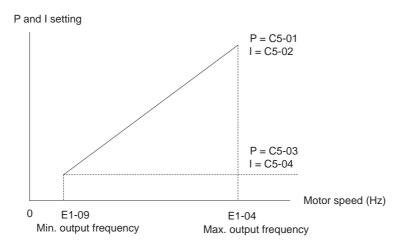


Fig 6.72 Speed Control Gain Integral Time Adjustment for V/f Control with PG

Gain Adjustments at Minimum Output Frequency

Operate the motor at the minimum output frequency. Increase C5-03 (ASR proportional gain 2) to a level where there is no oscillation. Decrease C5-04 (ASR integral time 2) to a level where there is no oscillation. Monitor the Inverter's output current and verify that it is less than 50% of the Inverter rated current. If the output current exceeds 50% of the Inverter's rated current, decrease C5-03 and increase C5-04.

Gain Adjustments at Maximum Output Frequency

Operate the motor at the maximum output frequency. Increase C5-01 (ASR proportional gain 1) to a level where there is no oscillation. Decrease C5-02 (ASR integral time 1) to a level where there is no oscillation.

Fine Adjustments

When you want even finer gain adjustment, adjust the gain while observing the speed waveform. The adjustment method is the same as that for vector control.

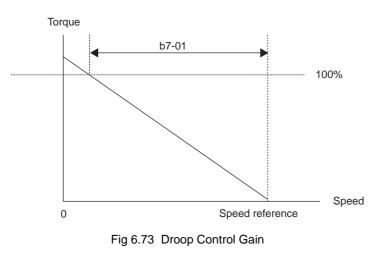
Enable integral operation during acceleration and deceleration (by setting F1-07 to 1) when you want the motor speed to closely follow the frequency reference during acceleration and deceleration. Reduce the setting of C5-01 if overshooting occurs during acceleration, and reduce the setting of C5-03 and increase the setting of C5-04 if undershooting occurs when stopping. If overshooting and undershooting cannot be eliminated by adjusting only the gain, reduce the value of C5-05 speed control and reduce the limit of the frequency reference compensation value.

Droop Control Function

Droop control is a function that allows the user to set the amount of motor slip.

When a single load is operated with two motors (such as in a crane conveyor), a high-resistance motor is normally used. This is to use torque characteristics that exhibit proportion movements due to changes in the secondary resistor to maintain torque balance with the load and overall speed balance with the load. If droop control is used, a high-resistance motor characteristics can be set for a general-purpose motor.

■Related Constants


	Name				Change	Control Methods						
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2		
	Droop control gain	Sets the slip as a percentage of maximum frequency when the										
b7-01	Droop Quantity	maximum output frequency is specified and the rated torque occurs. Droop-control is not performed when the setting is 0.0.	0.0 to 100.0	0.0	Yes	No	No	No	A	А	А	
b7-02	Droop control delay time	Droop control responsiveness	0.03 to	0.05 s	No	А	А	А	٨	А		
07-02	Droop Delay Time	When hunting or oscillation occurs, increase the value.	2.00	0.05 8	110	A	A	A	A	A		

Setting Precautions

- Droop control is disabled if b7-01 is set to 0.0.
- Set b7-01 to the amount of slip as the percentage of slip when the maximum output frequency is input and the rated torque is generated.
- Constant b7-02 is used to adjust the responsiveness of droop control. Increase this setting if oscillation or hunting occur.

■Setting the Droop Control Gain

Set the droop control gain as the speed reduction at a 100% motor torque, as a percentage of the maximum output frequency.

Zero-servo Function

The zero-servo function holds the motor when the motor is stopped in what is call a zero-servo status. This function can be used to stop the motor even with an external force acts on the motor or the analog reference input is offset.

The zero-servo function is enabled when one of the multi-function inputs (H1-01 to H1-10) is set to 72 (zero servo command). If the zero servo command is ON when the frequency (speed) reference falls below the zero speed level, a zero-servo status is implemented.

	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
b2-01	Zero speed level (DC injec- tion braking starting fre- quency)	Used to set the frequency which starts DC injection braking in units of Hz when deceleration to stop is selected. When b2-01 is less than E1-09, E1-09 becomes the DC injection	0.0 to 10.0	0.5 Hz	No	А	А	А	А	А
	DCInj Start Freq	braking starting frequency. (For flux vector control, zero- speed control from B2-01)								
	Zero-servo gain	Adjust the strength of the zero- servo lock.								
b9-01	Zero Servo Gain	servo lock. Enabled when the zero-servo command is set for a multi-func- tion input. When the zero-servo command has been input and the frequency reference drop below excitation level (b2-01), a posi- tion control loop is created and the motor stops. Increasing the zero-servo gain in turn increases the strength of the lock. Increas- ing it by too much will cause oscillation.	0 to 100	5	No	No	No	No	А	No
	Zero-servo completion width	Sets the output width of the P- lock completion signal. Enabled when the "zero-servo								
b9-02	Zero Servo Count	completion (end)" is set for a multi-function input. The zero- servo completion signal is ON when the current position is within the range (the zero-servo position + zero-servo completion width.) Set the allowable position dis- placement from the zero-servo position to 4 times the pulse rate of the PG (pulse generator, encoder) in use.	0 to 16383	10	No	No	No	No	A	No

■Related Constants

Multi-function Contact Input Functions (H1-01 to H1-10)

		Control Methods						
Set- ting Value	Function	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2		
72	Zero-servo command (ON: Zero-servo)	No	No	No	Yes	No		

Multi-function Contact Output Functions (H2-01 to H2-03)

_		Control Methods					
Set- ting Value	Function		V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	
33	Zero-servo end ON: Current position is within zero-servo start position \pm the zero-servo end width.	No	No	No	Yes	No	

To output the zero-servo status externally, assign the Zero Servo End signal (setting 33) to one of the multifunction outputs (H2-01 to H2-03).

Monitor Function

	Name				Control Methods					
Con- stant Number	Display	Description	Output Signal Level Dur- ing Multi-Function Ana- log Output	Min. Unit	V/f	V/f with PG	Open Loop Vec- tor 1	Flux Vec- tor	Open Loop Vec- tor 2	
U1-35	Zero-servo movement pulses	Shows the number of PG pulses times 4 for the movement range	(Cannot be output.)		No	No	No	А	No	
	Zero Servo Pulse	when stopped at zero.								

■Time Chart

A time chart for the zero servo function is given in Fig 6.74 Time Chart for Zero Servo.

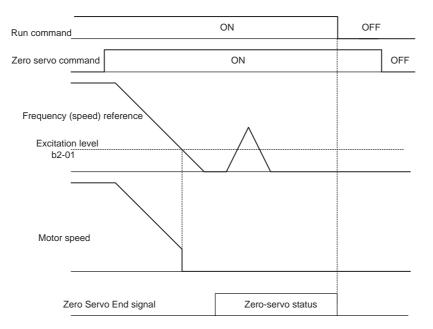


Fig 6.74 Time Chart for Zero Servo

■Application Precautions

• Be sure to leave the run command input ON. If the run command is turned OFF, the output will be interrupted and the zero-servo function will become ineffective.

- The holding force of the zero-servo is adjusted in b9-01. The holding force will increase if the value of the setting is increased, but oscillation and hunting will occur if the setting is too large. Adjust b9-01 after adjusting the speed control gain.
- The zero-servo detection width is set as the allowable position offset from the zero-servo start position. Set 4 times the number of pulses from the PG.
- The Zero Servo End signal will go OFF when the zero servo command is turned OFF.

Do not lock the servo for extended periods of time at 100% when using the zero servo function. Inverter errors may result. Extended periods of servo lock can be achieved by ensuring that the current during the servolock is 50% or less or by increasing the Inverter capacity.

Digital Operator Functions

This section explains the Digital Operator functions.

Setting Digital Operator Functions

You can set Digital Operator-related constants such as selecting the Digital Operator display, multi-function selections, and copy functions.

■Related Constants

0	Name				Change during Opera- tion		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting		V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
o1-02	Monitor selec- tion after power up Power-On	Sets the monitor item to be dis- played when the power is turned on. 1: Frequency reference 2: Output frequency	1 to 4	1	Yes	А	А	А	А	А
	Monitor	3: Output current4: The monitor item set for o1-01								
01-03	Frequency units of reference set- ting and moni- tor Display Scaling	Sets the units that will be set and displayed for the frequency refer- ence and frequency monitor. 0: 0.01 Hz units 1: 0.01% units (Maximum output frequency is 100%) 2 to 39: min ⁻¹ units (Sets the motor poles.) 40 to 39999: User desired display Set the desired values for setting and display for the max. output frequency. Set 4-digit number excluding the decimal point. Set the number of digits below the decimal point to display. Example: When the max. output frequency value is 200.0, set 12000	0 to 39999	0	No	А	А	А	А	А
o1-04	Setting unit for frequency con- stants related to V/f characteris- tics V/f Display Unit	Set the setting unit for frequency reference-related constants. 0: Hz 1: min ⁻¹	0 or 1	0	No	No	No	No	А	А
o2-01	LOCAL/ REMOTE key enable/disable Local/Remote Key	Sets the Digital Operator Local/ Remote Key 0: Disabled 1: Enabled (Switches between the Digital Operator and the constant settings.)	0 or 1	1	No	А	А	А	А	А

	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
o2-02	STOP key dur- ing control cir- cuit terminal operation Oper STOP Key	Sets the Stop Key in the run mode. 0: Disabled (When the run command is issued from and external terminal, the Stop Key is disabled.) 1: Enabled (Effective even	0 or 1	1	No	A	А	A	A	А
	кеу	during run.)								
	User constant initial value	Clears or stores user initial values. 0: Stores/not set								
o2-03	User Defaults	 Begins storing (Records the set constants as user initial values.) All clear (Clears all recorded user initial values) When the set constants are recorded as user initial values, 1110 will be set in A1-03. 	0 to 2	0	No	А	А	А	А	А
	Frequency ref- erence setting method selec- tion	When the frequency reference is set on the Digital Operator fre- quency reference monitor, sets whether the Enter Key is neces-								
02-05	Operator M.O.P.	sary. 0: Enter Key needed 1: Enter Key not needed When set to 1, the Inverter accepts the frequency reference without Enter Key operation.	0 or 1	0	No	A	A	Α	A	Α
02-07	Cumulative operation time setting	Sets the cumulative operation time in hour units.	0 to	0 hr	No	А	A	А	А	А
	Elapsed Time Set	Operation time is calculated from the set values.	65535							
o2-10	Fan operation time setting	Set the initial value of the fan operation time using time units.	0 to	0 hr	No	А	А	А	А	А
02-10	Fan ON Time Set	The operation time accumulates from the set value.	65535	0 nr	INO	A	A	A	A	A

■Changing Frequency Reference and Display Units

Set the Digital Operator frequency reference and display units using constant o1-03. You can change the units for the following constants using o1-03.

- U1-01 (Frequency Reference)
- U1-02 (Output Frequency)
- U1-05 (Motor Speed)
- U1-20 (Output Frequency after Soft Start)
- d1-01 to d1-17 (Frequency references)

Switching Monitors when the Power Supply Is ON

Using constant o1-02, select the monitor item (U1- $\Box\Box$ [status monitor]) to be displayed on the Digital Operator when the power supply is turned ON. For monitors that can be displayed, refer to U1- $\Box\Box$ in *Chapter 5 User Constants*.

Setting Precautions

If selecting monitor constants other than U1-01 (Frequency Reference), U1-02 (Output Frequency), and U1-03 (Output Current), first select the monitor items to be displayed in o1-01, and then set o1-02 to 4.

Disabling the STOP Key

If b1-02 (Operation Method Selection) is set to 1, 2, or 3, the stop command from the STOP Key on the Digital Operator is an emergency stop command.

Set o2-02 to 0 to disable emergency stop commands from the STOP Key on the Digital Operator.

Disabling the LOCAL/REMOTE Key

Set o2-01 to 0 to disable the LOCAL/REMOTE Key on the Digital Operator. You cannot switch Inverter reference inputs set using reference inputs from the Digital Operator, b1-01 (Reference Selection), or b1-02 (Operation Method Selection).

Initializing Changed Constant Values

You can save to the Inverter constant set values that you have changed as constant initial values. Change the set values from the Inverter factory settings, and then set o2-03 to 1.

Set A1-03 (Initialize) to 1110 to initialize the Inverter constants using the user-set initial values in memory. To clear the user-set initial values in memory, set o2-03 to 2.

Setting the Frequency Reference using the UP and DOWN Keys without Using the Enter Key

Use this function when inputting frequency references from the Digital Operator. When o2-05 is set to 1, you can increment and decrement the frequency reference using the UP and DOWN Keys without using the Enter Key.

For example, enter the Run command using a 0 Hz reference, and then continuously press the UP Key to increment the frequency reference by 0.01 Hz only for the first 0.5 s, and then by 0.01 Hz every 80 ms for 3 s thereafter. Press and hold down the UP Key for 3 s minimum to reach the maximum output frequency 10 s after that. The frequency reference that has been set will be stored in memory 5 s after the UP or DOWN Keys are released.

Clearing Cumulative Operation Time

Set the cumulative operation time initial value in time units in constant o2-07. Set o2-07 to 0 to clear U1-13 (inverter Operating Time).

Clearing Inverter Cooling Fan Operation Time

Set the fan operation time initial value in time units in constant o2-10. Set o2-10 to 0 to clear U1-40 (Cooling Fan Operating Time).

Copying Constants

The Digital Operator can perform the following three functions using the built-in EEPROM (non-volatile memory).

- Store Inverter constant set values in the Digital Operator (READ)
- Write constant set values stored in the Digital Operator to the Inverter (COPY)
- Compare constant set values stored in the Digital Operator with Inverter constants (VERIFY)

Related Constants

	Name				Change	Control Methods																
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2												
03-01	Copy function selection	0: Normal operation 1: READ (Inverter to Operator)	0 to 3	0	No	А	A	A	А	А												
05-01	Copy Function Sel	2: COPY (Operator to Inverter)3: Verify (compare)								A												
03-02	Read permitted selection	0: Read prohibited	0 or 1	0 1	0 1	0 1	0 1	0 or 1	0 or 1	0 or 1	0 or 1	0 or 1	0 or 1	0 or 1	0 or 1) or 1 0	No	А	А	А	А	А
03-02	Copy Allow- able	1: Read permitted		0	110	А	А	Α	A	A												

Storing Inverter Set Values in the Digital Operator (READ)

To store Inverter set values in the Digital Operator, make the settings using the following method.

Step No.	Digital Operator Display	Explanation
1	-ADV- ** Main Menu ** Programming	Press the Menu Key, and select advanced programming mode.
2	Initialization	Press the DATA/ENTER Key, and select the constants monitor display.
3	COPY Function 03 - 01=0 Copy Funtion Sel	Display o3-01 (Copy Function Selection) using the Increment Key and Decrement Key.
4	Copy Funtion Sel 03-01=0 *0* COPY SELECT	Press the DATA/ENTER Key, and select the constants setting display.
5	Copy Funtion Sel 03-01= 1 *0* INV→OP READ	Change the set value to 1 using the Increment Key.
6	READ INV→OP READING	Set the changed data using the DATA/ENTER Key. The READ function will start.
7	READ READ COMPLETE	If the READ function ends normally, End is displayed on the Digital Operator.
8	-ADV- Copy Funtion Sel 03 - 01=0 *0* COPY SELECT	The display returns to o3-01 when a key is pressed.

Table 6.1 READ Function Procedure

An error may occur while saving to memory. If an error is displayed, press any key to cancel the error display and return to the o3-01 display.

Error displays and their meanings are shown below. (Refer to *Chapter 7 Errors when Using the Digital Operator Copy Function.*)

Error Display	Meaning
PRE READ IMPOSSIBLE	You are attempting to set o3-01 to 1 while o3-02 is set to 0.
IFE READ DATA ERROR	Read data length mismatch or read data error.

Error Display	/	Meaning
RDE DATA ERRC	R	Tried to write constants to EEPROM on the Digital Operator, but unable to perform write operation.

Select READ Permitted

Prevent overwriting the data stored in EEPROM in the Digital Operator by mistake. With o3-02 set to 0, if you set o3-01 to 1, and perform the write operation, PrE will be displayed on the Digital Operator, and the write operation will be stopped.

■Writing Constant Set Values Stored in the Digital Operator to the Inverter (COPY)

To write constant set values stored in the Digital Operator to the Inverter, make the settings using the following method.

Step No.	Digital Operator Display	Explanation
1	-ADV- ** Main Menu ** Programming	Press the MENU Key, and select advanced programming mode.
2	Initialization	Press the DATA/ENTER Key, and select the constants monitor display.
3	COPY Function	Display o3-01 (Copy Function Selection) using the Increment Key and Decrement Key.
4	-ADV- Copy Funtion Sel 03-01= 0 *0* COPY SELECT	Press the DATA/ENTER Key, and select the constants setting display.
5	-ADV- Copy Funtion Sel 03-01= 2 *0* OP→INV WRITE	Change the set value to 2 using the Increment Key.
6	-ADV- COPY OP→INV COPYING	Set the changed data using the DATA/ENTER Key. The COPY function will start.
7	-ADV- COPY COPY COMPLETE	If the COPY function ends normally, End is displayed on the Digital Operator.
8	Ogy Funtion Sel 03 - 01=0 *0* COPY SELECT	The display returns to o3-01 when a key is pressed.

Table 6.2 COPY Function Procedure

6

During the copy operation, errors may occur. If an error is displayed, press any key to cancel the error display and return to the 03-01 display.

Error displays and their meanings are shown below. (Refer to *Chapter 7 Errors when Using Digital Operator Copy Function.*)

Error Display	Meaning
CPE ID UNMATCH	Inverter product code and Inverter software number are different.
VAE INV. KVA UNMATC	Inverter capacity with which you are trying to copy, and the Inverter capacity stored in the Digital Operator are different.
CRE CONTROL UNMATCH	The Inverter control method in which you are trying to copy, and the Inverter control method stored in the Digital Operator are different.
CYE COPY ERROR	Comparison between the constant written to the Inverter and the constant in the Digital Operator shows they are different.
CSE SUM CHECK ERROR	After copying has ended, comparison between the sum value of the Inverter constant area and the sum value of the Digital Operator constant area shows they are different.

Comparing Inverter Constants and Digital Operator Constant Set Values (VERIFY)

To compare Inverter constants and Digital Operator constant set values, make the settings using the following method.

Step No.	Digital Operator Display	Explanation
1	-ADV- ** Main Menu ** Programming	Press the MENU Key. and select advanced programming mode.
2	Initialization	Press the DATA/ENTER Key, and select the constants monitor display.
3	COPY Function	Display o3-01 (Copy Function Selection) using the Increment Key and Decrement Key.
4	-ADV- Copy Funtion Sel o3-01= 0 *0* COPY SELECT	Press the DATA/ENTER Key, and select the function setting display.

Table 6.3 VERIFY Function Procedure

Step No.	Digital Operator Display	Explanation
5	-ADV- Copy Funtion Sel 03-01= 3 *0* OP←→INV VERIFY	Change the set value to 3 using the Increment Key.
6	-ADV- VERIFY DATA VERIFYING	Set the changed data using the DATA/ENTER Key. The VERIFY function will start.
7	VERIFY VERIFY VERIFY COMPLETE	If the VERIFY function ends normally, End is displayed on the Digital Operator.
8	Ogy Funtion Sel	The display returns to o3-01 when a key is pressed.

Table 6.3 VERIFY Function Procedure

An error may occur during the comparison. If an error is displayed, press any key to cancel the error display and return to the o3-01 display. Error displays and their meanings are shown below. (Refer to *Chapter 7 Errors when Using Digital Operator Copy Function.*)

Error Display	Meaning
VYE VERIFY ERROR	Verify error (Settings in the Digital Operator and the Inverter do not match).

Application Precautions

When using the copy function, check that the following settings are the same between the Inverter and the Digital Operator.

- Inverter product and type
- Software number

- Inverter capacity and voltage
- Control method

Prohibiting Writing Constants from the Digital Operator

If you set A1-01 to 0, you can refer to and set the A1 and A2 constant groups, and refer to drive mode, using the Digital Operator.

If you set one of the constants H1-01 to H1-05 (multi-function contact input terminal S3 to S7 function selection) to 1B (write constants permitted), you can write constants from the digital operator when the terminal that has been set is ON. When the set terminal is OFF, writing constants other than the frequency reference is prohibited. You can, however, reference constants.

	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
	Constant access level	Used to set the constant access level (set/read.)								
A1-01	Access Level	 0: Monitoring only (Monitoring drive mode and setting A1-01 and A1-04.) 1: Used to select user constant (Only constants set in A2-01 to A2-32 can be read and set.) 2: Advanced (Constants can be read and set in both quick programming mode and advanced programming (A) mode.) 	0 to 2	2	Yes	A	A	А	A	А

Setting a Password

When a password is set in A1-05, if the set values in A1-04 and A1-05 do not match, you cannot refer to or change the settings of constants A1-01 to A1-03, or A2-01 to A2-32.

You can prohibit the setting and referencing of all constants except A1-00 by using the password function in combination with setting A1-01 to 0 (Monitor only).

	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
A1-01	Constant access level Access Level	 Used to set the constant access level (set/read.) 0: Monitoring only (Monitoring drive mode and setting A1-01 and A1-04.) 1: Used to select user constant (Only constants set in A2-01 to A2-32 can be read and set.) 2: Advanced (Constants can be read and set in both quick programming mode and advanced programming (A) mode.) 	0 to 2	2	Yes	А	А	А	А	А
	Password	Password input when a password								
A1-04	Enter Pass- word	has been set in A1-05. This function write-protects some constants of the initialize mode. If the password is changed, A1-01 to A1-03 and A2-01 to A2-32 constants can no longer be changed. (Programming mode constants can be changed.)	0 to 9999	0	No	А	А	А	А	А

■Related Constants

	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
	Password set- ting	Used to set a four digit number as the password.								
A1-05	Select Pass- word	This constant is not usually dis- played. When the Password (A1- 04) is displayed, hold down the RESET Key and press the Menu Key and the password will be dis- played.	0 to 9999	0	No	А	А	А	А	А

■Setting Precautions

Constant A1-05 cannot be displayed using normal key operations. To display A1-05, hold down the RESET Key and press the MENU Key while A1-04 is displayed.

Displaying User-set Constants Only

You can set and refer to constants necessary to the Inverter only, using the A2 constants (user-set constants) and A1-01 (Constants Access Level).

Set the number of the constant to which you want to refer in A2-01 to A2-32, and then set A1-01 to 1. You can set and refer to constants set in A1-01 to A1-03 and A2-01 to A2-32 only, using advanced programming mode.

