Рекомендации по выбору длин кабелей, соединяющих частотный преобразователь и электрический двигатель.

    В связи с большим количеством вопросов связанных с выбором длин кабелей между частотными преобразователями и асинхронными, и синхронными электродвигателями, сотрудники ООО «КоСПА» (сервисного центра YASKAWA), подготовили статью, затрагивающую как теоретические, так и практические аспекты, связанные с данным вопросом. При написании статьи были использованы материалы www.yaskawa.com.

                                       Длины кабелей между двигателем и ПЧ

    Преимущества использования частотных преобразователей (преобразователей частоты, ПЧ, частотников, инверторов) включают в себя: увеличение экономии энергии при использовании в высоковольтном сегменте, превосходное управление скоростью и моментом, а также более современное обеспечение защиты двигателя. Преобразователи частоты эволюционировали от схем, состоящих из Дарлингтоновых пар транзисторов (усилители на биполярных транзисторах), до современных IGBT-транзисторных модулей. Уникальные особенности IGBT-транзисторов, такие как снижение энергозатрат на переключение, значительно увеличили производительность и сделали возможным уменьшение габаритных размеров преобразователей частоты.

    Однако было замечено, что двигатели, которые безотказно работали в течение длительного времени от сети, внезапно выходили из строя спустя несколько недель после установки частотного преобразователя. Такой вид аварии, обычно обуславливается выходом из строя обмотки двигателя из-за перенапряжения. Точнее, авария происходит и из-за короткого замыкания фаз между собой, и из-за замыкания фазы на корпус. Исследования показали, что возможность быстрого переключения IGBT-транзисторов, в совокупности с чрезмерной длиной кабеля между двигателем и преобразователем частоты способны значительно снизить срок жизни двигателя.

    Чтобы понять, почему преобразователь частоты может стать причиной более быстрого выхода из строя двигателя, необходимо рассмотреть два явления. Первым является отраженная волна, по -другому явление стоячей волны, вторым – перенапряжение (перерегулирование напряжения при коммутациях), также известное как условие резонансного контура. Теоретически эти два явления могут быть рассмотрены по-разному, но на практике решение по их устранению одинаково.

   Отраженная волна. При рассмотрении длины кабеля в качестве линии электропередач, следующая формула может быть применена при расчете критической длины, или длинной линии, где имеет место отражение волны напряжения. Критическая длина кабеля определяется формулой:

Где, -скорость нарастания волны (мc), м/c –скорость света в вакууме, -приблизительная распределенная индуктивность кабеля, -время нарастания импульса напряжения, -длина кабеля.

Следующее уравнение соотносит время включение IGBT- транзистора и максимальную длину проводящей линии (кабеля):

  При превышении этого значения длины возможно возникновение явления стоячей волны. При увеличении периода ШИМ преобразователя частоты с 0,1 мс до 0,3 мс, минимальная длина необходимая для перенапряжения, возрастет с 16 до 48 м.

  Перенапряжение (перерегулирование напряжения). Более точное описание того, что происходит в двигателе, выглядит следующим образом. Перенапряжение (дребезг) это функция энергии, запасенной в проводнике, в течение времени нарастания каждой выходной пульсации напряжения (ШИМ). В то время, как распределенная индуктивность – особенность длинного проводника, лежащего между двигателем и преобразователем. Индуктивность увеличивает время, необходимое для зарядки емкости двигателя, что в свою очередь приводит к увеличению запаса энергии в линии. Когда двигатель все же заряжается до необходимого потенциала, оставшаяся энергия линии продолжает подзаряжать двигатель, увеличивая значения потенциала обмоток, способствуя возникновению перенапряжения. Фактически, при достаточно большой длине проводника (кабеля), к обмотке двигателя может быть приложено двойной напряжение звена постоянного тока частотного преобразователя. Т.е. чем больше расстояние между двигателем и преобразователем, тем больше перенапряжение. Однако, некорректно утверждать, что перенапряжение пропорционально длине кабеля. Максимальное значение перенапряжения можно рассчитать:

  где, Vmax-максимальное напряжение сети, - максимальное напряжение звена постоянного тока, - максимальное значение перенапряжения.

  В типовых системах на 460В, максимальное перенапряжение на клеммах двигателя может достигать 1500 В. Почти 80% этого напряжения распределяется по первичной обмотке двигателя.

  Время включения IGBT-транзисторов разработано с целью возможности влияния на перенапряжение. Если ключи переключаются достаточно медленно, емкость двигателя имеет возможность зарядиться, а после этого разрядиться в линию. Однако, при увеличении скорости переключения, напряжение, прикладываемое к линии, увеличивается, значении запасенной энергии возрастает, и, как следствие возрастает перенапряжение.

