7•PROGRAMMING INSTRUCTIONS •XF SERIES CONTROLLERS

Entering parameters
Once the configuration phase is com pleted, the controller will display all the parameters of functions that may be entered to their desired values. To simplify the exercise the parameter have been divided into two group plus one. In the first group are listed al the parameters related to the set poin of the instrument, in the second ar inserted the PID control parameter and in the third group, which is pro tected by the password 1111, are in inded the access and/or operation the parameters for the parameters, munication, all the limiting function and safety states functions.

First group of parameters

Stored set point $\mathbf{1}(\mathrm{N}=3$ Stored set point $2(\mathrm{~N}=3$ Stored set point $\mathbf{3}(\mathrm{N}=3)$
Stored set point $4(\mathrm{~N}=3)$
Stored set point $4(\mathrm{~N}=3)$ The memorised set points are the preset values for operation, recalled through keyboard. When rene the or the is recalled the small auxiliary display on the front of the instrument shows the se number recalled.
51. « Rate of variation in increase of the main set point SP
Any new value of the main se point SP greater than that previ ously entered from the front key board, by linear transfer or recalled through logic or remot analogue inputs, will be associated win the rate established ing on the controller put $W=x$ and it will settle on the target se (the previously entered SP) a the established rate. The slop is expressed in digits/minute.
5L. d. Rate of variation in decrease of the main set point SP
Any new value of the main set point SP greater than that prev ously entered from the front key board, by linear transfer or re called through logic or remote analogue inputs, will be associfor that pramer ing on the controller put $\mathbf{w}=\mathbf{x}$ and it will settle on the target set (the previously entered SP) a the established rate. The slop is expressed in digits/minute.
H25P Set point of output Y2 ($=1$ 1....8) ЧІ

By hysterisis is means a zon within which an output does no under go changes and main tains the state previously as sumed. In order to obtain it is necessary to go vatside this zone. The amplitude of this hysterisis zone is expressed a an amplitude \% of the configured scale.

$435 P$ Set point of output $Y 3(L=1 \ldots . .8)$ See 5 25:
1344 Hysterisis of output $Y 3$ ($L=1 \ldots .8$)

Second group of parameter
H_{3} Hysterisis of relay output Y 1 Hysteris
$(\mathrm{G}=0)$
By hysterisis is meant a zone within which an output does not under go changes and main-
tains the state previously assumed. In order to obtain a change in the state of variable X it is necessary to go outside this zone. The amplitude of this hysterisis zone is expressed as an amplitude \% of the configured scale. The output contacts are be found between termina 6 and 17.
Pb. Proportional band ($G=1 \ldots .9$) The band within which commences the modulation of the difference between the set point W and the variable X . It is calculated as a \% of the scale ampliude and spread in a symmetrical mode with respect to the set point.
t. . \quad Integral time $(G=1 \ldots .9)$ This is the time used by a single integral action to repeat the conribution supplied by the proporonal action. This action is ex Derivative time (G

This is the time takenfor asin This is the time taken for a single same level as the P + D output. This action is expressed in minutes.
F. nt Percentage intensity of fuzzy action ($G=1 \ldots 9$).
The main control output is composed of the sum of two control algorithms, Fuzzy and PID. This parameter permits the balancing as a \% or pe proporion or uzzy algo the PID.
Es Cycle time of the output Y1 ($G=1,2,6,7$)
This parameter is expressed in seconds and defines the total me of the On/Off states of the main output Y1 modulated in \% of the PID + Fuzzy algorithm. e.g. If $\mathrm{Y} 1=20 \%$ and t.c. $=30^{\prime \prime}$, the On state $=6$ " and that of the Iff = 24 ".
If $=1$ or 6 , the output relay ontacts are between terminal 6 and 17.
$\mathrm{G}=2$ or 7 , the logic output as a voltage is available between
the terminals $19(+)$ and $20(-)$. $=2$ Che terminals $19(+)$ and 20(-). ($\mathrm{G}=6 \ldots 9$ and $\mathrm{M}=<>3,<>6$). This parameter is expressed in seconds and defines the total time of the On/Off states of the cold output Y1 modulated in \% of algorithm PID + Fuzzy. .g. If $Y=-20 \%$ and $t c 2=30^{\prime \prime}$, he On state $=6$ " and that of the $\mathrm{ff}=24^{\prime \prime}$.
he output relay contacts are be

dh. The dead zone between the hot and cold outputs ($\mathrm{G}=6 . . .9$) the set point 5 ; ; and the output positions itself at 0% the
system will tend to pass continually between hot and cold and vice versa. The parameter nvolved defines that the command at the output of the conroller, whether it is hot or cold, will only be forwarded if it is leater than that written in the same parameter
Er Relative gain of the "cold" output $\mathrm{G}=6 \ldots 9$)
his is a parameter that deterportional band of the cold with ortional band of the cold with $\mathrm{PbF}=\mathrm{Pb} /$ rc
PbF = Proportional band output Y1 "cold"
$\mathrm{P}_{\mathrm{B}}=$ Proportional band output Y1 "hot"
Ly Total rotation time for servomoor ($G=5$)
This is the time used (expressed in seconds) for valve servomoors to travel from its lower run control algorithm of the "float"" type this parameter is fundamental to a correct positioning of the valve servomotor.
dy Resolution of positioning ordead zone ($\mathrm{G}=5$).
This parameter expressed in actuator run $\%$, defines the minimum movement required for the servomotor. All the commands given by the control algorithm with lower amplitudes than the value written in the dy pa
ot. I Input procedure for calibration of servomotor position (G=5) This parameter is added ifthe A / M button is pressed to enter into the calibration phase and the controlautomatically locks on the servomotor. When on the X display the numbers stop it signifies that e servomotor has reached its M er run limit. Pressing the $A /$ buton again, the controlier stores the 0% position and mum peneng When on the X display the numbers stop it sig nifies that the servomotor has reached its upper limit. Pressing the A / M button again, the ontroller stores the " 100% " position. At this point the calibration operation is concluded and o terminate it is necessary to press the "> enter" button. During the calibration phase it is useful to time with a stopwatch he rotation for later insertion in the ty parameter