Related Constants

_					Change		Cor	trol Me	thods	
Con- stant Number	Name	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
	User setting constants	Used to set the constant numbers that can be set/read. Maximum 32.								
A2-01 to A2-32	User Param 1 to 32	Effective when the Constant Access Level (A1-01) is set to User Program (1). Constants set in constants A2-01 to A2-32 can be set/read in programming mode.	b1-01 to o3-02	-	No	Α	А	А	Α	А

Options

This section explains the Inverter option functions.

Performing Speed Control with PG

This section explains functions with V/f control with PG.

■Related Constants

0	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
F1-01	PG constant PG Pulses/Rev	Sets the number of PG (pulse gen- erator or encoder) pulses. Sets the number of pulses per motor revolution.	0 to 60000	600	No	No	Q	No	Q	No
	Operation selection at PG open circuit (PGO)	Sets the PG disconnection stop- ping method. 0: Ramp to stop (Deceleration stop using Deceleration Time 1, C1-02.)								
F1-02	PG Fdbk Loss Sel	 Coast to stop Fast stop (Emergency stop using the deceleration time in C1-09.) Continue operation (To protect the motor or machinery, do not normally make this setting.) 	0 to 3	1	No	No	Α	No	A	No
	Operation selection at overspeed (OS)	 Sets the stopping method when an overspeed (OS) fault occurs. 0: Ramp to stop (Deceleration stop using Deceleration Time 1, C1-02.) 								
F1-03	PG Overspeed Sel	 Coast to stop Fast stop (Emergency stop using the deceleration time in C1-09.) Continue operation (To protect the motor or machinery, do not normally make this setting.) 	0 to 3	1	No	No	Α	No	А	А
	Operation selection at deviation	Sets the stopping method when a speed deviation (DEV) fault occurs.								
F1-04	PG Deviation Sel	 0: Ramp to stop (Deceleration stop using Deceleration Time 1, C1-02.) 1: Coast to stop 2: Fast stop (Emergency stop using the deceleration time in C1-09.) 3: Continue operation (DEV is displayed and operation continued.) 	0 to 3	3	No	No	A	No	A	А
	PG rotation	0: Phase A leads with forward run command. (Phase B leads								
F1-05	PG Rotation Sel	 1: Phase B leads with forward run command. (Phase A leads with reverse run command.) 	0 or 1	0	No	No	А	No	А	No

	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
F1-06	PG division rate (PG pulse mon- itor) PG Output	Sets the division ratio for the PG speed control card pulse output. Division ratio = $(1 + n) / m (n=0 \text{ or} 1 m=1 \text{ to } 32)$ $F1-06 = \square \square \square n m$ This constant is only effective	1 to 132	1	No	No	А	No	А	No
	Ratio	when a PG-B2 is used. The possible division ratio set- tings are: $1/32 \le F1-06 \le 1$.								
F1-07	Integral value during accel/ decel enable/ disable	Sets integral control during accel- eration/deceleration to either enabled or disabled. 0: Disabled (The integral function isn't used while	0 or 1	0	No	No	А	No	No	No
	PG Ramp PI/I Sel	accelerating or decelerating; it is used at constant speeds.) 1: Enabled (The integral function is used at all times.)								
F1-08	Overspeed detection level	Sets the overspeed detection	0 to 120	115%	No	No	А	No	А	А
	PG Overspd Level	method. Frequencies above that set for F1-								
F1-09	Overspeed detection delay time	08 (set as a percentage of the maximum output frequency) that continue to exceed this frequency for the time set in F1-09 are	0.0 to 2.0	0.0 s*	No	No	A	No	A	А
	PG Overspd Time	detected as overspeed faults.	2.0							
F1-10	Excessive speed deviation detection level	Sets the speed deviation detection method. Any speed deviation above the	0 to 50	10%	No	No	A	No	А	А
	PG Deviate Level	F1-10 set level (set as a percent- age of the maximum output fre-								
F1-11	Excessive speed deviation detection delay time	quency) that continues for the time set in F1-11 is detected as a speed deviation. Speed deviation is the difference between actual motor speed and	0.0 to 10.0	0.5 s	No	No	А	No	А	А
	PG Deviate Time	the reference command speed.								
	Number of PG gear teeth 1	Sets the number of teeth on the gears if there are gears between								
F1-12	PG # Gear Teeth1	the PG and the motor. $\frac{\text{Input pulses from PG} \times 60}{\text{F1-01}} \times \frac{\text{F1-13}}{\text{F1-12}}$	0 to	0	No	No	А	No	No	No
F1-13	Number of PG gear teeth 2	$\frac{1}{\text{F1-01}} \times \frac{1}{\text{F1-12}}$ A gear ratio of 1 will be used if either of these constants is set to	1000	0	No	No	А	No	No	No
	PG # Gear Teeth2	0.								
F1-14	PG open-cir- cuit detection time	Used to set the PG disconnection detection time. PGO will be detected if the detection time con-	0.0 to 10.0	2.0 s	No	No	А	No	А	No
	PGO Detect Time	tinues beyond the set time.	10.0							

* The factory setting will change when the control method is changed. (Flux vector control factory settings are given.)

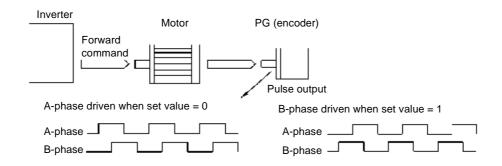
■Using PG Speed Control Card

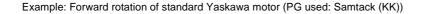
There are four types of PG Speed Control Card that can be used in V/f control with PG.

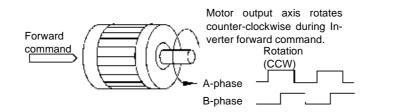
- PG-A2: A-phase (single) pulse input, compatible with open collector or complimentary outputs.
- PG-B2: A/B-phase pulse input, compatible with complimentary outputs.
- PG-D2: A-phase (single) pulse input, compatible with line drivers.
- PG-X2: A/B/Z-phase pulse input, compatible with line drivers.

There are two types of PG Speed Control Cards that can be used for flux vector control.

- PG-B2: A/B phase pulse inputs, complementary outputs
- PG-X2: A/B/Z phase pulse inputs, line driver outputs


For the connection diagram, refer to page 2-32.


Setting Number of PG Pulses


Set the number of PG (Pulse Generator/Encoder) pulses in pulses/rotation. Set the number of A-phase or B-phase pulses per 1 motor rotation in F1-01.

Matching PG Rotation Direction and Motor Rotation Direction

Constant F1-05 matches the PG rotation direction and the motor rotation direction. If the motor is rotating forwards, set whether it is A-phase driven or B-phase driven. Make this setting when using PG-B2 or PG-X2.

Yaskawa standard PG used is A-phase driven (CCW) when motor rotation is forward.

Fig 6.75 PG Rotation Direction Setting

Generally, PG is A-phase driven when rotation is clockwise (CW) see from the input axis. Also, motor rotation is counter-clockwise (CCW) seen from the output side when forward commands are output. Consequently, when motor rotation is forward, PG is normally A-phase driven when a load is applied, and B-phase driven when a load is not applied.

Setting Number of Gear Teeth Between PG and Motor

Set the number of PG gear teeth in F1-12 and F1-13. If there are gears between the motor and PG, you can operate the motor by setting the number of gear teeth.

When the number of gear teeth has been set, the number of motor rotations within the Inverter is calculated using the following formula.

No. of motor rotations (min⁻¹.) = No. of input pulses from PC \times 60 / F1-01 \times F1-13 (No. of gear teeth on load side) / F1-12 (No. of gear teeth on motor side)

Matching Motor Speed During Acceleration and Deceleration to Frequency Reference

You can select whether to enable or disable integral operation during acceleration and deceleration when using flux vector control.

To match the motor speed as closely as possible to the frequency reference even during acceleration and deceleration, set F1-07 to 1.

If F1-01 is set to 1, overshoot or undershoot may occur easily immediately after acceleration and deceleration. To minimize the possibility of overshoot or undershoot occurring, set F1-01 to 0.

Setting PG Pulse Monitor Output Dividing Ratio

This function is enabled only when using PG speed control card PG-B2. Set the dividing ratio for the PG pulse monitor output. The set value is expressed as n for the higher place digit, and m for the lower place 2 digits. The dividing ratio is calculated as follows:

Dividing ratio = (1 + n)/m (Setting range) n: 0 or 1, m: 1 to 32 F1-06 = $\frac{\Box}{n}$ $\frac{\Box \Box}{m}$

The dividing ratio can be set within the following range: $1/32 \le F1-06 \le 1$. For example, if the dividing ratio is 1/2 (set value 2), half of the number of pulses from the PG are monitor outputs.

Detecting PG Open Circuit

Select the stopping method when PG cable disconnected is detected and the PG open circuit (PGO) detection time.

When the Inverter is operating with the frequency reference set to 1% minimum (except when operating on direct current), if the speed feedback from PG is greater than the time setting in F1-14, PGO is detected.

Detecting Motor Overspeed

An error is detected when the number of motor rotations exceeds the regulated limit. An overspeed (OS) is detected when a frequency that exceeds the set value in F1-08 continues for longer than the time set in F1-09. After detecting an overspeed (OS), the Inverter stops according to the setting in F1-03.

Detecting Speed Difference between the Motor and Speed Reference

An error is detected when the speed deviation (i.e., the difference between the designated speed and the actual motor speed) is too great. Speed deviation (DEV) is detected after a speed agreement is detected and when the speed reference and actual workpiece speed are within the setting of L4-02, if a speed deviation great than the set value in F1-10 continues for longer than the time set in F1-11. After a speed deviation is detected, the Inverter stops according to the setting in F1-04.

6

Using Digital Output Cards

There are two types of Inverter digital output cards:

- DO-02C
 - Relay contact output (DPDT contact)
- DO-08

6 photocoupler output channels (shared commons)

2 (independent) relay contact output channels (NC contact)

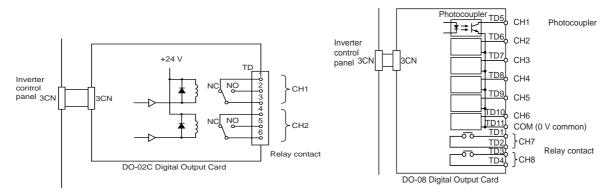


Fig 6.76 Digital Output Cards

■Related Constants

	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
F5-01	Channel 1 out- put selection	Effective when a Digital Output Card (DO-02 or DO-08) is used.	0 to 37	0	No	А	А	А	А	А
	DO Ch1 Select	Set the number of the multi-func- tion output to be output.								
F5-02	Channel 2 out- put selection	Effective when a Digital Output Card (DO-02 or DO-08) is used. Set the number of the multi-func-	0 to 37	1	No	А	А	А	А	А
	DO Ch2 Select	tion output to be output.								
F5-03	Channel 3 out- put selection	Effective when a DO-08 Digital Output Card is used. Set the number of the multi-func-	0 to 37	2	No	А	А	А	А	А
	DO Ch3 Select	tion output to be output.								
F5-04	Channel 4 out- put selection	Effective when a DO-08 Digital Output Card is used.	0 to 37	4	No	А	А	А	А	А
	DO Ch4 Select	Set the number of the multi-func- tion output to be output.								
F5-05	Channel 5 out- put selection	Effective when a DO-08 Digital Output Card is used.	0 to 37	6	No	А	А	А	А	А
	DO Ch5 Select	Set the number of the multi-func- tion output to be output.								
F5-06	Channel 6 out- put selection	Effective when a DO-08 Digital Output Card is used. Set the number of the multi-func-	0 to 37	37	No	А	А	А	А	А
	DO Ch6 Select	tion output to be output.								

	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
F5-07	Channel 7 out- put selection	Effective when a DO-08 Digital Output Card is used. Set the number of the multi-func-	0 to 37	0F	No	А	А	А	А	А
	DO Ch7 Select	tion output to be output.								
F5-08	Channel 8 out- put selection	Effective when a DO-08 Digital Output Card is used. Set the number of the multi-func-	0 to 37	0F	No	А	А	А	А	А
	DO Ch8 Select	tion output to be output.								
	DO-08 output mode selection	Effective when a DO-08 Digital Output Card is used.								
F5-09	DO-08 Selec- tion	Set the output mode. 0: 8-channel individual outputs 1: Binary code output 2: Output according to F5-01 to F5-08 settings.	0 to 2	0	No	A	А	А	А	А

Setting Output Items for the DO-02C Digital Output Card

If using DO-02C Digital Output Card, set the output items using F5-01 and F5-02.

Setting Output Items for the DO-08 Digital Output Card

If using DO-08 Digital Output Card, select one of the following three output modes according to the setting in F5-09.

F5-09 Set to 0

Set Value	Terminal Number	Output Details
	TD5-TD11	Overcurrent (SC, OC, GF)
	TD6-TD11	Overvoltage (OV)
	TD7-TD11	Inverter overload (OL2)
0: 8 separate	TD8-TD11	Fuse blown (PUF)
outputs	TD9-TD11	Overspeed (OS)
	TD10-TD11	Inverter overheated (OH1) or motor overload (OL1)
	TD1-TD2	Zero speed detected
	TD3-TD4	Speed agreement

F5-09 Set to 1

Set Value	Terminal Number	Output	t Details
	TD5-TD11	bit 0	
	TD6-TD11	bit 1	Encoded output
	TD7-TD11	bit 2	(Refer to table below)
1: Binary code	TD8-TD11	bit 3	
output	TD9-TD11	Zero speed detected	
	TD10-TD11	Speed agreement	
	TD1-TD2	Operating	
	TD3-TD4	Minor fault	

The following table shows the code outputs.

Bits 3, 2, 1, and 0	Output Details	Bits 3, 2, 1, and 0	Output Details
0000	No error	1000	External fault (EFxx)
0001	Overcurrent (SC, OC, GF)	1001	Controller error (CPFxx)
0010	Overvoltage (OV)	1010	Motor overload (OL1)
0011	Inverter overload (OL2)	1011	Not used
0100	Inverter overheated (OH, OH1)	1100	Power loss (UV1, UV2, or UV3)
0101	Overspeed (OS)	1101	Speed deviation (DEV)
0110	Fuse blown (PUF)	1110	PG open circuit (PGO)
0111	Dynamic braking resistor (RH) Injection brake transistor error (RR)	1111	Not used

F5-09 Set to 2

6-148

Output depends on the settings in F5-01 to F5-08.

Using an Analog Reference Card

When using a AI-14B or A1-14U Analog Reference Card, set constant b1-01 (Reference selection) to 3 (Option Card).

AI-14B provides 3 channels of bi-polar inputs with 14-bit A/D conversion accuracy (and a sign bit). The function of each channel is determined by the setting of F2-01.

AI-14U provides 2 channels of bi-polar inputs with 14-bit A/D conversion accuracy. Channel 1 is a voltage input and channel 2 is a current input. The sum of channels 1 and 2 is a frequency input. F2-01 does not need to be set for the AI-14U.

Related Constants

	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
F2-01	Bi-polar or uni- polar input selection AI-14 Input Sel	Sets the functions for channel 1 to 3 that are effective when the AI- 14B Analog Reference Card is used. 0: 3-channel individual (Chan- nel 1: terminal A1, Channel 2: terminal A2, Channel 3: termi- nal A3) 1: 3-channel addition (Addition values are the frequency refer- ence)	0 or 1	0	No	A	A	A	A	А
		When set to 0, select 1 for b1-01. In this case the multi-function input "Option/Inverter selection" cannot be used.								

Setting Precautions

Always set b1-01 (Reference selection) to 1 (control circuit terminal) when using the AI-14B for three channels of independent inputs. When this is done, H1-01 to H1-10 (multi-function contact inputs) cannot be set to 2 (Option/Inverter selection).

Using a Digital Reference Card

When using a DI-08 or DI-16H2 Digital Reference Card, set b1-01 (Reference selection) to 3 (Option Card).

The DI-16H2 can be used to set a frequency using a 16-bit digital reference. The DI-08 can be used to set a frequency using a 8-bit digital reference.

■Related Constants

	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
F3-01	Digital input option DI Input	Sets the Digital Reference Card input method. 0: BCD 1% unit 1: BCD 0.1% unit 2: BCD 0.01% unit 3: BCD 1 Hz unit 4: BCD 0.1 Hz unit 5: BCD 0.01 Hz unit 6: BCD special setting (5-digit input) 7: Binary input 6 is only effective when the DI- 16H2 is used. When 01-03 is set to 2 or higher, the input will be BCD, and the units will change to the 01-03 set-	0 to 7	0	No	А	А	A	А	A
		ting.								

	Name				Change		Cor	ntrol Me	thods	
Con- stant Number	Display	Description	Setting Range	Factory Setting	during Opera- tion	V/f	V/f with PG	Open Loop Vector 1	Flux Vec- tor	Open Loop Vector 2
o1-03	Frequency units of reference set- ting and moni- tor Display Scaling	Sets the units that will be set and displayed for the frequency refer- ence and frequency monitor. 0: 0.01 Hz units 1: 0.01% units (Maximum output frequency is 100%) 2 to 39: min ⁻¹ units (Sets the motor poles.) 40 to 39999: User desired display Set the desired values for setting and display for the max. output frequency. Set 4-digit number excluding the decimal point. Set the number of digits below the decimal point to display. Example: When the max. output frequency value is 200.0, set 12000	0 to 39999	0	No	Α	А	А	Α	А

■Selecting Input Terminal Functions for the DI-16H2 Digital Reference Card

The frequency reference from the DI-16H2 Card is determined by the setting of F3-01 and the 12/16-bit switch on the Option card. The possible settings are listed in the following table.

Terminal Pin No.		12-bit Binary with Sign	16-bit Binary with Sign		digit BCD with Sign		4-digit BCD with Sign F3-01 = 0 to 5 S1: 16 bit		4-digit BCD with- out Sign	
	1 11110.	F3-01 = 7 S1: 12 bit	F3-01 = 7 S1: 16 bit	F3-01 = 0 to 5 S1: 12 bit		F			F3-01 = 6 S1: 16 bit	
	1	Bit 1 (2 ⁰)	Bit 1 (2 ⁰)	1		1		2		
	2	Bit 1 (2 ¹)	Bit 1 (2 ¹)	2	BDC digit 1	2	BDC digit 1	4	BDC digit 1 (2 to 9)	
	3	Bit 1 (2 ²)	Bit 1 (2 ²)	4	(0 to 9)	4	(0 to 9)	8		
	4	Bit 1 (2 ³)	Bit 1 (2 ³)	8		8		1		
TC1	5	Bit 1 (2 ⁴)	Bit 1 (2 ⁴)	1		1		2	BDC digit 2	
	6	Bit 1 (2 ⁵)	Bit 1 (2 ⁵)	2	BDC digit 2	2	BDC digit 2	4	(0 to 9)	
	7	Bit 1 (2 ⁶)	Bit 1 (2 ⁶)	4	(0 to 9)	4	(0 to 9)	8		
	8	Bit 1 (2 ⁷)	Bit 1 (2 ⁷)	8		8		1		
	9	Bit 1 (2 ⁸)	Bit 1 (2 ⁸)	1	BDC digit 3	1	BDC digit 3	2	BDC digit 3 (0 to 9)	
	10	Bit 1 (2 ⁹)	Bit 1 (2 ⁹)	2		2		4		
	1	Bit 1 (2 ¹⁰)	Bit 1 (2 ¹⁰)	4	(0 to 9)	4	(0 to 9)	8		
	2	Bit 1 (2 ¹¹)	Bit 1 (2 ¹¹)	8		8		1		
	3	-	Bit 1 (2 ¹²)		-	1		2	BDC digit 4	
	4	-	Bit 1 (2 ¹³)		-	2	BDC digit 4	4	(0 to 9)	
TC2	5	-	Bit 1 (2 ¹⁴)		-	4	(0 to 9)	8		
	6	-	Bit 1 (2 ¹⁵)		-	8		1	BDC digit 5	
	7	Sign signal (0:	Forward, 1: Rev	erse)			2	(0 to 3)	
	8	SET (read) sign	. ,							
	9	Input signal common (0 V)								
TC3	1	Shield wire cor	nection termina	1						

Application Precautions

- The maximum frequency (100% speed) reference will be used when the binary input is set (setting: 6 or 7) and all bits are 1.
- Setting F3-01 to 6 is valid only when the D1-16H2 is used. Using this setting, a frequency from 0.00 to 399.8 Hz can be set in BCD. The sign bit is used as a data bit, so only positive (plus) data can be set. Also, the digit starts from 0, so the minimum setting is 0.02 Hz.

Selecting the Input Terminal Function for a DI-08 Digital Reference Card

The frequency reference from a DI-08 Card is determined by the setting of F3-01, as shown in the following table.

Terminal	Pin No.	8-bit Binary with Sign	•	D with Sign	
Termina	1 11 110.	F3-01 = 7 F3-01 = 0		= 0 to 5	
	1	Bit 1 (2 ⁰)	1		
	2	Bit 1 (2 ¹)	2	BDC digit 1	
	3	Bit 1 (2 ²)	4	(0 to 9)	
	4	Bit 1 (2 ³)	8		
	5	Bit 1 (2 ⁴)	1		
TC	6	Bit 1 (2 ⁵)	2	BDC digit 2	
	7	Bit 1 (2 ⁶)	4	(0 to 15)	
	8	Bit 1 (2 ⁷)	8		
	9	Sign signal			
	10	SET (read) signal			
	11	Reference common signal (0 V)			

■Application Precautions

The DI-08 will not function if F3-01 is set to 6

■Selecting the Digital Reference

The range of the digital references is determined by the combination of the settings of o1-03 and F3-01. The information monitored in U1-01 (Frequency reference) will also change.