  Это объясняет, почему 6-ступенчатые, медленные по сравнению с современными, преобразователи, использующие технологию Дарлингтона (усилитель) редко встречались с проблемой перенапряжения при той же длине кабеля. Также важно отметить, трехфазные двигатели на 230В в достаточной мере защищены от пробоя в следствие перенапряжения, благодаря существующему стандарту изоляции.

Полупроводниковые ключи

Время включения

5-е поколение IGBT ПЧ

~15 кГц

4-е поколение IGBT ПЧ

~12 кГц

3-е поколение IGBT ПЧ

0,1 мс

1-е поколение IGBT ПЧ

0,25 мс

Биполярный транзистор

0,5-1,0 мс

Запираемый тиристор (GTO)

15-20 мс

Тиристор (SCR)

40-100 мс

   Явление коронного разряда.

   Для того, чтобы понять, почему перенапряжение столь губительно для двигателя, необходимо рассмотреть явление коронного разряда. Представим, что между проводниками с током существует относительный потенциал, который создает электрическое поле. Напряженность электрического поля вокруг проводников может быть достаточной для осуществления пробоя воздуха. Так как энергии электрического поля достаточно для ионизации кислорода (O2), чтобы осуществить его перехода в озон (O3), происходит пробой. Озон представляет собой высокоактивный элемент, поэтому он незамедлительно вступает в реакцию с органическими компонентами изоляции. А примеси кислорода в этой системе способствуют разрушению изоляции. Явление коронного заряда происходит, когда потенциал проводников достигает некоторого порогового значения, называемого начальным напряжением коронного заряда. Начальное напряжение коронного заряда зависит от расположения проводников, типа изоляции, температуры, особенностей поверхности и влажности.

                                                                           Повреждения кабеля при коронарном разряде                                        

   Если у двигателя нет соответствующей изоляции, он может выйти из строя раньше срока. Предполагается, что двигатель, управляемый с помощью частотного преобразователя, произведён с изоляцией класса F или выше, а также имеет фазовую изоляцию.

   Смежные проблемы.

   Генерация радиочастотных и электромагнитных помех.

   Значение электрического шума, вырабатываемого проводниками на выходе преобразователя частоты, также зависит от длины используемого кабеля. Во избежание возникновения помех, необходимо экранировать кабель при установке соединения. Если осуществить это не получается, необходимо использовать фильтрующие устройства для снижения индуктивных помех.

   Защитное отключение двигателя.

   В некоторых ситуациях возможно создать условия, при которых преобразователь частоты защитит себя от Замыкания на Землю (Ground Fault) или от перегрузки по току (Over Current). Эти аварии происходит в ситуациях, когда множество кабелей прокладывают в непосредственной близости друг к другу, без соответствующей изоляции. Используя основные законы физики, можем доказать, что ток, протекающий по одному проводу, наводит напряжение на другой, так же, как и ток протекающий по другому проводу наводит напряжение на этот провод. Имея множество проводников в непосредственной близости, могут возникнуть условия, когда неравные потенциалы и токи могут навестись в разных фазах привода, результатом может стать замыкание на землю.

  Также известно, что емкость между фазами и емкость между фазой и землей возрастает при увеличении длины проводника. Поэтому возможно возникновение ошибки перегрузки по току в течение времени заряда фазных емкостей и емкостей фазы относительно земли.

  Если виды этих защитных отключений встречаются довольно редко, то эти ситуации можно обойти, правильно установив оборудование. Если это уже сделано, возможно улучшить ситуацию, применив фильтрующие устройства.

   Решения.

   Снижение длины проводника.

   Для снижения вероятности возникновения чрезмерного перенапряжения на клеммах двигателя, необходимо, чтобы длина кабеля, соединяющего преобразователь с двигателем была меньше 45 м. Также хорошим вариантом будет снизить несущую частоту ШИМ преобразователя, что, в свою очередь непременно скажется на шуме двигателя, но снизит число выходных импульсов напряжения в секунду, увеличив срок жизни двигателя и уменьшив нагрев IGBT-транзисторов.

   Специальный двигатель для частотного регулирования.

   Простейшим и наиболее выгодным решением является использование специального двигателя для частотного регулирования. Стандарт NEMA Standart MG-1, устанавливает, что такие двигатели должны быть способны выдержать 1600 В импульсного напряжения, продолжительностью 0.1 мс или более, для двигателей класса напряжения 600В и менее. Если двигатель правильно спроектирован и соответствует этому стандарту, то можно расчитывать на безотказную работу в течение длительного времени при любой длине кабеля.

   Трехфазный выходной реактор (дроссель).