Third group of parameters

APBZ Access password to parameter
groups
This function permits the con-
cealment, viewing, but not modi-
fying or rendering completely accessible groups of parameters. The first digit on the right of the display corresponds to the second group, the second of the first group of parameters. The significance of the numbers o be inserted is as follows:
0 Group not visible
1 Group visible, without any
contents
2 Group visible, with facility to Atu Thiry parameter contents.
Atu The purpose of this parameter is that of setting / tuning the auto matic searching of PID and Fuzzy parameters. On entering " 0 " the tuning function is disa bled and the "tune" parameter is no longer available in the main menu.
FPr,- Span of fuzzy operational zone ($\mathrm{G}=1 \ldots 9$)
The parameter in question peroperation for the fuzzy algorithm and is calculated in \% of scale. The optimum value of this zone can be calculated using the fol lowing formula : $\mathrm{FP} \cdot \mathrm{Pr}=\mathbf{~} \mathrm{x}$ Pb Fater- Fuzzy derivative ($\mathrm{G}=1 \ldots 9$). This parameter permits "inform ing" the fuzzy algorithm of the speed of the process to be controlied. It is expressed as "\% scale/minute and its optimum formula: FAPC $=4 \times \mathrm{Pb} / \mathrm{L}$, $\mathrm{Pb}=$ Proportional band pressed as a percentage $t_{1}=$ Integral time expressed in minutes.
4.5an Sampling time ($G=1 \ldots 9$) This parameter determines the sampling time and is variable between 1 and 30 seconds max The optimum sampling time is relative to the speed of the proc ess to be controlled and is given by :
L.5.an= L. $\times 60 /$ FRer
$=$ Proportional band expressed in
$\%$ of scale = Integral tim utes.
$5[1$ Fixing of parameter levels by linear transfer $(B=1)$
Addr Recognition address of seria communication ($B=1$)
$5[\mathrm{br}$ - Rate of serial communication (B = 1)
$5[\mathrm{~Pa}$ Parity control of serial communi cation $(B=1)$
These four
These four parameters are re lated to serial communication, ting up phase of the instrument ($B=1$) and do not relate to the configuration.
SPL I Limit of lower
set point SP1 Limit of upper set point SP1
Example of entering set point limits
 may only be freely entered be tween the two parameters $5 P L$ and 5PL h. Trying to input an "external" set point beyond the limit values, will be taken to be the entering of the relative limit
SPr I Sum of Local + Remote Se Points ($\mathrm{N}=1,2$)
This function permits the adding together of the remote analogue set poil set point. value of the 0 Set point tar set point
1 Set point target = remote
set point + local set point
SPRe Gain control on remote analogue set point ($\mathrm{N}=1,2$) This parameter determines the
excursion limits of the remote set point.
The inputable values are com Entering between - 100 and 100 berwing a value compressed direct action 100 , if there is logue signal and augments th remote set point.
Entering a value compresse between -1 and -100 , if there is an inverse acion, aug diminish the remote set point.
Entering "0" will not result in an variation of the remote set poin and will coincide with the writte value in parameter $5 \mathrm{P}_{\mathrm{r}} \mathrm{3}$. In or der to calculate the excursion amplitude of the remote set poin the following formula may be used:
$5 P_{r}=8.5 \times 5 P_{r}=100$ $5 \mathrm{Pr}=$ Amplitude of remote set point R.5. = Scale amplitude expressed in operational units parameter parameter
the functioning understand the functioning of these to the two examples in the fol lowing drawings.

5Pr-3 Controlling zero on analogue remote set point ($\mathrm{N}=1,2$) With this parameter it is possible to establish the starting point for the remote set point with the minimum remote input signa (limit values correspond to th imit values correspond to the scale, 5LIa and 5Ch
H1. The minimum value that may be assumed at $\mathrm{Y} 1(\mathrm{G}=1 \ldots 4)$ Normally the control output is 100%. With this parameter in use it is possible to limit the required minimum value by which the control output will be free to move to that between the written value in the parameter YL and that written in the param eter Yh . In the event of variable X going outside the scale limits the value written in the param eter will not be respected and the oupur wissume the de Y1. (Configuration position H)
4h The maximum value that may be assumed at $\mathrm{Y} 1(\mathrm{G}=1 \ldots 9)$ Normally the control output
free to move between 0\% and 100%. With this parameter in use it is possible to limit th required maximum value by which the control output will be ree to move between YL and eter Yh. In the event of variable Xging in the event of variable X going outside the scale limits, er will not be in the param the output will respected and fined value of the safety state of Y1. (Configuration position H) The maximum value that may be assumed at $\mathrm{Y} 2(\mathrm{G}=6$ 9) Normally the control output is free to move between 0% and 100%. With this parameter in us it is possible to limit the required

$8 \cdot$ OPERATING INSTRUCTIONS •XF SERIES CONTROLLERS