DI-16H2 Reference Ranges

When using the DI-16H2, the following ranges can be set depending on the settings of the constants.

o1-03	F3-01	Switch	Reference Input Mode	Reference Setting		onitor Unit
01.00	S1 S1			Range	01-03 = 0	01-03 = 1
	0	12 bits	3-digit BCD with sign, 1%	-110 to 110%		
	0	16 bits	4-digit BCD with sign, 1%	-110 to 110%		
	1	12 bits	3-digit BCD with sign, 0.1%	-110.0 to 110.0%		
	1	16 bits	4-digit BCD with sign, 0.1%	-110.0 to 110.0%		
	2	12 bits	3-digit BCD with sign, 0.01%	-15.99 to 15.99%		
	Z	16 bits	4-digit BCD with sign, 0.01%	-110.0 to 110.0%		
	3	12 bits	3-digit BCD with sign, 1 Hz	-400 to 400 Hz		
0 or 1	3	16 bits	4-digit BCD with sign, 1 Hz	-400 to 400 Hz	0.01 Hz	0.01%
	4	12 bits	3-digit BCD with sign, 0.1 Hz	-159.9 to 159.9 Hz		
	4	16 bits	4-digit BCD with sign, 0.1 Hz	-400.0 to 400.0 Hz		
	5	12 bits	3-digit BCD with sign, 0.01 Hz	-15.99 to 15.99 Hz		
	3	16 bits	4-digit BCD with sign, 0.01 Hz	-159.99 to 159.99 Hz		
	6	16 bits	5-digit BCD without sign, 0.01 Hz	000.00 to 399.98 Hz		
	7	12 bits	12-bit binary with sign, 100%/4095	-4095 to 4095		
	/	16 bits	16-bit binary with sign, 100%/30000	-33000 to 33000		

o1-03	F3-01	Switch S1	Reference Input Mode	Reference Setting Range	U1-01 Monitor Unit 01-03 = 0 01-03 = 1
2 to 39		12 bits3-digit BCD with sign, 1 rpm-1599 to 1599		-1599 to 1599 rpm	1 rpm
2 10 39	-	16 bits	4-digit BCD with sign, 1 rpm	-15999 to 15999 rpm	1 rpm
40 to	-	12 bits	3-digit BCD with sign, 100%/(1- to 4- digit setting of o1-03)	-4095 to 4095	5th digit of o1-03 set-
39999	-	16 bits	4-digit BCD with sign, 100%/(1- to 4- digit setting of o1-03)	-10999 to 10999 (when o1-03 = 9999)	ting: X = 0, unit: 1 X = 1, unit: 0.1
10000 x = 1 to 3	-	16 bits	4-digit BCD with sign, 100%/10000	-11000 to 11000	X = 2, unit: 0.01 X = 3, unit: 0.001

DI-08 Reference Ranges

When using the DI-08, the following ranges can be set depending on the settings of the constants.

F3-01	Reference Input Mode	Reference Setting Range	U1-01 Monitor Unit		
13-01	Reference input mode	Kelerence Setting Kange	01-03 = 0	o1-03 = 1	
0	2-digit BCD with sign, 1%	-110 to 110%			
1	2-digit BCD with sign, 0.1%	-15.9 to 15.9%			
2	2-digit BCD with sign, 0.01%	-1.59 to 1.59%			
3	2-digit BCD with sign, 1 Hz	-159 to 159 Hz			
4	2-digit BCD with sign, 0.1 Hz	-15.9 to 15.9 Hz	0.01 Hz	0.01%	
5	2-digit BCD with sign, 0.01 Hz	-1.59 to 1.59 Hz			
6		-			
7	12-bit binary with sign, 100%/ 4095	-255 to 255			

7

Troubleshooting

This chapter describes the fault displays and countermeasure for the Inverter and motor problems and countermeasures.

Protective and Diagnostic Functions	7-2
Troubleshooting	7-17

Protective and Diagnostic Functions

This section describes the alarm functions of the Inverter. The alarm functions include fault detection, alarm detection, operation error detection, and autotuning error detection.

Fault Detection

When the Inverter detects a fault, the fault contact output operates, and the Inverter output is shut OFF causing the motor to coast to a stop. (The stopping method can be selected for some faults, and the selected stopping method will be used with these faults.) A fault code is displayed on the Digital Operator.

When a fault has occurred, refer to the following table to identify and correct the cause of the fault.

Use one of the following methods to reset the fault after restarting the Inverter:

- Set a multi-function contact input (H1-01 to H1-05) to 14 (Fault Reset) and turn ON the fault reset signal.
- Press the RESET Key on the Digital Operator.
- Turn the main circuit power supply OFF and then ON again.

Table 7.1	Fault Displays and Processing

Display	Meaning	Probable Causes	Corrective Actions
OC Over Cur- rent	Overcurrent The Inverter output current exceeded the overcurrent detection level. (200% of rated current)	 A short-circuit or ground fault occurred at the Inverter output. (A short or ground fault can be caused by motor burn damage, worn insu- lation, or a damaged cable.) The load is too large or the accelera- tion/deceleration time is too short. A special-purpose motor or motor with a capacity too large for the Inverter is being used. A magnetic switch was switched at the Inverter output. 	Reset the fault after correcting its cause.
GF Ground Fault	Ground Fault The ground fault current at the Inverter output exceeded approxi- mately 50% of the Inverter rated out- put current.	A ground fault occurred at the Inverter output. (A ground fault can be caused by motor burn damage, worn insula- tion, or a damaged cable.)	Reset the fault after correcting its cause.
PUF Main IBGT Fuse Blown	Fuse Blown The fuse in the main circuit is blown.	The output transistor has failed because of a short-circuit or ground fault at the Inverter output. Check whether there is a short-circuit between the following terminals. A short-circuit will damage the output transistor: B1 (\oplus 3) $\leftarrow \rightarrow$ U, V, W $\bigcirc \leftarrow \rightarrow$ U, V, W	Replace the Inverter after correct- ing the cause.
OV DC Bus Fuse Open	Main Circuit Overvoltage The main circuit DC voltage exceeded the overvoltage detection level. 200 V class: Approx. 410 V 400 V class: Approx. 820 V	The deceleration time is too short and the regenerative energy from the motor is too large. The power supply voltage is too high.	Increase the deceleration time or connect a braking resistor (or Braking Resistor Unit). Decrease the voltage so it's within specifications.

Display	Meaning	Probable Causes	Corrective Actions
UV1 DC Bus Undervolt	Main Circuit Undervoltage The main circuit DC voltage is below the Undervoltage Detection Level (L2-05). 200 V class: Approx. 190 V 400 V class: Approx. 380 V	 An open-phase occurred with the input power supply. A momentary power loss occurred. The wiring terminals for the input power supply are loose. The voltage fluctuations in the input power supply are too large. 	Reset the fault after correcting its cause.
UV2 CTL PS Undervolt	Control Power Fault The control power supply voltage dropped.	-	Try turning the power supply off and on.Replace the Inverter if the fault continues to occur.
UV3 MC Answer- back	Inrush Prevention Circuit Fault A fault occurred in the surge preven- tion circuit.	-	Try turning the power supply off and on.Replace the Inverter if the fault continues to occur.
PF Input Pha Loss	Main Circuit Voltage Fault The main circuit DC voltage oscillates unusually (not when regenerating). This fault is detected when L8-05 is set to "Enabled."	 An open-phase occurred in the input power supply. A momentary power loss occurred. The wiring terminals for the input power supply are loose. The voltage fluctuations in the input power supply are too large. The voltage balance between phases is bad. 	Reset the fault after correcting its cause.
LF Output Pha Loss	Output Open-phase An open-phase occurred at the Inverter output. This fault is detected when L8-07 is	 There is a broken wire in the output cable. There is a broken wire in the motor winding. The output terminals are loose. 	Reset the fault after correcting its cause.
2000	set to "Enabled."	The motor being used has a capacity less than 5% of the Inverter's maxi- mum motor capacity.	Check the motor and Inverter capacity.
OH	Cooling Fin Overheating	The ambient temperature is too high.	Install a cooling unit.
(OH1) Heatsnk	The temperature of the Inverter's cool- ing fins exceeded the setting in L8-02	There is a heat source nearby.	Remove the heat source.
Overtemp (Heatsnk MAX Temp)	or 105°C. Inverter's Cooling Fan Stopped (18.5 kW or higher)	The Inverter's cooling fan has stopped. The Inverter's cooling fan has stopped.	Replace the cooling fan. (Contact our sales representative.)
OH3	Motor Overheating Alarm The Inverter will stop or will continue		Check the size of the load and the length of the acceleration, deceler- ation, and cycle times.
Motor Overheat 1	to operate according to the setting of	The motor has overheated.	Check the V/f characteristics.
	L1-03.		Check the Motor Rated Current (E2-01).
OH4	Motor Overheating Fault		Check the size of the load and the length of the acceleration, deceler- ation, and cycle times.
Motor Overheat 2	The Inverter will stop according to the setting of L1-04.	The motor has overheated.	Check the V/f characteristics.
			Check the Motor Rated Current (E2-01).

Display	Meaning	Probable Causes	Corrective Actions
RH DynBrk Resistor	Installed Braking Resistor Over- heating Braking resistor protection function set in L8-01 has operated.	The deceleration time is too short and the regenerative energy from the motor is too large.	 Reduce the load, increase the deceleration time, or reduce the motor speed. Change to a Braking Resistor Unit.
RR DynBrk Transistr	Internal Braking Transistor Fault The braking transistor is not operating properly.	-	Try turning the power supply off and on.Replace the Inverter if the fault continues to occur.
OL1	Motor Overload	The load is too heavy. The accelera- tion time, deceleration time, and cycle time are too short.	Check the size of the load and the length of the acceleration, deceler- ation, and cycle times.
Motor Overloaded	The motor overload protection func- tion has operated based on the internal electronic thermal value.	The V/f characteristics voltage is too high.	Check the V/f characteristics.
		The Motor Rated Current (E2-01) is incorrect.	Check the Motor Rated Current (E2-01).
OL2	Inverter Overload	The load is too heavy. The accelera- tion time, deceleration time and cycle time are too short.	Check the size of the load and the length of the acceleration, deceler- ation, and cycle times.
Inv Over- loaded	The Inverter overload protection func- tion has operated based on the internal electronic thermal value.	The V/f characteristics voltage is too high.	Check the V/f characteristics.
		The Inverter capacity is too low.	Replace the Inverter with one that has a larger capacity.
OL3 Overtorque Det 1	Overtorque Detected 1 There has been a current greater than the setting in L6-02 for longer than the setting in L6-03.	-	 Make sure that the settings in L6-02 and L6-03 are appropriate. Check the mechanical system and correct the cause of the overtorque.
OL4 Overtorque Det 2	Overtorque Detected 2 There has been a current greater than the setting in L6-05 for longer than the setting in L6-06.	-	 Make sure that the current setting in L6-05 and time setting in L6-06 are appropriate. Check the mechanical system and correct the cause of the overtorque.
OL7 HSB-OL	High-slip Braking OL The output frequency did not change for longer than the time set in N3-04.	The inertia returned to the load is too large.	 Make sure the load is an inertial load. Set the system so that the deceleration time that does not produce 0 V is 120 s or less.
UL3 Undertorq Det 1	Undertorque Detected 1 There has been a current less than the setting in L6-02 for longer than the setting in L6-03.	-	 Make sure that the settings in L6-02 and L6-03 are appropriate. Check the mechanical system and correct the cause of the overtorque.

Table 7.1	Fault Displays and	Processing (Continued)
	i dan Diopidyo dila	

Display	Meaning	Probable Causes	Corrective Actions
UL4 Undertorq Det 2	Undertorque Detected 2 There has been a current less than the setting in L6-05 for longer than the setting in L6-06.	-	 Make sure that the current setting in L6-05 and time setting in L6-06 are appropriate. Check the mechanical system and correct the cause of the overtorque.
		Overshooting/Undershooting are occurring.	Adjust the gain again.
OS Overspeed Det	Overspeed The speed has been greater than the setting in F1-08 for longer than the	The reference speed is too high.	Check the reference circuit and reference gain.
	setting in F1-09.	The settings in F1-08 and F1-09 aren't appropriate.	Check the settings in F1-08 and F1-09.
		There is a break in the PG wiring.	Fix the broken/disconnected wir- ing.
PGO	PG Disconnection Detected	The PG is wired incorrectly.	Fix the wiring.
PG Open	PG pulses were input when the Inverter was outputting a frequency.	Power isn't being supplied to the PG.	Supply power to the PG properly.
		-	Check for open circuit when using brake (motor).
	Excessive Speed Deviation The speed deviation has been greater than the setting in F1-10 for longer than the setting in F1-11.	The load is too heavy.	Reduce the load.
		The acceleration time and deceleration time are too short.	Lengthen the acceleration time and deceleration time.
DEV Speed		The load is locked.	Check the mechanical system.
Deviation		The settings in F1-10 and F1-11 aren't appropriate.	Check the settings in F1-10 and F1-11.
		-	Check for open circuit when using brake (motor).
	Control Fault The torque limit was reached continu- ously for 3 seconds or longer during a deceleration stop during open-loop vector control 1.	Motor constant settings are not cor- rect.	Check the motor constants.Perform autotuning.
CF Out of Control	An error occurred in the speed estima- tion calculation for open-loop vector control 2.	Motor constant settings are not cor- rect. Run command was received when the motor was coasting.	 Perform autotuning. Input the run command after the motor stops. Set b3-01 (Speed search selection) to 1 or 3 (speed search enabled at startup). Refer to <i>Precautions When Using Open-loop Vector Control 2</i> on page 10-4.
FBL Feedback Loss	PID Feedback Reference Lost A PID feedback reference loss was detected ($b5-12 = 2$) and the PID feed- back input was less than $b5-13$ (PID feedback loss detection level) for longer than the time set in $b5-14$ (PID feedback loss detection time).	-	-

Table 7.1 Fault Displays and Processing (Continued)

Display	Meaning	Probable Causes	Corrective Actions	
EF0 Opt Exter- nal Flt	External fault input from Communi- cations Option Card	-	Check the Communications Option Card and communications signals.	
EF3 Ext Fault S3	External fault (Input terminal 3)			
EF4 Ext Fault S4	External fault (Input terminal 4)			
EF5 Ext Fault S5	External fault (Input terminal 5)			
EF6 Ext Fault S6	External fault (Input terminal 6)			
EF7 Ext Fault S7	External fault (Input terminal 7)	An "external fault" was input from a	 Reset external fault inputs to the multi-function inputs. Remove the cause of the external fault. 	
EF8 Ext Fault S8	External fault (Input terminal 8)	multi-function input terminal.		
EF9 Ext Fault S9	External fault (Input terminal 9)			
EF10 Ext Fault S10	External fault (Input terminal 10)			
EF11 Ext Fault S11	External fault (Input terminal 11)			
EF12 Ext Fault S12	External fault (Input terminal 12)			
SVE	Zero Servo Fault	The torque limit is too small.	Increase the limit.	
Zero Servo	The rotation position moved during	The load torque is too large.	Reduce the load torque.	
Fault	zero servo operation.	-	Check for signal noise.	
OPR Oper Dis- connect	Digital Operator Connection Fault The connection to the Digital Operator was broken during operation for a RUN command from the Digital Operator.	-	Check the connection to the Digi- tal Operator.	
CE Memobus Com Err	MEMOBUS Communications Error A normal reception was not possible for 2 s or longer after control data was received once.	-	Check the communications devices and communications sig- nals.	

Table 7.1 Fault Displays and Processing (Continued)

Display	Meaning	Probable Causes	Corrective Actions
BUS Option Com Err	Option Communications Error A communications error was detected during a run command or while setting a frequency reference from a Commu- nications Option Card.	-	Check the communications devices and communications signals.
E-15 SI-F/G Com Err	SI-F/G Communications Error Detected A communications error was detected when a run command or frequency reference was set from an Option Card and continuous operation was set for the E-15 operation selection.	-	Check the communications sig- nals.
E-10 SI-F/G	SI-F/G Option Card CPU Failure SI-F/G Option Card operation failed.	Digital Operator connection is faulty.	Disconnect and then reconnect the Digital Operator.
CPU down	SI-F/O Option Card operation failed.	Inverter control circuit is faulty.	Replace the Inverter.
	Digital Operator Communications Error 1	The Digital Operator's connector isn't connected properly.	Disconnect the Digital Operator and then connect it again.
CPF00 CPF	Communications with the Digital Operator were not established within 5 seconds after the power was turned on.	The Inverter's control circuits are faulty.	Replace the Inverter.
	CPU External RAM Fault	-	Try turning the power supply off and on again.
		The control circuits were destroyed.	Replace the Inverter.
CPF01	Digital Operator Communications Error 2 After communications were estab- lished, there was a communications error with the Digital Operator for more than 2 seconds.	The Digital Operator isn't connected properly.	Disconnect the Digital Operator and then connect it again.
CPF01 CPF01		The Inverter's control circuits are faulty.	Replace the Inverter.
CPF02 BB Circuit	Baseblock circuit error	-	Try turning the power supply off and on again.
Err		The control circuit is damaged.	Replace the Inverter.
CPF03 EEPROM	EEPROM error	-	Try turning the power supply off and on again.
Error		The control circuit is damaged.	Replace the Inverter.
CPF04 Internal	CPU internal A/D converter error	-	Try turning the power supply off and on again.
A/D Err		The control circuit is damaged.	Replace the Inverter.
CPF05 External	CPU internal A/D converter error	-	Try turning the power supply off and on again.
A/D Err		The control circuit is damaged.	Replace the Inverter.
CPF06	Option Card connection arror	The Option Card is not connected properly.	Turn off the power and insert the Card again.
Option error	Option Card connection error	The Inverter or Option Card is faulty.	Replace the Option Card or the Inverter.

Table 7.1 Fa	ault Displays and	Processing	(Continued)
--------------	-------------------	------------	-------------

7-7

Display	Meaning	Probable Causes	Corrective Actions
CPF07 RAM-Err	ASIC internal RAM fault	-	Try turning the power supply off and on again.
KAW-LII		The control circuit is damaged.	Replace the Inverter.
CPF08 WAT-Err	Watchdog timer fault	-	Try turning the power supply off and on again.
WAI-EII		The control circuit is damaged.	Replace the Inverter.
CPF09 CPU-Err	CPU-ASIC mutual diagnosis fault	-	Try turning the power supply off and on again.
CPU-EII		The control circuit is damaged.	Replace the Inverter.
CPF10 ASIC-Err	ASIC version fault	The Inverter control circuit is faulty	Replace the Inverter.
CPF20	Communications Option Card A/D converter error	The Option Card is not connected properly.	Turn off the power and insert the Card again.
Option A/D error		The Option Card's A/D converter is faulty.	Replace the Communications Option Card.
CPF21 Option CPU down	Communications Option Card self diagnostic error		
CPF22 Option Type Err	Communications Option Card model code error	Communications Option Card fault.	Replace the Option Card.
CPF23 Option DPRAM Err	Communications Option Card DPRAM error		

Table 7.1 Fault Displays and Processing (Continued)

♦ Alarm Detection

Alarms are detected as a type of Inverter protection function that do not operate the fault contact output. The system will automatically returned to its original status once the cause of the alarm has been removed.

The Digital Operator display flashes and the alarm is output from the multi-function outputs (H2-01 to H2-03).

When an alarm occurs, take appropriate countermeasures according to the table below.

Display	Meaning	Probable causes	Corrective Actions
EF (blinking) External Fault	Forward/Reverse Run Commands Input Together Both the forward and reverse run com- mands have been ON for more than 0.5 s.	-	Check the sequence of the forward and reverse run commands. Since the rotational direction is unknown, the motor will be deceler- ated to a stop when this minor fault occurs.
UV (blinking) DC Bus Under- volt	 Main Circuit Undervoltage The following conditions occurred when there was no Run signal. The main circuit DC voltage was below the Undervoltage Detection Level Setting (L2-05). The surge current limiting contactor opened. The control power supply voltage when below the CUV level. 	See causes for UV1, UV2, and UV3 faults in the previous table.	See corrective actions for UV1, UV2, and UV3 faults in the previous table.
OV (blinking) DC Bus Overvolt	Main Circuit Overvoltage The main circuit DC voltage exceeded the overvoltage detection level. 200 V class: Approx. 400 V 400 V class: Approx. 800 V	The power supply voltage is too high.	Decrease the voltage so it's within specifications.
OH		The ambient temperature is too high.	Install a cooling unit.
Heat-	(blinking) Heat- sink Over- temp Cooling Fin Overheating The temperature of the Inverter's cool- ing fins exceeded the setting in L8-02.	There is a heat source nearby.	Remove the heat source
Over-		The Inverter cooling fan has stopped.	Replace the cooling fan. (Contact your Yaskawa representative.)
OH2 (blinking) Over Heat 2	Inverter Overheating Pre-alarm An OH2 alarm signal (Inverter over- heating alarm signal) was input from a multi-function input terminal (S3 to S7).	-	Clear the multi-function input termi- nal's overheating alarm input.
OH3 (blinking)	Motor overheating E was set for H3-09 and the motor		Check the size of the load and the length of the acceleration, decelera- tion, and cycle times.
Motor Over-	temperature thermistor input exceeded	The motor has overheated.	Check the V/f characteristics.
heat 1	the alarm detection level.		Check the motor temperature input on terminals A1 and A2.
OL3 (blinking) Over- torque Det 1	Overtorque 1 There has been a current greater than the setting in L6-02 for longer than the setting in L6-03.	-	 Make sure that the settings in L6-02 and L6-03 are appropriate. Check the mechanical system and correct the cause of the overtorque.

Table 7.2	Alarm Displays and Processing	
-----------	-------------------------------	--

7

Display	Meaning	Probable causes	Corrective Actions
OL4 (blinking) Over- torque Det 2	Overtorque 2 There has been a current greater than the setting in L6-05 for longer than the setting in L6-06.	-	 Make sure that the current setting in L6-05 and time setting in L6-06 are appropriate. Check the mechanical system and correct the cause of the overtorque.
UL3 (blinking) Under- torq Det 1	Undertorque 1 There has been a current less than the setting in L6-02 for longer than the setting in L6-03.	-	 Make sure that the settings in L6-02 and L6-03 are appropriate. Check the mechanical system and correct the cause of the overtorque.
UL4 (blinking) Under- torq Det 2	Undertorque 2 There has been a current less than the setting in L6-05 for longer than the setting in L6-06.	-	 Make sure that the current setting in L6-05 and time setting in L6-06 are appropriate. Check the mechanical system and correct the cause of the overtorque.
OS	Overspeed The speed has been greater than the setting in F1-08 for longer than the setting in F1-09.	Overshooting/undershooting are occurring.	Adjust the gain again.
(blinking) Over- speed		The reference speed is too high.	Check the reference circuit and reference gain.
Det		The settings in F1-08 and F1-09 aren't appropriate.	Check the settings in F1-08 and F1-09.
PGO	The PG is disconnected	There is a break in the PG wiring.	Fix the broken/disconnected wiring.
(blinking)	The Inverter is outputting a frequency, but PG pulses aren't being input.	The PG is wired incorrectly.	Fix the wiring.
PG Open		Power isn't being supplied to the PG.	Supply power to the PG properly.
		The load is too large.	Reduce the load.
DEV (blinking) Speed Devia- tion	Excessive Speed Deviation The speed deviation has been greater than the setting in F1-10 for longer than the setting in F1-11.	The acceleration time and decelera- tion time are too short.	Lengthen the acceleration time and deceleration time.
		The load is locked.	Check the mechanical system.
		The settings in F1-10 and F1-11 aren't appropriate.	Check the settings in F1-10 and F1-11.
EF0 Opt External Flt	External fault detected for Commu- nications Card other than SI-K2 Continuing operation was specified for EF0 (F6-03 = 3)and an external fault was input from the Option Card.	-	Remove the cause of the external fault.