   Реактор расположенный на выходе преобразователя, снижает градиент напряжения, прикладываемый к обмоткам двигателя. Время нарастания импульса снижается до 1,1 мс, таким образом снижая dV/dt до 540В/мс. Это в свою очередь эквивалентно времени переключения Дарлингтоновской схемы, используемой в прошлом, а, следовательно, очень эффективно для продления жизни двигателя. Выходной реактор решает приблизительно 75% проблем, связанных с преждевременным выходом из строя двигателя, из-за большой протяженности кабеля. Обычно используются реакторы с 3% и 5% импедансом (входным сопротивлением). При полной нагрузке приблизительно от 3 до 5 % выходного напряжения спадет на реакторе. Однако, если возникает сомнения относительно развиваемого момента электродвигателем, его необходимо проверить при максимальной скорости.

   Реактор перед двигателем.

   При наличии возможности разместите выходной реактор максимально близко к электродвигателю. Это позволяет увеличить длину кабеля до 198 м без влияния на производительность двигателя. В этом случае реактор может начать изнашиваться, но выход из строя дросселя займет значительно большее время, чем двигателя при тех же условиях. Однако это может стать одним из наиболее эффективных и бюджетных решений, особенно если речь идет о электродвигателях с плохой изоляцией, которые зачастую встречаются в погружных насосах.

   Выходной фильтр для защиты двигателя.

  Для обеспечения безотказной работы при длине до 610м при недостаточном классе изоляции двигателя, необходимо использовать специально разработанные выходные фильтры. Эти фильтры разработаны для устранения высших гармоник, возникающих из – за ШИМ, а также для снижения времени импульса до 1,2 мс. Это обеспечивает чистый ШИМ- сигнал на клеммах двигателя.

ПЧ выходное напряжение при длине кабеля 10мПЧ выходное напряжение при длине кабеля 305м ПЧ выходное напряжение при длине кабеля 305м c dv\dt фильтром

Метод

Рекомендации

Снижение длины проводника

При возможности уменьшите длину кабеля <46 м

Специальный двигатель для частотного регулирования

Можно работать двигателем при любой длине кабеля, если выполняются заводские требования производителя двигателя.

Реактор на выходе ПЧ

Можно управлять двигателем на дистанции до 91 м

Реактор на входе двигателя

Можно управлять двигателем на дистанции до 198 м

Выходной dV/dt - фильтр

Можно управлять двигателем на дистанции 610 м

 Почему же выбирают IGBT-транзисторы?

  • Чрезвычайно высокая скорость включения соотносится с низкими энергозатратами на переключение, позволяющими уменьшить габаритные размеры преобразователей, что отражается на снижении стоимости продукта.

  • IGBT-транзисторы позволяют использовать высокую частоту коммутаций (несущую частоту ШИМ) преобразователя для передачи напряжения на двигатель. Значение несущей частоты ШИМ более 8 кГц значительно снижает шум двигателя и обеспечивает двигатель током со сниженным количеством высших гармоник и уменьшенной амплитудой бросков тока.

  • Уменьшение влияния высших гармоник тока снижает паразитное намагничивание статора, которое является источником слышимого шума, насыщения железа и потерь в обмотках.

  • Снижение бросков тока на ключах обуславливает охлаждение работающего двигателя, что в свою очередь сказывается на моменте на всем диапазоне скоростей.

   Дополнительные рекомендации по частотным преобразователям YASKAWA.

   Компанией YASKAWA предусмотрена возможность увеличения длины кабеля между преобразователем частоты и двигателем более 100 метров. Так как при увеличении длины кабеля возрастают токи утечки на землю, в руководстве пользователя на частотные преобразователи указаны необходимые изменение несущей частоты ШИМ.

  Для преобразователей частоты YASAKWA V1000:

        Длина кабеля

        50 м

       100 м

  более 100 м

Несущая частота ШИМ 

 15 кГц или меньше 

 10 кГц или меньше 

 2 кГц или меньше 

  Для преобразователей частоты YASAKWA A1000, GA700:

        Длина кабеля

        50 м

       100 м

  более 100 м

Несущая частота ШИМ 

 15 кГц или меньше 

 5 кГц или меньше 

 2 кГц или меньше 

   Для матричного преобразователя YASKAWA U1000 (обеспечивает работу на больших длинах кабелей за счет другого принципа ШИМ):

       Длина кабеля

        50 м

 более 50 м 

-

Несущая частота ШИМ  

 10 кГц или меньше 

 4 кГц

-

   Обратите внимание, что максимальная длина кабеля между синхронным (!!!) двигателем и преобразователями частоты YASKAWA в режимах открытого вектора OLV/PM (AOLV/PM) не должна превышать 100 м.


   Необходимые реакторы и фильтры приведены в каталоге аксессуаров для частотных преобразователей YASKAWA.