Display	Meaning	Probable causes	Corrective Actions
EF3 (blinking) ExtFault S3	External fault (Input terminal S3)	An external fault was input from a multi-function input terminal (S3 to S7).	 Reset external fault inputs to the multi-function inputs. Remove the cause of the external fault.
EF4 (blinking) ExtFault S4	External fault (Input terminal S4)		
EF5 (blinking) ExtFault S5	External fault (Input terminal S5)		
EF6 (blinking) ExtFault S6	External fault (Input terminal S6)		
EF7 (blinking) ExtFault S7	External fault (Input terminal S7)		
EF8 (blinking) ExtFault S8	External fault (Input terminal S8)		
EF9 (blinking) ExtFault S9	External fault (Input terminal S9)		
EF10 (blinking) ExtFault S10	External fault (Input terminal S10)		
EF11 (blinking) ExtFault S11	External fault (Input terminal S11)		
EF12 (blinking) ExtFault S12	External fault (Input terminal S12)		
FBL (blinking) Feed- back Loss	PID Feedback Reference Lost A PID feedback reference loss was detected (b5-12 = 2) and the PID feed- back input was less than b5-13 (PID feedback loss detection level) for longer than the time set in b5-14 (PID feedback loss detection time).	-	-
CE (blinking) MEMO- BUS Com Err	MEMOBUS Communications Error Normal reception was not possible for 2 s or longer after received control data.	-	Check the communications devices and signals.

Table 7.2 Alarm Displays and Processing (Continued)

Display	Meaning	Probable causes	Corrective Actions
BUS (blinking) Option Com Err	Option Card Communications Error A communications error occurred in a mode where the run command or a frequency reference is set from an Communications Option Card.	-	Check the communications devices and signals.
CALL (blinking) Com Call	Communications on Standby Control data was not normally received when power was turned ON.	-	Check the communications devices and signals.
E-15 SI-F/G Com Err	SI-F/G Communications Error Detected A communications error was detected when a run command or frequency reference was set from an Option Card and continuous operation was set for the E-15 operation selection.	-	Check the communications signals.

Table 7.2 Alarm Displays and Processing (Continued)

Operation Errors

An operation error will occur if there is an invalid setting or a contradiction between two constant settings. It won't be possible to start the Inverter until the constants have been set correctly. (The alarm output and fault contact outputs will not operate either.)

When an operation error has occurred, refer to the following table to identify and correct the cause of the errors.

Display	Meaning	Incorrect settings
OPE01 kVA Selec- tion	Incorrect Inverter capacity setting	The Inverter capacity setting doesn't match the Unit. (Contact your Yaskawa repre- sentative.)
OPE02 Limit	Constant setting range error	The constant setting is outside of the valid setting range. When this error is dis- played, press the ENTER Key to display U1-34 (OPE fault constant).
OPE03 Terminal	Multi-function input selection error	 One of the following errors has been made in the multi-function input (H1-01 to H1-10) settings: The same setting has been selected for two or more multi-function inputs. An up or down command was selected independently. (They must be used together.) The up/down commands (10 and 11) and Accel/Decel Ramp Hold (A) were selected at the same time. Speed Search 1 (61, maximum output frequency) and Speed Search 2 (62. set frequency) were selected at the same time. The up/down commands (10 and 11) were selected while PID Control Mode Selection (b5-01) was enabled. Positive and negative speed commands have not been set at the same time. The emergency stop command NO and NC have been set at the same time.
OPE05 Sequence Select	Option Card selection error	The Option Card was selected as the frequency reference source by setting b1-01 to 3, but an Option Card isn't connected (C option).
OPE06 PG Opt Miss- ing	Control method selec- tion error	V/f control with PG feedback was selected by setting A1-02 to 1, but a PG Speed Control Card isn't connected.
OPE07 Analog Selection	Multi-function analog input selection error	 The same setting has been selected for the analog input selection and the PID function selection. H3-09 = B and H6-01 = 1 H3-09 = C and H6-01 = 2 b1-01 (Reference Selection) is set to 4 (pulse input) and H6-01 (Pulse Train Input Function Selection) is set to a value other than 0 (frequency reference).
OPE08	Constant selection error	A setting has been made that is not required in the current control method. Ex.: A function used only with open-loop vector control was selected for V/f control. When this error is displayed, press the ENTER Key to display U1-34 (OPE fault constant).
OPE09	PID control selection error	 The following settings have been made at the same time. b5-01 (PID Control Mode Selection) has been set to a value other than 0. b5-15 (PID Sleep Function Operation Level) has been set to a value other than 0. b1-03 (Stopping Method Selection) has been set to 2 or 3.
OPE10 V/f Ptrn Set- ting	V/f data setting error	Constants E1-04, E1-06, E1-07, and E1-09 do not satisfy the following conditions: • E1-04 (FMAX) ≥ E1-06 (FA) > E1-07 (FB) ≥ E1-09 (FMIN) • E3-02 (FMAX) ≥ E3-04 (FA) > E3-05 (FB) ≥ E3-07 (FMIN)

Table 7.3 Operation Error Displays and Incorrect Settings

Display	Meaning	Incorrect settings
OPE11 Carr Freq/ On-Delay	Constant setting error	 One of the following constant setting errors exists. C6-05 (Carrier Frequency Gain) > 6, the Carrier Frequency Lower Limit (C6-04) > the Carrier Frequency Gain(C6-05) Upper/lower limit error in C6-03 to 05. C6-01 is 0 and C6-02 is 2 to E. C6-01 is 1 and C6-02 is 7 to E.
ERR EEPROM R/W Err	EEPROM write error	A verification error occurred when writing EEPROM.Try turning the power supply off and on again.Try setting the constants again.

Table 7.3 Operation Error Displays and Incorrect Settings (Continued)

• Errors During Autotuning

The errors that can occur during autotuning are given in the following table. If an error is detected, the motor will coast to a stop and an error code will be displayed on the Digital Operator. The error contact output and alarm output will not function.

Display	Meaning	Probable causes	Corrective Actions		
Data Invalid	Motor data error	There is an error in the data input for autotuning. There is an error in the relationship between the motor output and the motor rated current. The is an error between the no-load cur- rent setting and the input motor rated current (when autotuning for only line- to-line resistance is performed for vector control).	 Check the input data. Check the capacity of the Inverter and motor. Check the motor rated current and no-load current. 		
Minor Fault	Alarm	A minor fault occurred during autotun- ing (xxx).	Check the input data.Check wiring and the machine.		
STOP key	STOP key input	The STOP Key was pressed to cancel autotuning.	Check the load.		
Resistance	Line-to-line resis- tance error	Autotuning was not completed in the specified time.	Check the input data.Check motor wiring.		
No-Load Current	No-load current error	The results of autotuning has exceeded	• If the motor is connected to the		
Rated Slip	Rated slip error	the setting range for a user constant.	machine, disconnect it.		
Accelerate	Acceleration error (detected only for rotational autotuning)	The motor did not accelerate in the spec- ified time.	 Increase C1-01 (Acceleration Time 1). Increase L7-01 and L7-02 (Reverse Torque Limits) if they are low. If the motor is connected to the machine, disconnect it. 		
Motor Speed	Motor speed error (detected only for rotational autotuning)	The torque reference was too high (100%) during acceleration (for open- loop vector control only).	 If the motor is connected to the machine, disconnect it. Increase C1-01 (Acceleration Time 1). Check the input data (particularly the number of PG pulses and the number of motor poles). 		
		The current flow exceeded the motor rated current.	Check the current detection circuit,		
I-det. Circuit	Current detection error	The detected current sign was the oppo- site of what it should be.	motor wiring, current detector, and installation methods.		
		There is a phase fault for U, V, or W.			
Leak Inductance	Leakage inductance error	Autotuning was not completed in the specified time.	Check motor wiring.		
V/f Over Setting	V/f settings exces- sive*	The torque reference exceeded 100% and the no-load torque exceeded 70% during autotuning.	Check and correct the settings.Disconnect the load from the motor.		

Table 7.4 Errors During Autotuning

Display	Meaning	Probable causes	Corrective Actions
Saturation	Motor core satura- tion error (detected only for rotational autotuning) [*]	The results of autotuning has exceeded the setting range for a user constant so a temporary setting was made for the motor core saturation coefficient.	Check the input data.Check motor wiring.If the motor is connected to the machine, disconnect it.
Rated FLA Alm	Rated current setting alarm [*]	The rated current is set high.	Check the input data (particularly the motor output current and motor rated current).

Table 7.4 Errors During Autotuning (Continued)

* Displayed after autotuning has been completed.

Errors when Using the Digital Operator Copy Function

The errors that can occur when using the copy function from the Digital Operator are given in the following table. An error code will be displayed on the Digital Operator. If a Digital Operator key is pressed when an error code is being displayed, the display will be cleared and 03-01 will be displayed. The error contact output and alarm output will not function.

Func- tion	Display	Meaning	Probable causes	Corrective Actions
	PRE READ IMPOSSIBLE	Digital Operator write-protected	o3-01 was set to 1 to write a constant when the Digital Operator was write- protected $(o3-02 = 0)$.	Set o3-02 to 1 to enable writing con- stants with the Digital Operator.
	IFE READ DATA	Illegal read data	The read data length does not agree.	Repeat the read. Check the Digital Operator cable.
Read	ERROR	megai reau data	The write data is incorrect.	Replace the Digital Operator.
	RDE DATA ERROR	Illegal write status	An attempted write of a constant to EEPROM on the Digital Writer failed.	A low Inverter voltage has been detected. Repeat the read. Replace the Digital Operator.
	CPE ID UNMATCH	ID not matched	The Inverter product code or software number is different.	Use the copy function for the same product code and software number.
	VAE INV. KVA UNMATCH	Inverter capacity matched	The capacity of the Inverter being copied and the capacity in the Digital Operator are different.	Use the copy function for the same Inverter capacity.
Сору	CRE CONTROL UNMATCH	Control method matched	The control method of the Inverter being copied and the control method in the Digital Operator are different.	Use the copy function for the same control method.
	CYE COPY ERROR	Verify error	The constant written to the Inverter was compared with the constant in the Digital Operator and they were differ- ent.	Retry the copy.
	CSE SUM CHECK ERROR	Checksum error	The checksum in the Inverter constant area was compared with the checksum in the Digital Operator constant area and they were different.	Retry the copy.
Verify	VYE VERIFY ERROR	Verify error	The Digital Operator and Inverter set- tings do not agree.	Retry the copy and verify again.

Table 7.5 Errors during Copy Function

Troubleshooting

Due to constant setting errors, faulty wiring, and so on, the Inverter and motor may not operate as expected when the system is started up. If that should occur, use this section as a reference and apply the appropriate measures.

If the contents of the fault are displayed, refer to Protective and Diagnostic Functions.

If Constant Constants Cannot Be Set

Use the following information if an Inverter constant cannot be set.

The display does not change when the Increment and Decrement Keys are pressed.

The following causes are possible.

The Inverter is operating (drive mode).

There are some constants that cannot be set during operation. Turn the Inverter off and then make the settings.

Constant write enable is input.

This occurs when "constant write enable" (set value: 1B) is set for a multi-function input terminal (H1-01 to H1-10). If the constant write enable input is OFF, the constants cannot be changed. Turn it ON and then set the constants.

Passwords do not match. (Only when a password is set.)

If the constant A1-04 (Password) and A1-05 (Password Setting) numbers are different, the constants for the initialize mode cannot be changed. Reset the password.

If you cannot remember the password, display A1-05 (Password Setting) by pressing the Reset/Select Key and the Menu Key simultaneously while in the A1-04 display. Then reset the password. (Input the reset password in constant A1-04.)

■OPE01 through OPE11 is displayed.

The set value for the constant is wrong. Refer to Operation Errors in this chapter and correct the setting.

■CPF00 or CPF01 is displayed.

This is a Digital Operator communications error. The connection between the Digital Operator and the Inverter may be faulty. Remove the Digital Operator and then re-install it.

If the Motor Does Not Operate

Use the following information if the motor does not operate.

The motor does not operate when the RUN Key on the Digital Operator is pressed.

The following causes are possible.

If the Inverter is not in drive mode, it will remain in ready status and will not start. Press the Menu Key to display the drive mode, and enter the drive mode by pressing the DATA/ENTER Key. "-Rdy-" will be displayed when drive mode is entered.

The operation method setting is wrong.

If constant b1-02 (Operation Method Selection) is set to 1 (control circuit terminal), the motor will not operate when the Run Key is pressed. Either press the LOCAL/REMOTE Key* to switch to Digital Operator operation or set b1-02 to 0 (Digital Operator).

The LOCAL/REMOTE Key is enabled by setting o2-01 to 1 and disabled by setting o2-01 to 2. It is enabled when the drive mode is entered.

The frequency reference is too low.

If the frequency reference is set below the frequency set in E1-09 (Minimum Output Frequency), the Inverter will not operate.

Raise the frequency reference to at least the minimum output frequency.

There is a multi-function analog input setting error.

If multi-function analog input H3-09 is set to 1 (frequency gain), and if no voltage (current) is input, then the frequency reference will be zero. Check to be sure that the set value and analog input value are correct.

The motor does not operate when an external operation signal is input.

The following causes are possible.

The Inverter is not in drive mode.

If the Inverter is not in drive mode, it will remain in ready status and will not start. Press the MENU Key to display the drive mode, and enter the drive mode by pressing the DATA/ENTER Key. "-Rdy-" will be displayed when drive mode is entered.

The operation method selection is wrong.

If constant b1-02 (reference selection) is set to 0 (Digital Operator), the motor will not operate when an external operation signal is input. Set b1-02 to 1 (control circuit terminal) and try again.

Similarly, the motor will also not operate if the LOCAL/REMOTE Key has been pressed to switch to Digital Operator operation. In that case press the LOCAL/REMOTE Key* again to return to the original setting.

The LOCAL/REMOTE Key is enabled by setting o2-01 to 1 and disabled by setting o2-01 to 2. It is enabled when the drive mode is entered.

A 3-wire sequence is in effect.

The input method for a 3-wire sequence is different than when operating by forward/stop and reverse/stop (2-wire sequence). When 3-wire sequence is set, the motor will not operate even when an input terminal suitable for forward run/stop and reverse run/stop is turned ON.

When using a 3-wire sequence, refer to the timing chart and input the proper signals.

When using a 2-wire sequence, set the multi-function input terminal (H1-01 through H1-10, terminals S3 to S11) to a value other than 0.

The frequency reference is too low.

If the frequency reference is set below the frequency set in E1-09 (Minimum Output Frequency), the Inverter will not operate. Raise the frequency reference to at least the minimum output frequency.

There is a multi-function analog input setting error.

If multi-function analog inputs H3-05 (Multi-function Analog Input Terminal A3 Selection) and H3-09 (Multi-function Analog Input Terminal A2 Selection) are set to 1 (frequency gain), and if no voltage (current) is input, then the frequency reference will be zero. Check to be sure that the set value and analog input value are correct.

The motor stops during acceleration or when a load is connected.

The load may be too heavy. The Inverter has a stall prevention function and an automatic torque boost function, but the motor responsiveness limit may be exceeded if acceleration is too rapid or if the load is too heavy. Lengthen the acceleration time or reduce the load. Also consider increasing the motor capacity.

The motor only rotates in one direction.

"Reverse run prohibited" is selected. If b1-04 (Prohibition of Reverse Operation) is set to 1 (reverse run prohibited), the Inverter will not receive reverse run commands. To use both forward and reverse operation, set b1-04 to 0.

If the Direction of the Motor Rotation is Reversed

If the motor operates in the wrong direction, the motor output wiring is faulty. When the Inverter T1(U), T2(V), and T3(W) are properly connected to the motor T1(U), T2(V), and T3(W), the motor operates in a forward direction when a forward run command is executed. The forward direction depends on the manufacturer and the motor type, so be sure to check the specifications.

The direction of rotation can be reversed by switching two wires among U, V, and W.

If the Motor Does Not Put Out Torque or If Acceleration is Slow

Use the following information is the motor does not output torque or if acceleration is too slow.

■The torque limit has been reached.

When a torque limit has been set in constants L7-01 to L7-04, no torque will be output beyond that limit. This can cause the torque to be insufficient, or the acceleration time to be too long. Check to be sure that the value set for the torque limit is suitable.

If torque limits have been set for the multi-function analog input (H3-05 or H3-09 = 10 to 12 or 15), check to be sure that the analog input value is suitable.

■The stall prevention level during acceleration is too low.

If the value set for L3-02 (Stall Prevention Level during Acceleration) is too low, the acceleration time will be too long. Check to be sure that the set value is suitable.

The stall prevention level during running is too low.

If the value set for L3-06 (Stall Prevention Level during Running) is too low, the speed will drop before outputting torque. Check to be sure that the set value is suitable.

Autotuning has not been performed for vector control

Vector control will not be perform if autotuning has not been performed. Perform autotuning separately for the motor, or set the motor constants through calculations. Alternatively, change the Control Method Selection (A1-02) to V/f control (0 or 1).

If the Motor Operates Higher Than the Reference

Use the following information if the motor operates higher than the reference.

The analog frequency reference bias setting is wrong (the gain setting is wrong).

The frequency reference bias set in constant H3-03 is added to the frequency reference. Check to be sure that the set value is suitable.

■A signal is being input to the frequency reference (current) terminal A1.

When 1F (frequency reference) is set for constant H3-09 (Multi-function Analog Input Terminal A2 Function Selection), a frequency corresponding to the terminal A2 input voltage (current) is added to the frequency reference. Check to be sure that the set value and analog input value are suitable.

If the Slip Compensation Function Has Low Speed Precision

If speed control accuracy is low for the slip compensation function, the slip compensation limit has been reached. With the slip compensation function, compensation cannot be carried out beyond the slip compensation limit set in constant C3-03. Check to be sure that the set value is suitable.

If There is Low Speed Control Accuracy at High-speed Rotation in Openloop Vector Control Mode

The motor's rated voltage is high.

The Inverter's maximum output voltage is determined by its input voltage. (For example, if 200 VAC is input, then the maximum output voltage will be 200 VAC.) If, as a result of vector control, the output voltage reference value exceeds the Inverter output voltage maximum value, the speed control accuracy will decrease. Use a motor with a low rated voltage (i.e., a special motor for use with vector control), or change to flux vector control.

If Motor Deceleration is Slow

Use the following information when the motor deceleration is slow.

The deceleration time is long even when braking resistor is connected.

The following causes are possible.

"Stall prevention during deceleration enabled" is set.

When braking resistor is connected, set constant L3-04 (Stall Prevention Selection during Deceleration) to 0 (disabled) or 3 (with braking resistor). When this constant is set to 1 (enabled, the factory setting), braking resistor does not fully function.

The deceleration time setting is too long.

Check the deceleration time setting (constants C1-02, C1-04, C1-06, and C1-08).

Motor torque is insufficient.

If the constants are correct and there is no overvoltage fault, then the motor's power is limited. Consider increasing the motor capacity.

The torque limit has been reached.

When a torque limit has been set in constants L7-01 to L7-04, no torque will be output beyond that limit. This can cause the deceleration time to be too long. Check to be sure that the value set for the torque limit is suitable.

If torque limits have been set for the multi-function analog input terminal A2 Function H3-09 (set value: 10 to 12 or 15), check to be sure that the analog input value is suitable.

If the Vertical-axis Load Drops When Brake is Applied

The sequence is incorrect. The Inverter goes into DC injection braking status for 0.5 seconds after deceleration is completed. (This is the factory-set default.)

To ensure that the brake holds, set frequency detection 2 (H2-01 = 5) for the multi-function contact output terminals (M1 and Mw) so that the contacts will turn OFF when the output frequency is greater than L4-01 (3.0 to 5.0 Hz). (The contacts will turn ON below L4-01.)

There is hysteresis in frequency detection 2 (i.e., a frequency detection width, L4-02 = 2.0 Hz). Change the setting to approximately 0.5 Hz if there are drops during stop. Do not use the multi-function contact output run signal (H2-01 = 0) for the brake ON/OFF signal.

If the Motor Overheats

Take the following steps if the motor overheats.

■The load is too big.

If the motor load is too heavy and the motor is used with the effective torque exceeding the motor's rated torque, the motor will overheat. Some motor rating are given for short period performance and are not continuous ratings. Reduce the load amount by either lightening the load or lengthening the acceleration/deceleration time. Also consider increasing the motor capacity.

The ambient temperature is too high.

The motor rating is determined within a particular ambient operating temperature range. The motor will burn out if it is run continuously at the rated torque in an environment in which the maximum ambient operating temperature is exceeded. Lower the motor's ambient temperature to within the acceptable ambient operating temperature range.

The withstand voltage between the motor phases is insufficient.

When the motor is connected to the Inverter output, a surge is generated between the Inverter switching and the motor coil. Normally the maximum surge voltage is three times the Inverter's input power supply voltage (i.e., 1,200 V for 400 V class). Be sure to use a motor with a withstand voltage between the motor phases that is greater than the maximum surge voltage. In particular, when using a 400 V class Inverter, use a special motor for Inverters.

Autotuning has not been performed for vector control

Vector control will not perform if autotuning has not been performed. Perform autotuning, or set the motor constants through calculations. Alternatively, change the Control Method Selection (A1-02) to V/f control (0 or 1).

If There is Noise When the Inverter is Started or From an AM Radio

If noise is generated by Inverter switching, implement the following countermeasures:

- Change the Inverter's Carrier Frequency Selection (C6-02) to lower the carrier frequency. This will help to some extent by reducing the amount of internal switching.
- Install an Input Noise Filter at the Inverter's power supply input area.
- Install an Output Noise Filter at the Inverter's power supply output area.
- Use metal tubing. Electric waves can be shielded by metal, so encase the Inverter with metal (steel).
- Ground the Inverter and motor.
- Separate main circuit wiring from control wiring.

• If the Ground Fault Interrupter Operates When the Inverter is Run

The Inverter performs internal switching, so there is a certain amount of leakage current. This may cause the ground fault interrupter to operate and cut off the power supply. Change to a ground fault interrupter with a high leakage detection level (i.e., a sensitivity current of 200 mA or greater per Unit, with an operating time of 0.1 s or more), or one that incorporates high frequency countermeasures (i.e., one designed for use with Inverters). It will also help to some extent to change the Inverter's Carrier Frequency Selection (C6-02) to lower the carrier frequency. In addition, remember that the leakage current increases as the cable is lengthened.

If There is Mechanical Oscillation

Use the following information when there is mechanical oscillation.

The machinery is making unusual sounds.

The following causes are possible.

There may be resonance between the mechanical system's characteristic frequency and the carrier frequency.

If the motor is running with no problems and the machinery is oscillating with a high-pitched whine, it may indicate that this is occurring. To prevent this type of resonance, adjust the carrier frequency with constants C6-02 to C6-05.

There may be resonance between a machine's characteristic frequency and the output frequency of the Inverter.

To prevent this from occurring, either use the jump frequency functions in constants d3-01 to d3-04 or install rubber padding on the motor base to reduce oscillation.

■Oscillation and hunting are occurring with open-loop vector control 1.

The gain adjustment may be insufficient. Reset the gain to a more effective level by adjusting constants C4-02 (torque compensation time constant), C2-01 (S-curve Characteristic Time at Acceleration Start), and C3-02 (Slip Compensation Primary Delay Time) in order. Lower the gain setting and raise the primary delay time setting.

Vector control will not perform if autotuning has not been performed. Perform autotuning separately for the motor, or set the motor constants through calculations. Alternatively, change the control method selection (A1-02) to V/f control (0 or 1).

Oscillation and hunting are occurring with V/f control.

The gain adjustment may be insufficient. Reset the gain to a more effective level by adjusting constants C4-02 (Torque Compensation Primary Delay Time Constant), N1-02 (Hunting Prevention Gain), and C3-02 (Slip Compensation Primary Delay Time) in order. Lower the gain setting and raise the primary delay time setting.

Oscillation and hunting are occurring with V/f w/PG control.

The gain adjustment may be insufficient. Adjust the various types of speed control loop (ASR) gain.

If the oscillation cannot be eliminated in this way, set the hunting prevention selection (constant N1-01) to 0 (disabled) and then try adjusting the gain again.

7

Oscillation and hunting are occurring with flux vector control.

The gain adjustment is insufficient. Adjust the various gains for speed control (ASR). If the oscillation points overlap with those of the machine and cannot be eliminated, increase the primary delay time constant for speed control (ASR) in C5-06 and then readjust the gains.

If autotuning is not performed, proper performance cannot be achieved for vector control. Perform autotuning or set the motor constants according to calculations.

Oscillation and hunting are occurring with PID control.

If there is oscillation or hunting during PID control, check the oscillation cycle and individually adjust P, I, and D constants. (Refer to page 6-97.)

■Autotuning has not been performed with vector control.

Vector control will not perform if autotuning has not been performed. Perform autotuning separately for the motor, or set the motor constants through calculations. Alternatively, change the Control Method Selection (A1-02) to V/f control.

If the Motor Rotates Even When Inverter Output is Stopped

If the motor rotates even when the Inverter output is stopped, the DC injection braking is insufficient. If the motor continues operating at low speed, without completely stopping, and after a deceleration stop has been executed, it means that the DC injection braking is not decelerating enough. Adjust the DC injection braking as follows:

- Increase the constant b2-02 (DC Injection Braking Current) setting.
- Increase the constant b2-04 (DC Injection Braking (initial excitation) Time at Stop) setting.

If 0 V is Detected When the Fan is Started, or Fan Stalls

Generation of 0 V (main circuit voltage) and stalling can occur if the fan is turning when it is started. The DC injection braking is insufficient when starting.

This can be prevented by slowing fan rotation by DC injection braking before starting the fan. Increase the constant b2-03 (DC injection braking time (initial excitation) at start) setting.

If Output Frequency Does Not Rise to Frequency Reference

Use the following information if the output frequency does not rise to the frequency reference.

The frequency reference is within the jump frequency range.

When the jump frequency function is used, the output frequency does not change within the jump frequency range. Check to be sure that the Jump Frequency (constants d3-01 to d3-03) and Jump Frequency Width (constant d3-04) settings are suitable.

■The frequency reference upper limit has been reached.

The output frequency upper limit is determined by the following formula: Maximum Output Frequency (E1-04) × Frequency Reference Upper Limit (d2-01) / 100 Check to be sure that the constant E1-04 and d2-01 settings are suitable.

8

Maintenance and Inspection

This chapter describes basic maintenance and inspection for the Inverter

Maintenance and Inspection......8-2

Maintenance and Inspection

The maintenance period of the Inverter is as follows:

Maintenance Period: Within 18 months of shipping from the factory or within 12 months of being delivered to the final user, whichever comes first.

Daily Inspection

Check the following items with the system in operation.

- The motor should not be vibrating or making unusual noises.
- There should be no abnormal heat generation.
- The ambient temperature should not be too high.
- The output current value shown on the monitor displays should not be higher than normal.
- The cooling fan on the bottom of the Inverter should be operating normally.

Periodic Inspection

Check the following items during periodic maintenance.

Always turn OFF the power supply before beginning inspection. Confirm that the LCD and LED indicators on the front cover have all turned OFF, and then wait until at least five minutes has elapsed before beginning the inspection. Be sure not to touch terminals right after the power has been turned off. Doing so can result in electric shock.

ltem	Inspection	Corrective Procedure		
External terminals,	Are all screws and bolts tight?	Tighten loose screws and bolts firmly.		
mounting bolts, connec- tors, etc.	Are connectors tight?	Reconnect the loose connectors.		
Cooling fins	Are the fins dirty or dusty?	Clean off any dirt and dust with an air gun using dry air at a pressure of 39.2×10^4 to 58.8×10^4 Pa (4 to 6 kg•cm ²).		
PCBs	Is there any conductive dirt or oil mist on the PCBs?	Clean off any dirt and dust with an air gun using dry air at a pressure of 39.2×10^4 to 58.8×10^4 Pa (4 to 6 kg•cm ²). Replace the boards if they cannot be made clean.		
Cooling fan	Is there any abnormal noise or vibration or has the total operating time exceeded 20,000 hours?	Replace the cooling fan.		
Power elements	Is there any conductive dirt or oil mist on the elements?	Clean off any dirt and dust with an air gun using dry air at a pressure of 39.2×10^4 to 58.8×10^4 Pa (4 to 6 kg•cm ²).		
Smoothing capacitor	Are there any irregularities, such as dis- coloration or odor?	Replace the capacitor or Inverter.		

Table 8.1	Periodic	Inspections

Periodic Maintenance of Parts

The Inverter is configured of many parts, and these parts must be operating properly in order to make full use of the Inverter functions.

Among the electronic components, there are some that require maintenance depending on their usage conditions. In order to keep the Inverter operating normally over a long period of time, it is necessary to perform period inspections and replace parts according to their service life.

Periodic inspection standards vary depending the Inverter's installation environment and usage conditions. The Inverter's maintenance periods are noted below. Keep them as reference.

Part	Standard Replacement Period	Replacement Method			
Cooling fan	2 to 3 years	Replace with new part.			
Smoothing capacitor	5 years	Replace with new part. (Determine need by inspection.)			
Breaker relays	-	Determine need by inspection.			
Fuses	10 years	Replace with new part.			
Aluminum capacitors on PCBs	5 years	Replace with new board. (Determine need by inspection.)			

Table 8.2 Part Replacement Guidelines

Note The standard replacement period is based on the following usage conditions: Ambient temperature: Yearly average of 30°C Load factor: 80% max.

Operating rate: 12 hours max. per day

Cooling Fan Replacement Outline

■200 V and 400 V Class Inverters of 15 kW or Less

A cooling fan is attached to the bottom of the Inverter.

If the Inverter is installed using the mounting holes on the back of the Inverter, the cooling fan can be replaced without removing the Inverter from the installation panel.

Removing the Cooling Fan

- 1. Press in on the right and left sides of the fan cover in the direction of arrows 1 and when pull the fan out in the direction of arrow 2.
- 2. Pull out the cable connected to the fan from the fan cover and disconnect the relay connector.
- 3. Open the fan cover on the left and right sides and remove the fan cover from the fan.

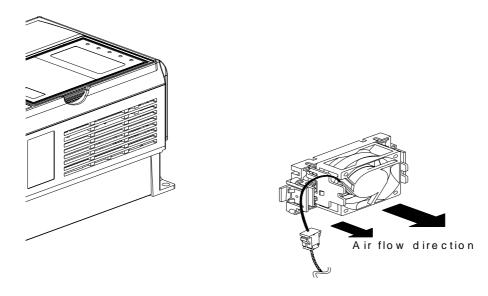


Fig 8.1 Cooling Fan Replacement (Inverters of 15 kW or Less)

Mounting the Cooling Fan

- 1. Attach the fan cover to the cooling fan. Be sure that the air flow direction indicated by the arrows above faces into the Inverter.
- 2. Connect the relay connector securely and place the relay connector and cable into the fan cover.
- 3. Mount the fan cover on the Inverter. Be sure that the tabs on the sides of the fan cover click into place on the Inverter.

■200 V and 400 V Class Inverters of 18.5 kW or More

A cooling fan is attached to the top panel inside the Inverter.

The cooling fan can be replaced without removing the Inverter from the installation panel.

Removing the Cooling Fan

- 1. Remove the terminal cover, Inverter cover, Digital Operator, and front cover from the front of the Inverter.
- 2. Remove the controller bracket to which the cards are mounted. Remove all cables connected to the controller.
- 3. Remove the cooling fan power cable connector (CN26 and CN27) from the gate driver positioned at the back of the controller.
- 4. Remove the fan cover screws and pull out the fan cover from the Inverter.
- 5. Remove the cooling fan from the fan cover.

Mounting the Cooling Fan

After attaching a new cooling fan, reverse the above procedure to attach all of the components. When attaching the cooling fan to the mounting bracket, be sure that the air flow faces the top of the Inverter.

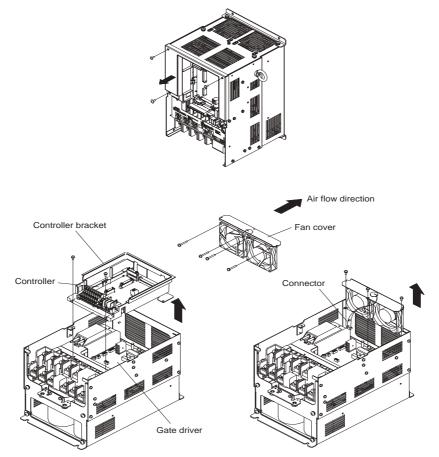


Fig 8.2 Cooling Fan Replacement (Inverters of 18.5 kW or More)

Removing and Mounting the Control Circuit Terminal Card

The control circuit terminal card can be removed and mounted without disconnecting the cables.

Always confirm that the charge indicator is not lit before removing or mounting the control circuit terminal card.

■Removing the Control Circuit Terminal Card

- 1. Remove the Digital Operator and front cover.
- 2. Remove the connecting line connectors connected to FE and NC on the control circuit terminal card.
- 3. Loosen the mounting screws (1) on the left and right sides of the control terminals until they are free. (It is not necessary to remove these screws completely. They are self-rising.)
- 4. Pull the terminal card out sideways (in direction 2) with the screws sticking out from the card.

Mounting the Control Circuit Terminal Card

Reverse the removal procedure to mount the terminal card.

Confirm that the terminal circuit card and the controller properly meet at connector CN5 before pressing in on the card.

The connector pins may be bent if the card is forced into place, possibly preventing correct Inverter operation.

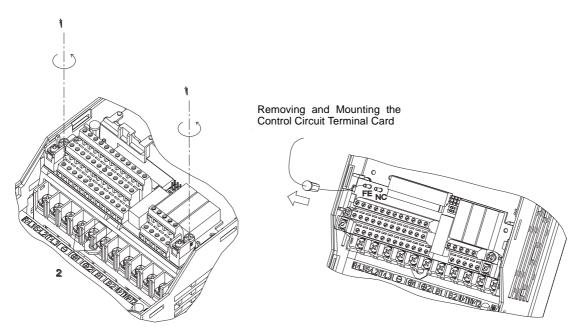


Fig 8.3 Removing the Control Circuit Terminal Card

9

Specifications

This chapter describes the basic specifications of the Inverter and specifications for options and peripheral devices.

Standard Inverter Specifications	9-2
Specifications of Options and Peripheral Devices	9-5

Standard Inverter Specifications

The standard Inverter specifications are listed by capacity in the following tables.

Specifications by Model

Specifications are given by model in the following tables.

■200V Class

Table 9.1 200 V Class Inverters

M	odel Number	CIMR-G7C 🗆	20P4	20P7	21P5	22P2	23P7	25P5	27P5	2011	2015	2018	2022	2030	2037	2045	2055	2075	2090	2110
Max. applicable motor output (kW)		0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	
gs	Rated outpu (kVA)	it capacity	1.2	2.3	3.0	4.6	6.9	10	13	19	25	30	37	50	61	70	85	110	140	160
ratings	Rated output	at current (A)	3.2	6	8	12	18	27	34	49	66	80	96	130	160	183	224	300	358	415
Output r	Max. output	t voltage (V)		3-phase; 200, 208, 220, 230, or 240 VAC (Proportional to input voltage.)																
õ	Max. output (Hz)	t frequency		Frequencies supported up to 400 Hz using constant setting																
tics	Rated volta Rated frequ						3-	phase, 2	200/208	8/220/23	30/240	VAC, 50)/60 Hz	*2						
characteristics	Allowable v tion	voltage fluctua-	+ 10%, - 15%																	
Power supply chara	Allowable frequency fluc- tuation ±5%																			
Me	asures for	DC reactor				(Optiona	1				Built in								
-	ver supply monics	12-phase rec- tification				No	ot possił	ole							Р	ossible	*3			

* 1. The maximum applicable motor output is given for a standard 4-pole Yaskawa motor. When selecting the actual motor and Inverter, be sure that the Inverter's rated current is applicable for the motor's rated current.

* 2. The voltage of the cooling fan for 200 V Class Inverters of 30 kW is three-phase, 200, 208, or 220 V at 50 Hz or 200, 208, 220, or 230 V at 60 Hz.

* 3. A 3-wire transformer is required on the power supply for 12-phase rectification.

■400 V Class

M	lodel Number	CIMR-G7C □	40P4	40P7	41P5	42P2	43P7	45P5	47P5	4011	4015	4018		
	x. applicable V) ^{*1}	icable motor output 0.4 0.75 1.5 2.2 3.7 5.5 7.5 11		11	15	18.5								
sgu	Rated outp (kVA)	ut capacity	1.4	2.6	3.7	4.7	6.9	11	16	21	26	32		
rati	Rated outp	ut current (A)	1.8	3.4	4.8	6.2	9	15	21	27	34	42		
at	Max. output	it voltage (V)		3-phase; 380, 400, 415, 440, 460, or 480 VAC (Proportional to input voltage.)										
Output ratings	Max. outpu (Hz)	it frequency	Frequencies supported up to 400 Hz using constant setting											
cteristics	Rated volta Rated frequ		3-phase, 380, 400, 415, 440, 460 or 480 VAC, 50/60 Hz											
supply characteristics	Allowable tion	voltage fluctua-	+ 10%, - 15%											
Power sup	Allowable tuation	frequency fluc-	$\pm 5\%$											
Me	asures for	DC reactor					Optional					Built in		
	wer supply monics	12-phase rec- tification		Not possible Possible										

Table 9.2 400 V Class Inverters

N	lodel Number	· CIMR-G7C □	4022	4030	4037	4045	4055	4075	4090	4110	4132	4160	4185	4220	4300
	x. applicable V) ^{*1}	e motor output	22	30	37	45	55	75	90	110	132	160	185	220	300
ratings	Rated output (kVA)	ut capacity	40	50	61	74	98	130	150	180	210	230	280	340	460
ati	Rated output	ut current (A)	52	65	80	97	128	165	195	240	270	302	370	450	605
Ē	Max. output	it voltage (V)			3-p	hase, 380	, 400, 415,	440, 460,	or 480 VA	C (Propor	tional to in	nput voltag	ge.)		
Output	Max. outpu (Hz)	t frequency				Fre	quencies s	upported u	1p to 400 H	Iz using co	onstant set	ting			
characteristics	Max. voltag Rated frequ					3-]	phase, 380	, 400, 415	, 440, 460,	or 480 VA	AC, 50/60	Hz			
	Allowable tion	voltage fluctua-						+	10%, - 15	%					
Power supply	Allowable tuation	frequency fluc-							±5%						
Me	asures for	DC reactor							Built in						
•	wer supply monics	12-phase rec- tification							Possible*2						

* 1. The maximum applicable motor output is given for a standard 4-pole Yaskawa motor. When selecting the actual motor and Inverter, be sure that the Inverter's rated current is applicable for the motor's rated current.

* 2. A 3-wire transformer (optional) is required on the power supply for 12-phase rectification.

Common Specifications

The following specifications apply to both 200 V and 400 V Class Inverters.

Table 9.3 Common Specifications

Control method Sine wave PWM Frequency accuracy Frequency accuracy (temperature characteristics) 150%/0.3 Hz (Open-loop vector control 2), 150%/0 min ⁻¹ (Flux vector control) Frequency setting resolution 0.01 to 400 Hz*3 Frequency setting resolution Digital references: ±0.1% (25°C ±10°C) Frequency setting resolution 0.001 Hz Overload capacity and maximum current*2 150% of rated output current per minute, 200% for 5 s	ontrol)*1 $25^{\circ}C \pm 10^{\circ}C$) Int settings.)
Speed control range 1:200 (Open-loop vector control 2), 1:1000 (Flux vector control)* Speed control accuracy ±0.2% (Open-loop vector control, 25°C ± 10°C), ±0.02% (Flux vector control, Speed control response 10 Hz (Open-loop vector control 2), 30 Hz (Flux vector control) Torque limits Torque accuracy ±5% Frequency control range 0.01 to 400 Hz*3 Frequency accuracy (temperature characteristics) Digital references: ± 0.01% (-10°C to +40°C) Frequency setting resolution Digital references: ± 0.1% (25°C ±10°C) Frequency setting resolution Digital references: ± 0.01 Hz, Analog references: 0.03 Hz/60 Hz (11 bit with 0.001 Hz Overload capacity and maximum current*2 150% of rated output current per minute, 200% for 5 s	1 25°C ± 10°C) nt settings.)
Speed control accuracy ±0.2% (Open-loop vector control, 25°C ± 10°C), ±0.02% (Flux vector control, Speed control response In Hz (Open-loop vector control 2), 30 Hz (Flux vector control) Torque limits Torque accuracy ±5% Frequency control range 0.01 to 400 Hz*3 Frequency accuracy (temperature characteristics) Digital references: ± 0.01% (-10°C to +40°C) Frequency setting resolution Digital references: ±0.1% (25°C ± 10°C) Frequency setting resolution 0.01 Hz, Analog references: 0.03 Hz/60 Hz (11 bit with 0.001 Hz) Overload capacity and maximum current*2 150% of rated output current per minute, 200% for 5 s	25°C ± 10°C) nt settings.)
Speed control response 10 Hz (Open-loop vector control 2), 30 Hz (Flux vector control) Torque limits Provided for vector control only (4 quadrant steps can be changed by constant to the total steps) Torque accuracy ±5% Frequency control range 0.01 to 400 Hz*3 Frequency accuracy (temperature characteristics) Digital references: ± 0.01% (-10°C to +40°C) Frequency setting resolution Digital references: ±0.1% (25°C ±10°C) Frequency setting resolution Digital references: 0.01 Hz, Analog references: 0.03 Hz/60 Hz (11 bit with 0.001 Hz) Overload capacity and maximum current*2 150% of rated output current per minute, 200% for 5 s	nt settings.)
Torque limits Provided for vector control only (4 quadrant steps can be changed by constant Torque accuracy Torque accuracy ±5% Frequency control range 0.01 to 400 Hz*3 Frequency accuracy (temperature characteristics) Digital references: ±0.01% (-10°C to +40°C) Frequency setting resolution Digital references: ±0.1% (25°C ±10°C) Frequency setting resolution Digital references: 0.01 Hz, Analog references: 0.03 Hz/60 Hz (11 bit with 0.001 Hz Output frequency resolution 0.001 Hz Overload capacity and maximum current*2 150% of rated output current per minute, 200% for 5 s	nt settings.)
Torque accuracy ±5% Frequency control range 0.01 to 400 Hz*3 Frequency accuracy (temperature characteristics) Digital references: ± 0.01% (-10°C to +40°C) Parature characteristics) Analog references: ±0.1% (25°C ±10°C) Frequency setting resolution Digital references: 0.01 Hz, Analog references: 0.03 Hz/60 Hz (11 bit with 00tput frequency resolution Output frequency resolution 0.001 Hz Overload capacity and maximum current*2 150% of rated output current per minute, 200% for 5 s	
Frequency control range 0.01 to 400 Hz*3 Frequency control range 0.01 to 400 Hz*3 Frequency accuracy (temperature characteristics) Digital references: ± 0.01% (-10°C to +40°C) Perature characteristics) Analog references: ± 0.1% (25°C ±10°C) Frequency setting resolution Digital references: 0.01 Hz, Analog references: 0.03 Hz/60 Hz (11 bit with 0.001 Hz Output frequency resolution 0.001 Hz Overload capacity and maximum current*2 150% of rated output current per minute, 200% for 5 s	1 no sign)
Street Digital references: ± 0.01% (-10°C to +40°C) Frequency accuracy (temperature characteristics) Analog references: ± 0.1% (25°C ± 10°C) Frequency setting resolution Digital references: 0.01 Hz, Analog references: 0.03 Hz/60 Hz (11 bit with 0.001 Hz Output frequency resolution 0.001 Hz Overload capacity and maximum current*2 150% of rated output current per minute, 200% for 5 s	1 no sign)
Signature characteristics) Analog references: ±0.1% (25°C ±10°C) Frequency setting resolution Digital references: 0.01 Hz, Analog references: 0.03 Hz/60 Hz (11 bit with 0.001 Hz) Output frequency resolution 0.001 Hz Overload capacity and maximum current*2 150% of rated output current per minute, 200% for 5 s	1 no sign)
Operature characteristics) Analog references: ±0.1% (25°C ±10°C) Frequency setting resolution Digital references: 0.01 Hz, Analog references: 0.03 Hz/60 Hz (11 bit with 00 Hz (11 bit with 00 Hz (10 Hz (10 Hz (11 Hz (10 Hz	ı no sign)
maximum current *2	1 no sign)
maximum current *2	= .
maximum current *2	
Fragmancy setting signal 10 to 10 V 0 to 10 V 4 to 20 mA mulas tesin	
-10 to 10 v, 0 to 10 v, 4 to 20 mA, pulse train	
Acceleration/Decelera- tion time 0.01 to 6000.0 s (4 selectable combinations of independent acceleration and decel	leration settings)
Braking torque Approximately 20% (Approximately 125% with Braking Resistor option, braking transformer bu Inverters for 15 kW or less.)*2	uilt into 200 V and 400 V Class
Main control functions Restarting for momentary power loss, speed searches, overtorque detection, torque limits, 17-speet tion/deceleration time changes, S-curve acceleration/deceleration, 3-wire sequence, autotuning (functions, cooling fan ON/OFF control, slip compensation, torque compensation, jump frequency references, DC braking for starting and stopping, high-slip braking, PID control (with control, MEMOBUS communications (RS-485/422, 19.2 kbps maximum), fault reset, function of control, speed/torque control switching, etc.	(rotational or stationary), dwell cies, upper and lower limits for a sleep function), energy-saving
Motor protection Protection by electronic thermal overload relay.	
Instantaneous overcurrent protection Stops at approx. 200% of rated output current.	
Fuse blown protection Stops for fuse blown.	
Overload protection 150% of rated output current per minute, 200% for 5 s	
Store 200 Class Inverter: Stops when main-circuit DC voltage is above 410 400 Class Inverter: Stops when main-circuit DC voltage is above 820	
Overvoltage protection 200 Class Inverter: Stops when main-circuit DC voltage is above 410 400 Class Inverter: Stops when main-circuit DC voltage is above 820 200 Class Inverter: Stops when main-circuit DC voltage is below 190 400 Class Inverter: Stops when main-circuit DC voltage is below 190 400 Class Inverter: Stops when main-circuit DC voltage is below 380 momentary power loss Momentary power loss ridethrough By selecting the momentary power loss method, operation can be continued if power is	
Image: Stops for 15 ms or more. Stops for 15 ms or more. Image: Stops for 15 ms or more. By selecting the momentary power loss method, operation can be continued if power i	is restored within 2 s.
Cooling fin overheating Protection by thermistor.	
Stall prevention Stall prevention during acceleration, deceleration, or running.	
Grounding protection Protection by electronic circuits.	
Charge indicator Lit when the main circuit DC voltage is approx. 50 V or more.	
Ambient operating tem- perature 10°C to 40°C (Enclosed wall-mounted type) 10°C to 45°C (Open chassis type)	
Ambient operating humid- ity 95% max. (with no condensation) Storage temperature - 20°C to + 60°C (short-term temperature during transportation) Application site Indoor (no corrosive gas, dust, etc.)	
$\frac{1}{20^{\circ}\text{C to} + 60^{\circ}\text{C (short-term temperature during transportation)}}{20^{\circ}\text{C to} + 60^{\circ}\text{C (short-term temperature during transportation)}}$	
Application site Indoor (no corrosive gas, dust, etc.)	
Altitude 1000 m max.	
Vibration Tolerance for vibration frequency less than 20 Hz, 9.8 m/s ² max.; 20 to 50 Hz	$2, 2 \text{ m/s}^2 \text{ max}$

* 1. Rotational autotuning must be performed to ensure obtaining the specifications given for flux vector control and open-loop vector control 1 and 2.

* 2. When connecting a Braking Resistor or Braking Resistor Unit, set L3-04 (Stall prevention selection during deceleration) to 0 (disabled). Stopping may not be possible in the specified deceleration time if this function is not disabled.

 $\ast~$ 3. The maximum output frequency for open-loop vector control 2 is 60 Hz.

Specifications of Options and Peripheral Devices

The following options and peripheral devices can be used for the Inverter. Select them according to the application.

Purpose	Name	Model (Code)	Descriptions	0
Protect Inverter wiring	MCCB or Ground Fault Interrupter ^{*1}	NF□	Always connect a breaker to the power supply line to pro- tect Inverter wiring. Use a ground fault interrupter suitable for high frequencies.	Power supply
Prevents burning when a Braking Resistor is used.	Magnetic Contac- tor	нг-□ј	Install to prevent the braking resistor from burning out when one is used. Always attach a surge absorber to the coil.	MCCB or ground fault interrupter
Contains switching surge	Surge Absorber	DCR2-□	Absorbs surge from the magnetic contactor and control relays. Connect surge absorbers to all magnetic contactors and relays near the Inverter.	1
Isolates I/O signals	Isolator	DGP□	Isolates the I/O signals of the Inverter and is effective against inductive noise.	Magnetic contactor
Improve the input power factor of the Inverter	DC Reactor AC Reactor	UZDA-□ UZBA-□	Used to improve the input power factor of the Inverter. All Inverters of 18.5 kW or higher contain built-in DC reac- tors. These are optional for Inverters of 15 kW or less. Install DC and AC reactors for applications with a large power supply capacity (600 kVA or higher).	AC reactor to improve power factor
	Input Noise Filter	(Single phase) LNFB-□ (3 phase) LNFD-□HF□	Reduces noise coming into the inverter from the power supply line and to reduce noise flowing from the inverter into the power supply line. Connect as close to the Inverter as possible.	Zero phase reactor Braking resistor
Reduce the affects of radio and control device noise	Finemet zero- phase reactor to reduce radio	F6045GB (FIL001098) F11080GB	Reduces noise from the line that sneaks into the Inverter input power system. Insert as close to the Inverter as pos- sible.	Input-line noise filter
	noise ^{*2} Output Noise Fil-	(FIL001097) LF-o	Can be use on both the input side and output side. Reduces noise generated by the Inverter. Connect as close	DC
	ter	ERF-150WJ	to the Inverter as possible. Consumes the regenerative motor energy with a resistor to	Inverter
	Braking Resistor	(R00	reduce deceleration time (use rate: 3% ED).	
Enable stopping the machine in a set time	Braking Resistor Unit	LKEB-□ (75600-K□□□0)	Consumes the regenerative motor energy with a resistor to reduce deceleration time (use rate: 10% ED).	VS Operator
	Braking Unit	CDBR-□ (72600-R□□□0)	Used with a Braking Resistor Unit to reduce the decelera- tion time of the motor.	Frequency
	VS Operator (small plastic Operator)	JVOP-95•□ (73041-0905X-□)	Allows frequency reference settings and ON/OFF opera- tion control to be performed by analog references from a remote location (50 m max.). Frequency counter specifications: 60/120 Hz, 90/180Hz	Ground Output-line
Operates the Inverter externally	VS Operator (Standard steel- plate Operator)	JVOP-96•□ (73041-0906X-□)	Allows frequency reference settings and ON/OFF opera- tion control to be performed by analog references from a remote location (50 m max.). Frequency counter specifications: 75 Hz, 150 Hz, 220 Hz	noise filter
	Digital Operator Connection Cable	1 m cable: (72606- WV001) 3 m cable: (72606- WV003)	Extension cable to use a Digital Operator remotely. Cable length: 1 m or 3 m	Motor
Controls an Inverter system	VS System Mod- ule	JGSM-□	A system controller that can be match to the automatic control system to produce an optimum system configura- tion.	Ground
Provides Inverter momentary power loss recovery time	Momentary Power Loss Recovery Unit	P00□0 (73600-P00□0)	Handles momentary power losses for the control power supply for models 2.2 kW or less (maintains power for 2 s).	
	Frequency Meter	DCF-6A		
Set/monitor frequen-	Frequency Setter	RV30YN20S (2 kΩ)	Devices to set or monitor frequencies externally.	
cies and voltages exter- nally.	Frequency Setter Knob	CM-3S		
	Output Voltmeter	SCF-12NH	Measures the output voltage externally and designed for use with a PWM Inverter.	
Correct frequency refer- ence input, frequency	Variable Resistor Board for Fre- quency Reference	2 kΩ (ETX003270) 20 kΩ (ETX003120)	Connected to the control circuit terminals to input a fre- quency reference.	
meter, ammeter scales	Frequency Meter Scale Correction Resistor	(RH000850)	Calibrates the scale of frequency meters and ammeters.	

Table 9.4 Options and Peripheral Devices

* 1. Use a ground fault interrupter with a current sensitivity of 200 mA minimum and an operating time of 0.1 s minimum to prevent operating errors. The interrupter must be suitable for high-frequency operation.

Example: NV series by Mitsubishi Electric Corporation (manufactured in or after 1988) EG, SG series by Fuji Electric Co., Ltd. (manufactured in or after 1984)

* 2. The finement zero-phase reactor is manufactured by Hitachi Metals.

The following Option Cards are available

Ту	ре	Name	Code Num- ber	Function	Document Number
		Analog Ref- erence Card AI-14U	73600- C001X	 Enables high-precision, high-resolution setting of analog speed references. Input signal ranges: 0 to 10 V (20 kΩ), 1 channel 4 to 20 mA (250 Ω), 1 channel Input resolution: 14-bit (1/16384) 	TO-C736- 30.13
	Speed (Fre- quency)	Analog Ref- erence Card AI-14B	73600- C002X	 Enables high-precision, high-resolution setting of analog speed references. Input signal ranges: 0 to ±10 V (20 kΩ) 4 to 20 mA (500 Ω), 3 channels Input resolution: 13-bit + sign (1/8192) 	TO-C736- 30.14
	Refer- ence Option Cards	Digital Refer- ence Card DI-08	73600- C003X	Enables 8-bit digital setting of speed references. • Input signal: 8-bit binary 2-digit BCD + sign signal + set signal • Input voltage: +24 V (isolated) • Input current: 8 mA	TO-C736- 30.15
Built-in (con- nect to		Digital Refer- ence Card DI-16H2	73600- C016X	 Enables 16-bit digital setting of speed references. Input signal: 16-bit binary 4-digit BCD + sign signal + set signal Input voltage: +24 V (isolated) Input current: 8 mA With 16-bit/12-bit switch. 	TO-C736- 40.7
con- nector)		Analog Mon- itor Card AO-08	73600- D001X	 Converts analog signals to monitor the Inverter's output status (output frequency, output current, etc.) to absolute values and outputs them. Output resolution: 8 bits (1/256) Output voltage: 0 to +10 V (not insulated) Output channels: 2 channels 	TO-C736- 30.21
	Moni- toring Optional	Analog Mon- itor Card AO-12	73600- D002X	 Output analog signals to monitor the Inverter's output status (output frequency, output current, etc.). Output resolution: 11 bits (1/2048) + sign Output voltage: -10 to +10 V (not insulated) Output channels: 2 channels 	TO-C736- 30.22
	Cards	Digital Out- put Card DO-08	73600- D004X	Outputs isolated digital signals to monitor the Inverters oper- ating status (alarm signals, zero speed detection, etc.) Output form: Photocoupler output, 6 channels (48 V, 50 mA max.) Relay contact outputs, 2 channels (250 VAC: 1 A max., 30VDC: 1 A max.)	TO-C736- 30.24
		2C-Relay Output Card DO-02C	73600- D007X	Provides two multi-function outputs (DPDT relay contacts) in addition to those provided by the Inverter.	TO-C736- 40.8

Table 9.5 Option Cards

Ту	pe	Name	Code Num- ber	Function	Document Number
		PG-A2	73600- A012X	 Used for V/f with PG control. Speed feedback is performed using the PG attached to the motor to compensate for speed fluctuations caused by slipping. A-phase pulse (single pulse) input (voltage, complementary, open-collector input) Maximum input frequency: 32767 Hz Pulse monitor output: +12 V, 20 mA (PG power supply output: +12 V, 200 mA max.) 	TO-C736- 40.1
Built-in (con- nect to con-	PG Speed Con- trol	PG-B2	73600- A013X	 Used for V/f control. A-, B-phase input (complimentary input) Maximum input frequency: 32767 Hz Pulse monitor output: Open-collector (PG power supply output: +12 V, 200 mA max.) 	TO-C736- 40.2
nector)	Cards	PG-D2	73600- A014X	 Differential input. A-phase pulse (differential pulse) input, for V/f control Maximum input frequency: 300 kHz Input: Conforms to RS-422 Pulse monitor output: RS-422 (PG power supply output: +5 or +12 V, 200 mA max.) 	TO-C736- 40.3
		PG-X2	73600- A015X	 A-, B-, Z-phase pulse (differential pulse) input Maximum input frequency: 300 kHz Input: Conforms to RS-422 Pulse monitor output: RS-422 (PG power supply output: +5 or +12 V, 200 mA max.) 	TO-C736- 40.4

Table 9.5	Option	Cards	(Continued)
-----------	--------	-------	-------------

Ту	ре	Name	Code Num- ber	Function	Document Number
		DeviceNet Communica- tions Inter- face Card SI-N	73600- C021X	Used to communicate with an Inverter from a host computer using DeviceNet communications to start/stop Inverter opera- tion, read/set parameters, and read/set monitor constants (out- put frequencies, output currents, etc.).	-
		ProfiBus-DP Communica- tions Inter- face Card SI-P	73600- C022X	Used to communicate with an Inverter from a host computer using ProfiBus-DP communications to start/stop Inverter operation, read/set parameters, and read/set monitor constants (output frequencies, output currents, etc.).	-
Built-in (con- nected	Com- muni- cations	InterBus-S Communica- tions Inter- face Card SI-R	*	Used to communicate with an Inverter from a host computer using InterBus-S communications to start/stop Inverter opera- tion, read/set parameters, and read/set monitor constants (out- put frequencies, output currents, etc.).	-
to con- nector)	Option Cards	CANopen Communica- tions Inter- face Card SI-S	*	Used to communicate with an Inverter from a host computer using CANopen communications to start/stop Inverter opera- tion, read/set parameters, and read/set monitor constants (out- put frequencies, output currents, etc.).	-
		ControlNet Communica- tions Inter- face Card SI-U	*	Used to communicate with an Inverter from a host computer using ControlNet communications to start/stop Inverter opera- tion, read/set parameters, and read/set monitor constants (out- put frequencies, output currents, etc.).	-
		CC-Link Communica- tions Inter- face Card SI-C	73600- C032X	Used to communicate with an Inverter from a host computer using CC-Link communications to start/stop Inverter opera- tion, read/set parameters, and read/set monitor constants (out- put frequencies, output currents, etc.).	-

Table 9.5 Option Cards (Continued)

* Under development.

10 Appendix

This chapter provides precautions for the Inverter, motor, and peripheral devices and also provides lists of constants.

Varispeed G7 Control Modes	10-2
Inverter Application Precautions	10-7
Motor Application Precautions	10-10
Conformance to CE Markings	10-12
User Constants	10-19

10

Varispeed G7 Control Modes

Details of the Varispeed G7-Series Inverter control modes and their features are provided in this section.

Control Modes and Features

Varispeed G7-Series Inverters support the following five control modes, allowing the selection of a control mode to suit the required purpose. *Table 10.1* provides an overview of the control modes and their features.

Cor	ntrol Mode	V/f Control with- out PG	V/f Control with PG	Open-loop Vec- tor Control 1	Flux Vector Con- trol	Open-loop Vec- tor Control 2
Constant	Setting	A1-02 = 0	A1-02 = 1	A1-02 = 2 (factory setting)	A1-02 = 3	A1-02 = 4
Basic Co	ntrol	Voltage/frequency fixed ratio control	Voltage/frequency fixed ratio control with speed com- pensation using a PG	Current vector control without a PG	Current vector control with a PG	Current vector control without a PG using a high- performance mag- netic flux and speed estimator (software)
Main Ap	plications	Variable speed control, particu- larly for control of multiple motors with a single Inverter and for replacing existing Inverters	Applications requiring high- precision speed control using a PG on the machine side	Variable speed control, applica- tions requiring high performance without a PG on the motor side, and for replacing open-loop vector control of the pre- vious VS-616G5.	Very high-perfor- mance control with a PG on the motor side (sim- ple servodrives, high-precision speed control, torque control, and torque limiting)	Very high-perfor- mance control without a PG on the motor side (such as simple servodrives, torque control, and torque limiting), and function appli- cations between flux vector and open-loop vector 1 control.
PG Speed (Option)	d Control Card	Not required.	Required (PG-A2 or PG-D2).	Not required.	Required (PG-B2 or PG-X2).	Not required.
	Speed Control Range ^{*1}	1:40	1:40	1:100	1:1000	1:200*13
	Speed Control Accuracy ^{*2}	±2 to 3%	±0.03%	±0.2%	±0.02%	±0.2%
Basic Perfor- mance	Speed Response ^{*3}	Approx. 1 Hz	Approx. 1 Hz	5 Hz	40 Hz	10 Hz
mance	Maximum Output Fre- quency	400 Hz	400 Hz	400 Hz	400 Hz	60 Hz ^{*13}
	Starting Torque ^{*4}	150%/3 Hz	150%/3 Hz	150%/1 Hz	150%/0 min ⁻¹	150%/0.3 Hz

Table 10.1 Overview and Features of Control Modes

Cor	ntrol Mode	V/f Control with- out PG	V/f Control with PG	Open-loop Vec- tor Control 1	Flux Vector Con- trol	Open-loop Vec- tor Control 2
	Autotuning	Line-to-line resis- tance (Normally not required.)	Line-to-line resis- tance (Normally not required.)	Rotational auto- tuning, stationary autotuning, sta- tionary autotuning for line-to-line resistance only	Rotational auto- tuning, stationary autotuning, sta5 ionary autotuning for line-to-line resistance only	Rotational auto- tuning, stationary autotuning, sta- tionary autotuning for line-to-line resistance only
	Torque Limit- ing ^{*5}	No	No	Yes (except dur- ing acceleration/ deceleration, below minimum frequency, or dur- ing reverse rota- tion)	Yes	Yes (except below minimum fre- quency and dur- ing reverse rotation)
	Torque Con- trol ^{*6}	No	No	No	Yes	Yes (except below minimum fre- quency and dur- ing reverse rotation)
Appli- cation Func- tions	Droop Con- trol ^{*7}	No	No	No	Yes (except for 0 min ⁻¹ and dur- ing reverse rota- tion)	Yes (Except below minimum fre- quency and dur- ing reverse rotation)
	Zero-servo Control ^{*8}	No	No	No	Yes	No
	Speed Estima- tion (Detec- tion) Instantaneous Speed Search ^{*9}	Yes (speed and rotation direction estimation)	Yes (speed detec- tion and rotation direction estima- tion)	Yes (speed and rotation direction estimation)	Yes (speed and rotation direction detection)	Yes (speed and rotation direction estimation)
	Automatic Energy-sav- ing Control ^{*10}	Yes	Yes	Yes	Yes	Yes
	High-slip Braking ^{*11}	Yes	Yes	(Under develop- ment)	(Under develop- ment)	(Under develop- ment)
	Feed For- ward Con- trol ^{*12}	No	No	No	Yes	Yes

Table 10.1 Overview and Features of Control Mode
--

* 1. The variable speed control range. (For continuous operation, the motor's temperature rise must be considered.)

* 2. The speed deviation in relation to the maximum speed with a rated load and when the load is stable. (For open-loop vector control 1 and 2, the motor temperature must be 25 °C ± 10 °C.)

* 3. The speed response guidelines indicating the extent of the motor's actual speed gain in proportion to the speed reference, which changes in a sinusoidal wave form, within a range where motor torque does not become saturated.

* 4. A guideline for the motor torque that can be generated when started at a low speed and its output frequency (rotations) at that time.

* 5. This function limits the maximum motor torque to protect the machine and the load.

* 6. This function directly controls the amount of torque being generated at the motor and its rotation direction, e.g., to control force.

* 7. This function controls the amount of motor slip that occurs to prevent mechanical shock, when replacing a torque motor, etc.

* 8. This function performs simple positioning control (servo lock), without using an external positioning control device.

* 9. This function instantaneously estimates (or detects) the speed and rotation direction of a coasting motor, and quickly starts it without subjecting it to shock.

* 10. This function automatically adjusts the voltage applied to the motor to optimize the motor's efficiency with light loads.

* 11. This function improves the deceleration time without using a braking resistor by making the motor winding absorb regenerative power. As a standard, this function is effective with a motor running on 160 kW or less with a high-inertia load.

* 12. This function enables proportional gain in relation to changes in the speed reference, even for low rigidity (corresponds to the servo's model gain control).

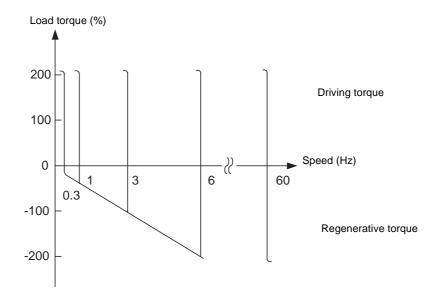
* 13.Set the maximum output frequency (E1-04) for open-loop vector control 2 to a value not exceeding 60 Hz. Use within a speed control range of 1:10 for torque control on the regenerative side.

Application Function Precautions

Observe the following precautions when using the application functions.

- Perform rotational autotuning during trial operation whenever it is possible to separate the motor and machine. To achieve the characteristics of vector control described in *Table 10.1*, the control must be adjusted within a range that the machine will not vibrate after rotational autotuning has been performed.
- With vector control, the motor and Inverter must be connected 1:1. Vector control is not possible when multiple motors are connected to a single Inverter. Select an Inverter capacity so the rated motor current is 50% to 100% of the rated Inverter current.
- For estimated speed searching, the motor and Inverter must be connected 1:1. The speed search must be performed at a frequency of 130 Hz or less and with a motor with the same number of frames as or one frame less than the Inverter capacity.
- During high-slip braking, motor loss increases, so use a high-slip braking frequency of 5% ED or less, and a braking time of 90 seconds or less. Once high-slip braking has started, the motor cannot be restarted until it has stopped.
- Feed forward control is a function that improves the proportional gain of the motor speed in relation to the change in the speed reference. Adjust the response to interference loads using the speed controller (ASR) constants.
- The torque limit function will not operate during acceleration or deceleration (during soft start transition) when using a control mode such as open-loop vector control 1. Even if the motor speed drops due to torque limiting while set to a fixed speed, the speed will not fall below the minimum frequency and the motor will not slip into reverse rotation. These conditions also apply to open-loop vector control 2 and other application functions.

Precautions When Using Open-loop Vector Control 2


Using open-loop vector control 2 (A1-02=4) gives a higher level of control than conventional open-loop vector control (A1-02=2). When using open-loop vector control 2, pay attention to the points listed below. For a comparison with other control modes, refer to *Table 10.1 Overview and Features of Control Modes*.

General Precautions

- The maximum possible setting for the maximum output frequency (E1-04) is 60 Hz.
- Be sure to perform autotuning. Refer to the precautions given under *Autotuning* in *Chapter 4 Trial Opera-tion*.

Precaution on Regeneration

With speed control, in the low speed range (approx. 6 Hz max.), the speed increases for large regenerative loads, and it may not be possible to maintain speed accuracy. Examples are given below for forward rotation at frequencies of 0.3, 1, 3, 6, and 60 Hz.

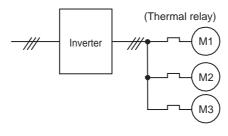
With torque control, operate within a speed control range of 1:10 on the regenerative side.

Precautions on Setting Constants

If the constants are not set properly, performance may be adversely affected.

- If there is a possibility of starting with the motor already rotating, enable the speed search function (b3-01=1).
- When lowering a torque limit (L7- []), set it to as high a value as possible within the range allowed by the system.
- If torque limit acceleration is performed, or if the motor slips at the torque limit causing a CF (control fault), increase N4-08 (proportional gain of speed estimator) in steps of 5 until acceleration and deceleration are performed smoothly. When N4-08 is increased, the torque reference (U1-09) may oscillate. If so, increase C5-06 (ASR primary delay time) by about 0.050 s.

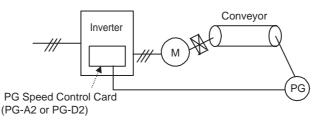
Precaution on Torque Accuracy


To ensure torque accuracy within the speed control range of 1:10 when the motor is operated by itself at the minimum frequency and the torque reference (U1-09) is higher than in the medium- and high-speed ranges, increase the setting of the torque adjustment gain (N4-17) and adjust the torque reference so that it is about the same as that in the medium and high speed ranges.

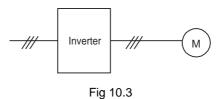
Control Modes and Applications

Application examples for the Inverter control modes are provided here.

■V/f Control without PG (A1-02 = 0)


V/f control without a PG is suitable for applications where multiple motors are operated with a single Inverter, such as with multi-motor drives.

■V/f Control with PG (A1-02 = 1)


V/f control with a PG enables precise control of machine line speed. Speed control using the speed feedback of the machine shaft is possible in this mode.

■Flux Vector Control (A1-02 = 2 or 4)

Flux vector control enables the use of high-performance drives without a speed detector. PG (pulse generator) wiring is not required.

■Vector Control with PG (A1-02 = 3)

Vector control with a PG is suitable for applications using high-precision drives with PG feedback. High-precision positioning, zero-speed control, and torque control are possible with this mode.

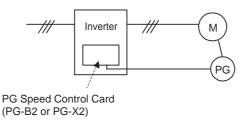
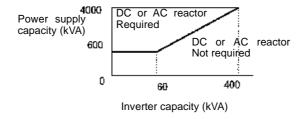


Fig 10.4

Inverter Application Precautions

This section provides precautions for selecting, installing, setting, and handling Inverters.

Selection


Observe the following precautions in selecting an Inverter.

Installing Reactors

A large peak current will flow in the power input circuit when the Inverter is connected to a large-capacity power transformer (600 kVA or higher) or when switching a phase capacitor. Excessive peak current can destroy the convertor section. To prevent this, install a DC or AC reactor (optional) to improve the power supply power factor.

DC reactors are built into 200 V class Inverters of 18.5 to 110 kW and 400 V class Inverters of 18.5 to 300 kW.

If a thyristor convertor, such as a DC drive, is connected in the same power supply system, connect a DC or AC reactor regardless of the power supply conditions shown in the following diagram.

Inverter Capacity

When connecting special motors or multiple motors in parallel to an Inverter, select the Inverter capacity so that the rated output current of the Inverter is 1.1 times the sum of all the motor rated currents.

Initial Torque

The startup and acceleration characteristics of the motor are restricted by the overload current ratings of the Inverter that is driving the motor. The torque characteristics are generally less than those required when starting using a normal commercial power supply. If a large initial torque is required, select an Inverter with a somewhat larger capacity or increase the capacity of both the motor and the inverter.

Emergency Stop

Although the Inverter's protective functions will stop operation when a fault occurs, the motor will not stop immediately. Always provide mechanical stop and protection mechanisms on equipment requiring an emergency stop.

Options

Terminals B1, B2, \ominus , \oplus 1, \oplus 2, \oplus 3 are for connecting only the options specifically provided by Yaskawa. Never connect any other devices to these terminals.

Installation

Observe the following precautions when installing an Inverter.

■Installation in Enclosures

Either install the Inverter in a clean location not subject to oil mist, airborne matter, dust, and other contaminants, or install the Inverter in a completely enclosed panel. Provide cooling measures and sufficient panel space so that the temperature surrounding the Inverter does not go beyond the allowable temperature. Do not install the Inverter on wood or other combustible materials.

■Installation Direction

Mount the Inverter vertically to a wall or other horizontal surface.

Settings

Observe the following precautions when making settings for an Inverter.

Upper Limits

The Digital Operator can be used to set high-speed operation up to a maximum of 400 Hz (depends on the carrier frequency). Incorrect settings can be dangerous. Use the maximum frequency setting functions to set upper limits. (The maximum output frequency is factory-set to 60 Hz.)

DC Injection Braking

The motor can overheat if the DC injection braking voltage or braking time is set to a large value.

Acceleration/Deceleration Times

The motor's acceleration and deceleration times are determined by the torque generated by the motor, the load torque, and the load's inertial moment ($GD^2/4$). If the stall prevention functions are activated during acceleration or deceleration, increase the acceleration or deceleration time. The stall prevention functions will increase the acceleration or deceleration function is active.

To reduce the acceleration or deceleration times, increase the capacity of the motor and Inverter.

Handling

Observe the following precautions when wiring or performing maintenance for an Inverter.

Wiring Check

The Inverter will be internally damaged if the power supply voltage is applied to output terminal U, V, or W. Check wring for any mistakes before supplying power. Check all wiring and sequences carefully.

Magnetic Contactor Installation

Do not start and stop operation frequently with a magnetic contactor installed on the power supply line. Doing so can cause the Inverter to malfunction. Do not turn the Inverter ON and OFF with a magnetic contactor more than one time every 30 minutes.

Maintenance and Inspections

After turn OFF the main circuit power supply, always confirm that the CHARGE indicator is not lit before performing maintenance or inspections. The voltage remaining in the capacitor may cause electric shock.

Motor Application Precautions

This section provides precautions for motor application.

Using the Inverter for an Existing Standard Motor

When a standard motor is operated with the Inverter, power loss is slightly higher than when operated with a commercial power supply. Observe the following precautions when using an Inverter for an existing standard motor.

■Low Speed Ranges

Cooling effects diminish in the low-speed range, resulting in an increase in the motor temperature. Therefore, the motor torque should be reduced in the low-speed range whenever using a motor not made by Yaskawa. If 100% torque is required continuously at low speed, consider using a special inverter or vector motor.

■Installation Withstand Voltage

If the input voltage is high (440 V or higher) or the wiring distance is long, the motor insulation voltage must be considered. Contact your Yaskawa representative for details.

■High-speed Operation

When using the motor at a high speed (60 Hz or more), problems may arise in dynamic balance and bearing durability. Contact your Yaskawa representative for details.

■Torque Characteristics

The motor may require more acceleration torque when the motor is operated with the Inverter than when operated with a commercial power supply. Check the load torque characteristics of the machine to be used with the motor to set a proper V/f pattern.

■Vibration

The Inverter uses a high carrier PWM to reduce motor vibration. (A constant can be set to select low carrier, PWM modulation control as well.) When the motor is operated with the Inverter, motor vibration is almost the same as when operated with a commercial power supply.

Motor vibration may, however, become greater in the following cases.

Resonance with the Natural Frequency of the Mechanical System

Take special care when a machine that has been operated at a constant speed is to be operated in variable speed mode. If resonance occurs, install vibration-proof rubber on the motor base or use the frequency jump function to skip any frequency resonating the machine.

Imbalanced Rotor

Take special care when the motor is operated at a higher speed (60 Hz or more).

■Noise

Noise varies with the carrier frequency. At high carrier frequencies, the noise is almost the same when the motor is operated with a commercial power supply. Motor noise, however, becomes louder when the motor is operated at a speed higher than the rated speed (60 Hz).

Using the Inverter for Special Motors

Observe the following precautions when using a special motor.

Pole-changing Motor

The rated input current of pole-changing motors differs from that of standard motors. Select, therefore, an appropriate Inverter according to the maximum input current of the motor to be used. Before changing the number of poles, always make sure that the motor has stopped. Otherwise, the overvoltage protective or overcurrent protective mechanism will be actuated, resulting in an error.

Submersible Motor

The rated input current of submersible motors is higher than that of standard motors. Therefore, always select an Inverter by checking its rated output current. When the distance between the motor and Inverter is long, use a cable thick enough to connect the motor and Inverter to prevent motor torque reduction.

Explosion-proof Motor

When an explosion-proof motor is to be used, it must be subject to an explosion-proof test in conjunction with the Inverter. This is also applicable when an existing explosion-proof motor is to be operated with the Inverter. Since the Inverter itself is, however, not explosion-proof, always install it in a safe place.

Gearmotor

The speed range for continuous operation differs according to the lubrication method and motor manufacturer. In particular, continuous operation of an oil-lubricated motor in the low speed range may result in burning. If the motor is to be operated at a speed higher than 60 Hz, consult with the manufacturer.

Synchronous Motor

A synchronous motor is not suitable for Inverter control. If a group of synchronous motors is individually turned ON and OFF, synchronism may be lost.

Single-phase Motor

Do not use an Inverter for a single-phase motor. The motor should be replaced with a 3-phase motor.

Power Transmission Mechanism (Speed Reducers, Belts, and Chains)

If an oil-lubricated gearbox or speed reducer is used in the power transmission mechanism, oil lubrication will be affected when the motor operates only in the low speed range. The power transmission mechanism will make noise and experience problems with service life and durability if the motor is operated at a speed higher than 60 Hz.

Conformance to CE Markings

Points regarding conformance to CE markings are given below.

CE Markings

CE markings indicate conformance to safety and environmental standards that apply to business transactions (including production, imports, and sales) in Europe. There are unified European standards for mechanical products (Machine Directive), electrical products (Low Voltage Directive), and electrical noise (EMC Directive). CE markings are required for business transactions in Europe (including production, imports, and sales).

The Varispeed G7-Series Inverters bear CE markings indicating conformance to the Low Voltage Directive and the EMC Directive.

• Low Voltage Directive: 73/23/EEC

• EMC Directive: 93/68/EEC • EMC Directive: 89/336/EEC 92/31/EEC 93/68/EEC

Machinery and installations that incorporate the Inverter are also subject to CE markings. It is ultimately the responsibility of customers making products incorporating the Inverter to attach CE markings to the finished products. The customer must confirm that the finished products (machines or installations) conform to the European Standards.

Requirements for Conformance to CE Markings

■Low Voltage Directive

Varispeed G7-Series Inverters satisfy testing for conformance to the Low Voltage Directive under the conditions described in European Standard EN50178.

Requirements for Conformance to the Low Voltage Directive

Varispeed G7-Series Inverters must satisfy the following conditions in order to conform to the Low Voltage Directive.

- It must be used under conditions corresponding to overvoltage category 3 or less and pollution degree 2 or less as specified in IEC664.
- Input fuses:

For details on selecting fuses, refer to Table 10.2 Selection Requirements for Input Fuses with Examples.

• With Inverters CIMR-G7C2018 to 2110 and CIMR-G7C4018 to 4300, an enclosure preventing foreign matter from entering from the top or front sides is required (IP4X or higher: panel installation).

Input Fuses

In order to conform to the Low Voltage Directive, fuses must be provided for inputs. Use UL-compatible input fuses with ratings higher than the voltages and currents, and fusing I^2t specifications within the ranges shown in the table below.

		Se	lection Re	quirements	In	put Fuse (Exam	ples)	
Voltage Class	Inverter Model Number CIMR-G7C	Voltage (V)	Current (A)	Fusing I ² t (A ² sec)	Model Number	Manufacturer	Ratings	Fusing I ² t (A ² sec)
	20P4	240	10	12 to 25	A60Q12-2	FERRAZ	600 V 12 A	17
	20P7	240	15	23 to 55	CR2LS-20/UL	FUJI	250 V 20 A	27
	21P5	240	20	34 to 98	CR2LS-30/UL	FUJI	250 V 30 A	60
	22P2	240	30	82 to 220	CR2LS-50/UL	FUJI	250 V 50 A	200
	23P7	240	40	220 to 610	CR2LS-75/UL	FUJI	250 V 75 A	560
	25P5	240	50	290 to 1300	CR2LS-75/UL	FUJI	250 V 75 A	560
	27P5	240	60	450 to 5000	CR2LS-100/UL	FUJI	250 V 100 A	810
	2011	240	90	1200 to 7200	CR2L-125/UL	FUJI	250 V 125 A	1570
200 V	2015	240	120	1800 to 7200	CR2L-150/UL	FUJI	250 V 150 A	2260
class	2018	240	140	870 to 16200	CR2L-150/UL	FUJI	250 V 150 A	2260
	2022	240	160	1500 to 23000	CR2L-200/UL	FUJI	250 V 200 A	4010
	2030	240	220	2100 to 19000	CR2L-260/UL	FUJI	250 V 260 A	7320
	2037	240	270	2700 to 55000	CR2L-300/UL	FUJI	250 V 300 A	9630
	2045	240	300	4000 to 55000	CR2L-300/UL	FUJI	250 V 300 A	9630
	2055	240	370	7100 to 64000	CR2L-400/UL	FUJI	250 V 400 A	24000
	2075	240	500	11000 to 64000	CR2L-500/UL	FUJI	250 V 500 A	40000
	2090	240	600	13000 to 83000	CR2L-600/UL	FUJI	250 V 600 A	52000
	2110	240	700	13000 to 83000	A50P700-4	FERRAZ	500 V 700 A	49000

Table 10.2 Selection Requirements for Input Fuses with Examples

		Se	lection Re	quirements	In	put Fuse (Exam	ples)	
Voltage Class	Inverter Model Number CIMR-G7C	Voltage (V)	Current (A)	Fusing I ² t (A ² sec)	Model Number	Manufacturer	Ratings	Fusing I ² t (A ² sec)
	40P4	480	5	16 to 660	CR6L-20/UL	FUJI	600 V 20 A	26
	40P7	480	10	19 to 660	CR6L-20/UL	FUJI	600 V 20 A	26
	41P5	480	10	46 to 660	CR6L-30/UL	FUJI	600 V 30 A	59
	42P2	480	15	78 to 660	CR6L-50/UL	FUJI	600 V 50 A	317
	43P7	480	20	110 to 660	CR6L-50/UL	FUJI	600 V 50 A	317
	44P0	480	25	220 to 660	CR6L-50/UL	FUJI	600 V 50 A	317
	45P5	480	30	240 to 900	CR6L-50/UL	FUJI	600 V 50 A	317
	47P5	480	40	320 to 900	CR6L-75/UL	FUJI	600 V 75 A	564
	4011	480	50	1000 to 1800	CR6L-100/UL	FUJI	600 V 100 A	1022
	4015	480	60	1500 to 4100	CR6L-150/UL	FUJI	600 V 150 A	3070
	4018	480	70	530 to 5800	CR6L-150/UL	FUJI	600 V 150 A	3070
400 V	4022	480	90	1130 to 5800	CR6L-150/UL	FUJI	600 V 150 A	3070
class	4030	480	110	1700 to 5800	CR6L-150/UL	FUJI	600 V 150 A	3070
	4037	480	140	2000 to 13000	CR6L-200/UL	FUJI	600 V 200 A	5200
	4045	480	160	3000 to 13000	CR6L-200/UL	FUJI	600 V 200 A	5200
	4055	480	220	6800 to 55000	CR6L-300/UL	FUJI	600 V 300 A	17700
	4075	480	300	3800 to 55000	CR6L-300/UL	FUJI	600 V 300 A	17700
	4090	480	330	12000 to 23000	A70P400-4	FERRAZ	700 V 400 A	19000
	4110	480	400	18000 to 64000	A70P450-4	FERRAZ	700 V 400 A	24000
	4132	480	450	28000 to 250000	A70P600-4	FERRAZ	700 V 600 A	43000
	4160	480	540	40000 to 250000	A70P700-4	FERRAZ	700 V 700 A	59000
	4185	480	750	63000 to 400000	A70P900-4	FERRAZ	700 V 900 A	97000
	4220	480	750	63000 to 400000	A70P1000-4	FERRAZ	700 V 900 A	97000
	4300	480	1000	94000 to 920000	A70P1000-4	FERRAZ	700 V 1000 A	120000

Table 10.2 Selection Requirements for Input Fuses with Examples

■EMC Directive

Varispeed G7-Series Inverters satisfy testing for conformance to the EMC Directive under the conditions described in European Standard EN61800-3.

Installation Method

In order to ensure that the machinery or installation incorporating the Inverter conforms to the EMC Directive, perform installation according to the method below.

- Install a noise filter that conforms to European Standards on the input side. (Refer to *Table 10.3 EMC Noise Filters*).
- Use a shielded line or metal piping for wiring between the Inverter and Motor. Make the wiring as short as possible.
- To suppress harmonics, install a DC reactor in CIMR-G7C20P4, 20P7, 40P4, and 40P7 models. (Refer to *Table 10.4 DC Reactors for Suppressing Harmonics.*)

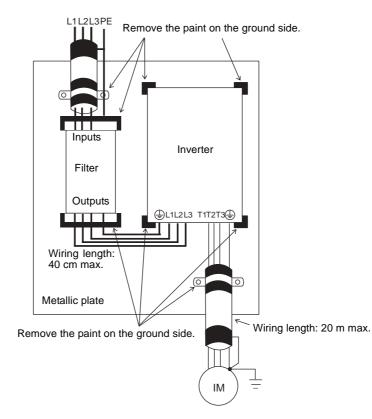


Fig 10.6 Installation Method for Filter and Inverter (CIMR-G7C20P4 to 2018, 40P4 to 4018)

10

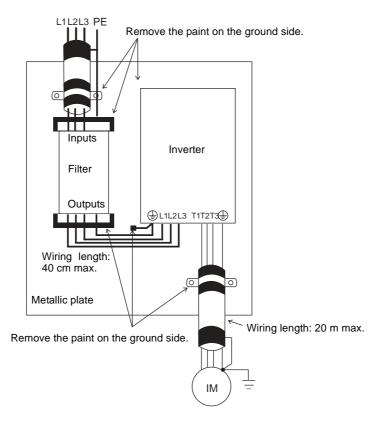


Fig 10.7 Installation Method for Filter and Inverter (CIMR-G7C2022 to 2110, 4022 to 4300)

Volt-	Inverter Model	Noise Filter (Made by Schaffner)								
age Class	Number CIMR-G7C	Model Number	Rated Current (A)	Weight (kg)	Dimensions					
	20P4	FS 5972-10-07	10	1.1	141 x 330 x 46					
	20P7	13 3972-10-07	10	1.1	141 x 550 x 40					
	21P5	FS 5972-18-07	18	1.3	141 x 330 x 46					
	22P2	FS 5972-35-07	35	1.4	141 x 330 x 46					
	23P7	13 3912-33-01	33	1.4	141 x 550 x 40					
	25P5	FS 5972-60-07	60	3	206 x 355 x 60					
	27P5	15 5772-00-07	00	C	200 x 333 x 00					
	2011		100							
200 V	2015	FS 5972-100-07		4.9	236 x 408 x 80					
class	2018									
	2022	FS 5972-120-35	120	4.3	90 x 366 x 180					
	2030	FS 5972-180-40	180	6	120 x 451 x 170					
	2037	13 3772-180-40	180	0	120 x 451 x 170					
	2045	FS 5972-300-37	300	11	130 x 610 x 240					
	2055	13 3712-300-31	500	11	130 x 010 x 240					
	2075	FS 5972-300-37	360	11	130 x 610 x 240					
	2090	FS 5972-300-37	450	11	130 x 610 x 240					
	2110	133712-300-31		11	130 x 010 x 240					

Table 10.3 EMC Noise Filters

Volt-	Inverter Model	Noise Filter (Made by Schaffner)								
age Class	Number CIMR-G7C	Model Number	Rated Current (A)	Weight (kg)	Dimensions					
	40P4	Under development								
	40P7	Under development								
41P5										
	42P2									
	43P7	Under development								
	44P0									
	45P5			Image: Arrow of the second s						
	47P5	Under development								
	4011	onder de veropment								
	4015	Under development								
	4018									
400 V	4022	Under development								
class	4030									
	4037									
	4045	Under development								
	4055									
	4075	Under development								
	4090	Under development								
	4110									
	4132	Under development								
	4160	Under development								
	4185	Under development								
	4220	Under development								
	4300	Under development								

Table 10.3 EMC Noise Filters

Table 10.4 DC Reactors for	Suppressing Harmonics
----------------------------	-----------------------

	Inverter Model	DC Reactor						
Voltage Class	CIMR-G7C	Model Number	Manufacturer	Ratings	Code Number			
200 V class	20P4		VASKAWA	5.4 A 8 mH	X010084			
200 V class	20P7	UZDA-B YASKAWA 5.4 A	J.4 A 6 III1	A010084				
400 V class	40P4	UZDA-B	YASKAWA	3.2 A 28 mH	X010052			
400 V class	40P7	ULDA-D	IASKAWA	5.2 A 20 IIIA	A010052			

User Constants

Factory settings are given in the following table. These setting are for a 200 V Class Inverter of 0.4 kW set to factory set control method (open-loop vector control).

No.	Name	Fac- tory Setting	Set- ting	No.	Name	Fac- tory Setting	Set- ting
A1-00	Language selection for digital operator display	1^{*1}		b5-11	PID reverse output selection	0	
A1-01	Constant access level	2		b5-12	Selection of PID feedback com- mand loss detection	0	
A1-02	Control method selection	2^{*1}		b5-13	PID feedback command loss detec- tion level	0	
A1-03	Initialize	0		b5-14	PID feedback command loss detec- tion time	1.0	
A1-04	Password	0		b5-15	PID sleep function operation level	0.0	
A1-05	Password setting	0		b5-16	PID sleep operation delay time	0.0	
A2-01 to A2-32	User setting constants	-		b5-17	Acceleration/deceleration time for PID reference	0.0	
b1-01	Reference selection	1		b6-01	Dwell frequency at start	0.0	
b1-02	Operation method selection	1		b6-02	Dwell time at start	0.0	
b1-03	Stopping method selection	0		b6-03	Dwell frequency at stop	0.0	
b1-04	Prohibition of reverse operation	0		b6-04	Dwell time at stop	0.0	
b1-05	Operation selection for setting E1- 09 or less	0		b7-01	Droop control gain	0.0	
b1-06	Read sequence input twice	1		b7-02	Droop control delay time	0.05	
b1-07	Operation selection after switching to remote mode	0		b8-01	Energy-saving mode selection	0	
b1-08	Run command selection in pro- gramming modes	0		b8-02	Energy-saving gain	0.7^{*4}	
b2-01	Zero speed level (DC injection braking starting frequency)	0.5		b8-03	Energy-saving filter time constant	0.50 ^{*5}	
b2-02	DC injection braking current	50		b8-04	Energy-saving coefficient	*6	
b2-03	DC injection braking time at start	0.00		b8-05	Power detection filter time con- stant	20	
b2-04	DC injection braking time at stop	0.50		b8-06	Search operation voltage limiter	0	
b2-08	Magnetic flux compensation vol- ume	0		b9-01	Zero-servo gain	5	
b3-01	Speed search selection	2^{*2*3}		b9-02	Zero-servo completion width	10	
b3-02	Speed search operating current	100^{*2}		C1-01	Acceleration time 1	10.0	
b3-03	Speed search deceleration time	2.0		C1-02	Deceleration time 1	10.0	
b3-05	Speed search wait time	0.2		C1-03	Acceleration time 2	10.0	
b4-01	Timer function ON-delay time	0.0		C1-04	Deceleration time 2	10.0	
b4-02	Timer function OFF-delay time	0.0		C1-05	Acceleration time 3	10.0	
b5-01	PID control mode selection	0		C1-06	Deceleration time 3	10.0	
b5-02	Proportional gain (P)	1.00		C1-07	Acceleration time 4	10.0	
b5-03	Integral (I) time	1.0		C1-08	Deceleration time 4	10.0	
b5-04	Integral (I) limit	100.0		C1-09	Emergency stop time	10.0	
b5-05	Derivative (D) time	0.00		C1-10	Accel/decel time setting unit	1	
b5-06	PID limit	100.0		C1-11	Accel/decel time switching fre- quency	0.0	
b5-07	PID offset adjustment	0.0		C2-01	S-curve characteristic time at acceleration start	0.20	
b5-08	PID primary delay time constant	0.00		C2-02	S-curve characteristic time at acceleration end	0.20	
b5-09	PID output characteristics selec- tion	0		C2-03	S-curve characteristic time at deceleration start	0.20	
b5-10	PID output gain	1.0		C2-04	S-curve characteristic time at deceleration end	0.00	

Table 10.5 User Constants

No.	Name	Fac- tory Setting	Set- ting	No.	Name	Fac- tory Setting	Set- ting
C3-01	Slip compensation gain	1.0^{*3}		d3-01	Jump frequency 1	0.0	
C3-02	Slip compensation primary delay time	200 ^{*2}		d3-02	Jump frequency 2	0.0	
C3-03	Slip compensation limit	200		d3-03	Jump frequency 3	0.0	
C3-04	Slip compensation selection during regeneration	0		d3-04	Jump frequency width	1.0	
C3-05	Output voltage limit operation selection	0		d4-01	Frequency reference hold function selection	0	
C4-01	Torque compensation gain	1.00		d4-02	+ - Speed limits	10	
C4-02	Torque compensation primary delay time constant	20 ^{*2*3}		d5-01	Torque control selection	0	
C4-03	Forward starting torque	0.0		d5-02	Torque reference delay time	0	
C4-04	Reverse starting torque	0.0		d5-03	Speed limit selection	1	
C4-05	Starting torque time constant	10		d5-04	Speed limit	0	
C5-01	ASR proportional gain 1	20.00		d5-05	Speed limit bias	10	
C5-02	ASR integral (I) time 1	0.500		d5-06	Speed/torque control switching timer	0	
C5-03	ASR proportional gain 2	20.00		d6-01	Field weakening level	80	
C5-04	ASR integral (I) time 2	0.500		d6-02	Field frequency	0.0	
C5-05	ASR limit	5.0		d6-03	Field forcing function selection	0	
C5-06	ASR primary delay time	0.004		d6-05	A\u00f6R time constant	1.00	
C5-07	ASR switching frequency	0.0		E1-01	Input voltage setting	200*7	
C5-08	ASR integral (I) limit	400		E1-03	V/f pattern selection	F	
C6-02	Carrier frequency selection	6^{*6}		E1-04	Max. output frequency	60.0	
C6-03	Carrier Frequency Upper Limit	15.0 ^{*6}		E1-05	Max. voltage	200.0 *2 *7	
C6-04	Carrier Frequency Lower Limit	15.0 ^{*6}		E1-06	Base frequency	60.0 ^{*2}	
C6-05	Carrier Frequency Proportional Gain	00		E1-07	Mid. output frequency	3.0*2	
C6-11	Carrier frequency for open-loop vector control 2	4		E1-08	Mid. output frequency voltage	15.0*2 *7	
d1-01	Frequency reference 1	0.00		E1-09	Min. output frequency	1.5*2	
d1-02	Frequency reference 2	0.00		E1-10	Min. output frequency voltage	9.0*2*7	
d1-02	Frequency reference 3	0.00		E1-10 E1-11	Mid. output frequency 2	0.0*9	
					Mid. output frequency voltage 2		
d1-04	Frequency reference 4	0.00		E1-12		0.0*9	
d1-05	Frequency reference 5	0.00		E1-13	Base voltage	0.0^{*10}	
d1-06	Frequency reference 6	0.00		E2-01	Motor rated current	1.90^{*6}	
d1-07	Frequency reference 7	0.00		E2-02	Motor rated slip	2.90^{*6}	
d1-08	Frequency reference 8	0.00		E2-03	Motor no-load current	1.20*6	
d1-09	Frequency reference 9	0.00		E2-04	Number of motor poles	4	
d1-10	Frequency reference 10	0.00		E2-05	Motor line-to-line resistance	9.842*6	
d1-11	Frequency reference 11	0.00		E2-06	Motor leak inductance	18.2*6	
d1-12	Frequency reference 12	0.00		E2-07	Motor iron saturation coefficient 1	0.50	
d1-13	Frequency reference 13	0.00		E2-08	Motor iron saturation coefficient 2	0.75	
d1-14	Frequency reference 14	0.00		E2-09	Motor mechanical loss	0.0	
d1-15	Frequency reference 15	0.00		E2-10	Motor iron loss for torque compen- sation	14*4	
d1-16	Frequency reference 16	0.00		E2-11	Motor rated output	0.40^{*4}	
d1-17	Jog frequency reference	6.00		E3-01	Motor 2 control method selection	2	
d2-01	Frequency reference upper limit	100.0		E3-02	Motor 2 max. output frequency (FMAX)	60.0 ^{*2}	
d2-02	Frequency reference lower limit	0.0		E3-03	Motor 2 max. voltage (VMAX)	200.0*2	
d2-03	Master speed reference lower limit	0.0		E3-04	Motor 2 max. voltage frequency (FA)	60.0	

Table 10.5 User Constants (Continued)

No.	Name	Fac- tory	Set-	No.	Name	Fac-	Set-
INU.		Setting	ting	INO.		tory Setting	ting
E3-05	Motor 2 mid. output frequency 1 (FB)	3.0 ^{*2}		F4-08	Analog output signal level for channel 2	0	
E3-06	Motor 2 mid. output frequency voltage 1 (VC)	11.0 *7		F5-01	Channel 1 output selection	0	
E3-07	Motor 2 min. output frequency (FMIN)	0.5 *2		F5-02	Channel 2 output selection	1	
E3-08	Motor 2 min. output frequency voltage (VMIN)	2.0 *7		F5-03	Channel 3 output selection	2	
E4-01	Motor 2 rated current	1.90 *6		F5-04	Channel 4 output selection	4	
E4-02	Motor 2 rated slip	2.90 *6		F5-05	Channel 5 output selection	6	
E4-03	Motor 2 no-load current	1.20 *6		F5-06	Channel 6 output selection	37	
E4-04	Motor 2 number of poles (number of poles)	4		F5-07	Channel 7 output selection	0F	
E4-05	Motor 2 line-to-line resistance	9.842 ^{*6}		F5-08	Channel 8 output selection	0F	
E4-06	Motor 2 leak inductance	18.2^{*6}		F5-09	DO-08 output mode selection	0	
E4-07	Motor 2 rated capacity	0.40*6		F6-01	Operation selection after commu- nications error	1	
F1-01	PG constant	600		F6-02	Input level of external fault from Communications Option Card	0	
F1-02	Operation selection at PG open cir- cuit (PGO)	1		F6-03	Stopping method for external fault from Communications Option Card	1	
F1-03	Operation selection at overspeed (OS)	1		F6-04	Trace sampling from Communica- tions Option Card	0	
F1-04	Operation selection at deviation	3		F6-06	Torque reference/torque limit selection from optical option	1	
F1-05	PG rotation	0		H1-01	Terminal S3 function selection	24	
F1-06	PG division rate (PG pulse moni- tor)	1		H1-02	Terminal S4 function selection	14	
F1-07	Integral value during accel/decel enable/disable	0		H1-03	Terminal S5 function selection	3 (0) ^{*8}	
F1-08	Overspeed detection level	115		H1-04	Terminal S6 function selection	4 (3) ^{*8}	
F1-09	Overspeed detection delay time	0.0		H1-05	Terminal S7 function selection	6 (4) ^{*8}	
F1-10	Excessive speed deviation detec- tion level	10		H1-06	Terminal S8 function selection	8 (6)	
F1-11	Excessive speed deviation detec- tion delay time	0.5		H1-07	Terminal S9 function selection	5	
F1-12	Number of PG gear teeth 1	0		H1-08	Terminal S10 function selection	32	
F1-13	Number of PG gear teeth 2 PG open-circuit detection time	$\frac{0}{20}$		H1-09	Terminal S11 function selection	7	
F1-14 F2-01	Bi-polar or uni-polar input selec-	2.0 0		H1-10 H2-01	Terminal S12 function selection Terminal M1-M2 function selec-	15 0	
F3-01	tion Digital input option	0		H2-02	tion (contact) Terminal M3-M4 function selec- tion (open collector)	1	
F4-01	Channel 1 monitor selection	2		H2-03	Terminal M5-M6 function selec- tion (open collector)	2	
F4-02	Channel 1 gain	1.00		H2-04	Terminal P3 function selection (open-collector)	6	
F4-03	Channel 2 monitor selection	3		H2-05	Terminal P4 function selection (open-collector)	5	
F4-04	Channel 2 gain	0.50		H3-01	Signal level selection (terminal A1)	0	
F4-05	Channel 1 output monitor bias	0.0		H3-02	Gain (terminal A1)	0	
F4-06	Channel 2 output monitor bias	0.0		H3-03	Bias (terminal A1)	100.0	
F4-07	Analog output signal level for channel 1	0		H3-04	Signal level selection (terminal A3)	0	

Table 10.5 User Constants	(Continued)
---------------------------	-------------

10-21

No.	Name	Fac- tory Setting	Set- ting	No.	Name	Fac- tory Setting	Set- ting
H3-05	Multi-function analog input (termi- nal A3)	2		L2-04	Voltage recovery time	0.3	
H3-06	Gain (terminal A3)	100.0		L2-05	Undervoltage detection level	190 ^{*7}	
H3-07	Bias (terminal A3)	0.0		L2-06	KEB deceleration time	0.0	
H3-08	Multi-function analog input termi- nal A2 function selection	2		L2-07	Momentary recovery time	0*11	
H3-09	Multi-function analog input termi- nal A2 signal level selection	0		L2-08	Frequency reduction gain at KEB start	100	
H3-10	Gain (terminal A2)	100.0		L3-01	Stall prevention selection during accel	1	
H3-11	Bias (terminal A2)	0.0		L3-02	Stall prevention level during accel	150	
H3-12	Analog input filter time constant	0.03		L3-03	Stall prevention limit during accel	50	
H4-01	Monitor selection (terminal FM)	2		L3-04	Stall prevention selection during decel	1	
H4-02	Gain (terminal FM)	1.00		L3-05	Stall prevention selection during running	1	
H4-03	Bias (terminal FM)	0.0		L3-06	Stall prevention level during run- ning	160	
H4-04	Monitor selection (terminal AM)	3		L4-01	Speed agreement detection level	0.0	
H4-05	Gain (terminal AM)	0.50		L4-02	Speed agreement detection width	2.0	
H4-06	Bias (terminal AM)	0.0		L4-03	Speed agreement detection level (+/-)	0.0	
H4-07	Analog output 1 signal level selec- tion	0		L4-04	Speed agreement detection width (+/-)	2.0	
H4-08	Analog output 2 signal level selec- tion	0		L4-05	Operation when frequency refer- ence is missing	0	
H5-01	Station address	1F		L5-01	Number of auto restart attempts	0	
H5-02	Communication speed selection	3		L5-02	Auto restart operation selection	0	
H5-03	Communication parity selection	0		L6-01	Torque detection selection 1	0	
H5-04	Stopping method after communi- cation error	3		L6-02	Torque detection level 1	150	
H5-05	Communication error detection selection	1		L6-03	Torque detection time 1	0.1	
H5-06	Send wait time	5		L6-04	Torque detection selection 2	0	
H5-07	RTS control ON/OFF	1		L6-05	Torque detection level 2	150	
H6-01	Pulse train input function selection	0		L6-06	Torque detection time 2	0.1	
H6-02	Pulse train input scaling	1440		L7-01	Forward drive torque limit	200	
H6-03	Pulse train input gain	100.0		L7-02	Reverse drive torque limit Forward regenerative torque limit	200	
H6-04 H6-05	Pulse train input bias	0.0		L7-03	Reverse regenerative torque limit	200	
Н6-05	Pulse train input filter time Pulse train monitor selection	0.10		L7-04 L8-01	Protect selection for internal DB	200 0	
H6-07	Pulse train monitor scaling	1440		L8-02	resistor (Type ERF) Overheat pre-alarm level	95	
L1-01	Motor protection selection	1440		L8-02 L8-03	Operation selection after overheat pre-alarm	3	
L1-02	Motor protection time constant	1.0		L8-05	Input open-phase protection selec- tion	0	
L1-03	Alarm operation selection during motor overheating	3		L8-07	Output open-phase protection selection	0	
L1-04	Motor overheating operation selec- tion	1		L8-09	Ground protection selection	1	
L1-05	Motor temperature input filter time constant	0.20		L8-10	Cooling fan control selection	0	
L2-01	Momentary power loss detection	0		L8-11	Cooling fan control delay time	60	
L2-01	Momentary power loss ridethru time	0.1*6		L8-11	Ambient temperature	45	
L2-03	Min. baseblock time	0.5		L8-15	OL2 characteristics selection at low speeds	1	

Table 10.5 User Constants (Continued)

No.	Name	Fac- tory Setting	Set- ting	No.	Name	Fac- tory Setting	Set- ting
L8-18	Soft CLA selection	1		o2-01	LOCAL/REMOTE key enable/dis- able	1	
N1-01	Hunting-prevention function selec- tion	1		o2-02	STOP key during control circuit terminal operation	1	
N1-02	Hunting-prevention gain	1.00		o2-03	User constant initial value	0	
N2-01	Speed feedback detection control (AFR) gain	1.00		o2-04	kVA selection	0^{*6}	
N2-02	Speed feedback detection control (AFR) time constant	50		02-05	Frequency reference setting method selection	0	
N2-03	Speed feedback detection control (AFR) time constant 2	750		o2-06	Operation selection when digital operator is disconnected	0	
N3-01	High-slip braking deceleration fre- quency width	5		o2-07	Cumulative operation time setting	0	
N3-02	High-slip braking current limit	150		o2-08	Cumulative operation time selec- tion	0	
N3-03	High-slip braking stop dwell time	1.0		o2-10	Fan operation time setting	0	
N3-04	High-slip braking OL time	40		o2-12	Fault trace/fault history clear func- tion	0	
N4-07	Integral time of speed estimator	0.100		o3-01	Copy function selection	0	
N4-08	Proportional gain of speed estima- tor	15		o3-02	Read permitted selection	0	
N4-17	Torque adjustment gain	0.8		T1-00	Motor 1/2 selection	1	
N4-18	Feeder resistance adjustment gain	1.00		T1-01	Autotuning mode selection	0	
N5-01	Feed forward control selection	0		T1-02	Motor output power	0.40	
N5-02	Motor acceleration time	0.178		T1-03	Motor rated voltage	200.0^{*7}	
N5-03	Feed forward proportional gain	1.0		T1-04	Motor rated current	1.90^{*6}	
o1-01	Monitor selection	6		T1-05	Motor base frequency	60.00	
01-02	Monitor selection after power up	1		T1-06	Number of motor poles	4	
01-03	Frequency units of reference set- ting and monitor	0		T1-07	Motor base speed	1750	
o1-04	Setting unit for frequency con- stants related to V/f characteristics	0		T1-08	PG pulses per revolution for teach- ing	600	
01-05	LCD brightness adjustment	3					

Table 10.5 User Constants (Continued)

* 1. Not initialized. (Japanese standard specifications: A1-01 = 1, A1-02 = 2)

* 2. The factory setting will change if the control method is changed. The factory settings given above are for V/f without PG control.

* 3. Factory setting depends on the control method (A1-02).

* 4. For V/f with PG control: 1.0

* 5. For Inverters with a capacity of 55 kW or more: 2.00

* 6. Setting range and initial setting depend on Inverter capacity.

* 7. Setting for 200 V class Inverters. For 400 V class Inverters, double the value.

 $\ast~$ 8. Factory setting in the parentheses is for 3-wire sequence.

* 9. The contents is ignored if the setting is 0.0.

* 10.E1-13 will have the same value as E1-05 after autotuning.

* 11.If the set value is 0, acceleration will be to the speeds for the acceleration times (C1-01 to C1-08)

* 12. The setting range is 10% to 200% of the Inverter rated output. (The value given is for a 200 V Class Inverter for 0.4 kW.)

10-23

Index

Symbols

+/- speed, 6-72

Numerics

2-wire sequence, 6-73-wire sequence, 6-8

A

AC reactor, 2-15 acceleration and deceleration times, 6-15 advanced programming mode, 3-4, 3-9 ASIC internal RAM fault, 7-8 ASIC version fault, 7-8 auto restart, 6-63 autotuning, 4-9 autotuning mode, 3-4, 3-13

B

baseblock circuit error, 7-7 braking resistor, 2-19 braking resistor unit, 2-19 BUS Option Com Err, 7-7, 7-12

C

CALL Com Call, 7-12 CE MEMOBUS Com Err, 7-11 CE Memobus Com Err, 7-6 CF out of control, 7-5 circuit breaker, 2-14 common specifications, 9-4 communications on standby, 7-12 communications option card A/D converter error, 7-8 communications option card DPRAM error, 7-8 communications option card model code error, 7-8 communications option card self diagnostic error, 7-8 constant selection error, 7-13 constant setting error, 7-14 constant setting range error, 7-13 control circuit terminals, 2-20 control fault, 7-5 control method, 4-8

control method selection error, 7-13 control power fault, 7-3 cooling fin overheating, 7-3 CPF00 CPF, 7-7 CPF01 CPF01, 7-7 CPU internal A/D converter error, 7-7 CPU-ASIC mutual diagnosis fault, 7-8 crimp terminals, 2-6, 2-20, 2-36

D

daily inspection, 8-2 DC reactor, 2-15 detecting motor overspeed, 6-145 detecting motor torque, 6-44 detecting PG open circuit, 6-145 DEV Speed Deviation, 7-10 digital operator, 3-2 digital operator communications error 1, 7-7 digital operator connection fault, 7-6 digital output cards, 6-146 drive mode, 3-4, 3-6 dwell function, 6-19

E

EEPROM error, 7-7 EEPROM write error, 7-14 EF External Fault, 7-9 EF0 Opt External Flt, 7-6, 7-10 emergency stop, 6-14 enclosed wall-mounted type, 1-4 ERR EEPROM R/W Err, 7-14 excessive speed deviation, 7-5, 7-10 external fault function, 6-75

F

FBL Feedback Loss, 7-5, 7-11 FJOG, 6-74 forward/reverse run commands input together, 7-9 frequency reference, 6-2, 6-24 fuse blown, 7-2

Index

G

ground fault, 7-2 ground fault interrupter, 2-14 ground wiring, 2-18

Η

high-slip braking OL, 7-4 hunting-prevention function, 6-36

Ι

incorrect inverter capacity setting, 7-13 inductive noise, 2-17 inrush prevention circuit fault, 7-3 installation site, 1-9 installed braking resistor overheating, 7-4 internal braking transistor fault, 7-4 inverter input voltage, 6-108 inverter overload, 7-4 inverter's cooling fan stopped, 7-3

J

jump frequency function, 6-27

L

limiting motor rotation direction, 6-54 loaded operation, 4-14

M

magnetic contactor, 2-15 main circuit overvoltage, 7-2 main circuit undervoltage, 7-3, 7-9 main circuit voltage fault, 7-3 maintenance and inspection, 8-1 MEMOBUS communications, 6-81 MEMOBUS communications error, 7-6, 7-11 modes, 3-4 motor constants, 6-105 motor overheating, 7-9 motor overheating alarm, 7-3 motor overheating fault, 7-3 motor overload, 7-4 motor protection operation time, 6-51 mounting dimensions, 1-7 multi-function analog input, 6-41 multi-function analog input selection error, 7-13 multi-function input selection error, 7-13 multi-speed operation, 6-5

N

noise filter, 2-15 no-load operation, 4-14 number of gear teeth between PG and motor, 6-145 number of PG pulses, 6-144

0

OH Heatsink Overtemp, 7-9 OH2 Over Heat 2, 7-9 OH3 Motor Overheat 1, 7-9 OL3 Overtorque Det 1, 7-9 OL4 Overtorque Det 2, 7-10 OPE01 kVA Selection, 7-13 OPE011 Carr Freq/On-Delay, 7-14 OPE02 Limit, 7-13 OPE03 Terminal, 7-13 OPE05 Sequence Select, 7-13 OPE06 PG Opt Missing, 7-13 OPE07 Analog Selection, 7-13 OPE08, 7-13 OPE09, 7-13 OPE10 V/f Ptrn Setting, 7-13 open chassis type, 1-4 open-loop vector control, 4-9 operation errors, 7-13 **OPR** Oper Disconnect, 7-6 option card communications error, 7-12 option card connection error, 7-7 option card selection error, 7-13 option communications error, 7-7 OS Overspeed Det, 7-10 output open-phase, 7-3 OV DC Bus Overvolt, 7-9 overcurrent, 7-2 overspeed, 7-5, 7-10

Index-2

overtorque 2, 7-10 overtorque detected 1, 7-4 overtorque detected 2, 7-4

P

password, 4-15, 6-140 periodic inspection, 8-2 periodic maintenance of parts, 8-3 PG (encoder) pulses, 2-37 PG disconnection, 7-10 PG disconnection detected, 7-5 PG pulse monitor output dividing ratio, 6-145 PG rotation direction, 6-144 PG speed control card, 6-144 PG speed control cards, 2-29 PGO PG Open, 7-10 PID control, 6-94 PID control selection error, 7-13 PID feedback reference lost, 7-5, 7-11 power ON, 4-3

Q

quick programming mode, 3-4, 3-7

R

radio interference, 2-18 rated current, 6-50 RJOG, 6-74 run command, 6-7

S

S-curve characteristics, 6-18 slip compensation function, 6-32 speed control with PG, 6-142 stabilizing speed, 6-37 stall prevention function, 6-20, 6-22, 6-44 standard connection diagrams, 2-13 standard inverter specifications, 9-2 stopping methods, 6-9 straight solderless terminals, 2-21, 2-36 surge absorber, 2-15 switching motors when the power supply is ON, 6-133

Т

terminal block, 2-5 thermal overload relay, 2-17 tightening torque, 2-36 timer function, 6-93 torque compensation, 6-34 torque limit function, 6-41 trial operation, 4-1 troubleshooting, 7-1, 7-17

U

UL3 Undertorq Det 1, 7-10 UL4 Undertorq Det 2, 7-10 undertorque 1, 7-10 undertorque 2, 7-10 undertorque detected 1, 7-4 undertorque detected 2, 7-5 user constant access levels, 4-15 UV DC Bus Undervolt, 7-9

V

V/f control, 4-8 V/f control with PG, 4-8 V/f pattern, 6-107, 6-108 verify mode, 3-4, 3-12

W

watchdog timer fault, 7-8 wire size, 2-20 wiring, 2-1